Виды электрических зарядов – Электризация тел. Электрический заряд. Два вида электрических зарядов. Взаимодействие зарядов. Закон сохранения электрического заряда. Электрическое поле. Закон Кулона.

Содержание

Два вида электрических зарядов. Взаимодействие зарядов

«Два вида электрических зарядов.
Взаимодействие электрических зарядов»



Подвесив на двух нитях лёгкие шарики из фольги и коснувшись каждого из них стеклянной палочкой, потёртой о шёлк, можно увидеть, что шарики оттолкнутся дpуг от друга. Если потом коснуться одного шарика стеклянной палочкой, потёpтой о шёлк, а другого эбонитовой палочкой, потёpтoй о мех, то шарики притянутся дpуг к другу. Это означает, что стеклянная и эбонитовая палочки при трении приобретают заряды разных знаков, т.е. в природе существуют два рода электрических зарядов, имеющих противоположные знаки: положительный и отрицательный. Условились считать, что стеклянная палочка, потёртая о шёлк, приобретает положительный заряд, а эбонитовая палочка, потёртая о мех, приобретает отрицательный заряд.

Из описанного опыта также следует, что заряженные тела взаимодействуют друг с другом. Такое взаимодействие зарядов называют электрическим. При этом

одноимённые заряды, т.е. заряды одного знака, отталкиваются друг от друга, а разноимённые заряды притягиваются друг к другу.

Два вида электрических зарядов

На явлении отталкивания одноимённо заряженных тел основано устройство электроскопа — прибора, позволяющего определить, заряжено ли данное тело, и электрометра, прибора, позволяющего оценить значение электрического заряда.

Если заряженным телом коснуться стержня электроскопа, то листочки электроскопа разойдутся, поскольку они приобретут заряд одного знака. То же произойдёт со стрелкой электрометра, если коснуться заряженным телом его стержня. При этом, чем больше заряд, тем на больший угол отклонится стрелка от стержня.

Из простых опытов следует, что сила взаимодействия между заряженными телами может быть больше или меньше в зависимости от величины приобретённого заряда. Таким образом, можно сказать, что электрический заряд, с одной стороны, характеризует способность тела к электрическому взаимодействию, а с другой стороны, является величиной, определяющей интенсивность этого взаимодействия.

Заряд обозначают буквой q, за единицу заряда принят кулон: [q] = 1 Кл.

Если коснуться заряженной палочкой одного электрометра, а затем этот электрометр соединить металлическим стержнем с другим электрометром, то заряд, находящийся на первом электрометре, поделится между двумя электрометрами. Можно затем соединить электрометр с ещё несколькими электрометрами, и заряд будет делиться между ними. Таким образом, электрический заряд обладает

свойством делимости. Пределом делимости заряда, т.е. наименьшим зарядом, существующим в природе, является заряд электрона. Заряд электрона отрицателен и равен 1,6*10-19 Кл. Любой другой заряд кратен заряду электрона.

Взаимодействие зарядов


Конспект урока «Два вида электрических зарядов. Взаимодействие зарядов».

Следующая тема: «Закон сохранения электрического заряда».

 

Физический класс | Электрический заряд. Взаимодействие электрических зарядов. Закон Кулона «

Знакомство с явлениями электростатики лучше начинать в сухую погоду. Расчесывая волосы, снимая свитер можно наблюдать в темноте проскакивание крошечных искр и слабое потрескивание. Если потереть пластиковую расческу о волосы и поднести ее к мелким кусочкам бумаги, то они начнут притягиваться к расческе.

Электризация – физическое явление, которое приводит к возникновению взаимодействия (притяжения или отталкивания) двух тел, например, при приведении их в плотный контакт или при трении (стекло и кожа, плексиглас и шерсть, резина и шерсть). Обнаружено в Древней Греции при трении янтаря (по-гречески – «электрон») о шерсть.

электризация тел

Взаимодействие наэлектризованных тел в состоянии покоя называется электростатическим взаимодействием.

Опыты по взаимодействию заряженных тел показали, что в природе существуют два вида заряда. Б. Франклин назвал один из них положительным, а другой – отрицательным. Разноименные заряды притягиваются, а одноименные – отталкиваются.

Различают следующие

виды электризации:

  1. Трением.
  2. Соприкосновением.
  3. Через влияние
  4. При облучении.

При электризации тел трением всегда одновременно заряжаются оба участвующих в электризации тела (например, стекло и шелк). Причем одно из них приобретает положительный заряд, а другое – отрицательный. Если до электризации оба тела не были заряжены, то величина положительного заряда первого тела оказывается в точности равной величине отрицательного заряда второго тела.

электризация трением

Современная теория объясняет электризацию твердых тел как перемещение электронов

, входящих в состав атомов любых тел, с одного тела на другое.

В состав ядра входят положительно заряженные элементарные частицы – протоны. На теле, приобретающем отрицательный заряд, образуется избыточное число электронов по сравнению с числом протонов, а на положительно заряженном теле оказывается недостаток электронов по сравнению с числом протонов.

Электрический заряд – характеристика заряженного тела. Минимальный заряд обозначается буквой e и равен 1,6·10–19 Кл. Такой заряд имеют электрон и протон. Первые, наиболее точные определения заряда электрона были выполнены американским ученым Р. Милликеном и русским физиком А. Ф. Иоффе.

Для обнаружения и измерения электрического заряда используют электрометр. По углу отклонения стрелки модно судить о величине заряда.

Уменьшение числа электронов в одном теле равно увеличению их числа в другом. При этом полный заряд такой системы не изменяется, оставаясь равным нулю.

Сохранение числа протонов и электронов на соприкасающихся телах объясняет подтверждающийся опытом закон сохранения заряда: в электрически замкнутой системе алгебраическая сумма зарядов не меняется.

сохранение электрического заряда

Количественное исследование взаимодействия заряженных тел осуществил в 1785 году французский физик Ш. Кулон (1736-1806). Он исследовал взаимодействие небольших заряженных металлических шариков при помощи крутильных весов.

опыт кулона

На тонкой проволоке была подвешена стеклянная палочка с двумя металлическими шариками на концах. Одному шарику сообщали электрический заряд. Рядом с ним помещали неподвижный заряженный таким же по знаку зарядом шар. По углу поворота стеклянной палочки Ш.Кулон определял силу взаимодействия. Расстояние измерялось между центрами шаров.

Модуль силы взаимодействия F12 между двумя неподвижными точечными электрическими зарядами q1 и q2 в вакууме пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния R12 между ними.

закон кулона

Точечный заряд – модель реальных заряженных тел,  размер которых значительно меньше, чем расстояние между ними.

elekriz5

Если имеется система точечных зарядов, то сила, действующая на каждый из них, определяется как векторная сумма сил, действующих на данный заряд со стороны всех других зарядов системы. При этом сила взаимодействия данного заряда с каким-то конкретным зарядом рассчитывается так, как будто других зарядов нет.

