Типы режимов нейтрали электрических сетей
Различают пять типов сетей трёхфазного переменного тока:
1. Трёхпроводная сеть с изолированной от земли нейтралью. В качестве защитного мероприятия применяют заземление корпусов электрооборудования. Буквенное обозначение IT.
I – от французского слова isole, — изолированная
T – от французского слова terre – земля.
Рисунок 1. Система IТ.
2. Трёхпроводная сеть с глухо заземлённой нейтралью с местным защитным заземлением корпусов. Буквенное обозначение ТТ.
1-я Т – заземление нейтрали,
2-я Т –заземление корпусов оборудования.
Рисунок 2. Система ТТ.
3. Четырёхпроводная сеть с глухо заземлённой нейтралью с использованием нейтрали для зануления корпусов электрооборудования. Буквенное обозначение TN-C.
1-я Т – заземление нейтрали,
2-я N – заземление корпусов через нейтральный проводник (N от neutre
3-я С – что этот проводник является одновременно рабочим и защитным (С от combine – комбинированный, совместный).
Рисунок 3. Система TN-C.
4. Пятипроводная сеть с глухо заземлённой нейтралью и отдельными рабочим и защитным нейтральным (нулевым) проводниками. Буквенное обозначение TN-S.
1-я Т – заземление нейтрали,
2-я N – заземление корпусов через нейтральный проводник (N от neutre – нейтральный),
3-я S – от слова separate – «раздельный».
Рисунок 4. Система TN-S.
5. Частично четырёх, и частично пятипроводная сеть с глухо заземлённой нейтралью – сеть TN – C – S.
Рисунок 5. Система TN-C-S.
Предлагаем вашему вниманию видеоролик о системах заземления. Системы заземления по ПУЭ.
описание типов и видов, способов подключения
Воздушные, кабельные линии на трансформаторных подстанциях работают с высоким напряжением. Его передача предполагает соблюдение мер безопасности. Высоковольтные линии аналогично энергосистемам с 380 В подсоединяются по специально установленным схемам — так обеспечивается надлежащая защита от случайного поражения током, проходящим через действующую цепь. При этом нейтральная трансформаторная точка — «нейтраль» — подлежит надежному заземлению.
Способы подсоединения
Особенность функционирования высоковольтных систем заключается в том, что при повреждении, обрыве линии происходит замыкание на землю отдельного провода. При этом токи утечки представлены внушительными величинами. Отличительными являются меры безопасности, которые применяются к подобным сетям. Они несравнимы с аналогичными действиями, проводимыми в цепях конечных потребителей. В сетях с 6 — 35 кВ стандартно задействуются следующие виды заземления нейтрали:
- Подключение выполняется с помощью специальных устройств — компенсаторов или реакторов дугогасящего типа.
- В процессе задействуется заземляющая система, предполагающая подключение описываемой нейтральной точки посредством резистора.
- Создание изолированной нейтрали в обход к подсоединению ЗУ в пределах обслуживаемого объекта, защищаемой высоковольтной линии.
Монтирование компенсационных деталей по сети проведения нейтрального проводника помогает снизить величины токов замыкания. Работа подобной цепи заключается в нейтрализации опасного электричества через планомерное изменение индуктивности на катушке. В последней напряжение обязательно имеет обратную фазу.
Когда достигаются определенные показатели индуктивности, ток в месте замыкания используемого заземлителя достигает нулевых значений. Более эффективное действие подобного заземления с параллельной индукцией обеспечивается за счет включения резистора. Такой прибор обеспечивает стекание активного тока, который необходим для работы высоковольтного защитного реле.
Важно! Каждая описанная система предполагает установку на принимающей стороне отдельного ЗУ. С его помощью создается эффективное заземление нейтрали, обеспечиваются надлежащие условия по использованию ВЛ.
Без подключения в цепь обозначенных устройств невозможно создание эффективных защитных функций. Если случится случайная поломка нейтрального проводника, на подстанциях силовые действующие установки будут незащищенными.
Стоит упомянуть еще вариант заземления нейтрали, включенной в сети от 6 до 35 кВ. Общая точка подводится к питающей цепи, что дает возможность эффективно использовать заземлитель. При этом создаются оптимальные условия для стекания активного тока. Существенным недостатком метода выступает его высокая стоимость, по этой причине он задействуется только на территориях питающих подстанций, у которых входные напряжения достигают 110 кВ и более.
