На какие виды делятся электромагнитные волны – Электромагнитные волны, что является источником, скорость в вакууме, виды эмв, применение, среда распространения и интенсивность, кто открыл электромагнитные волны

Содержание

Электромагнитное излучение: виды, влияние, характеристики, применение

Электромагнитное излучение 3 Электромагнитное излучение существует ровно столько, сколько живет наша Вселенная. Оно сыграло ключевую роль в процессе эволюции жизни на Земле. По факту, это возмущение состояние электромагнитное поля, распространяемого в пространстве.

 Характеристики электромагнитного излучения

Любую электромагнитную волну описывают с помощью трех характеристик.

1. Частота.

2. Поляризация.

3. Длина.

Поляризация – одна из основных волновых атрибутов. Описывает поперечную анизотропию электромагнитных волн. Излучение считается поляризованным тогда, когда все волновые колебания происходят в одной плоскости.

Это явление активно используют на практике. Например, в кино при показе 3D фильмов.

С помощью поляризации очки IMAX разделяют изображение, которое предназначено для разных глаз. Электромагнитное излучение 4

Частота – число гребней волны, которые проходят мимо наблюдателя (в данном случае – детектора) за одну секунду. Измеряется в герцах.

Длина волны – конкретное расстояние между ближайшими точками электромагнитного излучения, колебания которых происходят в одной фазе.

Электромагнитное излучение может распространяться практически в любой среде: от плотного вещества до вакуума.

Скорость распространения в вакууме равна 300 тыс. км за секунду.

Интересное видео о природе и свойствах ЭМ волн смотрите в видео ниже:

Виды электромагнитных волн

Все электромагнитное излучение делят по частоте. Электромагнитное излучение 2

1. Радиоволны. Бывают короткими, ультракороткими, сверхдлинными, длинными, средними.

Длина радиоволн колеблется от 10 км до 1 мм, а частота от 30 кГц до 300 ГГц.

 Их источниками может быть как деятельность человека, так и различные естественные атмосферные явления.

2. Инфракрасное излучение. Длина волны лежит в пределах 1мм — 780нм, а частота может доходить до 429 ТГц. Инфракрасное излучение еще называют тепловым. Основа всей жизни на нашей планете.

3. Видимый свет. Длина 400 — 760/780нм. Соответственно частота колеблется в пределах 790-385 ТГц. Сюда относят весь спектр излучения, которое можно увидеть человеческим глазом.

4. Ультрафиолет. Длина волны меньше, чем в инфракрасного излучения.

Может доходить до 10 нм. Частота таких волн очень большая – порядка 3х10^16 Гц.

5. Рентгеновские лучи. частота волны 6х10^19 Гц, а длина порядка 10нм — 5пм.

6. Гамма волны. Сюда относят любое излучение, частота которого больше, чем в рентгеновских лучах, а длина – меньше. Источником таких электромагнитных волн являются космические, ядерные процессы.

Сфера применения

Где-то начиная с конца XIX столетия, весь человеческий прогресс был связан с практическим применением электромагнитных волн.

Первое о чем стоит упомянуть – радиосвязь. Она дала возможность людям общаться, даже если они находились далеко друг от друга.

Спутниковое вещание, телекоммуникации – являются дальнейшим развитием примитивной радиосвязи.

Именно эти технологии сформировали информационный облик современного общества.

Источниками электромагнитного излучения следует рассматривать как крупные промышленные объекты, так и различные линии электропередач.

Электромагнитные волны активно используются в военном деле (радары, сложные электрические устройства). Также без их применения не обошлась и медицина. Для лечения многих болезней могут использовать инфракрасное излучение.

Рентгеновские снимки помогают определить повреждения внутренних тканей человека.

С помощью лазеров проводят ряд операций, требующих ювелирной точности. Электромагнитное излучение 1

Важность электромагнитного излучения в практической жизни человека сложно переоценить.

Советское видео о электромагнитном поле:

Возможное негативное влияние на человека

Несмотря на свою полезность, сильные источники электромагнитного излучения могут вызывать такие симптомы:

• усталость;

• головную боль;

• тошноту.

Чрезмерное воздействие некоторых видов волн вызывают повреждения внутренних органов, центральной нервной системы, мозга. Возможны изменения в психике человека.

Интересное виде о влиянии ЭМ волн на человека:

Чтобы избежать таких последствий практически во всех странах мира действуют стандарты, регулирующие электромагнитную безопасность. Для каждого типа излучений существуют свои регулирующие документы (гигиенические нормы, нормы радиационной безопасности). Влияние электромагнитных волн на человека до конца не изучено, поэтому ВОЗ рекомендует минимизировать их воздействие.

Виды электромагнитных волн

Источником электромагнитных волн может служить любой электрический колебательный контур или проводник с текущим по нему переменным током, поскольку для возбуждения электромагнитных волн следует генерировать в пространстве переменное электрическое или магнитное поле.

Следует отметить, что излучающая способность источника определена его формой, размерами и частотой колебаний. Для увеличения роли излучения необходимо увеличивать объем пространственной локализации поля. Это приводит к выводу о том, что для того, чтобы получить электромагнитные волны закрытые колебательные контуры не годятся.

Открытый контур Герца

Первый открытый колебательный контур создал Герц. Он представлял собой два стержня, которые разделял искровой промежуток. В такой конструкции переменное электрическое поле заполняет все окружающее контур пространство, что значительно увеличивает интенсивность электромагнитного излучения.

Колебания в открытом контуре Герца поддерживает источник ЭДС, подключенный к обкладкам конденсатора. Искровой промежуток необходим для увеличения разности потенциалов первоначального заряда обкладок.

Электромагнитные колебания в вибраторе Герца возбуждаются при помощи индуктора (рис.1). При достижении напряжением на искровом промежутке пробивного значения, появлялась искра, которая закорачивала обе половинки вибратора. В вибраторе при этом, появляются свободные затухающие колебания. Когда искра исчезала, контур размыкался и колебания завершались. Для повторения процесса необходимо было зарядить индуктор. Для регистрации электромагнитных волн Герц применял второй вибратор.

Рисунок 1. Электромагнитные колебания в вибраторе Герца возбуждаются при помощи индуктора. Автор24 — интернет-биржа студенческих работ

Шкала электромагнитных волн

Теория Максвелла показывает, что разные электромагнитные волны имеют общую природу. В этой связи все известные электромагнитные волны часто представляют в виде единой шкалы.

Деление всех электромагнитных волн в зависимости от частоты и длины волны в вакууме стало традиционным. Шкала электромагнитных волн условно делится на шесть диапазонов, это:

  • радиоволны, которые бывают длинными, средними и короткими;
  • инфракрасные волны;
  • видимый свет;
  • ультрафиолетовые волны;
  • рентгеновские лучи;
  • $γ$ — излучение.

Радиоволны вызываются переменными токами, которые текут в проводниках или контурах и потоками электронов (это макроизлучатели).

Инфракрасное излучение, видимый свет, ультрафиолетовое излучение порождают атомы, молекулы и заряженные частицы, перемещающиеся с большой скоростью (это микроизлучатели).

Основными источниками радиоволн на нашей планете стали разнообразные явления в области электричества, которые идут в атмосфере, солнечное излучение, радиовещатели и телестанции, системы связи и радиолокаторы.

Рентгеновское излучение порождают процессы, проходящие внутри атомов. Например, рентгеновские лучи появляются при торможении изначально ускоренных электронов, если они попадают в вещество и переходах электронов в тяжелых атомах с внешних на внутренние орбиты.

Гамма излучение имеет ядерное происхождение. Такие лучи появляются в случае перехода ядер атомов из состояний возбуждения в невозбужденные.

Некоторые диапазоны могут перекрываться, поскольку волны равных длин способны возникать в различных процессах. Например, самые короткие волны ультрафиолетового диапазона перекрываются рентгеновскими лучами с самыми длинными волнами.

В данном отношении знаменательна пограничная область инфракрасных волн и радиоволн. Вплоть до 1922 года между данными диапазонами имелся пробел. Излучение с самой короткой длиной волны рассматриваемого промежутка было молекулярного происхождения (это излучение тела с повышенной температурой), а излучение с самой длинной волной создавали макроскопические вибраторы Герца.

Замечание 1

В настоящее время волны с длинами около миллиметра могут быть получены не только при помощи радиотехнических приборов, но и наблюдаться в молекулярных переходах.

Применение электромагнитных волн

Радиоволны применяются в самых разных областях жизни человека.

  1. Радиоволны используют для реализации беспроводной связи.
  2. Для нахождения точных расстояний используют электромагнитные волны.
  3. Астрономы применяют данные волны для исследования небесных тел.
  4. Электроагнитные излучения всех видов всех видов применяют в медицине.

Применение электромагнитных волн в медицине:

  • Гамма излучение применяют в диагностике части заболеваний и терапии.
  • Рентгеновские лучи ослабляются разными тканями организма по-разному, что позволяет получать рентгеновские изображения внутренних органов.
  • Видимые, инфракрасные и ультрафиолетовые лучи порождают фотобиологические процессы в разных системах. Видимый свет необходим для фотосинтеза у растений.
  • Тепловые эффекты, которые вызывает инфракрасное излучение используют для лечения некоторых заболеваний тканей поверхностей.
  • Инфракрасные лучи активизируют метаболизм.
  • Ультрафиолетовые лучи с длиной волны 315≤λ≤380 нм участвуют в процессе образования витамина D у человека.
  • Короткие ультрафиолетовые лучи 200≤λ≤280 нм являются бактерицидными.
  • Нагрев тканей при помощи радиоволн применяют в физиотерапии. В этом случае применяют аппараты ультравысокой частоты и индуктотермии.

При УВЧ – терапии на избранную часть тела помещают два плоских электрода (они не касаются тела). Под воздействием электромагнитной волны в тканях появляются токи проводимости и по закону Джоуля — Ленца выделяется некоторой количество теплоты ($Q$):

$Q=\frac{kE_{ef}^2V\Delta{}t}{\rho{}}\ (1)$, где:

  • $ E_{ef}$ — эффективная величина напряженности электрического поля;
  • $ρ$ – удельное сопротивление ткани тела;
  • $V$ — объем тела, которое подвергается прогреву;
  • $k$ — коэффициент пропорциональности;
  • $\Delta{}t$ – время процедуры.

