Схемы выпрямителей
Добавлено 4 марта 2017 в 15:10
Сохранить или поделиться
Теперь мы подошли к наиболее популярному применению диода: выпрямлению. Упрощенно, выпрямление – это преобразование переменного напряжения в постоянное. Оно включает в себя устройство, которое позволяет протекать электронам только в одном направлении. Как мы уже видели, это именно то, что и делает полупроводниковый диод. Простейшим выпрямителем является однополупериодный выпрямитель. Он пропускает через себя на нагрузку только половину синусоиды сигнала переменного напряжения.
Схема однополупериодного выпрямителяОднополупериодный выпрямитель не удовлетворяет требований большинства источников питания. Содержание гармоник в выходном сигнале выпрямителя слишком велико, и, следовательно, их трудно отфильтровать. Кроме того питающий источник переменного напряжения подает питание на нагрузку во время только одной половины каждого полного периода, а это означает, что половина его возможностей не используется. Тем не менее, однополупериодный выпрямитель является очень простым способом уменьшения мощности, подводимой к активной нагрузке. Переключатели некоторых двухпозиционных ламповых диммеров подают напрямую полное переменное напряжение на лампу накаливания для «полной» яркости или через однополупериодный выпрямитель для уменьшения яркости (рисунок ниже).
В положении переключателя «Тускло» лампа накаливания получает примерно половину мощности, которую она бы получала при работе с полным периодом переменного напряжения. Поскольку питание после однополупериодного выпрямителя пульсирует гораздо быстрее, чем нить накала успевает нагреться и охладиться, лампа не мигает. Вместо этого, нить накала просто работает на меньшей, чем обычно, температуре, обеспечивая менее яркий свет. Эта идея быстроты «пульсирования» питания по сравнению с медленно реагирующей нагрузкой широко используется в мире промышленной электроники для управления электроэнергией, подаваемой на нагрузку. Так как управляющее устройство (в данном случае, диод) в любой момент времени либо полностью проводит, либо полностью не проводит ток, то оно рассеивает мало тепловой энергии, контролируя при этом мощность нагрузки, что делает этот метод управления питанием очень энергоэффективным. Эта схема, возможно, является самым грубым способом подачи пульсирующего питания на нагрузку, но она достаточна в качестве применения, доказывающего правильность идеи.
Если нам нужно выпрямить питание переменным напряжением, чтобы получить полное использование обоих полупериодов синусоидального сигнала, то необходимо использовать другие схемы выпрямителей. Такие схемы называются двухполупериодными выпрямителями. Один из типов двухполупериодных выпрямителей, называемый выпрямителем
Понять работу данной схемы довольно легко, рассмотрев ее в разные половины периода синусоидального сигнала. Рассмотрим первую половину периода, когда полярность напряжения источника положительна (+) наверху и отрицательна внизу. В это время ток проводит только верхний диод, нижний диод блокирует протекание тока, а нагрузка «видит» первую половину синусоиды, положительную наверху и отрицательную внизу. Во время первой половины периода ток протекает только через верхнюю половину вторичной обмотки трансформатора (рисунок ниже).
Одним из недостатков этой схемы двухполупериодного выпрямителя является необходимость трансформатора со средней точкой во вторичной обмотке. Особенно сильно этот недостаток проявляется, если для схемы имеют значение высокая выходная мощность; размер и стоимость подходящего трансформатора становятся одними из определяющих факторов. Следовательно, схема выпрямителя со средней точкой используется только в приложениях с низким энергопотреблением.
Полярность на нагрузке двухполупериодного выпрямителя со средней точкой может быть изменена путем изменения направления диодов. Кроме того, перевернутые диоды могут подключены параллельно с существующим выпрямителем с положительным выходом. В результате получится двуполярный двухполупериодный выпрямитель со средней точкой, показанный на рисунке ниже. Обратите внимание, что соединение диодов между собой аналогично схеме моста.
Существует еще одна популярная схема двухполупериодного выпрямителя, она построена на базе схемы четырехдиодного моста. По очевыдным причинам эта схема называется двухполупериодным мостовым выпрямителем.