Системы с изоляцией от земли
Работа высоковольтных сетей с эффективно заземленной нейтралью изоляционного типа является распространенной в различных регионах России. В этом случае нейтральная точка в трансформаторе или генераторе с трехфазной обмоткой не заземляется. Популярность подобного варианта включения нейтрали объясняется тем, что замыкание на землю фазы не является коротким, т. к. попросту отсутствует взаимосвязь с грунтом.
Особенность же заключается в том, что ВЛ в таком аварийном режиме работает без существенных поломок на протяжении нескольких часов. Среди достоинств такой схемы отмечено также наличие малых токов в точке замыкания ОЗЗ (одна фаза на землю). Объясняется такой принцип небольшой емкостью сети по отношению к грунту.
Важно! Подобный тип включения имеет токи ОЗЗ на порядок ниже в сравнении с межфазными замыканиями. Это очередное преимущество обозначенных сетей.
Отсутствует необходимость во включении защитных быстродействующих устройств от ОЗЗ, в результате чего снижаются затраты при эксплуатации систем.
- В некоторых случаях создаются перенапряжения, имеющие дуговой эффект даже при небольших токах в месте заземления одной фазы.
- Существует вероятность выхода из строя высоковольтных, кабельных установок вследствие повреждения изоляционного слоя.
- Ведется повышенный учет напряжений (380 В). При необходимости линейная электрическая техника подвергается тщательной изоляции.
- Сложное нахождение и определение конкретной точки повреждения.
Выбирая описанный тип подсоединения нейтральной точки, следует учитывать все его преимущества и недостатки, тщательно продумать последствия от возможных аварийных ситуаций.
Подключение с помощью низкоомного сопротивления
Среди многих видов нейтралей часто используется заземление через резистор с незначительной номинальной величиной. Они нашли широкое применение на территории Беларуси, России. Логично в таких схемах задействовать высокоомный резистор (RB-режим), который задает низкие уровни перенапряжений при ОЗЗ.
В других случаях при заземлении нейтральной точки задействуются комбинированные способы ее подсоединения посредством применения индуктивности (RB-режим и LB).
Более подробное изучение обозначенных подходов показывает, что резисторы высокоомного типа характеризуются внушительными размерами. К тому же они отличаются значительными ценами и массой. Однако и обустройство дугогасящих реакторов отличается своими особенностями и недостатками. Поэтому при выборе режима, поддерживаемого низкоомным резистором, следует провести тщательные расчеты и исчисления с учетом обозначенных факторов.
Существует два типа проведения низкого заземления. В первом случае выполняется установка резонансного резисторного приспособления, с помощью которого срабатывает защита от токов при ОЗЗ. Что касается второго варианта, он предполагает использование заземленных схем посредством индуктивности. Они направлены на обеспечение защиты в случае фазных двойных замыканий.
При резистивном подключении стоит принимать во внимание дополнительные токи в нейтрали, которые могут стать причиной прерывания емкостных значений ОЗЗ до 3 раз и более. Индуктивные или реактивные схемы по уровню своего заземления не должны превышать общее значение электротоков, исходящих от двойных замыканий.
Исходя из ПУЭ, обозначенные выше рабочие режимы могут быть кратковременными или длительными. Последний вариант предполагает расположение заземляющих деталей в единую цепь, в которой нейтраль функционирует на постоянной основе.
Именно такой способ подключения, на что указывают правила устройства электрических установок, допустим только при выполнении качественного заземления с показателем RЗ ≤ 0,5 Ом. Подобный подход эффективен с точки зрения трудовых затрат и экономических соображений.
Нейтраль трансформатора, назначение заземления нейтрали
Трансформаторы имеют нейтрали, режим работы или способ рабочего заземления которых обусловлен:
- требованиями техники безопасности и охраны труда персонала,
- допустимыми токами замыкания на землю,
- перенапряжениями, возникающими при замыканиях на землю, а также рабочим напряжением неповрежденных фаз электроустановки по отношению к земле,
- пределяющих уровень изоляции электротехнических устройств,
- необходимостью обеспечения надежной работы релейной защиты от замыкания на землю,
- возможностью применения простейших схем электрических сетей.
Используются следующие режимы нейтрали:
- глухозаземленная нейтраль,
- изолированная нейтраль,
- эффективно заземленная нейтраль.