В индуктотермии для действия на организм применяют переменное магнитное поле большой частоты. В этом случае в проводящих ток тканях появляются вихревые токи, и их энергия переходит в тепловую. Количество теплоты, которое выделяется равно:

$Q=\frac{k}{\rho{}}{\omega{}}^2B_{ef}^2\ \Delta{}t(2),$

где $\omega{}$ – циклическая частота изменения поля.

Кто открыл электромагнитные волны? Электромагнитные волны

Электромагнитные волны (таблица которых будет приведена ниже) представляют собой возмущения магнитных и электрических полей, распределяющиеся в пространстве. Их существует несколько типов. Изучением этих возмущений занимается физика. Электромагнитные волны образуются из-за того, что электрическое переменное поле порождает магнитное, а оно, в свою очередь, порождает электрическое.

кто открыл электромагнитные волны

История исследований

Первые теории, которые можно считать самыми старыми вариантами гипотез об электромагнитных волнах, относятся как минимум к временам Гюйгенса. В тот период предположения достигли выраженного количественного развития. Гюйгенс в 1678-м году выпустил в некотором роде «набросок» теории — «Трактат о свете». В 1690-м он же издал другой замечательный труд. В нем была изложена качественная теория отражения, лучепреломления в том виде, в котором она и сегодня представлена в школьных учебниках («Электромагнитные волны», 9 класс).

Вместе с этим был сформулирован принцип Гюйгенса. С его помощью появилась возможность изучать движение фронта волны. Этот принцип впоследствии нашел свое развитие в трудах Френеля. Принцип Гюйгенса-Френеля имел особую значимость в теории дифракции и волновой теории света.

В 1660-1670-е годы большой экспериментальный и теоретический вклад внесли в исследования Гук и Ньютон. Кто открыл электромагнитные волны? Кем были проведены опыты, доказывающие их существование? Какие существуют виды электромагнитных волн? Об этом далее.

Обоснование Максвелла

Прежде чем говорить о том, кто открыл электромагнитные волны, следует сказать, что первым ученым, который вообще предсказал их существование, стал Фарадей. Свою гипотезу он выдвинул в 1832-м году. Построением теории впоследствии занимался Максвелл. К 1865-му году он завершил эту работу. В результате Максвелл строго оформил теорию математически, обосновав существование рассматриваемых явлений. Им же была определена скорость распространения электромагнитных волн, совпадавшая с применявшимся тогда значением световой скорости. Это, в свою очередь, позволило ему обосновать гипотезу о том, что свет является одним из типов рассматриваемых излучений.

Экспериментальное обнаружение

Теория Максвелла нашла свое подтверждение в опытах Герца в 1888-м году. Здесь следует сказать, что немецкий физик проводил свои эксперименты, чтобы опровергнуть теорию, несмотря на ее математическое обоснование. Однако благодаря своим опытам Герц стал первым, кто открыл электромагнитные волны практически. Кроме того, в ходе своих экспериментов ученый выявил свойства и характеристики излучений.

Электромагнитные колебания и волны Герц получал за счет возбуждения серии импульсов быстропеременного потока в вибраторе при помощи источника повышенного напряжения. Высокочастотные потоки можно обнаружить при помощи контура. Частота колебаний при этом будет тем выше, чем выше его емкость и индуктивность. Но при этом большая частота не является гарантией интенсивного потока. Для проведения своих опытов Герц применил достаточно простое устройство, которое сегодня так и называют – «вибратор Герца». Приспособление представляет собой колебательный контур открытого типа.

диапазоны электромагнитных волн

Схема опыта Герца

Регистрация излучений осуществлялась при помощи приемного вибратора. Это устройство имело такую же конструкцию, что и излучающий прибор. Под влиянием электромагнитной волны электрического переменного поля в приемном устройстве происходило возбуждение токового колебания. Если в этом приборе его собственная частота и частота потока совпадали, то появлялся резонанс. В результате возмущения в приемном устройстве происходили с большей амплитудой. Обнаруживал их исследователь, наблюдая искорки между проводниками в небольшом промежутке.

Таким образом, Герц стал первым, кто открыл электромагнитные волны, доказал их способность хорошо отражаться от проводников. Им было практически обосновано образование стоячего излучения. Кроме того, Герц определил скорость распространения электромагнитных волн в воздухе.

Изучение характеристик

Электромагнитные волны распространяются почти во всех средах. В пространстве, которое заполнено веществом, излучения могут в ряде случаев распределяться достаточно хорошо. Но при этом они несколько изменяют свое поведение.

Электромагнитные волны в вакууме определяются без затуханий. Они распределяются на любое, сколь угодно большое расстояние. К основным характеристикам волн относят поляризацию, частоту и длину. Описание свойств осуществляется в рамках электродинамики. Однако характеристиками излучений некоторых областей спектра занимаются более конкретные разделы физики. К ним, например, можно отнести оптику.

Исследованием жесткого электромагнитного излучения коротковолнового спектрального конца занимается раздел высоких энергий. С учетом современных представлений динамика перестает являться самостоятельной дисциплиной и объединяется со слабыми взаимодействиями в одной теории.

Теории, применяемые при изучении свойств

Сегодня существуют различные методы, способствующие моделированию и исследованию проявлений и свойств колебаний. Наиболее фундаментальной из проверенных и завершенных теорий считается квантовая электродинамика. Из нее посредством тех или других упрощений становится возможным получить перечисленные ниже методики, которые широко используются в различных сферах.

Описание относительно низкочастотного излучения в макроскопической среде осуществляется при помощи классической электродинамики. Она основана на уравнениях Максвелла. При этом в прикладных применениях существуют упрощения. При оптическом изучении используется оптика. Волновая теория применяется в случаях, когда некоторые части оптической системы по размерам приближены к длинам волн. Квантовая оптика используется, когда существенными являются процессы рассеяния, поглощения фотонов.

Геометрическая оптическая теория – предельный случай, при котором допускается пренебрежение длиной волны. Также существует несколько прикладных и фундаментальных разделов. К ним, к примеру, относят астрофизику, биологию зрительного восприятия и фотосинтеза, фотохимию. Как классифицируются электромагнитные волны? Таблица, наглядно изображающая распределение на группы, представлена далее.

Классификация

Существуют частотные диапазоны электромагнитных волн. Между ними не существует резких переходов, иногда они перекрывают друг друга. Границы между ними достаточно условны. В связи с тем, что поток распределяется непрерывно, частота жестко связывается с длиной. Ниже представлены диапазоны электромагнитных волн.

НазваниеДлинаЧастота
ГаммаМеньше 5 пмболее 6•1019 Гц
Рентген10 нм — 5 пм3•1016-6•1019 Гц
Ультрафиолет380 — 10 нм7,5•1014-3•1016 Гц
Видимое излучениеОт 780 до 380 нм429-750 ТГц
Инфракрасное излучение1 мм — 780 нм330 ГГц-429 ТГц
Ультракороткое10 м — 1 мм30 МГц-300ГГц
Короткое100 м — 10 м3-30 МГц
Среднее1 км — 100 м300кГц-3Мгц
Длинное10 км — 1 км30-300 кГц
СверхдлинныеБольше 10 кмМеньше 30 кГц

Ультракороткие излучения принято разделять на микрометровые (субмиллиметровые), миллиметровые, сантиметровые, дециметровые, метровые. Если длина волны электромагнитного излучения меньше метра, то ее принято называть колебанием сверхвысокой частоты (СВЧ).

Виды электромагнитных волн

Выше представлены диапазоны электромагнитных волн. Какие существуют виды потоков? Группа ионизирующих излучений включает в себя гамма- и рентгеновские лучи. При этом следует сказать, что ионизировать атомы способен и ультрафиолет, и даже видимый свет. Границы, в которых находятся гамма- и рентгеновские потоки, определяются весьма условно. В качестве общей ориентировки принимаются пределы 20 эВ — 0.1 Мэв. Гамма-потоки в узком смысле испускаются ядром, рентгеновские – электронной атомной оболочкой в процессе выбивания с низколежащих орбит электронов. Однако данная классификация неприменима к жестким излучениям, генерируемым без участия ядер и атомов.

Рентгеновские потоки формируются при замедлении заряженных быстрых частиц (протонов, электронов и прочих) и вследствие процессов, которые происходят внутри атомных электронных оболочек. Гамма-колебания возникают в результате процессов внутри ядер атомов и при превращении элементарных частиц.

Радиопотоки

За счет большого значения длин рассмотрение этих волн допускается осуществлять, не учитывая атомистическое строение среды. В качестве исключения выступают лишь самые короткие потоки, которые примыкают к инфракрасной области спектра. В радиодиапазоне квантовые свойства колебаний проявляются достаточно слабо. Тем не менее их необходимо учитывать, например, при анализе молекулярных стандартов времени и частоты во время охлаждения аппаратуры до температуры в несколько кельвинов.

Квантовые свойства принимаются во внимание и при описании генераторов и усилителей миллиметрового и сантиметрового диапазонов. Радиопоток формируется во время движения переменного тока по проводникам соответствующей частоты. А проходящая электромагнитная волна в пространстве возбуждает переменный ток, соответствующий ей. Данное свойство применяется при конструировании антенн в радиотехнике.

Видимые потоки

Ультрафиолетовое и инфракрасное видимое излучение составляет в широком смысле слова так называемый оптический участок спектра. Выделение этой области обуславливается не только близостью соответствующих зон, но и аналогичностью приборов, используемых при исследовании и разработанных преимущественно во время изучения видимого света. К ним, в частности, относятся зеркала и линзы для фокусирования излучений, дифракционные решетки, призмы и прочие.

Частоты оптических волн сравнимы с таковыми у молекул и атомов, а длины их – с межмолекулярными расстояниями и молекулярными размерами. Поэтому существенными в этой области становятся явления, которые обусловлены атомистической структурой вещества. По той же причине свет вместе с волновыми обладает и квантовыми свойствами.

Возникновение оптических потоков

Самым известным источником является Солнце. Поверхность звезды (фотосфера) имеет температуру 6000° по Кельвину и излучает ярко-белый свет. Наивысшее значение непрерывного спектра располагается в «зеленой» зоне — 550 нм. Там же находится максимум зрительной чувствительности. Колебания оптического диапазона возникают при нагревании тел. Инфракрасные потоки поэтому также именуют тепловыми.