Двухполупериодный мостовой выпрямительНаправления потоков электронов в двухполупериодном мостовом выпрямителе показано на рисунках ниже для положительной и отрицательной полуволн синусоиды переменного напряжения источника. Обратите внимание, что независимо от полярности на входе, ток через нагрузку протекает в одном и том же направлении. То есть, отрицательная полуволна на источнике соответствует положительной полуволне на нагрузке. Ток протекает через два диода, соединенных последовательно для обеих полярностей. Таким образом, из-за падения напряжения на двух диодах теряется (0.7 x 2 = 1.4В для кремниевых диодов). Это является недостатком по сравнению с двухполупериодным выпрямителем со средней точкой. Этот недостаток является проблемой только для очень низковольтных источников питания.
Запоминание правильного соединения диодов схемы мостового выпрямителя иногда может вызвать проблемы у новичка. Альтернативное представление этой схемы может облегчить запоминание и понимание. Это точно такая же схема, за исключением того, что все диоды нарисованы в горизонтальном положении и указывают в одном направлении (рисунок ниже).
Одним из преимуществ такого представления схемы мостового выпрямителя является то, что она легко расширяется до многофазной версии (рисунок ниже).
Схема трехфазного мостового выпрямителяЛиния каждой из фаз подключается между парой диодов: один ведет к положительному (+) выводу нагрузки, а второй – к отрицательному. Многофазные системы с количеством фаз, более трех, так же могут быть легко использованы в схеме мостового выпрямителя. Возьмем, например, схему шестифазного мостового выпрямителя (рисунок ниже).
При выпрямлении многофазного переменного напряжения сдвинутые по фазе импульсы накладываются друг на друга создавая выходное постоянное напряжение, которое более «гладкое» (имеет меньше переменных составляющих), чем при выпрямлении однофазного переменного напряжения. Это преимущество является решающим в схемах выпрямителей высокой мощности, где физический размер фильтрующих компонентов будет чрезмерно большим, но при этом необходимо получить постоянное напряжение с низким уровнем шумов. Диаграмма на рисунке ниже показывает двухполупериодное выпрямление трехфазного напряжения.
Трехфазное переменное напряжение и выходное напряжение трехфазного двухполупериодного выпрямителяВ любом случае выпрямления (однофазном или многофазном) количество переменного напряжения, смешанного с выходным постоянным напряжением выпрямителя, называется напряжением пульсаций. В большинстве случаев напряжение пульсаций нежелательно, так как целью выпрямления является «чистое» постоянное напряжение. Если уровни мощности не слишком велики, для уменьшения пульсаций в выходном напряжении могут быть использованы схемы фильтрации.
Иногда метод выпрямления классифицируется путем подсчета количества «импульсов» постоянного напряжения на выходе каждые 360° синусоиды входного напряжения. Однофазная однополупериодная схема выпрямителя тогда будет называться 1-импульсным выпрямителем, поскольку он дает один импульс во время полного периода (360°) сигнала переменного напряжения. Однофазный двухполупериодный выпрямитель (независимо от схемы, со средней точкой или мостовой) будет называться 2-импульсным выпрямителем, поскольку он выдает 2 импульса постоянного напряжения за один период переменного напряжения. Трехфазный двухполупериодный выпрямитель будет называться 6-импульсным.
Современное соглашение в электротехнике описывает работу схемы выпрямителя с помощью трехпозиционной записи фаз, путей и количества импульсов. Схема однофазного однополупериодного выпрямителя в данном зашифрованном обозначении будет следующей 1Ph2W1P (1 фаза, 1 путь, 1 импульс), а это означает, что питающее переменное напряжение однофазно, ток каждой фазы источника переменного напряжения протекает только в одном направлении (пути), и, что в постоянном напряжении создается один импульс каждые 360° входной синусоиды. Однофазный двухполупериодный выпрямитель со средней точкой в этой системе записи будет обозначаться, как 1Ph2W2P: 1 фаза, 1 путь или направление протекания тока в каждой половине обмотки, и 2 импульса в выходном напряжении за период. Однофазный двухполупериодный мостовой выпрямитель будет обозначаться, как 1Ph3W2P: так же, как и схема со средней точкой, за исключением того, что ток может протекать двумя путями через линии переменного напряжения, вместо только одного пути. Трехфазный мостовой выпрямитель, показанный ранее, будет называться выпрямителем 3Ph3W6P.