Выбор режима нейтрали в электрических сетях определяется бесперебойностью электроснабжения потребителей, надёжностью работы, безопасностью обслуживающего персонала и экономичностью электроустановок. при однофазном замыкании на землю нарушается симметрия электрической системы: изменяются напряжения фаз относительно земли, появляются токи замыкания на землю, возникают перенапряжения в сетях. Степень изменения симметрии зависит от режима нейтрали.
Глухозаземленная нейтраль
Глухозаземленная нейтраль трансформатораЕсли нейтраль обмотки трансформатора присоединена к заземляющему устройству непосредственно или через малое сопротивление, то такая нейтраль называется глухозаземлённой, а сети, подсоединённые к ней, соответственно, — сетями с глухозаземлённой нейтралью.
Изолированная нейтраль
Нейтраль, не соединённая с заземляющим устройством называется изолированной нейтралью.
Компенсированная нейтраль
Сети, нейтраль которых соединена с заземляющим устройством через реактор (индуктивное сопротивление), компенсирующий ёмкостной ток сети, называются сетями с резонанснозаземлённой либо компенсированной нейтралью.
Сети, нейтраль которых заземлена через резистор (активное сопротивление) называется сеть с резистивнозаземлённой нейтралью.
Электроустановки в зависимости от мер электробезопасности разделяются на 4 группы:
- электроустановки напряжением выше 1 кВ в сетях с эффективнозаземленной нейтралью (с большими токами замыкания на землю),
- электроустановки напряжением выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю),
- электроустановки напряжением до 1 кВ с глухозаземленной нейтралью,
- электроустановки напряжением до 1 кВ с изолированной нейтралью.
Режимы нейтрали трехфазных систем
Напряжение, кВ | Режим нейтрали | Примечание |
0,23 | Глухозаземленная нейтраль | Требования техники безопасности. Заземляются все корпуса электрооборудования |
0,4 | ||
0,69 | Изолированная нейтраль | Для повышения надежности электроснабжения |
3,3 | ||
6 | ||
10 | ||
20 | ||
35 | ||
110 | Эффективно заземленная нейтраль | Для снижения напряжения незамкнутых фаз относительно земли при замыкании одной фазы на землю и снижения расчетного напряжения изоляции |
220 | ||
330 | ||
500 | ||
750 | ||
1150 |
Режим нейтрали оказывает существенное влияние на режимы работы электроприемников, схемные решения системы электроснабжения, параметры выбираемого оборудования.
Назначение заземления нейтрали трансформатора для повышения чувствительности защиты от однофазных замыканий на землю.
В нормальном режиме высокоомный резистор, и при необходимости дугогасящий реактор (ДГР) подключаются к нейтрали специального трансформатора заземления нейтрали (ТЗН).
Чтобы обеспечить чувствительность и селективность защиты от ОЗЗ необходимо кратковременно увеличить ток через устройство защиты. Обоснование возможности кратковременного индуктивного заземления нейтрали специальным трансформатором заземления нейтрали. При возникновении на линии ОЗЗ трансформатор через 0,5 с кратковременно подключается выключателем к сборным шинам. Благодаря глухому заземлению нейтрали создается ограниченный индуктивностью ТЗН ток однофазного короткого замыкания, достаточный для обеспечения чувствительности от ОЗЗ и создания условия гашения дуги.
Защита действует без выдержки времени на отключение линии. Выключатель с заданной выдержкой времени отключается. Отключение линии предотвращает двойные замыкания на землю (ДЗЗ) и многоместные замыкания на землю (МЗЗ), неизбежные в сетях напряжением 6-10 кВ с высокой изношенностью кабелей и оборудования.
Такой режим отключения поврежденных кабельных линий несколько лет проходит опытную эксплуатацию в ОАО «Пятигорские электрические сети». Однако, отключение линий возможно только при наличии надежного резервирования и в случаях, оговоренных правилами устройств электроустановок.
Предотвращения перехода ОЗЗ в ДЗЗ или МЗЗ осуществляется резистором Rн (см. рисунок 1), подключенным к нейтрали ТЗН. В нормальном режиме выключатель Q3) в цепи ТЗН отключен. При ОЗЗ срабатывают реле контроля изоляции KSV1 и (или) реле тока КА1, или устройство определения поврежденной фазы (см. рисунок 1).
