Выбор контакторов для схемы звезда-треугольник
В данной статье будет рассматриваться пример выбора контакторов для схемы управления 3-х фазным асинхронным электродвигателем «звезда – треугольник». Схема подключения обмоток асинхронного двигателя «звезда – треугольник» представлена на рис.1.
Рис.1 – Схема подключения обмоток асинхронного двигателя «звезда – треугольник»
Но перед тем как приступить к расчету, давайте разберемся что происходит из токами и напряжениями при схемах соединения обмоток двигателя в звезду и треугольник.
При схеме соединения в звезду:
- фазные токи Iф и линейные токи Iл равны между собой Iф = Iл;
- фазные напряжение определяется как Uф = Uл/√3.
При схеме соединения в треугольник:
- фазные Uф и линейные Uл напряжения равны между собой Uф = Uл;
- фазные токи определяется как Iф = Iл/√3.
Расчет
Контакторы будем выбирать для двигателя мощностью Рном. = 15 кВт с номинальным напряжением 380 В. Для расчета нам понадобятся следующие технические характеристики двигателя, выбираемые из паспорта на двигатель:
- коэффициент мощности cosϕ = 0,86;
- коэффициент полезного действия, η = 88,0%;
Решение
1. Определяем ток для контактора КМ1 (схема соединения обмоток двигателя — звезда), при этом следует учитывать, что при схеме соединения обмоток в звезду мощность развиваемая двигателем снижается в 3 раза, по сравнению с мощностью при схеме соединения в треугольник [Л1, с.35]:
где: Uл = 380 В – линейное напряжение.
2. Определяем ток для контакторов КМ2 (линейный) и КМ3 (треугольник) для схемы соединения обмоток двигателя в треугольник:
Через каждую обмотку двигателя будут протекать фазные токи, исходя из схемы соединения обмоток в треугольник. Поэтому расчетным током для выбора контакторов КМ2 и КМ3, является Iф.
Выбираем контакторы фирмы «Schneider Electric»:
- для контактора КМ1 типа LC1E12 (Iн = 12 А) с категорией применения АС-3;
- для контакторов КМ2 и КМ3 типа LC1E18 (Iн = 18 А) с категорией применения АС-3;
Напоминаю категорию применения АС-3 нужно применять для электродвигателей.
Литература:
1. Звезда и треугольник. Е.А. Каминский, 1961 г.
Поделиться в социальных сетях
Благодарность:
Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding».
Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.
Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.
Трехфазный трансформатор: схема подключения, типы соединений
В данной статье вы узнаете что такое трехфазный трансформатор тока, какие бывают его соединения, подробно опишем его конструкцию.
Описание трехфазного трансформатора
До сих пор мы рассматривали конструкцию и работу однофазного двухобмоточного трансформатора напряжения, который можно использовать для увеличения или уменьшения его вторичного напряжения по отношению к первичному напряжению питания. Но трансформаторы напряжения также могут быть сконструированы для подключения не только к одной однофазной, но и для двухфазных, трехфазных, шестифазных и даже сложных комбинаций до 24 фаз для некоторых выпрямительных трансформаторов постоянного тока.
Если мы возьмем три однофазных трансформатора и соединим их первичные обмотки друг с другом и их вторичные обмотки друг с другом в фиксированной конфигурации, мы можем использовать трансформаторы от трехфазного источника питания.
Трехфазные, также записанные как 3-фазные или 3φ источники питания, используются для выработки, передачи и распределения электроэнергии, а также для всех промышленных применений. Трехфазные источники питания имеют много электрических преимуществ по сравнению с однофазными, и при рассмотрении трехфазных трансформаторов нам приходится иметь дело с тремя переменными напряжениями и токами, различающимися по фазе на 120 градусов, как показано ниже.
Трехфазные напряжения и токи
Трансформатор не может действовать как устройство для изменения фазы и превращать однофазное в трехфазное или трехфазное в однофазное. Чтобы обеспечить совместимость трансформаторных соединений с трехфазными источниками питания, нам необходимо соединить их особым образом, чтобы сформировать конфигурацию трехфазного трансформатора.
Трехфазный трансформатор или 3φ трансформатор может быть сконструирован либо путем соединения вместе три однофазных трансформатора, тем самого образуя так называемый трехфазный трансформаторный блок, или с помощью одного предварительно собранного и сбалансированного трехфазного трансформатора, который состоит из трех пар однофазных обмоток, установленные на одном ламинированном сердечнике.