Вожможно ли получить количество импульсов больше, чем удвоенное количество фаз в схеме выпрямителя? Ответ на этот вопрос, да: особенно в многофазных цепях. При помощи творческого использования трансформаторов наборы двухполупериодных выпрямителей могут быть соединены параллельно таким образом, что на выходе для трехфазного переменного напряжения может быть получено более шести импульсов постоянного напряжения. Когда схемы соединения обмоток трансформатора не одинаковы, из первичной во вторичную цепь трехфазного трансформатора вводится 30° фазовый сдвиг. Другими словами, трансформатор подключенный по схеме либо Y-Δ, либо Δ-Y будет давать сдвиг фазы на 30°; в то время, как подкючение трансформатора по схеме Y-Y или Δ-Δ такого эффекта не даст. Это явление может быть использовано при наличии одного трансформатора, подключенного по схеме Y-Y к одному мостовому выпрямителю, и другого трансформатора, подключенного по схеме Y-Δ к другому мостовому выпрямителю, а затем параллельном соединению выходов постоянного напряжения обоих выпрямителей (рисунок ниже). Поскольку формы напряжений пульсаций на выходах двух выпрямителей смещены по фазе на 30° относительно друг друга, в результате сложения они дадут меньшие пульсации, чем каждый выпрямитель по отдельности: 12 импульсов каждые 360° вместо шести:
Схема многофазного выпрямителя: 3 фазы, 2 пути, 12 импульсов (3Ph3W12P)Подведем итоги
- Выпрямление – это преобразование переменного напряжения в постоянное.
- Однополупериодный выпрямитель – это схема, которая позволяет только одной половине синусоиды переменного напряжения достичь нагрузки, давая на ней в результате неизменяющуюся полярность. Полученное постоянное напряжение, приложенное к нагрузке, значительно «пульсирует».
- Двухполупериодный выпрямитель – это схема, которая преобразует обе половины периода синусоиды переменного напряжения в непрерывную последовательность импульсов одной полярности. Полученное постоянное напряжение, приложенное к нагрузке, «пульсирует» не так сильно.
- Многофазное переменное напряжении при выпрямлении дает более «гладкую» форму постоянного напряжения (меньшее напряжение пульсаций) по сравнению с выпрямленным однофазным напряжением.
Оригинал статьи:
Теги
ВыпрямительДиодИсточник питанияУчебникЭлектроникаСохранить или поделиться
РадиоКот :: Выпрямители. Как и почему.
РадиоКот >Обучалка >Аналоговая техника >Основы — слишком просто? Вам сюда. Продолжаем. >Выпрямители. Как и почему.
Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему щастью. На очереди у нас — подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете — тогда пжалста.
Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор — на схеме обозначается похожим как на рисунке,
Выпрямитель — его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.
а) — простой диод.
б) — диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) — тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).
Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:
Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl — сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.
Далее — пара-тройка постулатов.
— Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
— Под нагрузкой напряжение немного проседает, а насколько — зависит от конструкции трансформатора, его мощности и емкости конденсатора.
— Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.
Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground — земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее — общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой — минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения — если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так — если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто — двуполярным двухуровневым.
Ну а теперь к делу.
1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.
2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, много большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.
3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.
4. Мостовая схема двуполярного выпрямителя.
Для многих — наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух — всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.
5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход — если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.
6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания — они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам — 0,5А, то нам и нужны два блока питания — +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.
7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три — тройное и т.д.
Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание.
Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:
Для однополупериодного выпрямителя формула несколько отличается:
Двойка в знаменателе — число «тактов» выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.
Во всех формулах переменные обзываются так:
Cф — емкость конденсатора фильтра, мкФ
Ро — выходная мощность, Вт
U — выходное выпрямленное напряжение, В
f — частота переменного напряжения, Гц
dU — размах пульсаций, В
Для справки — допустимые пульсации:
Микрофонные усилители — 0,001…0,01%
Цифровая техника — пульсации 0,1…1%
Усилители мощности — пульсации нагруженного блока питания 1…10% в зависимости от качества усилителя.
Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.