После замыкания контактов срабатывает реле времени КТ1, замыкающиеся контакты которого включают выключатель Q3. Выключатель Q3 шунтирует сопротивление Rн и ДГР.
Рис.1 — Поясняющая схема и схема автоматического заземления нейтралиЗамыкающиеся контакты реле КТ1 с выдержкой времени 0,3 с отключают выключатель Q3. При замыкании этих контактов срабатывает промежуточное реле KL1. Размыкающие контакты реле разрывают цепь КТ1. Возврат схемы осуществляется дежурным с помощью ключа SА. При этом реле К13 замыкает свои контакты в цепи реле КТ1. После отключения выключателя Q3 сеть вновь переходит в режим с заземленной нейтралью через высокоомное сопротивление и при необходимости через ДГР.
При увеличении тока через реле срабатывает защита от ОЗЗ с действием на сигнал с выдержкой времени 0,2 с. Отключение выключателя выполняется с выдержкой времени 0,2 с. Сеть вновь переходит в режим с нейтралью, заземленной через резистор.
Видео: Виды заземления нейтрали
Режимы нейтрали трансформатора в электроустановках: разновидности, инструкция и назначение
Режим нейтрали – это точка нулевой последовательности обмоток трансформатора или генератора, которая подключается к заземлителю, специализированному оборудованию или изолированно от внешних зажимов. Ее правильный выбор определяет защитные механизмы сети, вносит существенные особенности в работоспособность. Какие разновидности встречаются и преимущества у каждого варианта, читайте далее в статье.
Общее представление
Режимы нейтрали электроустановок выбираются из общепринятой, устоявшейся мировой практики. Некоторые изменения и корректировки вносятся из особенностей государственных энергосистем, что связывается с финансовыми возможностями объединений, протяженностью сети и другими параметрами.
Чтобы определить нейтраль и режим ее работы, достаточно ориентироваться в наглядных схемах электроустановок. Необходимо особое внимание уделить силовым трансформаторами и их обмоткам. Последние могут выполняться звездой или треугольником. Подробнее — ниже.
Треугольник предполагает изолированность нулевой точки. Звезда — наличие заземлителя, который присоединяется к:
- контуру заземления;
- резистору;
- дугогасящему реактору.
От чего зависит выбор нулевой точки соединения?
Выбор режима нейтрали зависит от ряда характеристик, среди которых можно выделить:
- Надежность сети. Первый критерий связывается с выстраиванием защиты относительно однофазного замыкания на землю. Для работы сети 10-35 кВ зачастую применяется изолированная нейтраль, которая не отключает линию из-за упавшей ветки и даже провода на землю. А для сети 110 кВ и выше требуется моментальное отключение, для чего применяется эффективно заземленная.
- Стоимость. Важный критерий, который определяет выбор. Реализовать изолированную сеть намного дешевле, что связывается с отсутствием необходимости в четвертом проводе, экономией средств на траверсы, изоляцию и на прочие нюансы.
- Устоявшаяся практика. Как отмечалось выше, режимы нейтралей трансформаторов выбираются на основании общемировой и государственной статистики. Это говорит о том, что большинство производственных предприятий, создающих силовое оборудование, придерживаются этих норм. Из-за этого выбор предопределен заводом-изготовителем трансформатора или генератора.
Рассмотрим далее каждую вариацию в отдельности и узнаем преимущества и недостатки. Заметим, что существует пять основных режимов.
Изолированная
Режим работы нейтрали, в которой нулевая точка отсутствует, именуется изолированным. На схемах ее изображают в виде треугольника, что говорит о наличии только трехфазного провода. Ее использование ограничено сетью 10-35 кВ, а выбор определяется рядом преимуществ:
- При возникновении однофазного замыкания на землю потребители не чувствуют неполнофазный режим. Отключения линии не происходит. В момент однофазного замыкания на поврежденной фазе напряжение становится равным 0, на двух оставшихся повышается до линейного.
- Второе преимущество связывается со стоимостью. Выполнить подобную сеть намного дешевле. К примеру, отсутствует необходимость в нулевом проводе.
Главным недостатком такого варианта является безопасность. При падении провода сеть не отключается, последний остается под напряжением. При приближении на расстояние ближе восьми метров можно попасть под шаговое напряжение.