Преимущества создания одного трехфазного трансформатора в том, что при одинаковой номинальной мощности кВА он будет меньше, дешевле и легче, чем три отдельных однофазных трансформатора, соединенных вместе, поскольку медный и железный сердечник используются более эффективно. Способы подключения первичной и вторичной обмоток одинаковы, будь то использование только одного трехфазного трансформатора или трех отдельных однофазных трансформаторов. Рассмотрим схему ниже:
Трехфазные трансформаторные соединения
Первичная и вторичная обмотки трансформатора могут быть подключены в различной конфигурации, как показано выше, для удовлетворения практически любых требований. В случае трехфазных обмоток трансформатора возможны три формы подключения: «звезда», «треугольник» и «взаимосвязанная звезда».
Комбинации трех обмоток могут быть с первичным соединенным треугольником и вторичной соединенной звездой, или звезда-треугольник, звезда-звезда или треугольник, в зависимости от использования трансформаторов. Когда трансформаторы используются для обеспечения трех или более фаз, их обычно называют многофазным трансформатором .
Трехфазный трансформатор звезда и треугольник
Но что мы подразумеваем под «звездой» (также известной как тройник) и «треугольником» (также известной как сетка) при работе с трехфазными трансформаторными соединениями. Трехфазный трансформатор имеет три комплекта первичной и вторичной обмоток. В зависимости от того, как эти наборы обмоток связаны между собой, определяется, является ли соединение звездой или треугольником.
Три доступных напряжения, каждое из которых смещено друг от друга на 120 электрических градусов, не только определяют тип электрических соединений, используемых на первичной и вторичной сторонах, но и определяют поток токов трансформатора.
При подключении трех однофазных трансформаторов магнитный поток в трех трансформаторах различается по фазе на 120 градусов. С одним трехфазным трансформатором в сердечнике есть три магнитных потока, различающихся по фазе времени на 120 градусов.
Стандартный метод маркировки трехфазных обмоток трансформатора заключается в маркировке трех первичных обмоток заглавными (заглавными буквами) буквами A, B и C , которые используются для обозначения трех отдельных фаз КРАСНОГО, ЖЕЛТОГО и СИНЕГО (см. картинку ниже). Вторичные обмотки помечены маленькими (строчными буквами) буквами a, b и c. Каждая обмотка имеет два конца, обычно обозначенные 1 и 2, так что, например, вторая обмотка первичной обмотки имеет концы, которые будут обозначены как В1 и В2, в то время как третья обмотка вторичной обмотки будет обозначена с1 и с2, как показано ниже.
Символы обычно используются на трехфазном трансформаторе для обозначения типа или типов соединений, используемых в верхнем регистре Y для подключения звездой, D для подключения треугольником, звезды и Z для взаимосвязанных первичных обмоток звезды, со строчными буквами y, d и z для их соответствующих вторичных. Тогда звезда-звезда будет обозначаться как Yy, дельта-дельта будет обозначаться как Dd, а взаимосвязанная звезда и взаимосвязанная звезда будут Zz для однотипных подключенных трансформаторов.
Таблица идентификация обмотки трансформатора
Соединение | Первичная обмотка | Вторичная обмотка |
Треугольник (дельта) | D | d |
Звезда | Y | y |
Взаимосвязанное | Z | z |
Теперь мы знаем, что существует четыре различных способа соединения трех однофазных трансформаторов между их первичной и вторичной трехфазными цепями. Эти четыре стандартные конфигурации представлены как: Дельта-Дельта (Dd), Звезда-Звезда (Yy), Звезда-Дельта (Yd) и Дельта-Звезда (Dy).
Трансформаторы для работы под высоким напряжением со звездообразными соединениями имеют то преимущество, что снижают напряжение на отдельном трансформаторе, уменьшают необходимое количество витков и увеличивают размер проводников, делая обмотки катушек легче и дешевле для изолирования, чем дельта-трансформаторы.
Тем не менее, соединение треугольник-треугольник имеет одно большое преимущество перед конфигурацией звезда-треугольник, заключающееся в том, что если один трансформатор из группы трех должен выйти из строя или отключиться, два оставшихся будут продолжать выдавать трехфазную мощность с мощностью, равной приблизительно две трети первоначальной мощности трансформаторного блока.