Чем сильнее происходит нагревание тела, тем выше частота, где располагается максимум спектра. При определенном повышении температуры наблюдается каление (свечение в видимом диапазоне). При этом сначала появляется красный цвет, затем желтый и далее. Создание и регистрация оптических потоков может происходить в биологических и химических реакциях, одна из которых применяется в фотографии. Для большинства существ, живущих на Земле, в качестве источника энергии выступает фотосинтез. Эта биологическая реакция протекает в растениях под влиянием оптического солнечного излучения.

Особенности электромагнитных волн

Свойства среды и источник оказывают влияние на характеристики потоков. Так устанавливается, в частности, временная зависимость полей, которая определяет тип потока. К примеру, при изменении расстояния от вибратора (при увеличении) радиус кривизны становится больше. В результате образуется плоская электромагнитная волна. Взаимодействие с веществом также происходит по-разному.

Процессы поглощения и излучения потоков, как правило, можно описывать при помощи классических электродинамических соотношений. Для волн оптической области и для жестких лучей тем более следует принимать во внимание их квантовую природу.

Источники потоков

Несмотря на физическую разницу, везде – в радиоактивном веществе, телевизионном передатчике, лампе накаливания – электромагнитные волны возбуждаются электрическими зарядами, которые движутся с ускорением. Существует два основных типа источников: микроскопические и макроскопические. В первых происходит скачкообразный переход заряженных частиц с одного на другой уровень внутри молекул либо атомов.

Микроскопические источники испускают рентгеновское, гамма, ультрафиолетовое, инфракрасное, видимое, а в ряде случаев и длинноволновое излучение. В качестве примера последнего можно привести линию спектра водорода, которая соответствует волне в 21 см. Это явление имеет особое значение в радиоастрономии.

Источники макроскопического типа представляют собой излучатели, в которых свободными электронами проводников совершаются периодические синхронные колебания. В системах данной категории происходит генерация потоков от миллиметровых до самых длинных (в линиях электропередач).

Структура и сила потоков

Электрические заряды, движущиеся с ускорением и изменяющиеся периодически токи оказывают воздействие друг на друга с определенными силами. Направление и их величина находятся в зависимости от таких факторов, как размеры и конфигурация области, в которой содержатся токи и заряды, их относительное направление и величина. Существенное влияние оказывают и электрические характеристики конкретной среды, а также изменения концентрации зарядов и распределения токов источника.

В связи с общей сложностью постановки задачи представить закон сил в виде единой формулы нельзя. Структура, называемая электромагнитным полем и рассматриваемая при необходимости в качестве математического объекта, определяется распределением зарядов и токов. Оно, в свою очередь, создается заданным источником при учете граничных условий. Условия определяются формой зоны взаимодействия и характеристиками материала. Если речь ведется о неограниченном пространстве, указанные обстоятельства дополняются. В качестве особого дополнительного условия в таких случаях выступает условие излучения. За счет него гарантируется «правильность» поведения поля на бесконечности.

Хронология изучения

Корпускулярно-кинетическая теория Ломоносова в некоторых своих положениях предвосхищает отдельные постулаты теории электромагнитного поля: «коловратное» (вращательное) движение частиц, «зыблющаяся» (волновая) теория света, ее общность с природой электричества и т. д. Инфракрасные потоки были обнаружены в 1800 году Гершелем (английским ученым), а в следующем, 1801-м, Риттером был описан ультрафиолет. Излучение более короткого, нежели ультрафиолетовое, диапазона было открыто Рентгеном в 1895-м году, 8 ноября. Впоследствии оно получило название рентгеновского.

Влияние электромагнитных волн изучалось многими учеными. Однако первым, кто исследовал возможности потоков, сферу их применения, стал Наркевич-Иодко (белорусский научный деятель). Он изучил свойства потоков применительно к практической медицине. Гамма-излучение было открыто Полем Виллардом в 1900-м году. В этот же период Планк проводил теоретические исследования свойств черного тела. В процессе изучения им была открыта квантовость процесса. Его труд стал началом развития квантовой физики. Впоследствии было опубликовано несколько работ Планка и Эйнштейна. Их исследования привели к формированию такого понятия, как фотон. Это, в свою очередь, положило начало созданию квантовой теории электромагнитных потоков. Ее развитие продолжилось в трудах ведущих научных деятелей ХХ столетия.

Дальнейшие исследования и работы по квантовой теории электромагнитного излучения и взаимодействия его с веществом привели в итоге к образованию квантовой электродинамики в том виде, в котором она существует и сегодня. Среди выдающихся ученых, занимавшихся изучением данного вопроса, следует назвать, кроме Эйнштейна и Планка, Бора, Бозе, Дирака, де Бройля, Гейзенберга, Томонагу, Швингера, Фейнмана.

Заключение

Значение физики в современном мире достаточно велико. Практически все, что применяется сегодня в жизни человека, появилось благодаря практическому использованию исследований великих ученых. Открытие электромагнитных волн и их изучение, в частности, привели к созданию обычных, а впоследствии и мобильных телефонов, радиопередатчиков. Особое значение практическое применение таких теоретических знаний имеет в области медицины, промышленности, техники.

Такое широкое использование объясняется количественным характером науки. Все физические эксперименты опираются на измерения, сравнение свойств изучаемых явлений с имеющимися эталонами. Именно для этой цели в рамках дисциплины развит комплекс измерительных приборов и единиц. Ряд закономерностей является общим для всех существующих материальных систем. Так, например, законы сохранения энергии считаются общими физическими законами.

Науку в целом называют во многих случаях фундаментальной. Это связано, прежде всего, с тем, что прочие дисциплины дают описания, которые, в свою очередь, подчиняются законам физики. Так, в химии изучаются атомы, вещества, образованные из них, и превращения. Но химические свойства тел определяются физическими характеристиками молекул и атомов. Эти свойства описывают такие разделы физики, как электромагнетизм, термодинамика и прочие.

Электромагнитное излучение. Виды и применение. Влияние

Электромагнитное излучение представлено одноименными волнами, которые приводятся в возбуждение под воздействием различных объектов излучения в виде молекулярных, атомных и заряженных частиц.

Существует несколько его разновидностей:
  • Видимый свет. Это излучение, способное восприниматься человеческим зрением. Волновая длина достаточно короткая и варьируется в пределах 380-780 нанометров.
  • Инфракрасное. Представляет собой что-то среднее между световым излучением и волнами радио.
  • Радиоволны. Отличаются наибольшей длиной и вмещают в себя все разновидности излучения, волны которых характеризуются длиной от полумиллиметра.
  • Ультрафиолетовое. Излучение, приносящее вред живому организму.
  • Рентгеновское. Производится электронными частицами и нашло широкое применение в медицине.
  • Гамма-излучение. Имеет самую короткую длину волн, представляя высокий уровень опасности для человеческого организма.
Устройство
Характеристику любой электромагнитной волны составляют три основных параметра:
  1. Частота. Выражает количество гребней волны, проходящих в течение одной секунды. Мера измерения -герцы.
  2. Поляризация. Описывает колебания электромагнитных волн в поперечном направлении. Поляризованным излучение становится при волновых колебаниях, происходящих в одной плоскости. На практике данное явление можно встретить в кинотеатрах на сеансах 3Д. Посредством поляризации в 3Д-очках происходит разделение картинки.
  3. Длина. Представляет собой расстояние, соединяющее точки электромагнитного излучения, которые колеблются в пределах одной фазы.

Распространение электромагнитного излучения возможно в любой среде, начиная плотным веществом и заканчивая вакуумом. При этом скорость распространения волны в вакуумном пространстве достигает 300 тысяч км в секунду. К примеру звуковые волны, в вакууме не распространяются.

Принцип действия

Электромагнитное излучение имеет энергию, основной характеристикой которой является ее напряженность. Существует постоянное и переменное поле электромагнитных волн.

Первое — характеризуется напряженностью, которая обуславливается силой, оказывающей каталитическое действие на токовый проводник. В качестве единицы напряжения выступает ампер. Переменная разновидность совмещает в себе магнитную и электрическую разновидности магнитных полей, которые расширяются в пространстве в виде волн.

Область распространения включает в себя три зоны:
  • Ближнюю – индукционную.
  • Промежуточную – интерференционную.
  • Дальнюю — волновую.
Свойства

Известно, что для электромагнитных волн характерны определенные свойства, о которых впервые заговорил Максвелл. Эти свойства обуславливаются различиями и зависимостью от параметра длины. Именно в соответствии с этими параметрами волны электромагнитных полей подразделяются на диапазоны, которые, в свою очередь, имеют достаточно условную шкалу, поскольку расположенные рядом частоты накладывают свои свойства друг на друга.

К таковым — относятся:
  • Высокая проникающая способность.
  • Быстрая скорость растворения в веществе.
  • Негативное и благотворное влияние на человека.
Применение и влияние

Свое широкое применение электромагнитное излучение получило только в конце 19-го века, когда активно развивалась радиосвязь, посредством которой стало возможно общение на далеком расстоянии.

В качестве главных электромагнитных источников выступают крупные объекты промышленного масштаба, а также различные электрические линии передач. Помимо этого, рассматриваемый вид излучения получил активное применение в военной сфере. Там они представлены радарами и другими электрическими приборами, имеющих сложное устройство.

В медицинской области для лечения разнообразных болезней применяется инфракрасное излучение. Кроме этого:
  • Посредством рентгеновского обследования становится возможным выявление внутренних повреждений в человеческом организме.
  • Лазер позволяет проводить операции, которые требуют ювелирной точности и т.п.
Однако, несмотря на перечисленную выше пользу, электромагнитное излучение может спровоцировать возникновение ряда негативных признаков:
  • Повышенную усталость.
  • Боли в голове.
  • Тошнотные позывы и т.п.

Повышенное воздействие определенных видов электромагнитных волн способно привести к повреждениям органов, расположенных внутри, и мозговой центральной нервной системы, что впоследствии чревато психическими расстройствами.

Во избежание столь отрицательных влияний существуют определенные стандарты, которые регулируют безопасность электромагнитного воздействия. Так, для каждого из видов электромагнитного излучения разработаны конкретные документы регулирующего характера в виде гигиенических норм и радиационных стандартов.

Электромагнитное излучение влияет на человеческий организм и остается до конца неизученным, по причине чего рекомендуется свести к минимуму его воздействие.

Достоинства и недостатки

Главным преимуществом ЭМИ является его активное применение в медицинской сфере. Посредством рентгеновского и инфракрасного излучений становится возможным обследование внутренних органов с последующим выявлением возможных заболеваний.

К недостатку же электромагнитного излучения следует отнести негативное воздействие на организм человека в случаях, когда это влияние превышает нормы. По возможности его необходимо избегать. Более того, известен накопительный эффект биологического влияния излучения: чем он длительней, тем более негативнее последствия.

Многолетнее воздействие способно привести к:
  • Серьезным сбоям в гормональной системе.
  • Злокачественным заболеваниям.
  • Болезням крови и т.п.
Особенности
Простым обывателям может быть непонятна схожесть между разными, на первый взгляд, объектами электромагнитного излучения, к примеру:
  • Трубка рентгена.
  • Печка, от которой исходит тепло.
  • Фотопленка.
  • Радиоприемник.
  • Антенна телевизора.
Первые объекты — электромагнитные источники, вторые — представлены приемниками. Также отличается и влияние определенных видов излучения на живой организм, к примеру:

  • Рентген и излучение гамма-частицами провоцируют повреждение тканевых структур и внутренних органов.
  • Видимый свет при определенных условиях может негативно повлиять на зрение.
  • Инфракрасные лучи могут оказывать чрезмерный нагрев на организм.
  • При этом радиоволны практически никак не ощущаются.

Однако перечисленные выше отличия выступают различными аспектами одного явления. Электромагнитное излучение обладает волнами, которые имеют схожую распространительную скорость в пространстве. При этом количество колебаний в течение временной единицы может измеряться в широких диапазонных значениях. Окружающее нас пространство насыщено электромагнитным излучением, которое связано не только с радиоволнами, но и с окружающими телами.

Похожие темы:

Кто открыл электромагнитные волны? Электромагнитные волны

Образование 26 апреля 2014

Электромагнитные волны (таблица которых будет приведена ниже) представляют собой возмущения магнитных и электрических полей, распределяющиеся в пространстве. Их существует несколько типов. Изучением этих возмущений занимается физика. Электромагнитные волны образуются из-за того, что электрическое переменное поле порождает магнитное, а оно, в свою очередь, порождает электрическое.

История исследований

Первые теории, которые можно считать самыми старыми вариантами гипотез об электромагнитных волнах, относятся как минимум к временам Гюйгенса. В тот период предположения достигли выраженного количественного развития. Гюйгенс в 1678-м году выпустил в некотором роде «набросок» теории — «Трактат о свете». В 1690-м он же издал другой замечательный труд. В нем была изложена качественная теория отражения, лучепреломления в том виде, в котором она и сегодня представлена в школьных учебниках («Электромагнитные волны», 9 класс).

Вместе с этим был сформулирован принцип Гюйгенса. С его помощью появилась возможность изучать движение фронта волны. Этот принцип впоследствии нашел свое развитие в трудах Френеля. Принцип Гюйгенса-Френеля имел особую значимость в теории дифракции и волновой теории света.

В 1660-1670-е годы большой экспериментальный и теоретический вклад внесли в исследования Гук и Ньютон. Кто открыл электромагнитные волны? Кем были проведены опыты, доказывающие их существование? Какие существуют виды электромагнитных волн? Об этом далее.

Обоснование Максвелла

Прежде чем говорить о том, кто открыл электромагнитные волны, следует сказать, что первым ученым, который вообще предсказал их существование, стал Фарадей. Свою гипотезу он выдвинул в 1832-м году. Построением теории впоследствии занимался Максвелл. К 1865-му году он завершил эту работу. В результате Максвелл строго оформил теорию математически, обосновав существование рассматриваемых явлений. Им же была определена скорость распространения электромагнитных волн, совпадавшая с применявшимся тогда значением световой скорости. Это, в свою очередь, позволило ему обосновать гипотезу о том, что свет является одним из типов рассматриваемых излучений.

Экспериментальное обнаружение

Теория Максвелла нашла свое подтверждение в опытах Герца в 1888-м году. Здесь следует сказать, что немецкий физик проводил свои эксперименты, чтобы опровергнуть теорию, несмотря на ее математическое обоснование. Однако благодаря своим опытам Герц стал первым, кто открыл электромагнитные волны практически. Кроме того, в ходе своих экспериментов ученый выявил свойства и характеристики излучений.

Электромагнитные колебания и волны Герц получал за счет возбуждения серии импульсов быстропеременного потока в вибраторе при помощи источника повышенного напряжения. Высокочастотные потоки можно обнаружить при помощи контура. Частота колебаний при этом будет тем выше, чем выше его емкость и индуктивность. Но при этом большая частота не является гарантией интенсивного потока. Для проведения своих опытов Герц применил достаточно простое устройство, которое сегодня так и называют – «вибратор Герца». Приспособление представляет собой колебательный контур открытого типа.

Схема опыта Герца

Регистрация излучений осуществлялась при помощи приемного вибратора. Это устройство имело такую же конструкцию, что и излучающий прибор. Под влиянием электромагнитной волны электрического переменного поля в приемном устройстве происходило возбуждение токового колебания. Если в этом приборе его собственная частота и частота потока совпадали, то появлялся резонанс. В результате возмущения в приемном устройстве происходили с большей амплитудой. Обнаруживал их исследователь, наблюдая искорки между проводниками в небольшом промежутке.

Таким образом, Герц стал первым, кто открыл электромагнитные волны, доказал их способность хорошо отражаться от проводников. Им было практически обосновано образование стоячего излучения. Кроме того, Герц определил скорость распространения электромагнитных волн в воздухе.

Изучение характеристик

Электромагнитные волны распространяются почти во всех средах. В пространстве, которое заполнено веществом, излучения могут в ряде случаев распределяться достаточно хорошо. Но при этом они несколько изменяют свое поведение.

Электромагнитные волны в вакууме определяются без затуханий. Они распределяются на любое, сколь угодно большое расстояние. К основным характеристикам волн относят поляризацию, частоту и длину. Описание свойств осуществляется в рамках электродинамики. Однако характеристиками излучений некоторых областей спектра занимаются более конкретные разделы физики. К ним, например, можно отнести оптику.

Исследованием жесткого электромагнитного излучения коротковолнового спектрального конца занимается раздел высоких энергий. С учетом современных представлений динамика перестает являться самостоятельной дисциплиной и объединяется со слабыми взаимодействиями в одной теории.

Теории, применяемые при изучении свойств

Сегодня существуют различные методы, способствующие моделированию и исследованию проявлений и свойств колебаний. Наиболее фундаментальной из проверенных и завершенных теорий считается квантовая электродинамика. Из нее посредством тех или других упрощений становится возможным получить перечисленные ниже методики, которые широко используются в различных сферах.

Описание относительно низкочастотного излучения в макроскопической среде осуществляется при помощи классической электродинамики. Она основана на уравнениях Максвелла. При этом в прикладных применениях существуют упрощения. При оптическом изучении используется оптика. Волновая теория применяется в случаях, когда некоторые части оптической системы по размерам приближены к длинам волн. Квантовая оптика используется, когда существенными являются процессы рассеяния, поглощения фотонов.

Геометрическая оптическая теория – предельный случай, при котором допускается пренебрежение длиной волны. Также существует несколько прикладных и фундаментальных разделов. К ним, к примеру, относят астрофизику, биологию зрительного восприятия и фотосинтеза, фотохимию. Как классифицируются электромагнитные волны? Таблица, наглядно изображающая распределение на группы, представлена далее.

Классификация

Существуют частотные диапазоны электромагнитных волн. Между ними не существует резких переходов, иногда они перекрывают друг друга. Границы между ними достаточно условны. В связи с тем, что поток распределяется непрерывно, частота жестко связывается с длиной. Ниже представлены диапазоны электромагнитных волн.

НазваниеДлинаЧастота
ГаммаМеньше 5 пмболее 6•1019 Гц
Рентген10 нм — 5 пм3•1016-6•1019 Гц
Ультрафиолет380 — 10 нм7,5•1014-3•1016 Гц
Видимое излучениеОт 780 до 380 нм429-750 ТГц
Инфракрасное излучение1 мм — 780 нм330 ГГц-429 ТГц
Ультракороткое10 м — 1 мм30 МГц-300ГГц
Короткое100 м — 10 м3-30 МГц
Среднее1 км — 100 м300кГц-3Мгц
Длинное10 км — 1 км30-300 кГц
СверхдлинныеБольше 10 кмМеньше 30 кГц

Ультракороткие излучения принято разделять на микрометровые (субмиллиметровые), миллиметровые, сантиметровые, дециметровые, метровые. Если длина волны электромагнитного излучения меньше метра, то ее принято называть колебанием сверхвысокой частоты (СВЧ).

Виды электромагнитных волн

Выше представлены диапазоны электромагнитных волн. Какие существуют виды потоков? Группа ионизирующих излучений включает в себя гамма- и рентгеновские лучи. При этом следует сказать, что ионизировать атомы способен и ультрафиолет, и даже видимый свет. Границы, в которых находятся гамма- и рентгеновские потоки, определяются весьма условно. В качестве общей ориентировки принимаются пределы 20 эВ — 0.1 Мэв. Гамма-потоки в узком смысле испускаются ядром, рентгеновские – электронной атомной оболочкой в процессе выбивания с низколежащих орбит электронов. Однако данная классификация неприменима к жестким излучениям, генерируемым без участия ядер и атомов.

Рентгеновские потоки формируются при замедлении заряженных быстрых частиц (протонов, электронов и прочих) и вследствие процессов, которые происходят внутри атомных электронных оболочек. Гамма-колебания возникают в результате процессов внутри ядер атомов и при превращении элементарных частиц.

Радиопотоки

За счет большого значения длин рассмотрение этих волн допускается осуществлять, не учитывая атомистическое строение среды. В качестве исключения выступают лишь самые короткие потоки, которые примыкают к инфракрасной области спектра. В радиодиапазоне квантовые свойства колебаний проявляются достаточно слабо. Тем не менее их необходимо учитывать, например, при анализе молекулярных стандартов времени и частоты во время охлаждения аппаратуры до температуры в несколько кельвинов.

Квантовые свойства принимаются во внимание и при описании генераторов и усилителей миллиметрового и сантиметрового диапазонов. Радиопоток формируется во время движения переменного тока по проводникам соответствующей частоты. А проходящая электромагнитная волна в пространстве возбуждает переменный ток, соответствующий ей. Данное свойство применяется при конструировании антенн в радиотехнике.

Видимые потоки

Ультрафиолетовое и инфракрасное видимое излучение составляет в широком смысле слова так называемый оптический участок спектра. Выделение этой области обуславливается не только близостью соответствующих зон, но и аналогичностью приборов, используемых при исследовании и разработанных преимущественно во время изучения видимого света. К ним, в частности, относятся зеркала и линзы для фокусирования излучений, дифракционные решетки, призмы и прочие.

Частоты оптических волн сравнимы с таковыми у молекул и атомов, а длины их – с межмолекулярными расстояниями и молекулярными размерами. Поэтому существенными в этой области становятся явления, которые обусловлены атомистической структурой вещества. По той же причине свет вместе с волновыми обладает и квантовыми свойствами.

Возникновение оптических потоков

Самым известным источником является Солнце. Поверхность звезды (фотосфера) имеет температуру 6000° по Кельвину и излучает ярко-белый свет. Наивысшее значение непрерывного спектра располагается в «зеленой» зоне — 550 нм. Там же находится максимум зрительной чувствительности. Колебания оптического диапазона возникают при нагревании тел. Инфракрасные потоки поэтому также именуют тепловыми.

Чем сильнее происходит нагревание тела, тем выше частота, где располагается максимум спектра. При определенном повышении температуры наблюдается каление (свечение в видимом диапазоне). При этом сначала появляется красный цвет, затем желтый и далее. Создание и регистрация оптических потоков может происходить в биологических и химических реакциях, одна из которых применяется в фотографии. Для большинства существ, живущих на Земле, в качестве источника энергии выступает фотосинтез. Эта биологическая реакция протекает в растениях под влиянием оптического солнечного излучения.

Особенности электромагнитных волн

Свойства среды и источник оказывают влияние на характеристики потоков. Так устанавливается, в частности, временная зависимость полей, которая определяет тип потока. К примеру, при изменении расстояния от вибратора (при увеличении) радиус кривизны становится больше. В результате образуется плоская электромагнитная волна. Взаимодействие с веществом также происходит по-разному. Процессы поглощения и излучения потоков, как правило, можно описывать при помощи классических электродинамических соотношений. Для волн оптической области и для жестких лучей тем более следует принимать во внимание их квантовую природу.

Источники потоков

Несмотря на физическую разницу, везде – в радиоактивном веществе, телевизионном передатчике, лампе накаливания – электромагнитные волны возбуждаются электрическими зарядами, которые движутся с ускорением. Существует два основных типа источников: микроскопические и макроскопические. В первых происходит скачкообразный переход заряженных частиц с одного на другой уровень внутри молекул либо атомов.

Микроскопические источники испускают рентгеновское, гамма, ультрафиолетовое, инфракрасное, видимое, а в ряде случаев и длинноволновое излучение. В качестве примера последнего можно привести линию спектра водорода, которая соответствует волне в 21 см. Это явление имеет особое значение в радиоастрономии.

Источники макроскопического типа представляют собой излучатели, в которых свободными электронами проводников совершаются периодические синхронные колебания. В системах данной категории происходит генерация потоков от миллиметровых до самых длинных (в линиях электропередач).

Структура и сила потоков

Электрические заряды, движущиеся с ускорением и изменяющиеся периодически токи оказывают воздействие друг на друга с определенными силами. Направление и их величина находятся в зависимости от таких факторов, как размеры и конфигурация области, в которой содержатся токи и заряды, их относительное направление и величина. Существенное влияние оказывают и электрические характеристики конкретной среды, а также изменения концентрации зарядов и распределения токов источника.

В связи с общей сложностью постановки задачи представить закон сил в виде единой формулы нельзя. Структура, называемая электромагнитным полем и рассматриваемая при необходимости в качестве математического объекта, определяется распределением зарядов и токов. Оно, в свою очередь, создается заданным источником при учете граничных условий. Условия определяются формой зоны взаимодействия и характеристиками материала. Если речь ведется о неограниченном пространстве, указанные обстоятельства дополняются. В качестве особого дополнительного условия в таких случаях выступает условие излучения. За счет него гарантируется «правильность» поведения поля на бесконечности.

Хронология изучения

Корпускулярно-кинетическая теория Ломоносова в некоторых своих положениях предвосхищает отдельные постулаты теории электромагнитного поля: «коловратное» (вращательное) движение частиц, «зыблющаяся» (волновая) теория света, ее общность с природой электричества и т. д. Инфракрасные потоки были обнаружены в 1800 году Гершелем (английским ученым), а в следующем, 1801-м, Риттером был описан ультрафиолет. Излучение более короткого, нежели ультрафиолетовое, диапазона было открыто Рентгеном в 1895-м году, 8 ноября. Впоследствии оно получило название рентгеновского.

Влияние электромагнитных волн изучалось многими учеными. Однако первым, кто исследовал возможности потоков, сферу их применения, стал Наркевич-Иодко (белорусский научный деятель). Он изучил свойства потоков применительно к практической медицине. Гамма-излучение было открыто Полем Виллардом в 1900-м году. В этот же период Планк проводил теоретические исследования свойств черного тела. В процессе изучения им была открыта квантовость процесса. Его труд стал началом развития квантовой физики. Впоследствии было опубликовано несколько работ Планка и Эйнштейна. Их исследования привели к формированию такого понятия, как фотон. Это, в свою очередь, положило начало созданию квантовой теории электромагнитных потоков. Ее развитие продолжилось в трудах ведущих научных деятелей ХХ столетия.

Дальнейшие исследования и работы по квантовой теории электромагнитного излучения и взаимодействия его с веществом привели в итоге к образованию квантовой электродинамики в том виде, в котором она существует и сегодня. Среди выдающихся ученых, занимавшихся изучением данного вопроса, следует назвать, кроме Эйнштейна и Планка, Бора, Бозе, Дирака, де Бройля, Гейзенберга, Томонагу, Швингера, Фейнмана.

Заключение

Значение физики в современном мире достаточно велико. Практически все, что применяется сегодня в жизни человека, появилось благодаря практическому использованию исследований великих ученых. Открытие электромагнитных волн и их изучение, в частности, привели к созданию обычных, а впоследствии и мобильных телефонов, радиопередатчиков. Особое значение практическое применение таких теоретических знаний имеет в области медицины, промышленности, техники.

Такое широкое использование объясняется количественным характером науки. Все физические эксперименты опираются на измерения, сравнение свойств изучаемых явлений с имеющимися эталонами. Именно для этой цели в рамках дисциплины развит комплекс измерительных приборов и единиц. Ряд закономерностей является общим для всех существующих материальных систем. Так, например, законы сохранения энергии считаются общими физическими законами.

Науку в целом называют во многих случаях фундаментальной. Это связано, прежде всего, с тем, что прочие дисциплины дают описания, которые, в свою очередь, подчиняются законам физики. Так, в химии изучаются атомы, вещества, образованные из них, и превращения. Но химические свойства тел определяются физическими характеристиками молекул и атомов. Эти свойства описывают такие разделы физики, как электромагнетизм, термодинамика и прочие.

Источник: fb.ru

48.Электромагнитные волны. Их энергия и скорость распространения. Виды электромагнитных волн.

Существование электромагнитных волн переменного электромагнитного поля, рас­пространяющегося в пространстве с ко­нечной скоростью,— вытекает из уравне­ний Максвелла (см. §139). Уравнения Максвелла сформулированы в 1865 г. на основе обобщения эмпирических законов электрических и магнитных явлений. Как уже указывалось, решающую роль для утверждения максвелловской теории сыг­рали опыты Герца (1888), доказавшие, что электрические и магнитные поля дей­ствительно распространяются в виде волн, поведение которых полностью описывает­ся уравнениями Максвелла.

Источником электромагнитных волн в действительности может быть любой электрический колебательный контур или проводник, по которому течет переменный электрический ток, так как для возбужде­ния электромагнитных волн необходимо создать в пространстве переменное элек­трическое поле (ток смещения) или со­ответственно переменное магнитное поле. Однако излучающая способность источни­ка определяется его формой, размерами и частотой колебаний. Чтобы излучение играло заметную роль, необходимо увеличить объем пространства, в котором пере­менное электромагнитное поле создается.

Поэтому для получения электромагнитных волн непригодны закрытые колебательные контуры, так как в них электрическое поле сосредоточено между обкладками конден­сатора, а магнитное — внутри катушки индуктивности.

Герц в своих опытах, уменьшая число витков катушки и площадь пластин кон­денсатора, а также раздвигая их (рис. 225, а, б), совершил переход от за­крытого колебательного контура к откры­тому колебательному контуру (вибратору Герца), представляющему собой два стер­жня, разделенных искровым промежутком (рис. 225, в). Если в закрытом колебатель­ном контуре переменное электрическое по­ле сосредоточено внутри конденсатора (рис. 225, а), то в открытом оно заполняет окружающее контур пространство (рис. 225, в), что существенно повышает интенсивность электромагнитного излуче­ния. Колебания в такой системе поддер­живаются за счет источника э.д.с., под­ключенного к обкладкам конденсатора, а искровой промежуток применяется для того, чтобы увеличить разность потенциа­лов, до которой первоначально заряжают­ся обкладки.

Для возбуждения электромагнитных волн вибратор ГерцаВ подключался к ин­дуктору И (рис.226). Когда напряжение на искровом промежутке достигало про­бивного значения, возникала искра, закорачивающая обе половины вибратора, и в нем возникали свободные затухающие колебания. При исчезновении искры кон­тур размыкался и колебания прекраща­лись. Затем индуктор снова заряжал кон­денсатор, возникала искра и в контуре опять наблюдались колебания и т. д. Для регистрации электромагнитных волн Герц пользовался вторым вибратором, называе­мым резонатором Р, имеющим такую же частоту собственных колебаний, что и из­лучающий вибратор, т. е. настроенным в резонанс с вибратором. Когда электро­магнитные волны достигали резонатора, то в его зазоре проскакивала электриче­ская искра.

Виды электромагнитных волн. Электромагнитные волны, обладая ши­роким диапазоном частот (или длин волн =c/v, где с — скорость электромагнит­ных волн в вакууме), отличаются друг от друга по способам их генерации и ре­гистрации, а также по своим свойствам. Поэтому электромагнитные волны делятся на несколько видов: радиоволны, световые волны, рентгеновское и -излучения (табл.5). Следует отметить, что границы между различными видами электромаг­нитных волн довольно условны.

§ Энергия электромагнитных волн. Возможность обнаружения электромаг­нитных волн указывает на то, что они переносят энергию. Объемная плотность w энергии электромагнитной волны скла­дывается из объемных плотностей wэл (см. (95.8)) и wм (см. (130.3)) электриче­ского и магнитного полей:

w = wэл+wм=0E2/2+0H2/2.

Учитывая выражение (162.4), получим, что плотность энергии электрического и магнитного полей в каждый момент вре­мени одинакова, т. е. wэл = wм. Поэтому

w =2wэл=0Е2 =00ЕН.

Умножив плотность энергии w на скорость v распространения волны в среде (см. (162.3)), получим модуль плотности потока энергии:

S=wv=EH.

Так как векторы Е и Н взаимно пер­пендикулярны и образуют с направлением распространения волны правовинтовую

систему, то направление вектора [ЕН] совпадает с направлением переноса энер­гии, а модуль этого вектора равен ЕН. Вектор плотности потока электромагнит­ной энергии называется вектором Умова— Пойнтинга:

S = [EH].

Вектор S направлен в сторону рас­пространения электромагнитной волны, а его модуль равен энергии, переносимой электромагнитной волной за единицу вре­мени через единичную площадку, перпен­дикулярную направлению распростране­ния волны.

Если электромагнитные волны погло­щаются или отражаются телами (эти яв­ления подтверждены опытами Г. Герца), то из теории Максвелла следует, что элек­тромагнитные волны должны оказывать на тела давление. Давление электромаг­нитных волн объясняется тем, что под действием электрического поля волны за­ряженные частицы вещества начинают упорядоченно двигаться и подвергаются со стороны магнитного поля волны дейст­вию сил Лоренца. Однако значение этого давления ничтожно. Можно оценить, что при средней мощности солнечного излуче­ния, приходящего на Землю, давление для абсолютно поглощающей поверхности со­ставляет примерно 5 мкПа. В исключи­тельно тонких экспериментах, ставших классическими, П. Н. Лебедев в 1899 г. до­казал существование светового давления на твердые тела, а в 1910г.— на газы. Опыты Лебедева имели огромное значение для утверждения выводов теории Мак­свелла о том, что свет представляет собой электромагнитные волны.

Существование давления электромаг­нитных волн приводит к выводу о том, что электромагнитному полю присущ механи­ческий импульс. Импульс электромагнит­ного поля

p=W/c,

где W — энергия электромагнитного поля. Выражая импульс как р=mc (поле в ва­кууме распространяется со скоростью с), получим p = mc=W/c, откуда

W = mc2. (163.1)

Это соотношение между массой и энергией свободного электромагнитного поля явля­ется универсальным законом природы (см. также §40). Согласно специальной теории относительности, выражение (163.1) имеет общее значение и справед­ливо для любых тел независимо от их внутреннего строения.

Таким образом, рассмотренные свойст­ва электромагнитных волн, определяемые теорией Максвелла, полностью подтвер­ждаются опытами Герца, Лебедева и вы­водами специальной теории относительно­сти, сыгравшими решающую роль для подтверждения и быстрого признания этой теории.

Скорость электромагнитных волн Как уже указывалось (см. §161), одним из важнейших следствий уравнений Мак­свелла (см. § 139) является существова­ние электромагнитных волн. Можно по­казать, что для однородной и изотропной среды вдали от зарядов и токов, создаю­щих электромагнитное поле, из уравнений Максвелла следует, что векторы напряженностей Е и Н переменного электро­магнитного поля удовлетворяют волново­му уравнению типа (154.9):

— оператор Лапласа, v — фазовая ско­рость.

Всякая функция, удовлетворяющая уравнениям (162.1) и (162.2), описывает некоторую волну. Следовательно, электро­магнитные поля действительно могут су­ществовать в виде электромагнитных волн. Фазовая скорость электромагнитных волн определяется выражением

где с= 1/00, 0 и 0 — соответственно

электрическая и магнитная постоянные, и  — соответственно электрическая и магнитная проницаемости среды.

В вакууме (при =1 и =1) скорость распространения электромагнитных волн совпадает со скоростью с. Так как > 1, то скорость распространения электро­магнитных волн в веществе всегда мень­ше, чем в вакууме.

При вычислении скорости распростра­нения электромагнитного поля по формуле (162.3) получается результат, достаточно хорошо совпадающий с эксперименталь­ными данными, если учитывать зависи­мость  и , от частоты. Совпадение же размерного коэффициента в (162.3) со скоростью распространения света в вакуу­ме указывает на глубокую связь между электромагнитными и оптическими явле­ниями, позволившую Максвеллу создать электромагнитную теорию света, согласно которой свет представляет собой электро­магнитные волны.

Playlist:

ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ | Энциклопедия Кругосвет

Содержание статьи

ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ, электромагнитные волны, возбуждаемые различными излучающими объектами, – заряженными частицами, атомами, молекулами, антеннами и пр. В зависимости от длины волны различают гамма-излучение, рентгеновское, ультрафиолетовое излучение, видимый свет, инфракрасное излучение, радиоволны и низкочастотные электромагнитные колебания.

Может показаться удивительным, что внешне столь разные физические явления имеют общую основу. В самом деле, что общего между кусочком радиоактивного вещества, рентгеновской трубкой, ртутной газоразрядной лампой, лампочкой фонарика, теплой печкой, радиовещательной станцией и генератором переменного тока, подключенным к линии электропередачи? Как, впрочем, и между фотопленкой, глазом, термопарой, телевизионной антенной и радиоприемником. Тем не менее, первый список состоит из источников, а второй – из приемников электромагнитного излучения. Воздействия разных видов излучения на организм человека тоже различны: гамма- и рентгеновское излучения пронизывают его, вызывая повреждение тканей, видимый свет вызывает зрительное ощущение в глазу, инфракрасное излучение, падая на тело человека, нагревает его, а радиоволны и электромагнитные колебания низких частот человеческим организмом и вовсе не ощущаются. Несмотря на эти явные различия, все названные виды излучений – в сущности разные стороны одного явления.

Взаимодействие между источником и приемником формально состоит в том, что при всяком изменении в источнике, например при его включении, наблюдается некое изменение в приемнике. Это изменение происходит не сразу, а спустя некоторое время, и количественно согласуется с представлением о том, что нечто перемещается от источника к приемнику с очень большой скоростью. Сложная математическая теория и огромное число разнообразных экспериментальных данных показывают, что электромагнитное взаимодействие между источником и приемником, разделенными вакуумом или разреженным газом, может быть представлено в виде волн, распространяющихся от источника к приемнику со скоростью света с.

Скорость распространения в свободном пространстве одинакова для всех типов электромагнитных волн от гамма-лучей до волн низкочастотного диапазона. Но число колебаний в единицу времени (т.е. частота f) меняется в очень широких пределах: от нескольких колебаний в секунду для электромагнитных волн низкочастотного диапазона до 1020 колебаний в секунду в случае рентгеновского и гамма-излучений. Поскольку длина волны (т.е. расстояние между соседними горбами волны; рис. 1) дается выражением l = с/f, она тоже изменяется в широких пределах – от нескольких тысяч километров для низкочастотных колебаний до 10–14 м для рентгеновского и гамма-излучений. Именно поэтому взаимодействие электромагнитных волн с веществом столь различно в разных частях их спектра. И все же все эти волны родственны между собой, как родственны водяная рябь, волны на поверхности пруда и штормовые океанские волны, тоже по-разному воздействующие на объекты, встречающиеся на их пути. Электромагнитные волны существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приемнику через вакуум или межзвездное пространство. Например, рентгеновские лучи, возникающие в вакуумной трубке, воздействуют на фотопленку, расположенную вдали от нее, тогда как звук колокольчика, находящегося под колпаком, услышать невозможно, если откачать воздух из-под колпака. Глаз воспринимает идущие от Солнца лучи видимого света, а расположенная на Земле антенна – радиосигналы удаленного на миллионы километров космического аппарата. Таким образом, никакой материальной среды, вроде воды или воздуха, для распространения электромагнитных волн не требуется.

Рис. 1. РАСПРОСТРАНЯЮЩАЯСЯ ВОЛНА. Расстояние l между любыми двумя точками, колеблющимися в одной фазе, называется длиной волны. Эта величина связана со скоростью с электромагнитной волны и частотой колебаний f соотношением l = c/f.

Источники электромагнитного излучения.

Несмотря на физические различия, во всех источниках электромагнитного излучения, будь то радиоактивное вещество, лампа накаливания или телевизионный передатчик, это излучение возбуждается движущимися с ускорением электрическими зарядами. Различают два основных типа источников. В «микроскопических» источниках заряженные частицы скачками переходят с одного энергетического уровня на другой внутри атомов или молекул. Излучатели такого типа испускают гамма-, рентгеновское, ультрафиолетовое, видимое и инфракрасное, а в некоторых случаях и еще более длинноволновое излучение (примером последнего может служить линия в спектре водорода, соответствующая длине волны 21 см, играющая важную роль в радиоастрономии). Источники второго типа можно назвать макроскопическими. В них свободные электроны проводников совершают синхронные периодические колебания. Электрическая система может иметь самые разнообразные конфигурации и размеры. Системы такого типа генерируют излучение в диапазоне от миллиметровых до самых длинных волн (в линиях электропередачи).

Гамма-лучи испускаются самопроизвольно при распаде ядер атомов радиоактивных веществ, например радия. При этом происходят сложные процессы изменения структуры ядра, связанные с движением зарядов. Генерируемая частота f определяется разностью энергий E1 и E2 двух состояний ядра: f = (E1E2)/h, где h – постоянная Планка. См. также ПЛАНКА ПОСТОЯННАЯ.

Рентгеновское излучение возникает при бомбардировке в вакууме поверхности металлического анода (антикатода) электронами, обладающими большими скоростями. Быстро замедляясь в материале анода, эти электроны испускают так называемое тормозное излучение, имеющее непрерывный спектр, а происходящая в результате электронной бомбардировки перестройка внутренней структуры атомов анода, в результате которой атомные электроны переходят в состояние с меньшей энергией, сопровождается испусканием так называемого характеристического излучения, частоты которого определяются материалом анода.

Такие же электронные переходы в атоме дают ультрафиолетовое и видимое световое излучение. Что же касается инфракрасного излучения, то оно обычно является результатом изменений, мало затрагивающих электронную структуру и связанных преимущественно с изменениями амплитуды колебаний и вращательного момента импульса молекулы.

В генераторах электрических колебаний имеется «колебательный контур» того или иного типа, в котором электроны совершают вынужденные колебания с частотой, зависящей от его конструкции и размеров. Наиболее высокие частоты, соответствующие миллиметровым и сантиметровым волнам, генерируются клистронами и магнетронами – электровакуумными приборами с металлическими объемными резонаторами, колебания в которых возбуждаются токами электронов. В генераторах более низких частот колебательный контур состоит из катушки индуктивности (индуктивность L) и конденсатора (емкость C) и возбуждается ламповой или транзисторной схемой. Собственная частота такого контура, которая при малом затухании близка к резонансной, дается выражением Рис. 1. РАСПРОСТРАНЯЮЩАЯСЯ ВОЛНА. Расстояние l между любыми двумя точками, колеблющимися в одной фазе, называется длиной волны. Эта величина связана со скоростью с электромагнитной волны и частотой колебаний f соотношением l = c/f..

Переменные поля очень низких частот, используемые для передачи электрической энергии, создаются электромашинными генераторами тока, в которых роторы, несущие проволочные обмотки, вращаются между полюсами магнитов.

Теория Максвелла, эфир и электромагнитное взаимодействие.

Когда океанский лайнер в тихую погоду проходит на некотором расстоянии от рыбацкой лодки, то спустя какое-то время лодка начинает сильно раскачиваться на волнах. Причина этого всем понятна: от носа лайнера по поверхности воды бежит волна в виде последовательности горбов и впадин, которая и достигает рыбацкой лодки.

Когда при помощи специального генератора в установленной на искусственном спутнике Земли и направленной на Землю антенне возбуждаются колебания электрического заряда, в приемной антенне на Земле (также через некоторое время) возбуждается электрический ток. Как же передается взаимодействие от источника к приемнику, если между ними отсутствует материальная среда? И если сигнал, поступающий на приемник, можно представить в виде некоторой падающей волны, то что это за волна, которая способна распространяться в вакууме, и как могут возникать горбы и впадины там, где ничего нет?

Над этими вопросами в применении к видимому свету, распространяющемуся от Солнца к глазу наблюдателя, ученые задумывались уже давно. На протяжении большей части 19 в. такие физики, как О.Френель, И.Фраунгофер, Ф.Нейман, пытались найти ответ в том, что пространство на самом деле не пусто, а заполнено некой средой («светоносным эфиром»), наделенной свойствами упругого твердого тела. Хотя такая гипотеза и помогла объяснить некоторые явления в вакууме, она привела к непреодолимым трудностям в задаче о прохождении света через границу двух сред, например воздуха и стекла. Это побудило ирландского физика Дж.Мак-Куллага отбросить идею упругого эфира. В 1839 он предложил новую теорию, в которой постулировалось существование среды, по своим свойствам отличной от всех известных материалов. Такая среда не оказывает сопротивления сжатию и сдвигу, но сопротивляется вращению. Из-за этих странных свойств модель эфира Мак-Куллага вначале на вызвала особого интереса. Однако в 1847 Кельвин продемонстрировал наличие аналогии между электрическими явлениями и механической упругостью. Исходя из этого, а также из представлений М.Фарадея о силовых линиях электрического и магнитного полей, Дж.Максвелл предложил теорию электрических явлений, которая, по его словам, «отрицает действие на расстоянии и приписывает электрическое действие напряжениям и давлениям в некой всепроникающей среде, причем эти напряжения такие же, с какими имеют дело инженеры, а среда и есть именно та среда, в которой, как предполагают, распространяется свет». В 1864 Максвелл сформулировал систему уравнений, охватывающую все электромагнитные явления. Примечательно, что его теория во многом напоминала теорию, предложенную за четверть века до этого Мак-Куллагом. Уравнения Максвелла были столь всеохватывающими, что из них выводились законы Кулона, Ампера, электромагнитной индукции и следовал вывод о совпадении скорости распространения электромагнитных явлений со скоростью света.

После того как уравнениям Максвелла была придана более простая форма (заслуга в основном О.Хевисайда и Г.Герца), полевые уравнения стали ядром электромагнитной теории. Хотя эти уравнения сами по себе и не требовали максвелловской интерпретации на основе представлений о напряжениях и давлениях в эфире, такая интерпретация повсеместно была принята. Несомненный успех уравнений в предсказании и объяснении различных электромагнитных явлений был воспринят как подтверждение справедливости не только уравнений, но и механистической модели, на основе которой они были выведены и истолкованы, хотя эта модель была совершенно не существенна для математической теории. Фарадеевские силовые линии поля и трубки тока наряду с деформациями и смещениями стали существенными атрибутами эфира. Энергия рассматривалась как запасенная в напряженной среде, а ее поток Г.Пойнтинг в 1884 представил вектором, носящим теперь его имя. В 1887 Герц экспериментально продемонстрировал существование электромагнитных волн. В серии блестящих экспериментов он измерил скорость их распространения, а также показал, что они могут отражаться, преломляться и поляризоваться. В 1896 Г.Маркони получил патент на радиосвязь.

В континентальной Европе независимо от Максвелла развивалась теория дальнодействия – совершенно другой подход к проблеме электромагнитного взаимодействия. Максвелл писал по этому поводу: «Согласно теории электричества, которая делает большие успехи в Германии, две заряженные частицы непосредственно действуют друг на друга на расстоянии с силой, которая, по Веберу, зависит от их относительной скорости и действует, согласно теории, основанной на идеях Гаусса и развитой Риманом, Лоренцом и Нейманом, не мгновенно, а спустя некоторое время, зависящее от расстояния. По достоинству оценить мощь этой теории, которая столь выдающимся людям объясняет любой вид электрических явлений, можно, лишь изучив ее». Теорию, о которой говорил Максвелл, наиболее полно развил датский физик Л.Лоренц с помощью скалярного и векторного запаздывающих потенциалов, почти таких же, как и в современной теории. Максвелл отвергал идею запаздывающего действия на расстоянии, будь то потенциалы или силы. «Эти физические гипотезы совершенно чужды моим представлениям о природе вещей», – писал он. Тем не менее, теория Римана и Лоренца в математическом отношении была идентична его теории, и в конце концов он согласился, что в пользу теории дальнодействия свидетельствуют более убедительные доказательства. В своем Трактате об электричестве и магнетизме (Treatise on Electricity and Magnetism, 1873) он писал: «Не следует упускать из виду, что мы сделали всего лишь один шаг в теории действия среды. Мы высказали предположение, что она находится в состоянии напряжения, но совершенно не объяснили, что это за напряжение и как оно поддерживается».

В 1895 голландский физик Х.Лоренц объединил ранние ограниченные теории взаимодействия между неподвижными зарядами и токами, которые предвосхищали теорию запаздывающих потенциалов Л.Лоренца и были созданы в основном Вебером, с общей теорией Максвелла. Х.Лоренц рассматривал материю как содержащую электрические заряды, которые, различными способами взаимодействуя между собой, производят все известные электромагнитные явления. Вместо того чтобы принять концепцию запаздывающего действия на расстоянии, описываемого запаздывающими потенциалами Римана и Л.Лоренца, он исходил из предположения, что движение зарядов создает электромагнитное поле, способное распространяться сквозь эфир и переносить импульс и энергию от одной системы зарядов к другой. Но необходимо ли для распространения электромагнитного поля в виде электромагнитной волны существование такой среды, как эфир? Многочисленные эксперименты, призванные подтвердить существование эфира, в том числе и эксперимент по «увлечению эфира», дали отрицательный результат. Более того, гипотеза о существовании эфира оказалась в противоречии с теорией относительности и с положением о постоянстве скорости света. Вывод можно проиллюстрировать словами А.Эйнштейна: «Если эфиру не свойственно никакое конкретное состояние движения, то вряд ли имеет смысл вводить его как некую сущность особого рода наряду с пространством».

Излучение и распространение электромагнитных волн.

Движущиеся с ускорением электрические заряды и периодически изменяющиеся токи воздействуют друг на друга с некоторыми силами. Величина и направление этих сил зависят от таких факторов, как конфигурация и размеры области, содержащей заряды и токи, величина и относительное направление токов, электрические свойства данной среды и изменения в концентрации зарядов и распределении токов источника. Из-за сложности общей постановки задачи закон сил нельзя представить в виде одной формулы. Структура, именуемая электромагнитным полем, которую при желании можно рассматривать как чисто математический объект, определяется распределением токов и зарядов, создаваемым заданным источником с учетом граничных условий, определяемых формой области взаимодействия и свойствами материала. Когда речь идет о неограниченном пространстве, эти условия дополняются особым граничным условием – условием излучения. Последнее гарантирует «правильное» поведение поля на бесконечности.

Электромагнитное поле характеризуется вектором напряженности электрического поля E и вектором магнитной индукции B, каждый из которых в любой точке пространства имеет определенную величину и направление. На рис. 2 схематически изображена электромагнитная волна с векторами E и B, распространяющаяся в положительном направлении оси х. Электрическое и магнитное поля тесно взаимосвязаны: они представляют собой компоненты единого электромагнитного поля, поскольку переходят друг в друга при преобразованиях Лоренца. Говорят, что векторное поле линейно (плоско) поляризовано, если направление вектора остается всюду фиксированным, а его длина периодически изменяется. Если вектор вращается, но длина его не меняется, то говорят, что поле имеет круговую поляризацию; если же длина вектора периодически изменяется, а сам он вращается, то поле называется эллиптически поляризованным.

Рис. 2. ЭЛЕКТРИЧЕСКОЕ И МАГНИТНОЕ ПОЛЯ в момент t = 0 для случая плоской электромагнитной волны, распространяющейся в направлении x со скоростью c.

Соотношение между электромагнитным полем и колеблющимися токами и зарядами, поддерживающими это поле, можно проиллюстрировать на относительно простом, но очень наглядном примере антенны типа полуволнового симметричного вибратора (рис. 3). Если тонкую проволоку, длина которой составляет половину длины волны излучения, разрезать посередине и к разрезу подключить высокочастотный генератор, то приложенное переменное напряжение будет поддерживать примерно синусоидальное распределение тока в вибраторе. В момент времени t = 0, когда амплитуда тока достигает максимального значения, а вектор скорости положительных зарядов направлен вверх (отрицательных – вниз), в любой точке антенны заряд, приходящийся на единицу ее длины, равен нулю. По прошествии первой четверти периода (t = T/4) положительные заряды будут сосредоточены на верхней половине антенны, а отрицательные – на нижней. При этом ток равен нулю (рис. 3,б). В момент t = T/2 заряд, приходящийся на единицу длины, равен нулю, а вектор скорости положительных зарядов направлен вниз (рис. 3,в). Затем к концу третьей четверти заряды перераспределяются (рис. 3,г), а по ее завершении заканчивается полный период колебаний (t = T) и все снова выглядит так, как на рис. 3,а.

Рис. 3. ТОКИ И ЗАРЯДЫ в антенне типа полуволнового симметричного вибратора в разные моменты периода.

Чтобы сигнал (например, меняющийся во времени ток, приводящий в действие громкоговоритель радиоприемника) можно было передать на расстояние, излучение передатчика нужно промодулировать путем, например, изменения амплитуды тока в передающей антенне в соответствии с сигналом, что повлечет за собой модуляцию амплитуды колебаний электромагнитного поля (рис. 4).

Рис. 4. МОДУЛИРОВАННАЯ ВОЛНА. а – немодулированная волна несущей частоты; б – модулированная волна.

Передающая антенна является той частью передатчика, где электрические заряды и токи совершают колебания, излучая в окружающее пространство электромагнитное поле. Антенна может иметь самые разнообразные конфигурации, в зависимости от того, какую форму электромагнитного поля необходимо получить. Она может быть одиночным симметричным вибратором или же системой симметричных вибраторов, расположенных на определенном расстоянии друг от друга и обеспечивающих необходимое соотношение между амплитудами и фазами токов. Антенна может представлять собой симметричный вибратор, расположенный перед сравнительно большой плоской или изогнутой металлической поверхностью, играющей роль отражателя. В диапазоне сантиметровых и миллиметровых волн особенно эффективна антенна в форме рупора, соединенного с металлической трубой-волноводом, который играет роль линии передачи. Токи в короткой антенне на входе волновода индуцируют переменные токи на его внутренней поверхности. Эти токи и связанное с ними электромагнитное поле распространяются по волноводу к рупору. См. также АНТЕННА.

Меняя конструкцию антенны и ее геометрию, можно добиться такого соотношения амплитуд и фаз колебаний токов в различных ее частях, чтобы излучение усиливалось в одних направлениях и ослаблялось в других (антенны направленного действия).

На больших расстояниях от антенны любого типа электромагнитное поле имеет довольно простой вид: в любой данной точке векторы напряженности электрического поля Е и индукции магнитного поля В колеблются в фазе во взаимно перпендикулярных плоскостях, убывая обратно пропорционально расстоянию от источника. При этом волновой фронт имеет форму увеличивающейся в размерах сферы, а вектор потока энергии (вектор Пойнтинга) направлен вовне по ее радиусам. Интеграл от вектора Пойнтинга по всей сфере дает полную, усредненную по времени, излучаемую энергию. При этом волны, распространяющиеся в радиальном направлении со скоростью света, переносят от источника не только колебания векторов E и B, но также импульс поля и его энергию.

Прием электромагнитных волн и явление рассеяния.

Если в зоне электромагнитного поля, распространяющегося от удаленного источника, поместить проводящий цилиндр, то индуцированные в нем токи будут пропорциональны напряженности электромагнитного поля и, кроме того, будут зависеть от ориентации цилиндра относительно фронта падающей волны и от направления вектора напряженности электрического поля. Если цилиндр имеет вид проволоки, диаметр которой мал по сравнению с длиной волны, то индуцированный ток будет максимальным, когда проволока параллельна вектору Е падающей волны. Если проволоку разрезать посередине и к образовавшимся выводам присоединить нагрузку, то к ней будет подводиться энергия, как это и имеет место в случае радиоприемника. Токи в этой проволоке ведут себя так же, как и переменные токи в передающей антенне, а потому она тоже излучает поле в окружающее пространство (т.е. происходит рассеяние падающей волны).

Отражение и преломление электромагнитных волн.

Передающую антенну обычно устанавливают высоко над поверхностью земли. Если антенна находится в сухой песчаной или скалистой местности, то грунт ведет себя как изолятор (диэлектрик), и токи, индуцируемые в нем антенной, связаны с внутриатомными колебаниями, поскольку здесь нет свободных носителей заряда, как в проводниках и ионизованных газах. Эти микроскопические колебания создают над поверхностью земли поле отраженной от земной поверхности электромагнитной волны и, кроме того, изменяют направление распространения волны, входящей в грунт. Эта волна движется с меньшей скоростью и под меньшим углом к нормали, чем падающая. Такое явление называется преломлением. Если же волна падает на участок поверхности земли, имеющий, наряду с диэлектрическими, также и проводящие свойства, то общая картина для преломленной волны выглядит намного сложнее. Как и прежде, волна меняет направление движения у границы раздела, но теперь поле в грунте распространяется таким образом, что поверхности равных фаз уже не совпадают с поверхностями равных амплитуд, как это обычно имеет место в случае плоской волны. Кроме того, быстро затухает амплитуда волновых колебаний, поскольку электроны проводимости при столкновениях отдают свою энергию атомам. В результате энергия волновых колебаний переходит в энергию хаотического теплового движения и рассеивается. Поэтому там, где грунт проводит электричество, волны не могут проникнуть в него на большую глубину. То же самое относится и к морской воде, чем затрудняется радиосвязь с подводными лодками.

В верхних слоях земной атмосферы располагается слой ионизованного газа, который называется ионосферой. Он состоит из свободных электронов и положительно заряженных ионов. Под действием посылаемых с земли электромагнитных волн заряженные частицы ионосферы начинают колебаться и излучать собственное электромагнитное поле. Заряженные ионосферные частицы взаимодействуют с посланной волной примерно так же, как и частицы диэлектрика в рассмотренном выше случае. Однако электроны ионосферы не связаны с атомами, как в диэлектрике. Они реагируют на электрическое поле посланной волны не мгновенно, а с некоторым сдвигом по фазе. В результате волна в ионосфере распространяется не под меньшим, как в диэлектрике, а под бóльшим углом к нормали, чем посланная с земли падающая волна, причем фазовая скорость волны в ионосфере оказывается больше скорости света c. Когда волна падает под некоторым критическим углом, угол между преломленным лучом и нормалью становится близок к прямому, а при дальнейшем увеличении угла падения излучение отражается в сторону Земли. Очевидно, что в этом случае электроны ионосферы создают поле, которым компенсируется поле преломленной волны в вертикальном направлении, а ионосфера действует как зеркало.

Энергия и импульс излучения.

В современной физике выбор между теорией электромагнитного поля Максвелла и теорией запаздывающего дальнодействия делается в пользу теории Максвелла. До тех пор, пока нас интересует только взаимодействие источника и приемника, обе теории одинаково хороши. Однако теория дальнодействия не дает никакого ответа на вопрос, где находится энергия, которую уже излучил источник, но еще не принял приемник. Согласно теории Максвелла, источник передает энергию электромагнитной волне, в которой она и находится, пока не будет передана поглотившему волну приемнику. При этом на каждом этапе соблюдается закон сохранения энергии.

Таким образом, электромагнитные волны обладают энергией (а также импульсом), что заставляет считать их столь же реальными, как, например, атомы. Электроны и протоны, находящиеся на Солнце, передают энергию электромагнитному излучению, в основном в инфракрасной, видимой и ультрафиолетовой областях спектра; примерно через 500 с, достигнув Земли, оно эту энергию отдает: повышается температура, в зеленых листьях растений происходит фотосинтез, и т.д. В 1901 П.Н.Лебедев экспериментально измерил давление света, подтвердив, что свет имеет не только энергию, но и импульс (причем соотношение между ними согласуется с теорией Максвелла).

Фотоны и квантовая теория.

На рубеже 19 и 20 вв., когда казалось, что исчерпывающая теория электромагнитного излучения, наконец, построена, природа преподнесла очередной сюрприз: оказалось, что помимо волновых свойств, описываемых теорией Максвелла, излучение проявляет также свойства частиц, причем тем сильнее, чем короче длина волны. Особенно ярко эти свойства проявляются в явлении фотоэффекта (выбивания электронов из поверхности металла под действием света), открытого в 1887 Г.Герцем. Оказалось, что энергия каждого выбитого электрона зависит от частоты n падающего света, но не от его интенсивности. Это свидетельствует о том, что энергия, связанная со световой волной, передается дискретными порциями – квантами. Если увеличивать интенсивность падающего света, то растет число выбитых в единицу времени электронов, но не энергия каждого из них. Иными словами, излучение передает энергию определенными минимальными порциями – как бы частицами света, которые были названы фотонами. Фотон не имеет ни массы покоя, ни заряда, но обладает спином, а также импульсом, равным hn/c, и энергией, равной hn; он перемещается в свободном пространстве с постоянной скоростью c.

Каким же образом электромагнитное излучение может иметь все свойства волн, проявляющиеся в интерференции и дифракции, но вести себя как поток частиц в случае фотоэффекта? В настоящее время наиболее удовлетворительное объяснение этой двойственности можно найти в сложном формализме квантовой электродинамики. Но и эта изощренная теория имеет свои трудности, а ее математическая непротиворечивость вызывает сомнения. См. также МОМЕНТЫ АТОМОВ И ЯДЕР; ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ; ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ; КВАНТОВАЯ МЕХАНИКА; ВЕКТОР.

К счастью, в макроскопических задачах излучения и приема миллиметровых и более длинных электромагнитных волн квантовомеханические эффекты обычно не имеют существенного значения. Число фотонов, излучаемых, например, симметричной вибраторной антенной, столь велико, а энергия, переносимая каждым из них, столь мала, что можно забыть о дискретных квантах и считать, что испускание излучения – непрерывный процесс.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *