Динистор дв3 цоколевка их виды
Условное графическое обозначение динистора на схеме немного напоминает полупроводниковый диод за одним отличием. У него есть перпендикулярная черта, которая символизирует базовую область, и придающая динистору его необыкновенные параметры и характеристики.
Но как это ни странно изображение динистора на ряде схем бывает и другим. Допустим, изображение симметричного динистора может быть таким:
Такой разброс в условно-графических обозначениях связан с тем, что существует огромный класс полупроводников тиристоров. К которым относится динистор, тринистор (triac), симистор. На схемах все они похожи в виде сочетания из двух диодов и дополнительных линий. В зарубежных источниках этот подкласс полупроводника получил название trigger diode (триггерный диод), diac. На принципиальных схемах он может обозначаться латинскими символами VD, VS, V и D.
Принцип работы триггерного диода
Основной принцип работы динистора основывается на том, что при прямом включении он не пропустит электрический ток до тех пор, пока напряжение на его выводах не достигнет заданной величины.
Обычный диод также имеет такой параметр как напряжение открытия, но для него оно лишь пара сотен милливольт. При прямом включении обычный диод открывается как только к его выводам приложить небольшой уровень напряжения.
Чтобы наглядно понять в принцип работы необходимо посмотреть на вольт-амперную характеристику, она позволяет наглядно рассмотреть, как работает этот полупроводниковый прибор.
Рассмотрим ВАХ самого часто встречающегося симметричного динистора типа DB3. Его можно монтировать в любую схему без соблюдения цоколевки. Работать он будет точно, а вот напряжение включения (пробоя) может немного отличаться, где-то на три вольта
Как мы можем видеть обои ветви характеристики, абсолютно одинаковы. (говорит о том, что он симметричный) Поэтому и работа DB3 не зависит от полярности напряжения на его выводах.
ВАХ имеет три области, показывающие режим работы полупроводника типа DB-3 при определенных факторах.
Таким образом из графика четко видно, что динистор в своей работе похож на диод за одним большим «НО». Если его пробивное напряжение обычного диода составляет значение (150 – 500 мВ), то для открытия триггерного диода требуется подать на его выводы напряжение от пары десятки вольт. Так для прибора DB3 напряжение включения составляет 32 вольта.
Для полного закрытия динистора, необходимо снизить уровень тока до значения ниже тока удержания. В случае несимметричного варианта, при обратном включении он не пропускает ток до тех пор, пока обратное напряжение не достигнет критического уровня и он сгорит. В радиолюбительских самоделках динистор может использоваться в стробоскопах, переключателях и регуляторах мощности и многих других устройствах.
Основой конструкции является релаксационный генератор на VS1. Входное напряжение выпрямляется диодом VD1 и поступает через сопротивление R1 на подстроечник R2. С его движка часть напряжения следует на емкость С1, тем самым заряжая ее. Если напряжение на входе не выше нормы, напряжения зарядки емкости нехватит для пробоя, и VS1 закрыт. Если уровень сетевого напряжения увеличивается, заряд на конденсаторе тоже возрастает, и пробивает VS1. С1 разряжается через VS1 головной телефон BF1 и светодиод, тем самым сигнализируя об опасном уровне сетевого напряжения. После этого VS1 закрывается и емкость опять начинает накапливать заряд. Во втором варианте схемы подстроечное сопротивление R2 должно быть мощностью не ниже 1 Вт, а резистор R6 — 0,25 Вт. Регулировка этой схемы заключается к установке подстроечными сопротивлениями R2 и R6 нижнего и верхнего предела отклонения уровня сетевого напряжения.
Здесь используется широко распространенный двунаправленный симметричный динистор DB3. Если FU1 цел, то динистор закорочен диодами VD1 и VD2 во время положительного полупериода сетевого напряжения 220В. Светодиод VD4 и сопротивление R1 шунтируют емкость С1. Светодиод горит. Ток через него определяется номиналом сопротивления R2.
В этой схеме частота вспышек задается релаксационным генератором на D3. Он будет закрыт, пока напряжение на выходе не достигнет своего максимального значение, около 32 В. Емкость С4 начинает заряжаться через Р1 и сопротивление R7, пока закрыт симметрический Д. Частоту колебаний генератора можно настраивать потенциометром Р1.
В момент открытия динистора, откроется и симистор, через подключенную к выходу нагрузку потечет ток, зависящий от суммарного сопротивлением открытого симистора и нагрузки. Симистор будет открыт до конца полупериода. Резистором VR1 задаем напряжение открывания полупроводников, тем самым регулируя мощность.
Строительство и Дача на понятном языке
Здравствуйте, статья находится в разработке!
6 комментариев
Добавить комментарий Отменить ответ
Совершенно безграмотная статья. Может, есть смысл перед публикацией просматривать инженеру? А девочки, набранные по объявлению, заведомо ничего написать не могут. Что и видим.
Чюдо 2: «Динистор DB3 применяется в тиристоры регуляторах мощности,»
Чюдо 3:»устройство во время включения не способно проводить ток до того, пока напряжение на выходе не будет иметь более высокого показателя. Этот показатель не меняется.»
и т.д.
Ну граждане, неудобно даже…Переводила жертва ЕГЭ?
Поправьте, не срамитесь.
нехорошо начинающих путать Вольты с ватами Для прибора DB3 напряжение включения равняется 32 Вт. что напряжение пробоя будет варьироваться до 3 Вт
не нашлось сил исправить, только пообещать? И на том спасибо.
нехорошо начинающих путать Вольты с ватами Для прибора DB3 напряжение включения равняется 32 Вт. что напряжение пробоя будет варьироваться до 3 Вт
В схеме ошибка ! Для правильной работы необходимо «перевернуть» диоды Д2 и Д3.
Здравствуйте Александр, спасибо за комментарий, мы исправим ошибку!
Динистор – это двунаправленный триггерный неуправляемый диод, аналогичный по устройству тиристору небольшой мощности. В его конструкции отсутствует управляющий электрод. Он обладает низкой величиной напряжения лавинного пробоя, до 30 В. Динистор может считаться важнейшим элементом, предназначенным для переключающих автоматических устройств, для схем генераторов релаксационных колебаний и для преобразования сигналов.
Динисторы производятся для цепей максимального тока до 2 А непрерывного действия и до 10 А для работы в импульсном режиме для напряжений с величинами от 10 до 200 В.
Рис. №1. Диффузионный кремниевый динистор p—n—p—n (диодный тиристор) марки КН102 (2Н102). Устройство применяется в импульсных схемах и выполняет коммутирующие действия. Конструкция выполнена в из металлостекла и имеет гибкие выводы.
Принцип работы динистора
Прямое включение динистора от источника питания приводит к прямому смещению p-n-p-перехода П1 и П3. П2 работает в обратном направлении, соответственно состояние динистора считается закрытым, а падение напряжения приходится на переход П2.
Величина тока определяется током утечки и находится в границах от сотых долей мкрА (участок ОА). При плавном увеличении напряжения, ток будет расти медленно, при достижении напряжением величины переключения близкого к величине пробивного напряжения p-n-перехода П2, то ток его возрастает резким скачком, соответственно напряжение падает.
Положение прибора открытое, его рабочая составляющая переходит в область БВ. Дифференциальное сопротивление устройства в этой области имеет положительное значение и лежит в незначительных границах от 0,001 Ом до нескольких единиц сопротивления (Ом).
Чтобы выключить динистор необходимо уменьшить величину тока до значения тока удержания. В случае приложения к прибору обратного напряжения, переход П2 открывается, переход П1 и П3 закрыты.
Рис. №2. (а) Структура динистора; (б) ВАХ
Область применения динистора
- Динистор может использоваться для формирования импульса предназначенного для отпирания тиристора, благодаря своей несложной конструкции и невысокой стоимости динистор считается идеальным элементом для применения в схеме тиристорного регулятора мощности или импульсного генератора
- Еще одно распространенное применение динистора – это использование в конструкции высокочастотных преобразователей для работы с электрической сетью 220В для питания ламп накаливания, и люминесцентных ламп в компактном исполнении (КЛЛ) в виде компонента, входящего в устройство «электронного трансформатора» Это так называемый DB3 или симметричный динистор. Для этого динистора характерен разброс пробивного напряжения. Устройство используется для обычного и поверхностного монтажа.
Реверсивно-включаемые мощные динисторы
Широкое распространение получила разновидность динисторов, обладающих реверсивно-импульсными свойствами. Эти приборы позволяют выполнить микросекундную коммутацию в сотни и даже в миллионы ампер.
Реверсивно-импульсные динисторы (РВД) используются в конструкции твердотельного ключа для питания силовых установок, РВД и работают в микросекундном и субмиллисекундном диапазонах. Они коммутируют импульсный ток до 500 кА в схемах генераторов униполярных импульсов в частотном режиме многократного действия.
Рис. №3. Маркировка РВД используемого в моноимпульсном режиме.
Внешний вид ключей собранных на основе РВД
Рис. №4. Конструкция бескорпусного РВД.
Рси.№5. Конструкция РВД в метало-керамическом таблеточном герметичном корпусе.
Число РВД зависит от величины напряжения для рабочего режима коммутатора, если коммутатор рассчитан на напряжение 25 kVdc, то их число – 15 штук. Конструкция коммутатора на основе РВД схожа с конструкцией высоковольтной сборки с последовательно соединенными тиристорами с таблеточным устройством и с охладителем. И прибор, и охладитель выбираются с учетом рабочего режима, который задается пользователем.
Структура кристалла силового РВД
Полупроводниковая структура реверсивного-включаемого динистора включает в свой состав несколько тысяч тиристорных и транзисторных секций, обладающих общим коллектором.
Включение прибора происходит после изменения на короткое время полярности внешнего напряжения и прохождения через транзисторные секции короткого импульсного тока. Происходит инжектирование электронно-дырочной плазмы в n-базу, по плоскости всего коллектора создается тонкий плазменный слой. Насыщающийся реактор L служит для разделения силовой и управляющей части цепи, через доли микросекунды происходит насыщение реактора и к прибору приходит напряжение первичной полярности. Внешнее поле вытягивает дырки из слоя плазмы в p-базу, что приводит к инжекции электронов, происходит независимое от величины площади переключение прибора по всей его поверхности. Именно благодаря этому имеется возможность производить коммутацию больших токов с высокой скоростью нарастания.
Рис. №6. Полупроводниковая структура РВД.
Рис. №7. Типичная осциллограмма коммутации.
Перспектива использования РВД
Современные варианты динисторов изготовленных в доступном в настоящее время диаметре кремния позволяют коммутировать ток величиной до 1 млА. Для элементов в основу, которых положен карбид кремния характерна: высокая насыщенность скорости электронов, напряженность поля лавинного пробоя с высоким значением, утроенное значение теплопроводности.
Их рабочая температура намного выше из-за широкой зоны, вдвое превышающая радиационная стойкость – вот все основные преимущества кремниевых динистров. Эти параметры дают возможность повысить качество характеристик всех силовых электронных устройств, изготовленных на их основе.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Db3 динистор характеристики маркировка российский аналог
Популярные динисторы однополярные и симметричные. Справочные данные.
Динистор! Редкий зверь в наших краях. У него уши вот такие, глаза — такие, и сам он такой. Сразу видно — пришло животное из далёких стран. Надо звать людей, пусть кто-нибудь расскажет, что это за скотина.
Секундочку, я уже здесь, только подгребу немного и переключусь на открытый канал.
Итак, давайте определимся, что такое ДИНИСТОР.
Когда молчит википедия — чёткой формулировки, переходящей от источника в источник, не существует, каждый трактует её по-своему, порой не совсем адекватно. Потренируемся и мы.
Динистор — это двухэлектродный ключевой полупроводниковый элемент, открытие которого происходит при достижении между выводами анода и катода определённого напряжения, зависящего от типа данного динистора, а закрытие — снижением до определённого уровня тока через него.