Трансформатор дельта-дельта соединения
В дельта подключении ( Dd ) группа трансформаторов, напряжение линии V L равно напряжению питания V L = V S . Но ток в каждой фазной обмотке задается как: 1 / √ 3 × I L тока линии, где I L — ток линии.
Один из недостатков трехфазных трансформаторов, соединенных треугольником, состоит в том, что каждый трансформатор должен быть намотан для напряжения полной линии (в нашем примере выше 100 В) и для 57,7% линейного тока. Большее число витков в обмотке, вместе с изоляцией между витками, требует большей и более дорогой катушки, чем звездное соединение. Другим недостатком трехфазных трансформаторов, соединенных треугольником, является отсутствие «нейтрального» или общего подключения.
В схеме «звезда-звезда» ( Yy ) каждый трансформатор имеет одну клемму, соединенную с общим соединением, или нейтральную точку с тремя оставшимися концами первичных обмоток, подключенными к трехфазному сетевому питанию. Число витков в обмотке трансформатора для соединения «звезда» составляет 57,7% от требуемого для соединения треугольником.
Соединение звездой требует использования трех трансформаторов, и если какой-либо один трансформатор выйдет из строя или отключится, вся группа может быть отключена. Тем не менее трехфазный трансформатор со звездообразным соединением особенно удобен и экономичен в системах распределения электроэнергии, поскольку четвертый провод может быть подключен в качестве нейтральной точки ( n ) из трех вторичных проводов, как показано на рисунке.
Трансформатор звезда-звезда соединения
Напряжение между любой линии трехфазного трансформатора называется «линейное напряжение» V L , в то время как напряжение между линией и нейтральной точкой трансформатора с соединением звезда называется «фаза напряжения» V P . Это фазовое напряжение между нейтральной точкой и любым из подключений к линии составляет 1 / √ 3 × V L от напряжения сети. Тогда выше, напряжение фазы первичной стороны V P задается как:
Вторичный ток в каждой фазе группы трансформаторов соединенных «звездой» такое же, что и для линии тока питания, то I L = I S .
Тогда соотношение между линейными и фазовыми напряжениями и токами в трехфазной системе можно суммировать как:
Соединение | Фазовое напряжение | Линейное напряжение | Фазный ток | Линия тока |
Звезда | V P = V L ÷ √ 3 | V L = √ 3 × V P | I P = I L | I L = I P |
Дельта | V P = V L | V L = V P | I P = I L ÷√ 3 | I L = √ 3 × I P |
Где, опять же, V L — это напряжение между линиями, а V P — это напряжение между фазами и нейтралью на первичной или вторичной стороне.
Другими возможными соединениями для трехфазных трансформаторов являются звезда-треугольник Yd, где первичная обмотка соединена звездой, а вторичная обмотка соединена треугольником или треугольником Dy с первичным соединением первичной обмотки и вторичной обмоткой со звездой.
Трансформаторы с соединением треугольником и звездой широко используются при низком распределении мощности, при этом первичные обмотки обеспечивают трехпроводную сбалансированную нагрузку для коммунального предприятия, а вторичные обмотки обеспечивают требуемое нейтральное или заземляющее 4-проводное соединение.
Когда первичная и вторичная обмотки имеют разные типы соединений обмотки, звезда или треугольник, общее отношение витков трансформатора становится более сложным. Если трехфазный трансформатор подключен как дельта-дельта ( Dd ) или звезда-звезда ( Yy ), то трансформатор может иметь отношение витков 1: 1. То есть входные и выходные напряжения для обмоток одинаковы.
Однако, если 3-фазный трансформатор соединен звезда-треугольник, ( Yd ) каждое звездообразное соединение первичной обмотки будет получать напряжение фазы V P от источника, который равен 1 / √ 3 × V L .
Тогда каждая соответствующая вторичная обмотка будет иметь то же самое напряжение, индуцированное в ней, и, поскольку эти обмотки соединены треугольником, напряжение 1 / √ 3 × V L станет напряжением вторичной линии. Затем при соотношении витков 1: 1 трансформатор, подключенный по схеме звезда-треугольник, будет обеспечивать коэффициент линейного напряжения с понижением √ 3 : 1 .