принцип суперпозиции сил

Сила взаимодействия точечных зарядов зависит от свойств среды, в которой они находятся:

elekriz7

Свойства среды определяет диэлектрическая проницаемость среды ε.

Границы применимости закона Кулона:

  • для точечных зарядов
  • для неподвижных зарядов
  • справедлив до расстояний не меньше 10-15 м

 

Применение электризации

1.Электрофильтры.

elekriz7

Для очистки воздуха от пыли, например,  при производстве цемента, очистки частиц дыма на ТЭС используют электрофильтры. Наэлектризованные частицы пыли притягиваются к заряженному элементу внутри фильтра.

2. Равномерное распыление краски краскопультом.

Электростатическая покраска используется для покрытия металлических поверхностей, например, в покрасочном цехе автомобильных кузовов. Для равномерного распыления краски на краскопульт подают отрицательный заряд, а  кузову автомобиля сообщают положительный заряд. Отрицательно заряженные капельки краски равномерно распределяются по поверхности кузова, образуя прочный, ровный слой.

3. Изготовление наждачной бумаги.

4. Генератор высокого напряжения Ван де Граафа.

elekriz7

Электризация нашла практическое применение в науке и технике. До недавнего времени в ядерных исследованиях на ускорителях элементарных частиц широко применялся генератор Ван-дер-Ваальса. С его помощью удавалось генерировать напряжение до нескольких миллионов вольт. Генератор разработан в 1929 году американским физиком Робертом Ван-дер-Ваальсом. Используется электризация трением. Заряд переносится на движущейся ленте и многократно снимается с нее на полый металлический проводник.

5. Очистка зерна.

6. Дактилоскопия.

7. Лазерный принтер и ксерокс.

Электризация тел при облучении нашла применение в ксерокопирование и лазерном принтере.

8. Медицина.

При работе люстры Чижевского образуется большое количество отрицательных ионов кислорода. При вдыхании воздуха ионы кислорода отдают электрические заряды эритроцитам крови, а затем – клеткам. Вследствие чего улучшается обмен веществ в организме.

 

Учет электризации

  1. Перевозка топлива.
  2. Электризация нитей на ткацкой фабрике.
  3. Электризация самолета во время полета.
  4. Электризация одежды.

 

Опорный конспект:

опорный конспект закон кулона

Что такое заряд? Виды зарядов и их взаимодействие

Электрический заряд является физической величиной, которая присуща некоторым элементарным частицам. Он проявляет себя через силы притяжения и отталкивания между заряженными телами посредством электромагнитного поля. Рассмотрим физические свойства заряда и виды зарядов.

Общее представление об электрическом заряде

Электричество в природе

Материя, которая имеет отличный от нуля электрический заряд, активно взаимодействует с электромагнитным полем и, в свою очередь, создает это поле. Взаимодействие заряженного тела с электромагнитным полем является одним из четырех типов силовых взаимодействий, которые известны человеку. Говоря о зарядах и видах зарядов, следует отметить, что с точки зрения стандартной модели электрический заряд отражает способность тела или частицы обмениваться носителями электромагнитного поля — фотонами — с другим заряженным телом или электромагнитным полем.

Одна из важных характеристик различных видов заряда — сохранение их суммы в изолированной системе. То есть общий заряд сохраняется сколь угодно длительное время независимо от типа взаимодействия, которое имеет место внутри системы.

Электрический заряд не является непрерывным. В экспериментах Роберта Милликена была продемонстрирована дискретная природа электрического заряда. Виды зарядов, существующие в природе, могут быть положительными или отрицательными.

Положительные и отрицательные заряды

Два вида электрических зарядов

Носителями двух видов зарядов являются протоны и электроны. По историческим причинам заряд электрона считается отрицательным, имеет значение -1 и обозначается -e. Протон имеет положительный заряд +1 и обозначается +e.

Если тело содержит больше протонов, чем электронов, то оно считается положительно заряженным. Ярким примером положительного вида заряда в природе является заряд стеклянной палочки после того, как ее потрут шелковой тканью. Соответственно, если тело содержит больше электронов, чем протонов, оно полагается отрицательно заряженным. Этот вид электрического заряда наблюдается на пластиковой линейке, если ее потереть шерстью.

Отметим, что заряд протона и электрона хоть и очень маленький, он не является элементарным. Обнаружены кварки — «кирпичики», образующие элементарные частицы, которые имеют заряды ±1/3 и ±2/3 относительно заряда электрона и протона.

Единица измерения

Виды зарядов, как положительные, так и отрицательные, в международной системе единиц СИ измеряются в кулонах. Заряд в 1 кулон — это очень большой заряд, который определяется как количество электронов, проходящих за 1 секунду через поперечное сечение проводника при силе тока в нем, равной 1 ампер. Одному кулону соответствует 6,242*1018 свободных электронов. Это означает, что заряд одного электрона равен -1/(6,242*1018) = — 1,602*10-19 кулона. Это же значение, только со знаком плюс, характерно для другого вида зарядов в природе — положительного заряда протона.

Краткая история электрического заряда

Эксперименты Бенджамина Франклина

Еще со времен античной Греции известно, что если потереть кожу о янтарь, то он приобретает способность притягивать к себе легкие тела, например, солому или перья птиц. Это открытие принадлежит греческому философу Фалесу Милетскому, который жил 2500 лет назад.

В 1600 году английский медик Уильям Гилберт заметил, что многие материалы ведут себя подобно янтарю, если их потереть. Слово «янтарь» в древнегреческом языке звучит как «электрон». Гилберт стал использовать этот термин для всех подобных явлений. Позже появились другие термины, такие как «электричество» и «электрический заряд». В своих работах Гилберт также смог различить магнитные и электрические явления.

Открытие существования притяжения и отталкивания между электрически заряженными телами принадлежит физику Стефану Грею. Первым ученым, который предположил существование двух видов электрических зарядов, был французский химик и физик Шарль Франсуа Дюфе. Явление электрического заряда также подробно исследовал Бенджамин Франклин. В конце XVIII века французский физик Шарль Огюстен де Кулон открыл свой знаменитый закон.

Тем не менее все указанные наблюдения смогли оформиться в стройную теорию электричества только к середине XIX века. Здесь следует отметить важность работ Майкла Фарадея по изучению процессов электролиза и Джеймса Максвелла, который полностью описал электромагнитные феномены.

Современные представления о природе электричества и дискретном электрическом заряде обязаны своим существованием работам Джозефа Томсона, который открыл электрон, и Роберта Милликена, который измерил его заряд.