Эффективно заземленная
Режимы работы нейтралей в электроустановках выше 110 кВ реализованы представленным способом, что обеспечивает требуемые условия защиты сети и безопасности. Нулевая точка трансформатора заземляется на контур или через специальное устройство под названием «ЗОН-110 кВ». Последнее влияет на чувствительность срабатывания защит.
При падении провода создается потенциал между заземлителем и точкой обрыва. Из-за этого срабатывает релейная защита. Отключение производится с минимальной выдержкой времени, после чего включается вновь. Это связывается с тем фактом, что на работоспособность могла повлиять ветка дерева или птица. Повторное включение (АПВ) позволяет выявить реальность повреждения. К преимуществам необходимо отнести следующие моменты:
- Относительно низкая стоимость, которая позволяет дешевле выстраивать высоковольтные сети. Следует отметить, что линии электропередач также имеют три провода вместо четырех, что является отличительной особенностью.
- Повышенная надежность в сочетании с безопасностью. Это считается важным критерием, который определяет выбор представленного вида нейтрали.
Недостатков практически нет. На практике считается, что это идеальный вариант для высоковольтных сетей.
Заземленная через ДГК (ДГР)
Режим нейтралей называется резонансно-заземленным, когда его точка проходит через дугогасящую катушку или реактор. Подобная система в основном применима для кабельных распределительных сетей. Она позволяет компенсировать индуктивность и уберечь систему от более масштабных и сложных повреждений.
При появлении однофазного замыкания на землю начинает работать катушка или реактор, которая компенсирует силу тока, снижая его в месте пробоя. Необходимо отметить, что разница между ДГК и ДГР связывается с наличием автоматической подстройки при изменении индуктивности в сети.
Основным преимуществом является компенсация энергии, которая не дает повреждению кабельной линии перерастать из однофазных в межфазное. Что касается недостатков, это появление прочих повреждений в слабых местах изоляции кабельных линий.
Заземленная через низкоомный, высокоомный резистор
Режим нейтрали, при котором заземление точки нулевой последовательности выполняется через выокоомоный или низкоомный резистор, также считается резонансно-заземленным и используется в сетях 10-35 кВ. Особенности представленной системы связываются с отключением сети без выдержки времени.
Это удобно в плане защиты сети, но негативно влияет на отпуск электрической энергии. Подобная система не подходит для работы ответственных потребителей, хотя является отличным вариантом для кабельных линий. Использование на ВЛ электропередачи непригодно, так как появление земли в сети ведет к отключению фидера.
Еще одним нюансом относительно заземленной нейтрали через резистор является появление больших токов при замыкании на самом резисторе. Имелись случаи, которые приводили к возгоранию подстанции из-за этого момента.
Глухозаземленная
Режим работы нейтрали трансформатора для потребительской сети именуется глухозаземленным. Особенности следующие. Представленная вариация предполагает заземление нулевой точки на контур подстанции, относительно чего работают защиты. Такая система используется в распределительных сетях, где осуществляется непосредственное потребление электроэнергии.
Выход 0,4 кВ имеет четыре провода: три фазных и один нулевой. При однофазном замыкании создается потенциал относительно заземленной точки. Это отключает автомат или становится причиной перегорания предохранителей. Следует отметить, что срабатывание защит во многом определяется правильностью выбора плавких вставок или номинал автомата.
Заключение
Режим нейтрали – это способ заземления нулевой точки трансформатора или генератора. Выбор того или иного варианта зависит от ряда критериев, главным из которых считается общепринятая практика. Определить нейтраль можно по схемам, где достаточно рассмотреть обмотки трансформатора. Это следует учитывать и во время курсовых проектов, когда необходимо изобразить схему подстанций.
Каждый вариант обладает рядом преимуществ и недостатков. Исходя из использования той или иной нейтрали определяются условия работы и защиты. Идеальным для высоковольтной сети считается эффективно заземленная, для распределительной – резонансное заземление. Для потребительского применяется глухозаземленная. Рекомендуем рассмотреть основные виды защит, которые применяются в современной электроэнергетике.
Режимы работы нейтралей в электроустановках.
Нейтралями электроустановок называют общие точки трехфазных обмоток генераторов или трансформаторов, соединенных в звезду.