Как вам эта статья? | Заработало ли это устройство у вас? |
Диодный выпрямитель: определение, схема, прицнип работы
В статье вы узнаете что такое диодный выпрямитель, как он работает, строение данного элемента, рассмотрим как его протестировать, а так же функционал и применение выпрямителя.
Вступление
Диодный выпрямитель представляет собой полупроводниковое устройство и подпадает под действие «активных» электронных компонентов. Его основная функция — пропускать электрический токтолько в одном направлении и блокировать от другого. Это свойство также приводит к выпрямлению электрического тока при использовании источника переменного тока. Выпрямительный диод обычно распознается по его черному цвету и белому кольцу на одном из концов, что сопоставимо с цветовым кодированием резисторов, которое мы изучали в предыдущей статье. Его размер может отличаться в зависимости от мощности. У диода два конца с двумя выводами или клеммами, отсюда и название диода (в переводе с греческого означает двуногий).
Внутреннее описание
Диод, как и все полупроводники, в основном состоит из чистого кремния (более популярного в настоящее время, чем германий). По своей природе кремний является плохим проводником электричества, поэтому, смешивая в нем определенные примеси (легирование), в некоторой степени достигается проводимость. Эти примеси могут быть положительными носителями или отрицательными носителями заряда, известными как p-тип и n-тип соответственно.
В диоде кремний p-типа и кремний n- типа сплавляются вместе, образуя соединение, называемое pn-переходом. При подключении к источнику напряжения этот переход ограничит поток тока от n- типа к p-типу и позволит протекать току от p-типа к кремнию n- типа, только если напряжение превышает 0,6 вольт. Это минимальное напряжение требуется в любом кремниевом полупроводнике для инициирования проводимости электронов и известно как прямое напряжение. Вывод p-типа диода называется анодом, а вывод n- типа называется катодом и обозначается кольцом или полосой на его корпусе.
Принцип работы и функции
В электронной схеме диод действует так же, как резиновый клапан в велосипедной шине. Клапан позволяет перекачиваемому воздуху поступать с одной стороны и блокирует с другой. Аналогично, выпрямительный диод пропускает ток только в одном направлении. Таким образом, он используется в качестве защиты от полярности в электронных цепях, чтобы избежать опасности случайного изменения напряжения питания.
Другой важной функцией выпрямительного диода является выпрямление, то есть преобразование переменного тока в постоянный ток. Напряжение в переменном токе изменяется с положительного на отрицательное и наоборот количество раз в секунду. В зависимости от соединения, выпрямительный диод позволит проходить только положительному или отрицательному циклу и блокировать другой. Таким образом, результат будет либо чисто положительным, либо отрицательным. Это известно как исправление. Это свойство хорошо используется в источниках питания, адаптерах переменного / постоянного тока, зарядных устройствах и т.д. Но важно знать, что для диода потребуется минимальное входное напряжение не менее 0,7 В на нем, чтобы успешно выполнить описанную выше процедуру выпрямления или, другими словами, диоду необходимо минимум 0,7 вольт, чтобы удовлетворительно инициировать проведение электричества.
Тестирование выпрямителя
Шаги, необходимые для тестирования диодного выпрямителя, следующие:
- Возьмите качественный цифровой мультиметр;
- Установите диапазон в положение диода;
- На дисплее вы должны получить 3 или бесконечное чтение напряжения в зависимости от используемого мультиметра;
- Подключите красный зонд к катоду, а черный зонд — к аноду диода;
- Дисплей сразу покажет низкое прямое падение напряжения (выпрямительный диод) около 0,6 вольт;
- Теперь поменяйте местами соединения, дисплей вернется к своему первоначальному показанию, указывая, что диод хороший;
- Если счетчик отображает любые другие показания, диод может быть негерметичным или неисправным, а показание 0000 означает короткое замыкание.
Элементарный выпрямитель на одном диоде
Благодаря свойству диода однонаправленной проводимости, всего одной детали достаточно, чтобы собрать схему выпрямителя. Такая схема предельно проста, а характеристики её не ахти какие, но тем не менее, она вполне работоспособна и пригодна для некоторого применения, например, для подзарядки батареи свинцово-кислотных аккумуляторов и т.п.
Речь пойдёт об однополупериодном однофазном выпрямителе на одном диоде. Сразу представим его схему — рисунок 1.