Тогда для трансформатора, подключенного звезда-треугольник ( Yd ), отношение витков становится равным:
Аналогично, для дельта-звезда ( Dy ) соединенный трансформатор, с 1: 1 соотношением витков, трансформатор будет обеспечивать 1: √ 3 соотношение повышающего линейного напряжения. Тогда для трансформатора, соединенного треугольником-звезда, отношение витков становится равным:
Затем для четырех основных конфигураций трехфазного трансформатора мы можем перечислить вторичные напряжения и токи трансформатора по отношению к напряжению первичной линии, V L и его току первичной линии I L, как показано в следующей таблице.
Где: n равно числу витков трансформатора числа вторичных обмоток N S, деленной на число первичных обмоток N P . ( N S / N P ) и V L — линейное напряжение, при этом V P — это напряжение между фазой и нейтралью.
Пример трехфазного трансформатора
К первичной обмотке трансформатора 50 ВА, подключенного к треугольнику ( Dy ), подключено трехфазное питание 100 В, 50 Гц. Если трансформатор имеет 500 витков на первичной обмотке и 100 витков на вторичной обмотке, рассчитайте вторичные стороны напряжений и токов.
Приведенные данные: номинальный трансформатор, 50 ВА, напряжение питания, 100 В, первичные витки 500 , вторичные витки, 100.
Получается, что на вторичную сторону трансформатора подается линейное напряжение, V Lоколо 35 В, дающее фазное напряжение, V P 20 В при 0,834 Ампер.
Конструкция трехфазного трансформатора
Ранее мы уже говорили, что трехфазный трансформатор представляет собой три взаимосвязанных однофазных трансформатора на одном многослойном сердечнике, и можно достичь значительной экономии в стоимости, размере и весе, объединив три обмотки в одну магнитную цепь, как показано на рисунке.
Трехфазный трансформатор обычно имеет три магнитных цепи, которые чередуются, чтобы обеспечить равномерное распределение диэлектрического потока между обмотками высокого и низкого напряжения. Исключением из этого правила является трехфазный трансформатор типа корпусной. В конструкции типа корпусной, даже несмотря на то, что три ядра находятся вместе, они не переплетены.
Трехфазный трансформатор с сердечником является наиболее распространенным методом построения трехфазного трансформатора, позволяя фазам быть магнитно связанными. Поток каждой конечности использует две другие ветви для своего обратного пути с тремя магнитными потоками в сердечнике, создаваемыми линейными напряжениями, различающимися по фазе времени на 120 градусов. Таким образом, поток в сердечнике остается почти синусоидальным, создавая синусоидальное вторичное напряжение питания.
Конструкция трехфазного трансформатора с кожухом пятиступенчатого типа тяжелее и дороже в сборке, чем сердечник. Пятиконтактные сердечники обычно используются для очень больших силовых трансформаторов, так как они могут быть выполнены с уменьшенной высотой. Материалы сердечника трансформаторов типа корпусной, электрические обмотки, стальной корпус и охлаждение практически такие же, как и для более крупных однофазных типов.
Соединение обмоток трансформатора в треугольник, звезду и зигзаг
Перед рассмотрением вопросов о группах соединений трансформаторов рассмотрим основные виды соединения обмоток силовых трансформаторов.
Соединение обмоток трансформатора в звезду
При соединении в звезду действуют следующие соотношения –
- линейные токи равны фазным,
- линейные напряжения больше фазных в √3 раз
Возможно множество вариантов соединения обмоток трансформатора в звезду, некоторые из них приведены на рисунке ниже. И, как говорится, не все из них одинаково полезны, а точнее, для разных случаев необходима разная схема соединений.
Следует отметить, что в звезду можно соединить как один трехфазный трансформатор, так и три однофазных. На рисунке обозначаются:
- А, В, С – начала обмоток высшего напряжения
- Х, Y, Z – окончания обмоток высшего напряжения
- a, b, c – начала обмоток низкого напряжения
- x, y, z – окончания обмоток низкого напряжения
Соединение обмоток трансформатора в треугольник
Соединение в треугольник так называется из-за внешнего сходства с треугольником (видно на рисунке).
При соединении в треугольник действуют следующие соотношения –
- линейные токи больше фазных в √3 раз
- линейные напряжения равны фазным
Три вторичные обмотки, при соединении в треугольник соединены последовательно, образуя тем самым замкнутую цепь. В этой цепи отсутствует ток, так-как ЭДС фаз сдвинуты на 120 градусов и их сумма в каждый момент времени равна нулю. Так же ток равен нулю при соблюдении тотчасно следующих условий – ЭДС имеют синусоидальную форму, обмотки имеют одинаковые числа витков.