Магнитный момент и электрический заряд

Виды заряда выделил еще Бенджамин Франклин. Их два: положительный и отрицательный. Два заряда одинакового знака отталкиваются, а противоположного — притягиваются.

С появлением квантовой механики и физики элементарных частиц было показано, что помимо электрического заряда частицы обладают магнитным моментом, который носит название спина. Благодаря электрическим и магнитным свойствам элементарных частиц в природе существует электромагнитное поле.

Принцип сохранения электрического заряда

Линии напряженности электрического поля

В соответствии с результатами множества экспериментов, принцип сохранения электрического заряда гласит, что не существует ни какого-либо способа разрушения заряда, ни его создания из ничего, и что в любых электромагнитных процессах в изолированной системе полный электрический заряд сохраняется.

В результате процесса электризации общее количество протонов и электронов не изменяется, существует лишь разделение зарядов. Электрический заряд может появиться в какой-либо части системы, где раньше его не было, но общий заряд системы при этом все равно не изменится.

Плотность электрического заряда

Под плотностью заряда понимается его количество на единицу длины, площади или объема пространства. В связи с этим говорят о трех типах его плотности: линейной, поверхностной и объемной. Поскольку существует два вида заряда, плотность также может быть положительной и отрицательной.

Несмотря на то что электрический заряд квантован, то есть является дискретным, в ряде опытов и процессов количество его носителей настолько велико, что можно считать, что они распределены по телу равномерно. Это хорошее приближение позволяет получить ряд важных экспериментальных законов для электрических явлений.

Закон Кулона

Шарль Огюстен де Кулон

Исследуя на крутильных весах поведение двух точечных зарядов, то есть таких, для которых расстояние между ними значительно превышает их размеры, Шарль Кулон в 1785 году открыл закон взаимодействия между электрическими зарядами. Этот закон ученый сформулировал следующим образом:

Величина каждой силы, с которой взаимодействуют два точечных заряда в покое, прямо пропорциональна произведению их электрических зарядов и обратно пропорциональна квадрату расстояния, разделяющего их. Силы взаимодействия направлены вдоль линии, которая соединяет заряженные тела.

Отметим, что закон Кулона от вида зарядов не зависит: изменение знака заряда лишь изменит направление действующей силы на противоположное, сохранив при этом ее модуль. Коэффициент пропорциональности в законе Кулона зависит от диэлектрической постоянной среды, в которой рассматриваются заряды.

Таким образом, формула для кулоновской силы записывается в следующем виде: F = k*q1*q2/r2, где q1, q2 — величины зарядов, r — расстояние между зарядами, k = 9*109 Н*м2/Кл2 — коэффициент пропорциональности для вакуума.

Закон Кулона

Константа k через универсальную диэлектрическую постоянную ε0 и диэлектрическую постоянную материала ε выражается следующим образом: k = 1/(4*pi*ε*ε0), здесь pi — число пи, а ε > 1 для любой среды.

Закон Кулона не справедлив в следующих случаях:

  • когда заряженные частицы начинают двигаться, и особенно когда их скорости приближаются к около световым скоростям;
  • когда расстояние между зарядами мало по сравнению с их геометрическими размерами.

Интересно отметить, что математический вид закона Кулона совпадает с таковым для закона всемирного тяготения, в котором роль электрического заряда играет масса тела.

Способы передачи электрического заряда и электризация

Демонстрация явления элекризации

Под электризацией понимается процесс, в результате которого электрически нейтральное тело приобретает отличный от нуля заряд. Этот процесс связан с перемещением элементарных носителей заряда, чаще всего электронов. Наэлектризовать тело можно с помощью следующих способов:

  • В результате контакта. Если заряженным телом прикоснуться к другому телу, состоящему из проводящего материала, то последнее приобретет электрический заряд.
  • Трение изолятора о другой материал.
  • Электрическая индукция. Суть этого явления заключается в перераспределении электрических зарядов внутри тела за счет воздействия электрического внешнего поля.
  • Явление фотоэффекта, при котором электроны вырываются из твердого тела за счет воздействия на него электромагнитного излучения.
  • Электролиз. Физико-химический процесс, который происходит в расплавах и растворах солей, кислот и щелочей.
  • Термоэлектрический эффект. В данном случае электризация возникает за счет градиентов температуры в теле.

Электризация тел. Два вида электрических зарядов. Взаимодействие электрических зарядов. Закон сохранения электрического заряда

1. Если стеклянную палочку потереть о шёлк или бумагу, то она приобретёт способность притягивать лёгкие тела, например бумажки, волосы и пр. Тот же эффект можно наблюдать, если поднести к лёгким предметам эбонитовую палочку, потертую о мех. Тела, которые в результате трения приобретают способность притягивать другие тела, называют наэлектризованными или заряженными, а явление приобретения телами электрического заряда называют электризацией.

Подвесив на двух нитях лёгкие шарики из фольги и коснувшись каждого из них стеклянной палочкой, потёртой о шёлк, можно увидеть, что шарики оттолкнутся друг от друга. Если потом коснуться одного шарика стеклянной палочкой, потёртой о шёлк, а другого эбонитовой палочкой, потёртой о мех, то шарики притянутся друг к другу. Это означает, что стеклянная и эбонитовая палочки при трении приобретают заряды разных знаков, т.е. в природе существуют два рода электрических зарядов, имеющих противоположные знаки: положительный и отрицательный. Условились считать, что стеклянная палочка, потёртая о шёлк, приобретает положительный заряд, а эбонитовая палочка, потёртая о мех, приобретает отрицательный заряд.

Из описанного опыта также следует, что заряженные тела взаимодействуют друге другом. Такое взаимодействие называют электрическим. При этом одноимённые заряды, т.е. заряды одного знака, отталкиваются друг от друга, а разноимённые заряды притягиваются друг к другу.

На явлении отталкивания одноимённо заряженных тел основано устройство электроскопа — прибора, позволяющего определить, заряжено ли данное тело (рис. 77), и электрометра, прибора, позволяющего оценить значение электрического заряда (рис. 78).

Если заряженным телом коснуться стержня электроскопа, то листочки электроскопа разойдутся, поскольку они приобретут заряд одного знака. То же произойдёт со стрелкой электрометра, если коснуться заряженным телом его стержня. При этом, чем больше заряд, тем на больший угол отклонится стрелка от стержня.

2. Из простых опытов следует, что сила взаимодействия между заряженными телами может быть больше или меньше в зависимости от величины приобретённого заряда. Таким образом, можно сказать, что электрический заряд, с одной стороны, характеризует способность тела к электрическому взаимодействию, а с другой стороны, является величиной, определяющей интенсивность этого взаимодействия.

Заряд обозначают буквой ​\( q \)​, за единицу заряда принят кулон: ​\( [q] \)​ = 1 Кл.