К количеству наращённых в динисторе p-n переходов отнесёмся идентифирентно, а вот ВАХ (вольт-амперные характеристики), как нельзя лучше, помогут нам разобраться в работе данного типа полупроводников.
Рис.1
На Рис.1 (слева) приведена ВАХ однополярного (несимметричного) динистора, который работает только при наличии положительного смещения. При обратном смещении, превышающем Uобр max, прибор может выйти из строя.
Для снятия вольт-амперной характеристики динистора нам понадобится источник регулируемого напряжения от 0В до некоторого значения, превышающего напряжение открывания Uвкл полупроводника и эквивалент нагрузки Rн (Рис.2).
Установим на источнике самый низкий уровень напряжения и начнём его постепенно повышать.
Участок 1 на ВАХ: динистор закрыт, ток через нагрузку равен току утечки динистора (десятки микроампер), напряжение на Rн≈0.
При дальнейшем увеличении напряжения ничего не меняется до тех пор, пока не будет достигнут уровень Uвкл. В этот момент динистор триггерно открывается (участок 2), и дальнейшая величина тока через нагрузку будет зависеть от входного напряжения, сопротивления Rн и сопротивления открытого динистора (участок 3). Напряжение на нагрузке Uн при этом равно напряжению источника питания минус напряжение (около 5В) падения на открытом динисторе. Ясен пень, что Iн=Uн/Rн=(Uпит-Uпад)/Rн .
Как теперь закрыть динистор?
Начинаем уменьшать напряжение источника. Ток нагрузки по прежнему равен Iн=(Uпит-Uпад)/Rн.
В определённый момент времени, когда ток через динистор уменьшится до величины, называемой током удержания (Iуд), динистор мгновенно закроется, ток нагрузки упадёт до «0». Итог — ключ закрылся.
Симметричные (двухполярные) динисторы работают точно таким же образом, как и однополярные, только всё вышесказанное верно не только для положительных напряжений, но и для отрицательных. Проверяется незамысловатым изменением полярности подключённого источника питания.
Для наглядной иллюстрации изложенного материала, давайте рассмотрим работу динисторного генератора пилообразного напряжения.
Рис.3
Вот как описывает работу приведённого генератора автор издания «Практическая электроника от транзистора до кибернетической системы» Р.В.Майер.
«Нами использовались динистор типа КН102А (открывается при 11 В), резистор на 2 — 5 ком, конденсатор ёмкостью 1 — 10 мкФ; напряжение питания 20 — 100 В. При включении динистор закрыт, конденсатор C1 медленно заряжается от источника питания через резистор R1. Напряжение на конденсаторе растёт до напряжения открывания динистора (Рис.3.2). Когда динистор открывается, его сопротивление резко падает, и конденсатор быстро разряжается через него. При уменьшении анодного напряжения до напряжения закрывания динистор закрывается, после чего все повторяется снова.
Время заряда τ=RC, поэтому при увеличении R и C период колебаний растёт, частота импульсов уменьшается. С ростом напряжения питания конденсатор заряжается быстрее, частота генерируемых импульсов увеличивается».
Подобьём сказанное перечислением основных параметров динистора:
— Напряжение открывания (включения), Uвкл;
— Минимальный ток удержания, Iуд;
— Максимально допустимый прямой ток, Iпр;
— Ток утечки в закрытом состоянии, Iут;
— Максимально допустимое обратное напряжение, Uобр max;
— Падение напряжения на открытом динисторе, Uпр;
— Скорость нарастания напряжения при переключении, dUзакр/dt, либо
Время нарастания напряжения, tr.
Электрические характеристики распространённых однополярных динисторов КН102 и симметричных (двуполярных) DB3-D34 динисторов сведём в итоговую таблицу.
Строительство и Дача на понятном языке
Здравствуйте, статья находится в разработке!
6 комментариев
Добавить комментарий Отменить ответ
Совершенно безграмотная статья. Может, есть смысл перед публикацией просматривать инженеру? А девочки, набранные по объявлению, заведомо ничего написать не могут. Что и видим.
Чюдо 1: «то для открытия устройства целесообразно осуществить на выводы напряжение включения»
Чюдо 2: «Динистор DB3 применяется в тиристоры регуляторах мощности,»
Чюдо 3:»устройство во время включения не способно проводить ток до того, пока напряжение на выходе не будет иметь более высокого показателя. Этот показатель не меняется.»
и т.д.
Ну граждане, неудобно даже…Переводила жертва ЕГЭ?
Поправьте, не срамитесь.
нехорошо начинающих путать Вольты с ватами Для прибора DB3 напряжение включения равняется 32 Вт. что напряжение пробоя будет варьироваться до 3 Вт
не нашлось сил исправить, только пообещать? И на том спасибо.
нехорошо начинающих путать Вольты с ватами Для прибора DB3 напряжение включения равняется 32 Вт. что напряжение пробоя будет варьироваться до 3 Вт
В схеме ошибка ! Для правильной работы необходимо «перевернуть» диоды Д2 и Д3.
Здравствуйте Александр, спасибо за комментарий, мы исправим ошибку!
Динисторы – это разновидность полупроводниковых приборов, точнее – неуправляемых тиристоров. В своей структуре он содержит три p — n перехода и имеет четырёхслойную структуру.
Его можно сравнить с механическим ключом, то есть, прибор может переключаться между двумя состояниями – открытое и закрытое. В первом случае электрическое сопротивление стремится к очень низким величинам, во втором же, наоборот – может достигать десятков и сотен Мом. Переход между состояниями происходит скачкообразно.
Динистор DB 3
Данный элемент не получил широкого распространения в радиоэлектронике, но всё равно часто применяется в схемах устройств с автоматическим переключением, преобразователях сигналов и генераторов релаксационных колебаний.
Как работает прибор?
Для пояснения принципа работы динистора db 3 обозначим имеющиеся в нём p — n переходы как П1, П2 и П3 следуя по схеме от анода к катоду.
В случае прямого включения прибора к источнику питания, прямое смещение приходится на переходы П1 и П3, а П2, в свою очередь, начинает работать в обратном направлении. При таком режиме, db 3 считается закрытым. Падение напряжения происходит на П2 переход.
Ток в закрытом состоянии определяется током утечки, который имеет очень маленькие значения (сотые доли МкА). Медленное и плавное увеличение подаваемого напряжения, вплоть до максимального напряжения закрытого состояния (напряжения пробоя), не будет способствовать значительному изменению тока. Но при достижении этого напряжения, ток увеличивается скачком, а напряжение, наоборот – падает.
В таком режиме работы, прибор на схеме приобретает минимальные значения сопротивления (от сотых долей ом до единиц) и начинает считаться открытым. Для того чтобы закрыть прибор, то на нём нужно уменьшить напряжение. В схеме с обратным подключением, переходы П1 и П3 закрыты, П2 открыт.
Динистор db 3. Описание, характеристики и аналоги
Динистор db 3 – одна из популярнейших разновидностей неуправляемых тиристоров. Применяется чаще всего в преобразователях напряжения люминесцентных лам и трансформаторов. Принцип работы данного прибора такой же, как и у всех неуправляемых тиристоров, отличия лишь в параметрах.
- Напряжение открытого динистора – 5В
- Максимальный ток открытого динистора – 0.3А
- Импульсный ток в открытом состоянии – 2А
- Максимальное напряжение закрытого прибора – 32В
- Ток в закрытом приборе – 10А
Динистор db 3 может работать при температурах от -40 до 70 градусов Цельсия.
Проверка db 3
Выход из строя такого прибора– редкое событие, но, тем не менее оно всё-таки может случиться. Поэтому проверка динистора db 3 – важный вопрос для радиолюбителей и ремонтников радиоаппаратуры.
К сожалению, из-за технических особенностей данного элемента, проверить его обычным мультиметром не получится. Единственное действие, которое можно реализовать с помощью тестера – это прозвонка. Но подобная проверка не даст нам точных ответов на вопросы о работоспособности элемента.
Однако это совсем не означает, что проверить прибор невозможно или просто тяжело. Для действительно информативной проверки о состоянии этого элемента, нам необходимо собрать простенькую схему, состоящую из резистора, светодиода и самого динистора. Подключаем элементы последовательно в следующем порядке – анод динистора к блоку питания, катод к резистору, резистор к аноду светодиода. В качестве источника питания необходимо использовать регулируемый блок с возможностью поднятия напряжения до 40 вольт.
Процесс проверки по данной схеме заключается в постепенном увеличении напряжения на источнике с целью загорания светодиода. В случае рабочего элемента, светодиод загорится при напряжении пробоя и открытии динистора. Проведя операцию в обратном порядке, то есть уменьшая напряжение, мы должны увидеть, как светодиод погаснет.
При подобной проверке рекомендуется замерять напряжение, при котором загорается светодиод. То есть, напряжение пробоя, которое понадобится для дальнейшей работы с прибором.
Помимо данной схемы, существует способ проверки с помощью осциллографа.
Схема проверки будет состоять из резистора, конденсатора и динистора, включение которого будет параллельным конденсатору. Подключаем питание 70 вольт. Резистор – 100кОм. Схема работает следующим образом – конденсатор заряжается до напряжения пробоя и резко разряжается через db3. После процесс повторяется. На экране осциллографа мы обнаружим релаксационные колебания в виде линий.
Аналоги db 3
Несмотря на редкость выхода прибора из строя, иногда это происходит и необходимо искать замену. В качестве аналогов, на которые можно заменить наш прибор, предлагаются следующие виды динисторов:
Как мы видим, аналогов прибора очень мало, но его можно заменить некоторыми полевыми транзисторами, по особым схемам включения, например, STB120NF10T4.
Аналог динистора на транзисторах схема
Серийно выпускаемые динисторы по электрическим параметрам не всегда отвечают творческим интересам радиолюбителей-конструкторов. Нет, например, динисторов с напряжением включения 5. 10 и 200. 400 В. Все динисторы имеют значительный разброс значения этого классификационного параметра, который к тому же зависит еще от температуры окружающей среды. Кроме того, они рассчитаны на сравнительно малый коммутируемый ток (менее 0,2 А), а значит, небольшую коммутируемую мощность. Исключено плавное регулирование напряжения включения, что ограничивает область применения динисторов. Все это заставляет радиолюбителей прибегать к созданию аналогов динисторов с желаемыми параметрами.
Поиском такого аналога динистора длительное время занимался и я. Исходным был вариант аналога, составленный из стабилитрона Д814Д и тринистора КУ202Н (рис. 1). Пока напряжение на аналоге меньше напряжения стабилизации стабилитрона, аналог закрыт и ток через него не течет. При достижении напряжения стабилизации стабилитрона он открывается сам, открывает тринистор и аналог в целом. В результате в цепи, в которую аналог включен, появляется ток. Значение этого тока определяется свойствами тринистора и сопротивлением нагрузки. Используя тринисторы серии КУ202 с бук венными индексами Б, В, Н и один и т же стабилитрон Д814Д, произведено 32 измерения тока и напряжения включения аналога дннистора. Анализ показывает, что среднее значение тока включения аналога равно примерно 7 мА, а напряжения включения — 14,5±1 В. Разброс напряжения включения объясняется неодинаковостью сопротивления управляющих р-п переходов используемых тринисторов.
Напряжение включения Uвкл такого аналога можно рассчитать по упрощенной формуле: Uвкл=Uст+Uy.э., где Uст — напряжение стабилизации стабилитрона, Uу.э. — падение напряжения на управляющем переходе тринистора.
При изменении температуры тринистора падение напряжения на его управляющем переходе тоже изменяется, но незначительно. Это приводит к некоторому изменению напряжения включения аналога. Например, для тринистора КУ202Н при изменении температуры его корпуса от 0 до 50 °С напряжение включения изменялось в пределах 0,3. 0,4 % по отношению к значению этого параметра при температуре 25 °С.
Далее был исследован регулируемый аналог динистора с переменным резистором R1 в цепи управляющего электрода тринистора (рис. 2). Семейство вольт-амперных характеристик такого варианта аналога показано на рис. 3, их пусковой участок — на рис. 4, а зависимость напряжения включения от сопротивления резистора — на рис. 5. Как показал анализ, напряжение включения такого аналога прямо пропорционально сопротивлению резистора. Это напряжение можно рассчитать по формуле Uвкл.p=Ucт+Uy.э.+Iвкл.y.э*R1, где Uвкл.p — напряжение включения регулируемого аналога, Iвкл.y.э — ток включения регулируемого аналога динистора по управляющему электроду.
рис. 3
рис. 4
рис. 5
Такой аналог свободен практически от всех недостатков динисторов, кроме температурной нестабильности. Как известно, при повышении температуры тринистора его ток включения уменьшается. В регулируемом аналоге это приводит к уменьшению напряжения включения и тем значительнее, чем больше сопротивление резистора. Поэтому стремиться к большому повышению напряжения включения переменным резистором не следует, чтобы не ухудшать температурную’ стабильность работы аналога.
Как показали эксперименты, эта нестабильность небольшая. Так, для аналога с тринистором КУ202Н при изменении температуры его корпуса в пределах 20±10 °С напряжение включения изменялось: с резистором 1 кОм — на ±1,8 %. при 2 кОм — на ±2,6 %, при 3 кОм — на ±3 %, при 4 кОм — на ±3,8 %. Увеличение сопротивления на 1 кОм приводило к повышению напряжения порога включения регулируемого аналога в среднем на 20 % по сравнению с напряжением включения исходного аналога динистора. Следовательно, средняя точность напряжения включения регулируемого аналога лучше 5%.
Температурная нестабильность аналога с тринистором КУ101Г меньше, что объясняется относительно малым током включения (0,8. 1,5 мА). Например, при таком же изменении температуры и резисторе сопротивлением 10, 20, 30 и 40 кОм температурная нестабильность была соответственно ±0,6%. ±0,7%, ±0,8%. ±1%. Увеличение сопротивления резистора на каждые 10 кОм повышало уровень напряжения включения аналога на 24 % по сравнению с напряжением аналога без резистора. Таким образом, аналог с тринистором КУ101Г обладает высокой точностью напряжения включения — его температурная нестабильность менее 1%, а с тринистором КУ202Н — несколько худшей точностью напряжения включения (в этом случае сопротивление резистора Rt должно быть 4,7 кОм).
При обеспечении теплового контакта между тринистором и стабилитроном температурная нестабильность аналога может быть еще меньшей, поскольку у стабилитронов с напряжением стабилизации больше 8 В температурный коэффициент напряжения стабилизации положителен, а температурный коэффициент напряжения открывания тринисторов отрицателен.
Повысить термостабильность регулируемого аналога динистора с мощным тринистором можно включением переменного резистора в анодную цепь маломощного тринистора (рис. 6). Резистор R1 ограничивает ток управляющего электрода тринистора VS1 и повышает напряжение включения его на 1. 2%. А переменный резистор R2 позволяет регулировать напряжение включения тринистора VS2.
рис. 6
Улучшение температурной стабильности такого варианта аналога объясняется тем, что с увеличением сопротивления резистора R2 уменьшается ток включения аналога по управляющему электроду и увеличивается ток включения его по аноду. А так как с изменением температуры в этом случае ток управляющего электрода уменьшается меньше и что суммарный ток включения аналога увеличивается, то для эквивалентного повышения напряжения включения аналога нужно меньшее сопротивление резистора R2 — это и создает благоприятные условия для повышения температурной стабильности аналога.
Чтобы реализовать термостабильность такого аналога, ток открывания тринистора VS2 должен быть 2. 3 мА —больше тока открывания тринистора VS1, чтобы его температурные изменения не влияли на работу аналога. Эксперимент показал, что напряжение включения термостабильного аналога при изменении температуры его элементов от 20 до 70 °С практически не изменилось.
Недостаток такого варианта аналога динистора — сравнительно узкие пределы регулировки напряжения включения переменным резистором R2. Они тем уже, чем больше ток включения тринистора VS2. Поэтому, чтобы не ухудшать термостабильность аналога, надо использовать в нем тринисгоры с возможно меньшим током включения. Диапазон регулировки напряжения включения аналога можно расширить путем применения стабилитронов с различным напряжением стабилизации.
Регулируемые аналоги динистора найдут применение в автоматике и телемеханике, релаксационных генераторах. электронных регуляторах, пороговых и многих других радиотехнических устройствах.
Источник: РАДИО № 3, 1986 г., с.41-42
Автор: М. МАРЬЯШ
C этой схемой также часто просматривают: |
Регулируемый стабилизатор тока
Регулируемый электронный предохранитель
Аналог высоковольтного стабилитрона
Аналог высоковольтного стабилитрона
Регулируемый блок питания на LM317T
ФОТОМЕХАНИЧЕСКИЙ ДАТЧИК
Высоколинейный амплитудный модулятор
Преобразование угла потенциометра в цифровой код
УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ ДВИЖУЩИХСЯ МЕТАЛЛИЧЕСКИХ ПРЕДМЕТОВ
Схема аналога тиристора (диодного и триодного) на транзисторах. Расчет параметров он-лайн. (10+)
Транзисторный аналог тиристора
В маломощных пороговых и нестандартных схемах транзисторные аналоги диодного (динистора) и триодного (тринистора) тиристоров применяются даже чаще, чем элементы, выполненные в одном кристалле. Причина в том, у серийных тиристоров высокий разброс параметров, а некоторые из очень важных для перечисленных схем параметров вообще не нормируются. А аналог можно изготовить со строго заданными параметрами.
Важнейшими параметрами тиристоров в пороговых и нестандартных схемах являются: ток отпирания (Io), напряжение отпирания или отпирающее напряжение (Uo), ток удержания (Ih), напряжение запирания или напряжение насыщения при токе удержания (Uc). Смотри вольт-амперную характеристику тиристора.
В силовых схемах аналоги не применяются потому, что сила тока базы каждого транзистора в тиристорном аналоге равна половине всего тока через схему. А у транзисторов, как правило, сила тока базы ограничена довольно небольшой величиной.
Вашему вниманию подборка материалов:
Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам
Принципиальная схема
Вывод (A) соответствует аноду, (K) — катоду, (C) — управляющему электроду. Вольт-амперная характеристика схемы соответствует приведенной выше, так что ее (схему) можно считать аналогом триодного тиристора (тринистора). Если управляющий электрод не подключать, то получится аналог диодного тиристора (динистора).
В схеме применяются комплиментарные пары транзисторов. У них одинаковые напряжения насыщения база — эмиттер и коллектор — эмиттер. Мы чаще всего используем КТ502, КТ503. Резисторы R2 и R3 равны между собой.
Расчет
Конечно, приведенные формулы дают приблизительный результат, так как параметры транзисторов имеют конструктивный разброс и зависят от температуры. Но эти расчеты позволяют получить начальную точку, с которой осуществляется тонкий подбор.
[Ток отпирания, мА] = [Напряжение насыщения база — эмиттер транзистора, В] / [Сопротивление R2, кОм] — [Ток управляющего электрода, мА]
Для аналога динистора ток управляющего электрода принимаем равным нулю.
[Отпирающее напряжение, В] = ([Ток отпирания, мА] + [Ток управляющего электрода, мА]) * [Сопротивление R2, кОм] + [Ток отпирания, мА] * ([Сопротивление R1, кОм] + [Сопротивление R3, кОм])
[Ток удержания, мА] = 2 * [Напряжение насыщения база — эмиттер транзистора, В] / [Сопротивление R2, кОм] — [Ток управляющего электрода, мА]
[Напряжение запирания, В] = [Напряжение насыщения база — эмиттер транзистора, В] + [Напряжение насыщения коллектор — эмиттер транзистора, В]
Применение
К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.
Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.
Как не спутать плюс и минус? Защита от переполярности. Описание.
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст.
Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму.
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи.
Резонансный инвертор, преобразователь напряжения повышающий. Принцип р.
Сборка и наладка повышающего преобразователя напряжения. Описание принципа работ.
Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.
В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.
Диаграмма вольт-амперной характеристики динистора DB3 изображена ниже:
Цоколевка динистора DB3
Поскольку данный вид полупроводника является симметричным динистором (оба его вывода являются анодами), то нет абсолютно ни какой разницы, как его подключать.
Характеристики динистора DB3
Аналоги динистора DB3
- HT-32
- STB120NF10T4
- STB80NF10T4
- BAT54
Как проверить динистор DB3
Единственное, что можно определить простым мультиметром – это короткое замыкание в динисторе, в этом случае он будет пропускать ток в обоих направлениях. Подобная проверка динистора схожа с проверкой диода мультиметром.
Для полной же проверки работоспособности динистора DB3 мы должны плавно подать напряжение, а затем посмотреть при каком его значении происходит пробой и появляется проводимость полупроводника.
Источник питания
Первое, что нам понадобится, это регулируемый источник питания постоянного напржения от 0 до 50 вольт. На рисунке выше показана простая схема подобного источника. Регулятор напряжения, обозначенный в схеме — это обычный диммер, используемый для регулировки комнатного освещения. Такой диммер, как правило, для плавного изменения напряжения имеет ручку или ползунок. Сетевой трансформатор 220В/24В. Диоды VD1, VD2 и конденсаторы С1, С2 образуют однополупериодный удвоитель напряжения и фильтр.
Этапы проверки
Шаг 1: Установите нулевое напряжение на выводах Х1 и Х3. Подключите вольтметр постоянного тока к Х2 и Х3. Медленно увеличивайте напряжение. При достижении напряжение на исправном динисторе около 30 (по datasheet от 28В до 36В), на R1 резко поднимется напряжение примерно до 10-15 вольт. Это связано с тем, что динистор проявляет отрицательное сопротивление в момент пробоя.
Шаг 2: Медленно поворачивая ручку диммера в сторону уменьшения напряжения источника питания, и на уровне примерно от 15 до 25 вольт напряжение на резисторе R1 должно резко упасть до нуля.
Шаг 3: Необходимо повторить шаги 1 и 2, но уже подключив динистор на оборот.
Проверка динистора с помощью осциллографа
Если есть осциллограф, то мы можем собрать на тестируемом динисторе DB3 релаксационный генератор.
В данной схеме конденсатор заряжается через резистор сопротивлением 100k. Когда напряжение заряда достигает напряжение пробоя динистора, конденсатор резко разряжается через него, пока напряжение не уменьшится ниже тока удержания, при котором динистор закрывается. В этот момент (при напряжении около 15 вольт) конденсатор опять начнет заряжаться, и процесс повторится.
Период (частота) с начала заряда конденсатора и до пробоя динистора зависит от емкости самого конденсатора и сопротивления резистора. При постоянном сопротивлении резистора в 100 кОм и напряжении питания 70 вольт емкость будет следующая:
- C = 0,015мкф — 0,275 мс.
- С = 0,1мкф — 3 мс.
- C = 0,22 мкф — 6 мс.
- С = 0,33 мкф — 8,4 мс.
- С = 0,56 мкф — 15 мс.
Скачать datasheet на DB3 (242,6 Kb, скачано: 7 491)
Db4 динистор характеристики маркировка — Морской флот
Дата: 23.05.2016 // 0 Комментариев
Столкнувшись с самостоятельным ремонтом лампочек экономок, симисторных регуляторов мощности или диммеров, многие, не найдя реальной поломки, начинают искать причину в такой неприметной детали, как динистор. Необходимо отметить, что динистор выходит из строя крайне редко, а для его проверки необходимо немного повозится. Для особо продвинутых энтузиастов мы сегодня наглядно продемонстрируем, как проверить динистор.
Как проверить динистор?
Работа динистора основана на пробое. В исходном положении динистор не способен проводить через себя ток, пока на его выводы не подадут напряжение пробоя. После этого происходит лавинный пробой динистора и он начинает через себя пропускать ток, достаточный для управления симистором или тиристором.
Многие задают вопрос, как проверить динистор мультиметром или тестером? На него нужно дать однозначный и четкий ответ. С помощью мультиметра динистор можно проверить только на пробой; если динистор в обрыве, проверка динистора мультиметром результатов не даст.
Схема проверки динистора
Для реальной проверки на работоспособность нужно собрать схему проверки динисторов.
Она включает в себя совсем немного компонентов:
- блок питания с возможностью регулировки напряжения в пределах 30-40 В.
- резистор 10 кОм.
- светодиод.
- подопытный образец — симметричный динистор DB3.
Очень редко в радиолюбителей есть блоки питания с диапазоном регулировки до 40 В, для этих целей можно соединить последовательно два или даже три регулируемых блока питания.
Проверка динистора DB3 начинается со сборки схемы. Устанавливаем выходное напряжение порядка 30 В и постепенно подымаем его немного выше, до момента загорания светодиода. Если светодиод загорелся – динистор уже открыт. При уменьшении напряжения светодиод потухнет – динистор закрыт.
Как видим, светодиод начинает тускло загораться при подаче на схему напряжения 35,4 В. С учетом, что 2,4 В уходит на светодиод, напряжение пробоя у подопытного динистора DB3 составляет порядка 33 В. Из паспортных данных значение напряжение пробоя динистора DB3 может колебаться в пределах от 28 до 36 В.
Как видим, проверка динистора DB3 занимает всего лишь несколько минут. Если необходимо проверить несимметричный динистор, необходимо четко соблюдать полярность его включения в этой схеме.
корпус: DO-35; 0,1A 40V россыпь
Количество (шт.): | 1 шт. | 100 шт. | 500 шт. |
---|---|---|---|
Цена (грн.): | 2 грн. | 0.78 3 грн. | 0.67 86 грн. |
Ток | 0.1 А |
Напряжение | 40 В |
Корпус | DO-35 |
Характеристики тиристоров и динисторов и область их применения
Группа четырехслойных полупроводниковых элементов включает такие элементы, как тиристоры и динисторы. В каждом из этих устройств имеются три последовательных электронно-дырочных перехода. Тиристор, цена которого незначительно варьируется в зависимости от характеристик, обладает двумя устойчивыми положениями равновесия: открытым (при наличии прямого направления) и закрытым – в обратном положении.
Для чего нужен тиристор?
Тиристор активно применяется для регулировки коммутации токов большого номинала. Это осуществляется при подаче на элемент управляющего сигнала. Данная характеристика делает устройство подобным транзистору.
Подключение тиристора в цепь переменного тока осуществляет следующие действия:
* включение и выключение электрической цепи при наличии активной и активно-реактивной нагрузки;
* за счет возможности регулировки момента подачи сигнала управления, тиристоры силовые используются для изменения среднего и действующего значения тока посредством нагрузки.
В отличие от слабых в плане характеристик транзисторов, мощный тиристор может коммутировать цепи, напряжение которых может достигать до 5кВ, с силой тока до 5кА, при этом частота может достигать до 1кГц.
Общие характеристики динисторов
Достаточно большая группа диодных тиристоров делится на два типа:
1. Диодный тиристор (динистор) является неуправляемым элементом и имеет только пару выходов – анод (которым является крайняя р-область), и, соответственно – катод (крайняя n-область). При подаче на анод напряжения «минус», а на катод – «плюс», в устройстве проходит обратный ток небольшой мощности. В радиоэлектронике динистор, фото которого легко найти в интернете, встречаются, например, на печатных платах энергосберегающих ламп, которые устанавливаются в цоколе обычной лампы.
2. Диодный тиристор также может иметь название тринистор, и отличаться от динистора своей конструкцией. В данном типе полупроводниковых элементов используется третий вывод, который расположен от одной из средних областей. Этот выход дает возможность открывать прибор в состоянии активной работы.
Тиристор, купить который можно как оптом, так и в розницу в интернет-магазине «Радиодетали», считается самым мощным электронным ключом, который применяется в качестве коммутатора высоковольтных и сильнотоковых электрических цепей.
Принцип работы и свойства динистора
Среди огромного количества всевозможных полупроводниковых приборов существует динистор.
В радиоэлектронной аппаратуре динистор встречается довольно редко, ходя его можно встретить на печатных платах широко распространённых энергосберегающих ламп, предназначенных для установки в цоколь обычной лампы. В них он используется в цепи запуска. В маломощных лампах его может и не быть.
Также динистор можно обнаружить в электронных пускорегулирующих аппаратах, предназначенных для ламп дневного света.
Динистор относится к довольно большому классу тиристоров .
Динисторы
Условное графическое обозначение динистора на схемах.
Для начала узнаем, как обозначается динистор на принципиальных схемах. Условное графическое обозначение динистора похоже на изображение диода за одним исключением. У динистора есть ещё одна перпендикулярная черта, которая, судя по всему, символизирует базовую область, которая и придаёт динистору его свойства.
Условное графическое обозначение динистора на схемах
Также стоит отметить тот факт, что изображение динистора на схеме может быть и другим. Так, например, изображение симметричного динистора на схеме может быть таким, как показано на рисунке.
Возможное обозначение симметричного динистора на схеме
Как видим, пока ещё нет какого-либо чёткого стандарта в обозначении динистора на схеме. Скорее всего, связано это с тем, что существует огромный класс приборов под названием тиристоры. К тиристорам относится динистор, тринистор (triac), симистор, симметричный динистор. На схемах все они изображаются похожим образом в виде комбинации двух диодов и дополнительных линий, обозначающих либо третий вывод (тринистор) либо базовую область (динистор).
В зарубежных технических описаниях и на схемах, динистор может иметь названия trigger diode , diac (симметричный динистор). Обозначается на принципиальных схемах буквами VD, VS, V и D.
Чем отличается динистор от полупроводникового диода?
Во-первых, стоит отметить, что у динистора три ( ! ) p-n перехода. Напомним, что у полупроводникового диода p-n переход всего один. Наличие у динистора трёх p-n переходов придаёт динистору ряд особенных свойств.
Принцип работы динистора.
Суть работы динистора заключается в том, что при прямом включении он не пропускает ток до тех пор, пока напряжение на его выводах не достигнет определённого значения. Значение этого напряжения имеет определённую величину и не может быть изменено. Это связано с тем, что динистор является неуправляемым тиристором – у него нет третьего, управляющего, вывода.
Известно, что и обычный полупроводниковый диод также имеет напряжение открытия, но оно составляет несколько сотен милливольт (500 милливольт у кремниевых и 150 у германиевых). При прямом включении полупроводникового диода он открывается при приложении к его выводам даже небольшого напряжения.
Чтобы подробно и наглядно разобраться в принципе работы динистора обратимся к его вольт-амперной характеристике ( ВАХ ). Вольт-амперная характеристика хороша тем, что позволяет наглядно увидеть то, как работает полупроводниковый прибор.
На рисунке ниже вольт-амперная характеристика (англ. Current-voltage characteristics ) импортного динистора DB3. Отметим, что данный динистор является симметричным и его можно впаивать в схему без соблюдения цоколёвки. Работать он будет в любом случае, вот только напряжение включения (пробоя) может чуть отличаться (до 3 вольт).
Вольт-амперная характеристика симметричного динистора
На ВАХ динистора DB3 наглядно видно, что он симметричный. Обе ветви характеристики, верхняя и нижняя, одинаковы. Это свидетельствует о том, что работа динистора DB3 не зависит от полярности приложенного напряжения.
График имеет три области, каждая из которых показывает режим работы динистора при определённых условиях.
Красный участок на графике показывает закрытое состояние динистора. Ток через него не течёт. При этом напряжение, приложенное к электродам динистора, меньше напряжения включения VBO – Breakover voltage.
Синий участок показывает момент открытия динистора после того, как напряжение на его выводах достигло напряжения включения (VBO или Uвкл.). При этом динистор начинает открываться и через него начинает протекать ток. Далее процесс стабилизируется и динистор переходит в следующее состояние.
Зелёный участок показывает открытое состояние динистора. При этом ток, который протекает через динистор ограничен только максимальным током Imax, который указывается в описании на конкретный тип динистора. Падение напряжения на открытом динисторе невелико и колеблется в районе 1 – 2 вольт.
Получается, что динистор в своей работе похож на обычный полупроводниковый диод за одним исключением. Если пробивное напряжение или по-другому напряжение открытия для обычного диода составляет значение менее вольта (150 – 500 мВ), то для того, чтобы открыть динистор необходимо подать на его выводы напряжение включения, которое исчисляется десятками вольт. Так для импортного динистора DB3 типовое напряжение включения (VBO) составляет 32 вольта.
Чтобы полностью закрыть динистор, необходимо уменьшить ток через него до значения меньше тока удержания. При этом динистор выключиться – перейдёт в закрытое состояние.
Если динистор несимметричный, то при обратном включении («+» к катоду, а «-» к аноду) он ведёт себя как диод и не пропускает ток до тех пор, пока обратное напряжение не достигнет критического для данного типа динистора и он сгорит. Для симметричных, как уже говорилось, полярность включения в схему не имеет значения. Он в любом случае будет работать.
В радиолюбительских конструкциях динистор может применяться в стробоскопах, переключателях мощной нагрузки, регуляторах мощности и многих других полезных приборах.
DB3 (диак, динистор, DO-35) » Радиодетали почтой! Датагорская Ярмарка: киты, электроника, инструменты
Диаки DB3 используются в тиристорных регуляторах мощности, также они применяются для запуска преобразователей напряжения в «электронных трансформаторах» (высокочастотный преобразователь для питания низковольтных ламп накаливания от сети 220V) и «компактных люминесцентных лампах» (лампах дневного света c встроенным в цоколь пускорегулирующим устройством типа импульсного источника питания).Для справки. Регулятор мощности на 500Вт 220В
Описание работы
Симисторный регулятор мощности использует принцип фазового управления. Принцип работы регулятора основан на изменении момента включения симистора относительно перехода сетевого напряжения через ноль (начала положительной или отрицательной полуволны питающего напряжения).
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения (рис.1), конденсатор С1 заряжается через делитель R1, VR1. Нарастающее напряжения на конденсаторе С1 отстает (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов R1, VR1 и емкости С1. Заряд конденсатора продолжается до тех пор, пока напряжение на нем не достигнет порога «пробоя» динистора (около 32 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечет ток, определяемый суммарным сопротивлением открытого симистора и нагрузки. Симистор остается открытым до конца полупериода. Резистором VR1 устанавливается напряжение открывания динистора и симистора. Т.е. этим резистором производится регулировка мощности. Во время действия отрицательной полуволны принцип работы схемы аналогичен. Светодиод LED индицирует рабочий режим регулятора мощности.
Конструктивно набор выполнен на печатной плате из фольгированного стеклотекстолита с размерами 38×27 мм. Монтажная схема устройства приведена на рис.4. Конструкция предусматривает установку платы в корпус, для этого на плате имеются монтажные отверстия под винт 3 мм. В таблице 1 приведен перечень элементов, используемых в регуляторе.
Таблица 1. Перечень элементов
C1 0,1 мкФ
R1 4,7 кОм
VR1 500 кОм
DIAC DB3, динистор
TRIAC BT136-600E, симистор
D1 1N4148/16 В
LED желтый светодиод
Для снижения уровня помех, создаваемых регуляторами, можно использовать сетевой фильтр. Предохранители F1, F2 — на ток 3 А, конденсаторы С1, С2 – с рабочим напряжением 400…630 В.