В зависимости от режима нейтрали электрические сети разделяют на четыре группы:
- сети с незаземленными (изолированными) нейтралями;
- сети с резонансно-заземленными (компенсированными) нейтралями;
- сети с эффективно заземленными нейтралями;
- сети с глухозаземленными нейтралями.
Согласно требованиям Правил устройства электроустановок (ПУЭ, гл. 1.2).
Сети с номинальным напряжением до 1 кВ, питающиеся от понижающих трансформаторов, присоединенных к сетям с Uном > 1 кВ, выполняются с глухим заземлением нейтрали.
Сети с Uном до 1 кВ, питающиеся от автономного источника или разделительного трансформатора (по условию обеспечения максимальной электробезопасности при замыканиях на землю), выполняются с незаземленной нейтралью.
Сети с Uном = 110 кВ и выше выполняются с эффективным заземлением нейтрали (нейтраль заземляется непосредственно или через небольшое сопротивление).
Сети 3 — 35 кВ, выполненные кабелями, при любых токах замыкания на землю выполняются с заземлением нейтрали через резистор.
Сети 3—35 кВ, имеющие воздушные линии, при токе замыкания не более 30 А выполняются с заземлением нейтрали через резистор.
Компенсация емкостного тока на землю необходима при значениях этого тока в нормальных условиях:
- в сетях 3 — 20 кВ с железобетонными и металлическими опорами ВЛ и во всех сетях 35 кВ — более 10 А;
- в сетях, не имеющих железобетонных или металлических опор ВЛ:
при напряжении 3 — 6 кВ — более 30 А;
при 10 кВ — более 20 А;
при 15 — 20 кВ — более 15 А; - в схемах 6 — 20 кВ блоков генератор — трансформатор — более 5А
При токах замыкания на землю более 50 А рекомендуется установка не менее двух заземляющих дугогасящих реакторов.
Ответы@Mail.Ru: Виды нейтрали в электросетях
1. Глухозаземленная нейтраль это не нейтральный провод в землю а присоединение нейтрали к заземляющему устройству, величина сопротивления которого строго нормируется в зависимости от величины напряжения и мощности установки. Напряжение нейтрали относительно земли равно нулю только при симметричном режиме (это идеальный вариант) . В случае не симметрии напряжение нейтрали равно напряжению нулевой последовательности и провод от средней точки звезды уже не будет нейтральным по отношению к земле. Этот провод нужен для получения фазных напряжений и величина напряжения каждой фазы при не симметрии будет иметь совершенно не предсказуемое значения Чтобы выровнять напряжение фаз применяется заземление нейтрали и повторное заземление нулевого провода. Глухое заземление означает, что нейтраль нельзя раззаземлить с помощью коммутационных устройств. 2.Изолированная нейтраль используется в установках 6-10-35 кВ и установках 0,4 кВ специального назначения (шахты, судовые энергетические установки и др.). Для компенсации емкостных токов используется заземление нейтрали через дугогасительные катушки (ДГК) . Для выделения нейтрали и заземления её через ДГК используются специальные трансформаторы с первичной обмоткой «звезда». В последнее время получает распространение резистивного заземления нейтрали и комбинированное (резистор и ДГК) 3.Эффективно заземленная нейтраль в используется в установках 110 кВ. ЛЭП имеет несколько трансформаторов с заземлением нейтрали, расположенных в разных точках линии. Используется для снижения перенапряжения нейтрали и настройки защит трансформатора. Связь металлическая есть (верхний провод, крепится к металлической опоре без изоляторов) но не используется для получения фазных напряжений как в 0,4 кВ.
нейтраль на низковольтных линиях заземляется для снижения рисков угроз в случае попадания под напряжение
есть такая книга, называется ПУЭ. текущая версия 7. фактически библия для электриков. поищите ее в инете — найти легко. там все и прочтете. если уж совсем в лом читать умные книги, то поищите в инете такое буквосочетание: tn-c-s найдете фактически отдельные выжимки из ПУЭ по заземлению (там кроме этой схемы заземления/зануления есть и другие) . а к высоковольтным линиям генератор подключают не звездой, а треугольником. почитайте, в ПУЭ тоже должно быть.