Рисунок 1. Однофазный однополупериодный выпрямитель.
Состав схемы.
Ключевым элементом схемы является диод VD1. Схема проста до безобразия: диод просто включен последовательно с цепью нагрузки, роль которой выполняет лампа HL1. Трансформатор T1 здесь не имеет принципиального значения, он играет роль источника переменного напряжения.
Принцип работы.
Через трансформатор T1 производится преобразование переменного напряжения питающей сети до необходимой величины, а так же осуществляется гальваническая развязка, что обычно необходимо для электробезопасности. Гальваническая развязка позволяет в большей степени исключить поражение электрическим током пользователя (оператора) устройства.
К одному из выводов вторичной обмотки трансформатора подключается диод VD1. Свободные выводы диода и трансформатора можно использовать в качестве выходных контактов. Таким образом к ним подключена нагрузка в виде лампы HL1.
При переменном напряжении вторичной обмотки, в положительный полупериод, рисунок 1 а), когда к диоду и нагрузке приложено напряжение U2, диод открывается и через него и лампу HL1 течёт ток нагрузки iн. На лампу действует напряжение одной полярности. В отрицательный полупериод, рисунок 1 б), к диоду и лампе приложено напряжение –U2, которое для диода является обратным, запирающим. Диод в этот полупериод запирается, через него может течь ток, не превышающий ток утечки диода iу. При этом нагрузка переживает безтоковую паузу, т.е. происходит отсечка отрицательного полупериода.
И так, благодаря рассмотренной схеме, при питании от сети переменного тока, на нагрузке всегда возникает напряжение только одной полярности. В этом и заключается суть выпрямления.
Достоинства схемы.
К достоинству данной схемы можно отнести только её безобразную простоту. В остальном она не всегда пригодна для широкого применения из-за своих значительных недостатков.
Недостатки схемы.
— Значительные пульсации на выходе устройства. При подключении лампы накаливания, даже учитывая значительную инерционность её нагрева, её свечение заметно мерцает.
— Низкая эффективность. Вследствие отсечки отрицательного полупериода, КПД этой схемы не может быть больше 50%.
— При значительных нагрузках с использованием в схеме трансформатора Т1, трансформатор подвергается несимметричному размагничиванию, может появиться неприятный звук.
Применение схемы.
Несмотря на все свои недостатки, эта схема нашла своё применение в качестве десульфатирующего зарядного устройства для свинцово-кислотных аккумуляторных батарей.
Двухполупериодная схема выпрямителя. | Электрознайка. Домашний Электромастер.
data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»8969066382″>
Самая простая двух-полупериодная схема выпрямления переменного тока получается из двух однополупериодных схем.
Вторичная обмотка трансформатора состоит из двух одинаковых обмоток II и III, каждая из которых выдает нужное переменное напряжение Uвых.
Через диоды проходит только положительная полуволна синусоидального переменного тока.
Работает поочередно или обмотка II и диод VD1, или обмотка III и диод VD2. Средняя величина тока проходящего через каждую обмотку и диод, в двухполупериодном выпрямителе, равна половине выходного тока выпрямителя. В этом случае обмотки можно мотать проводом с вдвое меньшим сечением и применять диоды с меньшим допустимым током.
Такие схемы двухполупериодного выпрямления предпочтительны тогда, когда на выходе выпрямителя нужно получить большой ток (5 — 10 ампер и более) при небольших напряжениях (5 – 20 вольт).
Желательно применять германиевые диоды (на них меньше падение напряжения, чем на кремниевых диодах) они меньше греются. Мощные диоды, при больших токах нагрузки, нужно обязательно ставить на радиатор.
При таком способе включения, оба диода можно ставить на один радиатор, так как аноды (плюсы) их имеют вывод на корпус, под гайку. Конструктивно это очень удобно. Два диода и радиатор составляют одну конструкцию и ее ставят на одну изолирующую подставку.
Форма выходного напряжения двухполупериодного выпрямителя представляет собой пульсирующее напряжение: полусинусоиды положительной и, перевернутой вверх, полусинусоиды отрицательной.
На рисунках приведены варианты таких схем получения, на выходе выпрямителя, выходного напряжения положительной (рис. 1) или отрицательной (рис. 2) полярности относительно корпуса.
Достоинства такой схемы двухполупериодного выпрямления против одно полупериодной схемы:
— трансформатор работает без токов подмагничивания;
— частота пульсаций на выходе выпрямителя f = 100 герц;
— коэффициент пульсаций существенно меньше.
Недостатки такой схемы:
- — обратное напряжение на каждом диоде превышает выходное напряжение выпрямителя Uвых. в два раза (напряжение обоих обмоток складывается).
В случае, если нет возможности достать диоды на рассчитываемый ток, можно включать их параллельно по два, а то и по три в каждом плече, как на рисунке 3.
В этой схеме все диоды можно ставить на один радиатор, без изоляционных прокладок. Резисторы ставятся для того, чтобы уравнять внутренние «тепловые» сопротивления диодов.
Резисторы должны быть равны между собой и иметь величину соответствующую динамическому сопротивлению диода — от 0,2 до 1 Ом, и мощность 1 ватт и более.
Недостаток схемы: – большая потеря мощности на резисторах.
Разберем на примере применение данных схем.
Пусть нам нужно построить выпрямитель на напряжение 12 вольт и номинальный ток до 15 ампер.
Рассмотрим сначала схему на рис. 1. Каждая вторичная обмотка трансформатора (обмотки II и III) должна быть рассчитана на переменное напряжение 13 – 14 вольт, с учетом падения напряжения на самой обмотке и самом сопротивлении диода.
Эти обмотки включаются последовательно – конец обмотки II с началом обмотки III. Средняя точка – общий, минусовой вывод. Два диода соединенные анодами вместе – это плюсовой вывод.
Выходной ток двухполупериодного выпрямителя состоит из двух полуволн. Каждая из полуволн, за один период проходит сначала по одной половинке и диоду, затем по второй и диоду и имеет величину по 15 ампер. После диодов они сливаются вместе и имеют во времени форму пульсирующего напряжения.
В каждой паре (обмотка и диод) ток, в течении одного периода, половину периода идет, половину периода не идет. Электрическая мощность, проходящая по каждой паре (обмотка — диод) в течение периода, равна половине общей мощности за это время. А следовательно, средний ток через каждую пару (обмотка — диод) равен, как бы, половине общего тока.
Сечение провода вторичных обмоток и максимально допустимый ток диодов так же подбирается из этого расчета.
Из этого следует, что в нашем примере сечение провода вторичных обмоток может быть рассчитано на ток в 7,5 ампер, то есть в два раза меньше. Диоды подбираются на ток до 10 ампер (всегда берутся с запасом), а не 7,5 ампер.
Те же самые рекомендации по сечению провода относятся к схеме на рис. 2 и рис.3.
Пример на схеме рис.3 относится к случаю, когда у нас нет в наличии диодов рассчитанных на ток 10 ампер, а есть диоды на 5 ампер. В этом случае ставим 4 диода: в «плечо» по два диода в параллель.Через каждый диод будет протекать ток 15 : 4 = 3,75 ампера.
Определим величину омического сопротивления резисторов R1 – R4. Падение напряжения на диоде, при протекании через него максимального тока, равно около Uд = 1,0 вольта. Его динамическое сопротивление при токе I = 3,75 ампер будет примерно равно:
R = Uд : I = 1,0 : 3,75 = 0,266 Ом.
Сопротивление каждого из резисторов R1 – R4 должно быть 1 – 2 Uд = 0,26 – 0,5 Ома.R1 – R4 д
При резисторе R = (0,26 — 0,5) Ома падение напряжения на нем будет:
U = R х I = (0,26 — 0,5) х 3,75 = от 0,975 до 1,875 вольта.
Электрическая мощность выделяемая на каждом резисторе равна:
P = I х U = 3,75 (0,95 – 1,875) = от 3,56 до 7,03 ватта.
Такие резисторы изготавливают из толстого высокоомного провода, рассчитанного на ток 3,75 ампер и сильное выделение тепла.
Это довольно существенная потеря мощности на резисторах.Такова расплата за использование не соответствующих току диодов.
Если же не ставить эти уравнительные резисторы, одни диоды будут работать с перегрузкой и сильно греться (тепловой пробой), другие будут работать с малыми токами.
data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»8969066382″>