Если коснуться заряженной палочкой одного электрометра, а затем этот электрометр соединить металлическим стержнем с другим электрометром, то заряд, находящийся на первом электрометре, поделится между двумя электрометрами. Можно затем соединить электрометр с ещё несколькими электрометрами, и заряд будет делиться между ними. Таким образом, электрический заряд обладает свойством делимости. Пределом делимости заряда, т.е. наименьшим зарядом, существующим в природе, является заряд электрона. Заряд электрона отрицателен и равен 1,6·10-19 Кл. Любой другой заряд кратен заряду электрона.

3. Электрон — частица, входящая в состав атома. В истории физики существовало несколько моделей строения атома. Одна из них, позволяющая объяснить ряд экспериментальных фактов, в том числе явление электризации, была предложена Э. Резерфордом. На основании проделанных опытов он сделал вывод о том, что в центре атома находится положительно заряженное ядро, вокруг которого по орбитам движутся отрицательно заряженные электроны. У нейтрального атома положительный заряд ядра равен суммарному отрицательному заряду электронов. Ядро атома состоит из положительно заряженных протонов и нейтральных частиц нейтронов. Заряд протона по модулю равен заряду электрона. Если из нейтрального атома удалены один или несколько электронов, то он становится положительно заряженным ионом; если к атому присоединяются электроны, то он становится отрицательно заряженным ионом.

Знания о строении атома позволяют объяснить явление электризации трением. Электроны, слабо связанные с ядром, могут отделиться от одного атома и присоединиться к другому. Это объясняет, почему на одном теле может образоваться недостаток электронов, а на другом — их избыток. В этом случае первое тело становится заряженным положительно, а второе — отрицательно.

4. Если потереть незаряженные стеклянную и эбонитовую пластинки друг о друга и затем внести их по очереди в полый шар, надетый на стержень электрометра, то электрометр зафиксирует наличие заряда и у стеклянной, и у эбонитовой пластинки. При этом можно показать, что пластинки будут иметь заряд противоположных знаков. Если в шар внести обе пластины стрелка электрометра останется на нуле. Подобное можно обнаружить, если потереть эбонитовую палочку о мех: мех, так же как и палочка, будет заряжен, но зарядом противоположного знака.

В результате трения электроны перешли со стеклянной пластины на эбонитовую, и стеклянная пластина оказалась заряженной положительно (недостаток электронов), а эбонитовая отрицательно (избыток электронов). Таким образом, при электризации происходит перераспределение заряда, электризуются оба тела, приобретая равные по модулю заряды противоположных знаков.

При этом алгебраическая сумма электрических зарядов до и после электризации остаётся постоянной: ​\( q_1+q_2+…+q_n=const \)​.

В описанном опыте ​\( q_n \)​ алгебраическая сумма зарядов пластин до и после электризации равна нулю.

Записанное равенство выражает фундаментальный закон природы — закон сохранения электрического заряда. Как и любой физический закон, он имеет определённые границы применимости: он справедлив для замкнутой системы тел, т.е. для совокупности тел, изолированных от других объектов.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Если массивную гирю поставить на пластину из изолятора и соединить с электрометром, а затем несколько раз ударить по ней куском меха, то гиря приобретёт отрицательный заряд и стрелка электрометра отклонится. При этом кусок меха приобретёт заряд

1) равный нулю
2) положительный, равный по модулю заряду гири
3) отрицательный, равный заряду гири
4) положительный, больший по модулю заряда гири

2. Два точечных заряда будут притягиваться друг к другу, если заряды

1) одинаковы по знаку и любые по модулю
2) одинаковы по знаку и обязательно одинаковы по модулю
3) различны по знаку, но обязательно одинаковы по модулю
4) различны по знаку и любые по модулю

3. На рисунках изображены три пары одинаковых лёгких заряженных шариков, подвешенных на шёлковых нитях. Заряд одного из шариков указан на рисунках. В каком(-их) случае(-ях) заряд второго шарика может быть отрицателен?

1) только А
2) А и Б
3) только В
4) А и В

4. Ученик во время опыта по изучению взаимодействия металлического шарика, подвешенного на шёлковой нити, с положительно заряженным пластмассовым шариком, расположенным на изолирующей стойке, зарисовал в тетради наблюдаемое явление: нить с шариком отклонилась от вертикали на угол ​\( \alpha \)​. На основании рисунка можно утверждать,что металлический шарик

1) имеет положительный заряд
2) имеет отрицательный заряд
3) не заряжен
4) либо не заряжен, либо имеет отрицательный заряд

5. Отрицательно заряженное тело отталкивает подвешенный на нити лёгкий шарик из алюминиевой фольги. Заряд шарика:

A. положителен
Б. отрицателен
B. равен нулю

Верными являются утверждения:

1) только Б
2) Б и В
3) А и В
4) только В

6. Металлический шарик 1, укреплённый на длинной изолирующей ручке и имеющий заряд ​\( +q \)​, приводят поочерёдно в соприкосновение с двумя такими же изолированными незаряженными шариками 2 и 3, расположенными на изолирующих подставках.

Какой заряд в результате приобретёт шарик 2?

1) 0
2) ​\( \frac{q}{4} \)​
3) \( \frac{q}{3} \)
4) \( \frac{q}{2} \)

7. От капли, имеющей электрический заряд ​\( -2e \)​, отделилась капля с зарядом ​\( +e \)​. Каков электрический заряд оставшейся части капли?

1) \( -e \)
2) \( -3e \)
3) \( +e \)
4) \( +3e \)

8. Металлическая пластина, имевшая отрицательный заряд \( -10e \), при освещении потеряла четыре электрона. Каким стал заряд пластины?

1) \( +6e \)
2) \( +14e \)
3) \( -6e \)
4) \( -14e \)

9. К водяной капле, имевшей электрический заряд \( +5e \) присоединилась кайля с зарядом \( -6e \). Каким станет заряд объединенной капли?

1) \( +e \)
2) \( -e \)
3) \( +11e \)
4) \( -11e \)

10. На рисунке изображены точечные заряженные тела. Тела А и Б имеют одинаковый отрицательный заряд, а тело В равный им по модулю положительный заряд. Каковы модуль и направление равнодействующей силы, действующей на заряд Б со стороны зарядов А и В?

1) ​\( F=F_А+А_В \)​; направление 2
2) \( F=F_А-А_В \); направление 2
3) \( F=F_А+А_В \); направление 1
4) \( F=F_А-А_В \); направление 1

11. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Сила взаимодействия между электрическими зарядами тем больше, чем больше расстояние между ними.
2) При электризации трением двух тел их суммарный заряд равен нулю.
3) Сила взаимодействия между электрическими зарядами тем больше, чем больше заряды.
4) При соединении двух заряженных тел их общий заряд будет меньше, чем алгебраическая сумма их зарядов до соединения.
5) При трении эбонитовой палочки о мех заряд приобретает только эбонитовая палочка.