Изучаем Электротехнику. Есть соединение обмоток трансформатора или генератора звездой, есть треугольником. При звезде только бывает нейтраль. Заземляют, что-бы получить на фазных проводах одинаковое напряжение к Земле. Иначе они непойми — как заземлятся сами, на одном фазном проводе повредится изоляция, он аварийно заземлится, и к Земле на нём будет около 0 Вольт. Зато на других все 220. ПРи глухозаземлённой-же нейтрали на всех фазах в идеале одинаковое напряжение к Земле Причина 2: Есть возможность для ухода в Землю БОльшей части грозовых перенапряжений. ПРи изолированно нейтрали грозовых повреждений было-бы больше Причина 3: При утечки тока с первичной обмотки трансформатора на вторичную меньше шансов получить сильное перенапряжение, так как оно частично уйдёт в Землю
у нейтрали 3 основных назначения-она задает режим работы сетей, она обеспечивает выбор защит, их селективность и быстродействие, она задает вид электробезопасности. общепромышленные сети и бытовые до 1000в-с глухозаземленной нейтралью. селективность защит тут выполена по уставкам тока. нейтраль многократно повторно заземляется для мгновенного отключения поврежд. участка и для снижения напряжений шага и прикосновения. плюс нейтральный провод тут нужен для получения комбинаций напряжений 127/220,220/380 и 380/660в. эффективно заземленная нейтраль используется в сетях 110 кв и выше. обеспечивает мгновенное и селективное отключение повреждений. нейтральный провод не нужен-ток однофазных замыканий течет через землю к источникам питания, где нейтраль заземлена. изолированная нейтраль и ее разновидность-компенсированная-используется в сетях 6,10 и 35 кв (а так же в шахтах и механизмах добычи ископаемых при напряжении до 1000в). при однофазных замыканиях повреждение не устраняется, но из-за этого типа нейтрали векторы фазных напряжений возрастают до линейных. потребитель не замечает этого, а у сетей есть время, чтобы найти и устранить повреждение, не прерывая питания. нейтраль опасна напряжениями шага и прикосновения, вместе замыкания фазы на землю. более детально писать тут нет смысла-целая статья выйдет
режимы работы, достоинства и недостатки
Сети 6-35 кВ в РФ в основном выполняются с изолированной нейтралью. За счет этого минимизируются токи короткого замыкания на землю. Это повышает надежность работы сети, так как некоторые «земли» самоустраняются. А с другими сеть может работать длительное время, необходимая для поиска места КЗ, его локализации, производства необходимых переключений. В результате можно сохранить работоспособность электрооборудования потребителей, грамотно выводя из строя линию с повреждением, заменив ее резервной.
Малые токи КЗ на землю позволяют занизить и требования к заземляющим устройствам. Наличие всего трех проводов и режимов работы сети со сверхтоками только при междуфазных замыканиях между ними позволяет упростить и устройства РЗА. Достаточно установить два трансформатора тока для регистрации любых замыканий между фазами. Традиционно они ставятся в фазы «А» и «С».
Недостатки сети с изолированной нейтралью.
Но за простоту всегда приходится платить. Сеть с изолированной нейтралью допускает работу с землей на одной фазе длительное время. Но при этом фазные напряжения становятся равны линейным. Это происходит на двух оставшихся без замыкания на землю фазах.
Для того, чтобы электрооборудование выдерживало этот режим, оно изначально рассчитывается на линейное напряжение сети. Но и этого оказывается мало. Всегда существуют участки с ослабленной изоляцией, на которые резкое повышение напряжения может подействовать губительно. Возникает двойное замыкание, ток его возрастает. Нередко в случаях КЗ на землю в сети с изолированной нейтралью происходят повреждения электрооборудования в местах, достаточно далеких от места КЗ.
Добавим к этому и тот факт, что при замыканиях, происходящих через дугу, регулярно погасающую в момент перехода синусоидального напряжения через ноль, фазное напряжение возрастает далеко не в корень из трех раз. Оно становится больше линейного. Считается, что в этих случаях напряжение может подскакивать в 2,5 раза, и даже более.
Еще один недостаток, связанный с замыканиями на землю: в трансформаторах напряжения при этом происходят феррорезонансные процессы. Это приводит к выходу их из строя за счет перегрева первичной обмотки резонансными токами, во много раз превышающими номинальный. С этими процессами борются, усложняя конструкцию ТН и их цепей, но стопроцентной защиты пока достичь не удается.
Емкостные токи замыкания на землю.
Но и токи замыкания на землю не всегда бывают такими уж и небольшими. За счет чего они образуются? Ведь очевидного пути для их распространения нет – нейтраль-то изолирована.
Токи утечки на землю в сети с изолированной нейтралью, в отличие от глухозаземленной, носят емкостной характер. Они есть всегда, наибольшая их величина – у кабельных и воздушных линий электропередачи. Поэтому получается, что в эквивалентной схеме трехфазной сети с изолированной нейтралью между каждой из фаз и землей включен конденсатор. Чем больше в сети кабельных линий, тем больше емкость этого конденсатора.
{xtypo_sticky}При КЗ на землю одной из фаз ее емкость выпадает из общей картины. Но в точке замыкания она через землю и эквивалентные емкости соединяется с другими фазами сети. Через эту цепь и протекает ток замыкания, носящий емкостной характер.{/xtypo_sticky}
Ток этот можно рассчитать, и даже измерить. При превышении им определенных значений замыкание уже не будет таким безобидным, его действие будет довольно разрушительным.
Компенсация емкостных токов
При превышении емкостными токами замыкания на землю величин, указанных в таблице, сеть должна быть снабжена установками компенсации.
Установка компенсации емкостных токов состоит из двух элементов. Первый из них – трансформатор, задача которого – выделить из трехфазной сети потенциал нейтрали. Это почти обычный силовой трансформатор, у которого первичная обмотка соединена в звезду с нулевым выводом. Нейтраль звезды соединяется с землей через дугогасящую катушку.
Второе ее название – катушка Петерсона. Она бывает также похожа на силовой трансформатор с маслонаполненным баком, а иногда имеет и другую конструкцию. Но основная ее особенность в том, что ее индуктивность регулируется, плавно или ступенчато.
При отсутствии замыкания ток через катушку минимален. Предварительно ее настраивают в резонанс с общей емкостью сети. На устройствах со ступенчатой регулировкой это выполняется довольно приближенно и грубо. Если суммарное емкостное сопротивление сети больше, чем индуктивное сопротивление катушки, этот режим работы называется недокомпенсацией. Если ситуация противоположная – перекомпенсацией. Режим с перекомпенсацией для электроустановок является предпочтительным.
Но емкостное сопротивление сети постоянно изменяется в зависимости от подключенных к ней кабельных линий. В результате режим установки компенсации требует постоянной корректировки. Наиболее эффективным является применением плавной регулировки индуктивности катушки Петерсона. Он производится за счет изменения зазора в ее магнитопроводе с помощью специального электропривода. За этим следит автоматика.
Помимо основного электрооборудования в состав установки компенсации емкостных токов, входят и вспомогательные элементы. Это трансформатор тока, служащий для измерения тока замыкания на землю, специальная обмотка для выделения 3Uo.
Работа установки компенсации
При замыкании на землю в точку КЗ течет емкостной ток сети. При наличии установки компенсации туда же отправляется и ток через дугогасящую катушку. В точке КЗ они взаимно компенсируют друг друга, снижая или сводя к минимуму ток в поврежденной фазе.
При этом дуговое замыкание при переходе синусоидального напряжения КЗ через ноль гаснет. Для ее повторного зажигания напряжения оказывается недостаточно. Так минимизируются все вредные воздействия замыкания на землю на всю сеть целиком.
Составляющей тока, оставшейся нескомпенсированной, достаточно для срабатывания земляной защиты присоединения. Тем не менее, ее рано вводить на безусловное отключение линии, так как ошибки в действиях защиты все же случаются.
Чтобы сделать работу ОЗЗ максимально эффективной, современные катушки Петерсона содержат в своем составе резистор с заранее рассчитанной величиной сопротивления. В момент замыкания контактором он подключается в цепь катушки на ограниченное время, достаточное для срабатывания защиты. Так нейтраль кратковременно приобретает резистивное заземление.
За счет ввода активной составляющей тока замыкания на землю произойдет отключение только линии, подпитывающей КЗ.
Недостатки сети с компенсированной нейтралью
Основной недостаток, связанный с применением установок компенсации, как ни странно, вытекает из их достоинства. Снижая величину емкостного тока, они минимизируют повреждения в точке КЗ и не дают ему развиться до междуфазного.
Если речь о кабельной линии, то найти потом это повреждение достаточно сложно.
К тому же компенсированная нейтраль не излечивает полностью сети с изолированной нейтралью от их собственных недостатков, описанных выше.