Звезда и треугольник в вопросе о третьих гармониках трансформаторов
В трансформаторах схему треугольник используют кроме прочего для получения токов третьих гармоник, которые необходимы для создания синусоидальной ЭДС вторичных обмоток. Другими словами, для исключения третьей гармонической составляющей в магнитном потоке.
Чтобы ввести третьи гармоники при соединении в звезду — соединяют нейтраль звезды с нейтралью генератора, по этому пути и начинают пробегать третьи гармоники.
Соединение обмоток трансформатора в зигзаг
Соединение в зигзаг используется в случае, если на вторичных нагрузках неравномерная нагрузка. После соединения в зигзаг нагрузка распределяется более равномерно по фазам и магнитный поток трансформатора сохраняет равновесие, несмотря на неравномерную нагрузку.
Рассмотрим соединение в зигзаг-звезду трехфазного силового трансформатора. Схематично изображение приведено на рисунке.
Первичные обмотки соединяются в звезду. Далее разделяем каждую вторичную обмотку напополам. И далее соединяем, как показано на рисунке.
При соединении в зигзаг-звезду потребуется большее число витков, чем при простой звезде. Также при таком соединении возможно получение трех классов напряжения, например 380-220-127В.
Сохраните в закладки или поделитесь с друзьями
Последние статьи
Самое популярное
Соединение в звезду и треугольник фаз источников и приемников электрической энергии
Для уменьшения количества проводов, необходимых для соединения нагрузки с источником питания, или же для уменьшения количества пульсаций в выпрямителях, или же повышения передаваемой мощности без повышения напряжения сети используют разные схемы соединения обмоток, как нагрузки, так и источника. Наиболее распространенными схемами соединения являются треугольник и звезда.
Соединения звездой
При соединении звездой концы обмоток фаз соединяются вместе в одной точке (в нашем случае показаны как x,y,z), которая носит название нейтральной точки или нуля, и обозначается буквой N. Также нейтральная точка (нейтраль) или ноль может быть соединена с нейтралью источника, а может быть и не соединена. В случае, когда нейтрали источника и приемника электрической энергии соединены, такая система будет называться четырехпроводной, а в случае если не соединены – трехпроводной.
Соединение треугольником
А вот при соединении в треугольник концы обмоток не соединяются в общую точку, а соединяются с началом следующей обмотки. А именно, конец обмотки фазы А (на схеме указан х) соединяется с началом фазы В, а конец фазы (y) соединяется с началом фазы С, и, как вы наверно уже догадались, конец фаз С (z) с началом фазы А. Также следует помнить, что если при соединении в звезду система может быть как трехпроводной, так и четырехпроводной, то при соединении в треугольник система может быть только трехпроводной.
Может сложится впечатление, что при таком соединении в контурах может начать протекать электрический ток даже в случае когда будет отключена нагрузка. Однако это обманчивое впечатление, поскольку при симметричной системе ЭДС будет выполнятся равенство Е
Фазные и линейные напряжения и токи
В трехфазных электрических сетях существуют два вида напряжений и токов — линейные и фазные.
Под фазным напряжением понимают напряжение между началом и концом отдельной фазы электроприемника, а под фазным током – ток, протекающий в одной из фаз электроприемника.
При использовании соединения в звезду (см. рисунки выше) фазными напряжениями будут U
Линейными напряжениями будут напряжения между началами фаз или же между линейными проводами. Линейным током будет называться ток, который протекает в проводах линейных между источником питания и соответствующей нагрузкой.
При использовании соединении в звезду токи линейные будут с фазными равны, а линейные напряжения с таким типом соединения будут равны Uab, Ubc, Uca. При использовании соединения в треугольник ситуация противоположна – линейные и фазные напряжения равны, а токи линейные будут равны Ia, Ib, Ic.
При расчете и анализе трехфазных цепей не последнее значение имеет положительное направление ЭДС токов и напряжений, так как от направления этих ЭДС напрямую зависит знак в уравнениях, которые составляются по закону Кирхгофа, и, как следствие, соотношение на векторных диаграммах между векторами.
особенности и преимущества схемы, подключение звездой
Схемы соединения источников питания и обмоток потребляющих приборов применяют для разных целей. С их помощью увеличивают мощность передачи напряжения, снижают перепады и сбои. А также они позволяют не использовать большого количества проводов для подключения нагрузки к сети. В физике используют несколько способов подключения резисторов: параллельное, последовательное, комбинированное, соединение в треугольник и звезду.
Особенности схем
Последовательное, параллельное и смешанное соединение чаще всего используют для однофазной сети. Обмотки потребляющих приборов и источника питания в трехфазной сети подключают звездой или треугольником. Цепи отличаются нагрузкой по электричеству, поэтому перед использованием нужно выяснить сильные и слабые стороны каждого вида подключения.
В схемах с параллельным соединением начала и концы резисторов привязаны к разным точкам, и по каждому компоненту проходит отдельный ток.
При последовательном соединении составляющие находятся на одной линии, к концу первого подключают начало второго компонента. В смешанных цепях используют оба вида подключения. Но отдельно необходимо разобрать особенности треугольных схем.
Звезда и треугольник
Резисторы в схеме звезды подключают к одной точке — нулевой или нейтральной. Её соединяют с такой же точкой на источнике питания. Но такое подключение не всегда возможно. Цепь называют четырехпроводной в том случае, если соединение возможно, и трехпроводной тогда, когда у автоматического устройства подачи тока нет нейтральной точки.
При подключении в виде треугольника концы резисторов не объединяют в одной точке, а соединяют с концами других обмоток. Цепь внешне напоминает равносторонний треугольник, а компоненты в ней подключены последовательно.
Главное отличие от схемы в форме звезды — это отсутствие нулевой точки. Поэтому цепь является трехпроводной.
В трехфазных сетях выделяют два вида напряжения и электричества — линейные и фазные. Последний тип высчитывают как разницу между концом и началом фазы потребителя. Такой ток проходит только в одной фазе прибора. Особенности величин в разных цепях:
- в звезде фазные напряжения — Ua, Ub, Uc;
- фазная сила электричества — Ia, Ib, Ic;
- напряжения при применении схемы треугольника — Uab, Ubc, Uca;
- показатели тока — Iab, Ibc, Ica.
Между началами фаз или линейных проводников находятся соответствующие величины. Электричество проходит в компонентах между нагрузкой и его источником. В цепи звезды токи равны фазным, а линейные напряжения приравнивают к Uab, Ubc, Uca. У треугольной схемы все наоборот: фазные напряжения равны величинам другого типа, а электричество — Ia, Ib, Ic.
Также необходимо учитывать электродвижущую силу напряжения, т. к. без неё не получится провести расчёты и анализ в трехфазной сети. Эта величина влияет на векторное отношение в диаграммах.
Преимущества цепи
Обе схемы имеют существенные отличия и на практике применяются по-разному. Когда запускают электрический мотор, ток будет больше своего номинального показателя. Защита может не включиться в том случае, если у механизма низкий уровень мощности. В обратном случае защитное устройство сработает, но при этом питание отключится, напряжение упадёт, а некоторые предохранители сгорят. Из-за такого количества проблем нужно снижать величину электричества.
Для этого к электродвигателю подключают дроссель, трансформатор или реостат. Дополнительно можно изменить схему соединения резисторов ротора, что осуществить на практике довольно просто. Эффективным будет переключение цепей на звезду или треугольник. То есть при включении мотора резисторы будут соединены в виде первой фигуры, а после набора оборотов подключение меняют на треугольное. В условиях промышленного производства изменение соединений происходит автоматически.
Можно одновременно использовать оба типа цепей. К нейтральной точке мотора подсоединяют ноль электрической сети. Это предохраняет от риска возникновения перекосов фазных амплитуд. Нейтраль источника питания восстанавливает асимметрию, возникающую из-за разных индуктивных сопротивлений резисторов.
У схемы звезды есть несколько преимуществ:
- мотор запускается плавно;
- двигатель работает с мощностью, которая заявлена в его паспорте;
- рабочий режим сохраняется при перепадах напряжения или перегрузках;
- корпус устройства не перегревается при эксплуатации.
Треугольник позволяет выжать из электродвигателя максимально возможную мощность. Но режимы нужно поддерживать согласно условиям эксплуатации. Использование этой цепи позволяет повысить возможности мотора в три раза по сравнению со звездой. Разные подключения концов резисторов дают возможность получить два номинала напряжения. Нагрузка по электричеству при запуске электроприбора снижается благодаря переключению соединений.