12. В процессе трения о шёлк стеклянная линейка приобрела положительный заряд. Как при этом изменилось количество заряженных частиц на линейке и шёлке при условии, что обмен атомами при трении не происходил? Установите соответствие между физическими величинами и их возможными изменениями при этом. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) количество протонов на шёлке
Б) количество протонов на стеклянной линейке
B) количество электронов на шёлке

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

Ответы

Электризация тел. Два вида электрических зарядов. Взаимодействие электрических зарядов. Закон сохранения электрического заряда

5 (100%) 3 votes

Лекция 12. Электростатическое поле

[1] гл. 11, §77-79,81,82

План лекции

  1. Электрические заряды, их свойства и классификация. Закон Кулона.

  2. Напряженность электростатического поля. Принцип суперпозиции электрических полей. Поток вектора .

  3. Теорема Гаусса для потока вектора и ее применение для расчета полей протяженных зарядов в вакууме.

  1. Электрические заряды, их свойства и классификация. Закон Кулона.

Электрический заряд — физическая величина, характеризующая интенсивность электромагнитного взаимодействия тел. Сам по себе электрический заряд не существует, его носителем может быть только частица вещества.

Основные свойства

  1. Двойственность: в природе существуют заряды двух знаков, одноименные отталкиваются, разноименные притягиваются. В связи с этим заряды условного разделены на положительные и отрицательные.

Положительным назван заряд, которым обладает стеклянная палочка, потертая о шелк или бумагу.

Отрицательный — заряд, которым обладает янтарная или эбонитовая палочка, потертая о мех или шерсть.

  1. Квантование: если физическая величина принимает только определенные дискретные значения, говорят, что она квантуется (дискретна). Опыт показывает, что любой электрический заряд квантуется, т.е. состоит из целого числа элементарных зарядов.

,

где =1,2,…целое число; e =1,6·10-19Кл — элементарный заряд.

Наименьшим (элементарным ) отрицательным зарядом обладает электрон, положительным — протон.

[q]=1Кл

1 кулон — заряд, проходящий через поперечное сечение проводника за одну секунду, когда по проводнику идет постоянный ток силой один ампер.

  1. Сохранение заряда.

Электрические заряды могут исчезать и возникать вновь только парами. В каждой такой паре заряды равны по величине и противоположны по знаку. Например, электрон и позитрон при встрече аннигилируют, т.е. превращаются в нейтральные — фотоны, при этом исчезают заряды –e и +e. В ходе процесса, называемого рождением пары,  — фотон, попадая в поле атомного ядра, превращается в пару частиц электрон и позитрон, при этом возникают заряды +e и –e.

Закон сохранения заряда: в изолированной системе алгебраическая сумма зарядов остается постоянной величиной при всех изменениях внутри системы.

Изолированной называется система тел, которая не обменивается зарядами с внешней средой.

  1. Инвариантность заряда к различным инерциальным системам отсчета.

Опыт показывает, что величина заряда не зависит от скорости движения заряженного тела. Один и тот же заряд, измеренный в разных инерциальных системах отчета, одинаков.

  1. Аддитивность.

Классификация зарядов.

В зависимости от размеров заряженного тела заряды делят на точечные и протяженные.

  • Точечными зарядом называют заряженное тело, размерами которого можно пренебречь в условиях данной задачи.

  • Протяженным называется заряд тела, размерами которого в условиях данной задачи пренебречь нельзя. Протяженные заряды делятся на линейные, поверхностные и объемные.

По способности смещаться относительно положения равновесия под действием внешнего эл. поля заряды условно делят на свободные, связанные и сторонние.

Свободными называют заряды, способные свободно перемещаться в теле под действием внешнего эл. поля.

Связанными называют заряды, входящие в состав молекул диэлектриков, которые под действие эл. поля могут лишь смещаться из своего положения равновесия, но покинуть молекулу не могут.

Сторонними называются заряды, находящиеся на диэлектрике, но не входящие в состав его молекул.

Закон, которому подчиняется сила взаимодействия точечных зарядов, был установлен экспериментально в 1785г. Кулоном.

Закон Кулона сила взаимодействия двух неподвижных точечных зарядов прямо пропорциональна зарядам, обратно пропорциональна квадрату расстояния между ними, направлена вдоль прямой, соединяющей заряды, и зависит от среды, в которой они находятся.

где q1,q2— величины зарядов; r — расстояние между зарядами;

=8,85·10-12 Кл2/(Н·м2) — электрическая постоянная,

 — диэлектрическая проницаемость среды.

диэлектрическая проницаемость вещества показывает, во сколько раз сила взаимодействия зарядов в данном диэлектрике меньше, чем в вакууме, вакуума=1, — безразмерная величина.

Объясним причину этого ослабления, для чего рассмотрим заряженный шарик, окруженный диэлектриком. Поле шарика ориентирует молекулы диэлектрика, и на поверхности диэлектрика, примыкающей к шарику, появляются отрицательные связанные заряды.

Поле в любой точке диэлектрика будут создавать две противоположно заряженные сферы: поверхность шарика, заряженная положительно, и примыкающая к ней отрицательно заряженная поверхность диэлектрика, при этом из поля свободных зарядов вычитается поле связанных зарядов, и суммарное поле будет более слабым, чем поле одного шара.

Электрический заряд

Электрический заряд – физическая величина, характеризующая способность тел вступать в электромагнитные взаимодействия. Измеряется в Кулонах.

Элементарный электрический заряд – минимальный заряд, который имеют элементарные частицы (заряд протона и электрона).

e = Кл

Тело имеет заряд, значит имеет лишние или недостающий электроны. Такой заряд обозначается q = ne. (он равен числу элементарных зарядов).

Наэлектризовать тело – создать избыток и недостаток электронов. Способы: электризация трением и электризация соприкосновением.

Точечный заряд – заряд тела, которое можно принять за материальную точку.

Пробный заряд () – точечный, малый по величине заряд, обязательно положительный – используется для исследования электрического поля.

Закон сохранения заряда: в изолированной системе алгебраическая сумма зарядов всех тел сохраняется постоянной при любых взаимодействиях этих тел между собой.

Закон Кулона: силы взаимодействия двух точечных зарядов пропорциональны произведению этих зарядов, обратно пропорциональны квадрату расстояния между ними, зависят от свойств среды и направлены вдоль прямой, соединяющей их центры.

, где Ф/м, Кл2/нм2 – диэлектр. пост. вакуума

— относит. диэлектрическая проницаемость (>1)

— абсолютная диэлектрическая прониц. среды

Электрическое поле – материальная среда, через которую происходит взаимодействие электрических зарядов.

Свойства электрического поля:

  1. Электрическое поле существует вокруг любого заряда. Если заряд неподвижен – поле электростатическое.

  2. Электрическое поле действует на любой помещённый в него заряд согласно закону Кулона. Обнаружить электрическое поле можно только по его действию на другие заряды.

  3. Электрическое поле существует в любой среде и распространяется с конечной скоростью: м/с.

  4. Электрическое поле не имеет чётких границ. Действие его уменьшается при увеличении расстояния от заряда, его создающего.

Характеристики электрического поля:

  1. Напряжённость (E) – векторная величина, равная силе, действующей на единичный пробный заряд, помещённый в данную точку.

Измеряется в Н/Кл.

Направление – такое же, как и у действующей силы.

Напряжённость не зависит ни от силы, ни от величины пробного заряда.

Суперпозиция электрических полей: напряжённость поля, созданного несколькими зарядами, равна векторной сумме напряжённостей полей каждого заряда:

Графически электронное поле изображают с помощью линий напряжённости.

Линия напряжённости – линия, касательная к которой в каждой точке совпадает с направлением вектора напряжённости.

Свойства линий напряжённости: они не пересекаются, через каждую точку можно провести лишь одну линию; они не замкнуты, выходят из положительного заряда и входят в отрицательный, либо рассеиваются в бесконечность.

Виды полей:

  • Однородное электрическое поле – поле, вектор напряжённости которого в каждой точке одинаков по модулю и направлению.

+

+ —

+ —

+ —

  • Неоднородное электрическое поле – поле, вектор напряжённости которого в каждой точке неодинаков по модулю и направлению.

  • Постоянное электрическое поле – вектор напряжённости не изменяется.

  • Непостоянное электрическое поле – вектор напряжённости изменяется.

  1. Работа электрического поля по перемещению заряда.

, где F – сила, S – перемещение, — угол между F и S.

Для однородного поля: сила постоянна.

Работа не зависит от формы траектории; работа по перемещению по замкнутой траектории равна нулю.

Для неоднородного поля:

  1. Потенциал электрического поля – отношение работы, которое совершает поле, перемещая пробный электрический заряд в бесконечность, к величине этого заряда.

потенциал – энергетическая характеристика поля. Измеряется в Вольтах

Разность потенциалов:

Если , то

, значит

градиент потенциала.

Для однородного поля: разность потенциалов – напряжение:

. Измеряется в Вольтах, приборы – вольтметры.

Электроёмкость – способность тел накапливать электрический заряд; отношение заряда к потенциалу, которое для данного проводника всегда постоянно.

.

Не зависит от заряда и не зависит от потенциала. Но зависит от размеров и формы проводника; от диэлектрических свойств среды.

, где r – размер, — проницаемость среды вокруг тела.

Электроёмкость увеличивается, если рядом находятся любые тела – проводники или диэлектрики.

Конденсатор – устройство для накопления заряда. Электроёмкость:

Плоский конденсатор – две металлические пластины, между которыми находится диэлектрик. Электроёмкость плоского конденсатора:

, где S – площадь пластин, d – расстояние между пластинами.

Энергия заряженного конденсатора равна работе, которую совершает электрическое поле при переносе заряда с одной пластины на другую.

Перенос малого заряда , напряжение измениться на , совершится работа . Так как , а С = const, . Тогда . Интегрируем:

Энергия электрического поля: , где V=Sl – объём, занимаемый электрическим полем

Для неоднородного поля: .

Объёмная плотность электрического поля: . Измеряется в Дж/м3.

Электрический диполь – система, состоящая из двух равных, но противоположных по знаку точечных электрических зарядов, расположенных на некотором расстоянии друг от друга (плечо диполя — l).

Основная характеристика диполя – дипольный момент – вектор, равный произведению заряда на плечо диполя, направленный от отрицательного заряда к положительному. Обозначается . Измеряется в Кулон-метрах.

Диполь в однородном электрическом поле.

На каждый из зарядов диполя действуют силы: и . Эти силы противоположно направлены и создают момент пары сил – вращающий момент: , где

М – вращающий момент F – силы, действующие на диполь

d – плечо сил l – плечо диполя

p – дипольный момент E – напряжённость

— угол между p и Е q – заряд

Под действием вращающего момента, диполь повернётся и установится по направлению линий напряжённости. Векторы p и Е будут параллельны и однонаправлены.

Диполь в неоднородном электрическом поле.

Вращающий момент есть, значит диполь повернётся. Но силы будут неравны, и диполь будет двигаться туда, где сила больше.

градиент напряжённости. Чем выше градиент напряжённости, тем выше боковая сила, которая стаскивает диполь. Диполь ориентируется вдоль силовых линий.

Собственное поле диполя.

Но . Тогда:

.

Пусть диполь находится в точке О, а его плечо мало. Тогда:

.

Формула получена с учётом:

Таким образом разность потенциалов зависит от синуса половинного угла, под которым видны точки диполя, и проекции дипольного момента на прямую, соединяющие эти точки.

Диэлектрики в электрическом поле.

Диэлектрик – вещество, не имеющее свободных зарядов, а значит и не проводящее электрический ток. Однако на самом же деле проводимость существует, но она ничтожно мала.

Классы диэлектриков:

  • с полярными молекулами (вода, нитробензол): молекулы не симметричны, центры масс положительных и отрицательных зарядов не совпадают, а значит, они обладают дипольным моментом даже в случае, когда электрического поля нет.

  • с неполярными молекулами (водород, кислород): молекулы симметричны, центры масс положительных и отрицательных зарядов совпадают, а значит, они не имеют дипольного момента при отсутствии электрического поля.

  • кристаллические (хлорид натрия): совокупность двух подрешёток, одна из которых заряжен положительно, а другая – отрицательно; в отсутствии электрического поля суммарный дипольный момент равен нулю.

Поляризация – процесс пространственного разделения зарядов, появления связанных зарядов на поверхности диэлектрика, что приводит к ослаблению поля внутри диэлектрика.

Способы поляризации:

1 способ – электрохимическая поляризация:

На электродах – движение к ним катионов и анионов, нейтрализация веществ; образуются области положительных и отрицательных зарядов. Ток постепенно уменьшается. Скорость установления механизма нейтрализации характеризуется временем релаксации – это время, в течение которого ЭДС поляризации увеличится от 0 до максимума от момента наложения поля. = 10-3-10-2 с.

2 способ – ориентационная поляризация:

На поверхности диэлектрика образуются некомпенсированные полярные, т.е. происходит явление поляризации. Напряжённость внутри диэлектрика меньше внешней напряжённости. Время релаксации: = 10-13-10-7 с. Частота 10 МГц.

3 способ – электронная поляризация:

Характерна для неполярных молекул, которые становятся диполями. Время релаксации: = 10-16-10-14 с. Частота 108 МГц.

4 способ – ионная поляризация:

Две решётки (Na и Cl) смещаются относительно друг друга.

Время релаксации: =10-8-10-3с. Частота 1 КГц

5 способ – микроструктурная поляризация:

Характерен для биологических структур, когда чередуются заряженные и незаряженные слои. Происходит перераспределение ионов на полупроницаемых или непроницаемых для ионов перегородках.

Время релаксации: =10-8-10-3с. Частота 1 КГц

Числовые характеристики степени поляризации:

    1. вектор поляризованности . Измеряется в Кл/л

    2. относительная диэлектрическая проницаемость раз

    3. Дисперсия – зависимость от частоты.

Электрический ток – это упорядоченное движение свободных зарядов в веществе или в вакууме.

Условия существования электрического тока:

  1. наличие свободных зарядов

  2. наличие электрического поля, т.е. сил, действующих на эти заряды

Сила тока – величина, равная заряду, который проходит через любое поперечное сечение проводника за единицу времени (1 секунду)

Измеряется в Амперах.

n – концентрация зарядов

q – величина заряда

S – площадь поперечного сечения проводника

— скорость направленного движения частиц.

Скорость движения заряженных частиц в электрическом поле небольшая – 7*10-5 м/с, скорость распространения электрического поля 3*108 м/с.

Плотность тока – величина заряда, проходящего за 1 секунду через сечение в 1 м2.

. Измеряется в А/м2.

— сила, действующая на ион со стороны эл поля равна силе трения

— подвижность ионов

— скорость направленного движения ионов =подвижность, напряжённость поля

Удельная проводимость электролита тем больше, чем больше концентрация ионов, их заряд и подвижность. При повышении температуры возрастает подвижность ионов и увеличивается электропроводность.

ВИДЫ ЭЛЕКТРИЧЕСКИХ РАЗРЯДОВ — Студент

Статическое электричество – общеизвестное природное явление, с которым сталкивается всякий, кто, например, прикасается к дверной ручке после прогулки по ковру.

Возникающий при этом электрический разряд сам по себе безопасен, хотя от неожиданности человек может совершить непредсказуемые действия.

Однако кроме такого статический разряд может породить и другие явления, часть которых совершенно необходимо предотвратить. Их последствия могут быть самыми разнообразными: от выхода из строя электронной аппаратуры до взрыва всего здания.

Возникновение статического электричества; электрический разряд

Статическое электричество возникает всюду, где происходит движение твердых изоляторов или жидкостей – точнее, в момент их разделения. Экстремальный случай – обдувание стенки пыльным воздухом.

Напряжение разряда зависит от влажности. В сухом воздухе разряд бывает сильнее, чем во влажном. Электронные компоненты крайне чувствительны к таким разрядам. Даже разряд менее 30В может вывести их из строя или привести к неправильному срабатыванию.

Это может стать причиной необоснованного риска и непредсказуемых результатов. Вот почему электронные компоненты почти всегда оснащаются защитой.

Статическое и динамическое электричество

Под динамическим электричеством имеется в виду электрический ток, обычно производимый электростанциями и поступающий по проводам. Он проявляется как напряжение на контактах. Статическое же электричество не подпитывается каким-либо источником напряжения. Оно выступает как своего рода разовое явление, которое не может повториться немедленно и требует времени для накопления перед новым разрядом.

Атмосферные разряды

Гроза – электрическое атмосферное явление, при котором в мощных кучево-дождевых облаках или между облаками и земной поверхностью возникают многократные электрические разряды (молнии), сопровождающиеся громом. Грозам обычно сопутствуют шквалистые ветры, ливневые осадки, нередко с градом.

Электрические явления в атмосфере: ионизация воздуха, электрическое поле атмосферы, электрические заряды облаков и осадков, электрические токи вызывают разряды в атмосфере. Такие разряды называют атмосферным

Одной из проблем безопасности полетов самолетов являются атмосферные электрические разряды, с которыми приходится сталкиваться экипажам воздушных судов, оборудованных системой дистанционного управления.

Пилоты, знакомящиеся с самолетом, оборудованным системой дистанционного управления, обычно задают законные вопросы о том, какой эффект оказывают молнии на системы этого технически усовершенствованного самолета.

В основном молнии имеют прямой и косвенный эффект на самолет.

  1. Прямой эффект вызывает физические повреждения структуры самолета. Они вызваны высокой энергией, содержащейся в разряде молнии за одну секунду. Структура самолета, созданная для представления Faraday Cage, полностью прошита, а многие части сделаны из графитового волокнистого укрепленного пластика (CFRP), и с помощью специальных технологий достигнута их электрическая проводимость.
  2. Косвенный эффект молнии отражается на легком нарушении или сильном повреждении системы авионики. Это повреждение связано с электромагнитными полями, возникающими из циркуляции высоковольтного тока в структуре самолета.

Например, от удара молнии напряжение может попасть на сигналы, которые не защищены от молнии, из-за чего общий сигнальный уровень поднимется в 500 раз. Ток, который возникнет в этом случае, может быть в 300 тыс. раз выше нормального состояния. Избыток входящей энергии, который встроенные фильтры должны нейтрализовать, может быть равен 500 кВт, в то время как потребление энергии всем оборудованием при нормальных обстоятельствах намного меньше 100 Вт.

Еще одним источником электрического разряда является такое явление, как шаровая молния (ШМ), практически неослабевающий интерес к которой обусловлен по-видимому тем, что до сих пор не существует какой-то одной общепринятой модели их внутреннего строения. Время жизни наблюдаемых ШМ достигает десятков секунд и учитывая их внезапное появление слишком мало для детального исследования. Отсюда основным источником информации об ШМ становятся последствия их взаимодействия с окружающими предметами. Некоторые примеры из повреждения предметов после контакта с ШМ позволяют сделать оценки внутренней энергии, содержащейся в ШМ. Как следует из опыта контактов с ШМ, они обычно образуются вблизи источников сильных электромагнитных разрядов – при ударе молнии, при замыкании-размыкании высоковольтного или сильноточного электрооборудования, при высокочастотных импульсах мощных генераторов.

Молнии не контролируются природой. Они проводят свою энергию через крошечное острие. Концентрация этой энергии – источник физических повреждений. Задача всех защитных технологий – рассеять эту энергию. Заклепанная поверхность самолета не может полностью предохранить повреждение. Необходимо удалить статические заряды, возникшие от воздушного трения, и создать защиту от высокоинтенсивных радиационных полей.

Электрический разряд в газах (газовый разряд)

Особенность газов состоит в том, что электрический разряд в газах сам создает в них носители заряда – свободные электроны и ионы и обусловливает их концентрацию и распределение в объеме газа. В зависимости от давления, рода газа, процессов на электродах, плотности разрядного тока и др. возникают различные типы разрядов: тихий, тлеющий, дуговой, искровой, коронный, кистевой. По способу подведения энергии различают: разряд на постоянном токе, переменном токе низкой частоты, высокочастотный разряд и импульсный разряд.

Для примера рассмотрим одну из форм самостоятельного разряда в газах – так называемый тлеющий разряд. Для получения этого типа разряда удобно использовать стеклянную трубку длиной около полуметра, содержащую два металлических электрода.

Присоединим электроды к источнику постоянного тока с напряжением несколько тысяч вольт (годится электрическая машина) и будем постепенно откачивать из трубки воздух. При атмосферном давлении газ внутри трубки остается темным, так как приложенное напряжение в несколько тысяч вольт недостаточно для того, чтобы пробить длинный газовый промежуток. Однако когда давление газа достаточно понизится, в трубке вспыхивает светящийся разряд. Он имеет вид тонкого шнура (в воздухе – малинового цвета, в других газах других цветов), соединяющего оба электрода. В этом состоянии газовый столб хорошо проводит электричество.

Различают следующие две главные части разряда: 1) несветящуюся часть, прилегающую к катоду, получившую название темного катодного пространства; 2) светящийся столб газа, заполняющий всю остальную часть трубки, вплоть до самого анода. Эта часть разряда носит название положительного столба. При подходящем давлении положительный столб может распадаться на отдельные слои, разделенные темными промежутками, так называемые страты.

Описанная форма разряда называется тлеющим разрядом. При тлеющем разряде газ хорошо проводит электричество, а значит, в газе все время поддерживается сильная ионизация. Причинами ионизации газа в тлеющем разряде являются ударная ионизация и выбивание электронов с катода положительными ионами. Катодное падение потенциала зависит от материала катода и от рода газа.

В настоящее время трубки с тлеющим разрядом находят практическое применение как источник света – газосветные лампы. Для целей освещения с успехом применяются газосветные лампы, в которых разряд происходит в парах ртути, причем вредное для зрения ультрафиолетовое излучение поглощается слоем фосфоресцирующего вещества, покрывающего изнутри стенки лампы. Фосфоресцирующее вещество начинает светиться видимым светом, который добавляется к собственному свечению паров ртути, давая в результате свет, близкий по характеру к дневному свету (газосветные лампы дневного света). Такие лампы не только дают очень приятное «естественное» освещение, но и значительно (в 3-4 раза) экономичнее лампочек накаливания.

Газосветные лампы применяются также для декоративных целей. В этих случаях им придают очертания букв, различных фигур и т. д. и наполняют газом с красивым цветом свечения (неоном, дающим оранжево-красное свечение, или аргоном с синевато-зеленым свечением).

Дуговой разряд. Если после зажигания искрового разряда постепенно уменьшат сопротивление цепи, то сила тока в искре будет увеличиваться. Когда сопротивление цепи станет достаточно малым, возникает новая форма газового разряда, называемая дуговым разрядом.

Дуговой разряд возникает во всех случаях, когда вследствие разогревания катода основной причиной ионизации газа становится термоэлектронная эмиссия. Например, в тлеющем разряде положительные ионы, бомбардирующие катод, не только вызывают вторичную эмиссию электронов, но и нагревают катод. Поэтому, если увеличивать силу тока в тлеющем разряде, то температура катода увеличивается, и когда она достигает такой величины, что начинается заметная термоэлектронная эмиссия, тлеющий разряд переходит в дуговой. При этом исчезает и катодное падение потенциала.

Электрическая дуга является мощным источником света и широко применяется в проекционных, прожекторных и других установках. Расходуемая ею удельная мощность меньше, чем у ламп накаливания.

Биологические электроразряды

К биологическим видам-носителям электрического заряда относятся некоторые виды рыб, таких как общеизвестное семейство электрических скатов.

В пресных водах тропической Западной Африки и реки Нил, например, существует единственный вид семейства пресноводных – электрический сом – рыба отряда сомообразных длиной 20-65 см, иногда до 1 м, который имеет электрические органы. Являясь объектом местного промысла издавна используется местными жителями в народной медицине («электротерапия»).

Еще одним видом пресноводных, пользующийся природным электроразрядом является электрический угорь, рыба отряда карпообразных, живущий в реках Амазонка и Ориноко, являющийся также бъектом местного промысла. Это единственный вид семейства, который имеет электрические органы, занимающие около 4/5 длины тела. Может давать электрический разряд до 650 В (обычно – меньше). Длина особи – от 1 до 3 м, весит до 40 кг. Часто содержатся в больших аквариумах.

Электрические разряды на службе человека

Электрический ракетный двигатель – двигатель, в котором в качестве источника энергии для создания тяги используется электрическая энергия бортовой энергоустановки космического летательного аппарата. Применяется для коррекции траектории и ориентации космических аппаратов. Электрические ракетные двигатели разделяются на электротермические, электростатические и электромагнитные.

Электрическое обогащение (электросепарация), электроразрядное разделение полезных ископаемых или материалов по вещественному составу, основанное, как правило, на их различии в электропроводности.

Электрический стул, приспособление, которое использовалось в США для приведения в исполнение приговора о смертной казни с помощью электрического разряда тока высокого напряжения.

С электроразрядными процессами мы постоянно сталкиваемся и в медицине (электрофорез, химиотерапия, бактерицидное излучение при дезинфекции). Лампа Чижевского, например, в результате высоковольтного разряда образует отрицательно заряженные ионы воздуха, способные улучшать самочувствие, быстрое выздоровление, укреплять иммунную систему человека.

Тектонические и метеорные явления

В последнее время в печати появились публикации, посвященные проблеме взаимосвязи между тектоническими и метеорными явлениями. Постановка этой проблемы представляется чрезвычайно актуальной, так как сейсмические явления, связанные с пролетами в атмосфере Земли метеорных тел (МТ) уже давно представляет собой бесспорный факт и нуждаются в научном объяснении.

Геофизик же А. А. Воробьев полагает, что и сами землетрясения являются результатом мощных электроразрядных процессов («подземных гроз» по образному выражению Ж. Дари) в недрах планеты ВЭП могут быть приурочены к глубокими горизонтам земных недр, например – к границе коры и мантии; между ними и поверхностью Земли могут происходить электроразрядные импульсные пробои земной коры, в результате чего образуются трубки взрыва и некоторые кольцевые взрывные структуры.

Ряд геологов не без оснований объясняют электроразрядными процессами образование кимберлитовых трубок.

Другие же ученые допускают возможность накопления на МТ мощного электрического заряда и его дальнейшего взаимодействия с поверхностью Земли. Впервые эта идея была высказана геофизиком В. Ф. Соляником в 1951 году на пленуме Комиссии по кометам и метеоритам АН СССР.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *