Схемы соединений трансформаторов тока: схем, звезда, треугольник, параллель
Счётчики для однофазных и трёхфазных сетей рассчитаны на номинальные токи до 100 А. Использование приборов с большими возможностями затруднено по причине необходимости использования проводов слишком большого сечения. Таким образом, для измерения характеристик в линиях с большими токами необходимо использовать специальные устройства, понижающие ток до приемлемого значения. Для этой цели счётчики подключаются через трансформаторы тока (ТТ).
Первичная обмотка включается последовательно в линейный провод, по которому проходит высокий ток, а ко вторичной обмотке подключается измерительный прибор. Для удобства выводы маркируются обозначениями. Для начала и, соответственно, конца первичной обмотки применяются обозначения Л1 и Л2. Для вторичной обмотки — И1 и И2. При подключении необходимо строго соблюдать полярность первичной и вторичной обмоток ТТ.
Чаще всего величина вторичного тока равна 5 А, иногда применяются ТТ со вторичным током 1 А. Для измерения же напряжения в высоковольтных сетях используется подключение через трансформатор напряжения, который понижает напряжение до 100 или 57.7 вольт.
Измерительные трансформаторы вносят свою погрешность в измерения. Здесь важно соблюдать правильную схему подключения с соблюдением обозначений. Например, если изменить местами выводы вторичных цепей И1 и И2, то за этим последует существенный недоучёт электроэнергии. Трансформаторы тока подключаются в трёхфазных цепях по схеме неполной звезды (сети с изолированной нейтралью). При наличии нулевого провода подключение осуществляется с помощью полной звезды. В дифференциальных защитах силовых трансформаторов ТТ подключаются по схеме «Треугольник».
Это позволяет скомпенсировать сдвиг фаз вторичных токов, что уменьшит ток небаланса. В трёхфазных сетях без нулевого провода обычно трансформаторы тока подключаются только на две ведущие линии, поскольку измерив ток в двух фазах, можно легко рассчитать величину тока в третьей фазе.
Если сеть имеет глухозаземлённую нейтраль (как правило, сети 110 кВ и выше), то обязательно подключение ТТ ко всем трём фазам. Соединение обмоток реле и трансформаторов тока в полную звезду. Эта схема соединения трансформаторов представлена в виде векторных диаграмм, которые иллюстрируют работу трансформатора на рис. 2.4.1 и на схемах 2.4.2, 2.4.3, 2.4.4.
Если трансформатор работает в нормальном режиме, или если он симметричный, то будет проходить ток небаланса или небольшой ток, который появляется из–за разных погрешностей трансформаторов тока.
Представленная выше схема применяется против всех видов КЗ (междуфазных и однофазных) во время включения защиты.
Трехфазное КЗ
Двухфазное КЗ
Однофазное КЗ
Отношение Iр/Iф (ток в реле)/ (ток в фазе) называется коэффициентом схемы, его можно определить для всех схем соединения. Для данной схемы коэффициент схемы kсх будет равен 1.
На рис. 2.4.5 предоставлена схема соединения обмоток реле и трансформаторов тока в неполную звезду, а на рис. 2.4.6, 2.4.7. ее векторные диаграммы, которые иллюстрируют работу этой схемы.
Трехфазное КЗ — когда токи могут идти в обратном проводе по обоим реле.
Двухфазное КЗ — когда токи, могут протекать в одном или в двух реле в соответствии с повреждением тех или иных фаз.
КЗ фазы В одной фазы может происходить тогда, когда токи не появляются в этой схеме защиты.
Схему неполной звезды можно применять только в сетях с нулевыми изолированными точками при kсх=1 с целью защиты от КЗ междуфазных, и может реагировать только на некоторые случаи КЗ однофазного.
На рис. 2.4.8. можно изучить схему соединения в звезду и треугольник обмоток реле и трансформаторов соответственно.
Во время симметричных нагрузок в реле и в период возникновения трехфазного КЗ может проходить линейный ток, сдвинутый на 30* по фазе относительно тока фазы и в разы больше его.
Особенности схемы этого соединения:
- при разных всевозможных видах КЗ проходят токи в реле, при этом защита которая построена по такой схеме, будет реагировать на все виды КЗ;
- ток в реле относится к фазному току в зависимости от вида КЗ;
- ток нулевой последовательности, который не имеет путь через обмотки реле для замыкания, не может выйти за границы треугольника трансформаторов тока.
Выше приведенная схема применяется чаще всего для дистанционной или во время дифференциальной защиты трансформаторов.
Схема восьмерки или включение реле на разность токов двух фаз.
На рис. 2.4.9 представлена сама схема соединения, а на рис. 2.4.10, 2.4.11.векторные диаграммы, которые иллюстрируют работу этой схемы.
Соединение трансформаторов тока и обмоток реле в неполную звезду
Симметричная нагрузка при трехфазном КЗ.
Двухфазное КЗ Двухфазно КЗ АВ или ВС
При разных видах КЗ, ток в реле и его чувствительность будут разными. Ток в реле будет равен нулю во время однофазного КЗ фазы В. Эту схему можно применять, тогда, когда не требуется действий трансформатора для защиты от разных междуфазных КЗ с соединением обмоток Y/* – 11 группа, и когда эта защита обеспечивает необходимую чувствительность.
Соединение трансформаторов тока в фильтр токов нулевой последовательности
На рис. 2.4.12. можно изучить схему соединения трансформаторов тока в фильтр токов нулевой последовательности. Только во время однофазных или двуфазных КЗ на землю появляется ток в реле. Эту схему можно применять во время защиты от КЗ на землю. КЗ IN=0 при двухфазных и трехфазных нагрузках. Но часто ток небаланса Iнб появляется из–за погрешности трансформаторов тока в реле.
Последовательное соединение трансформаторов тока
На рис. 2.4.13. представлена схема последовательного соединения трансформаторов тока. Подключенная к трансформаторам тока, нагрузка, распределяется поровну. Напряжение, которое приходится на любой трансформатор тока и на вторичный ток остается неизменным. Во время использования трансформаторов тока малой мощности применяется эта схема.
Параллельное соединение трансформаторов тока
На рис. 2.4.14. представлена схема параллельного соединения трансформаторов тока. Эту схему можно использовать с целью получения разных нестандартных коэффициентов трансформации. Схемы подключения счетчиков электроэнегии, как однофазных, так и 3-х фазных Вы можете найти тут.
Схемы соединений трансформаторов тока и цепей тока реле токовых защит
Для токовых защит используются схемы с ТТ, установленными во всех трёх фазах (трёхфазные) или в двух фазах (двухфазные). При этом вторичные обмотки ТТ могут соединяться в полную или неполную звезду, а также в полный или неполный треугольник.
Подключение пусковых реле тока к трансформаторам тока в схемах токовых защит может осуществляться по различным схемам:
соединение ТТ и обмоток реле в полную звезду;
соединение ТТ и обмоток реле в неполную звезду;
соединение ТТ в треугольник, а обмоток реле в звезду;
соединение двух ТТ и одного реле в схему на разность токов 2-х фаз;
Поведение и работа реле в каждой из этих схем зависят от характера распределения токов в ее вторичных цепях в нормальных и аварийных условиях. При анализе различных схем сначала определяются положительные направления действующих величин первичных токов ТТ при различных видах к.з., а затем определяются пути замыкания вторичных токов каждого ТТ. Результирующий ток в проводах и обмотках реле тока определяется геометрическим сложением или вычитанием соответствующих векторов фазных токов.
Для
каждой схемы определяется отношение
тока в реле Iр к току в фазе I
;
Коэффициент схемы необходимо учитывать при расчёте уставок и оценке чувствительности токовой защиты.
Векторные диаграммы первичных токов при различных к.з. представлены на рисунке 23.
Схема соединения трансформаторов тока и обмоток реле в полную звезду
Трансформаторы тока устанавливаются во всех фазах. Вторичные обмотки трансформаторов тока и обмотки реле соединяются в звезду и их нулевые точки связываются одним проводом, называемым нулевым. В нулевую точку объединяются одноименные зажимы обмоток трансформаторов тока.
Рисунок 22 – Соединение трансформаторов тока и реле по схеме полной звезды
При нормальном режиме и трехфазном к.з. в реле I, II и III проходят токи фаз:
; ;
а в нулевом проводе — их геометрическая сумма, ,которая при симметричных режимах равна нулю (как при наличии, так и отсутствии заземления, рисунок 23, а).
Рисунок 23 – Векторная диаграмма токов.
а — при трехфазном к. з.; б — при двухфазном к. з.; е — при однофазном коротком замыкании; г — при двухфазном к. з. на землю; д — при двойном замыкании на землю в разных точках.
При двухфазных к.з. ток к.з. проходит только в двух поврежденных фазах и соответственно в реле, подключенных к трансформаторам тока поврежденных фаз (рисунок 23, б), ток в неповрежденной фазе отсутствует. Согласно закону Кирхгофа сумма токов в узле равна нулю, следовательно, = 0, отсюда .
С учетом этого на векторной диаграмме (рисунок 23, б) токи IB и IС показаны сдвинутыми по фазе на 180°.
Ток в нулевом проводе схемы равен сумме токов двух поврежденных фаз, но так как последние равны и противоположны по фазе, то ток в нулевом проводе также отсутствует.
Т.е. реле, включенное в нулевой провод схемы трансформаторов тока, соединённых в полную звезду, не будет реагировать на междуфазные к.з.
Однако, из-за неидентичности характеристик и погрешностей ТТ сумма вторичных токов при нагрузочном режиме и при 3-х и 2-х фазных к.з. отличается от нуля и в нулевом проводе проходит ток, называемый током небаланса.
При однофазных к. з. первичный ток к.з. проходит только по одной поврежденной фазе (рисунок 23, в). Соответствующий ему вторичный ток проходит также только через одно реле и замыкается по нулевому проводу.
При двухфазных к.з. на землю токи проходят в двух повреждённых фазах и соответственно в двух реле, а в нулевом проводе проходит ток, равный геометрической сумме токов повреждённых фаз, всегда отличный от нуля.
При двойном замыкании на землю в различных точках, например фаз В и С, на участке между точками замыкания на землю режим аналогичен 1ф. к.з. фазы В, а между источником питания и ближайшему к нему месту замыкания фазы С – соответствует режиму 2-х фазного к.з. фаз В и С.
Нулевой провод схемы звезды является фильтром токов нулевой последовательности. Токи прямой и обратной последовательностей в нулевом проводе не проходят, так как векторы каждой из этих систем дают в сумме нуль. Токи же нулевой последовательности совпадают по фазе, поэтому в нулевом проводе проходит утроенное значение этого тока.
Ток в реле равен току в фазе, поэтому коэффициент схемы равен единице: КСХ = 1.
Выводы:
Схема полной звезды реагирует на все виды замыканий.
Схема применяется для включения защиты от всех видов однофазных и междуфазных к.з.
Схема отличается надежностью, так как при любом замыкании срабатывают по крайней мере два реле.
Схема соединения трансформаторов тока и обмоток реле в неполную звезду
ТТ устанавливаются в двух фазах (обычно А и С), вторичные обмотки и обмотки реле соединяются аналогично схемы полной звезды.
Рисунок 24 – Схема соединения трансформаторов тока и обмоток реле в неполную звезду.
В нормальном режиме и при трёхфазном к.з. в реле I и III проходят токи соответствующих фаз:
В нулевом проводе ток равен их геометрической сумме: Фактически ток в нулевом проводе соответствует току фазы В, отсутствующей во вторичной цепи.
В случае двухфазного к.з. токи появляются в одном или двух реле (I или III) в зависимости от того, какие фазы повреждены.
Ток в обратном проводе при двухфазных к.з. между фазами А и С, в которых установлены трансформаторы тока, равен нулю, т.к.
В случае однофазного к.з. фаз (А или С), в которых установлены трансформаторы тока, во вторичной обмотке трансформатора тока и обратном проводе проходит ток к.з. При замыкании на землю фазы В, в которой трансформатор тока не установлен, токи в схеме защиты не появляются; следовательно, схема неполной звезды реагирует не на все случаи однофазного к.з.
Выводы:
1. Схема неполной звезды реагирует на все виды междуфазных замыканий.
2. Схема достаточно надежна, т.к. при любом междуфазном замыкании срабатывают, по крайней мере, два реле.
3. Для ликвидации однофазных замыканий требуется дополнительная защита.
4. используется для подключения защиты от междуфазных к.з.
Коэффициент схемы КСХ = 1.
Схема соединения ТТ в треугольник, а обмоток реле в звезду
Вторичные обмотки трансформаторов тока, соединенные последовательно разноименными выводами, образуют треугольник. Реле, соединенные в звезду, подключаются к вершинам этого треугольника. Из токораспределения на рисунке 25, а) видно, что в каждом реле проходит ток, равный геометрической разности токов двух фаз:
; ;.
Рисунок 25 – Схема соединения ТТ в треугольник, а обмоток реле в звезду – а), векторная диаграмма токов – б).
При симметричной нагрузке и трехфазном к.з. в каждом реле проходит линейный ток, в раз больший фазных токов и сдвинутый относительно последних по фазе на 30°
(рисунок 25, б).
В таблице 3 приведены значения токов при других видах к.з. в предположении, что коэффициент трансформации трансформаторов тока равен единице (КТ = 1).
Таблица 3 – Значения токов при различных видах к.з.
Вид короткого замыкания | Поврежденные фазы | Токи в фазах | Токи в реле | ||
I | II | III | |||
Двухфазное | А, В | IB = — IA, I C= 0 | 2IA | IB | -IA |
В, С | IC = — IB, IA = 0 | -IB | 2IB | IC | |
С, А | IA = — IC, I B = 0 | IA | -IC | 2IC | |
Однофазное | А | IA = IK, IB = IC = 0 | IA | 0 | -IA |
В | IB = IK, IA = IC = 0 | -IB | IB | 0 | |
С | IC =IK, IB = IC = 0 | 0 | -IC | IC |
Таким образом, схема соединения трансформаторов тока в треугольник обладает следующими особенностями:
1. Токи в реле проходят при всех видах к.з., и, следовательно, защиты по такой схеме реагируют на все виды к.з.
2. Отношение тока в реле к фазному току зависит от вида к.з.
3. Токи нулевой последовательности не выходят за пределы треугольника трансформаторов тока, не имея пути для замыкания через обмотки реле, значит при к.з. на землю в реле попадают только токи прямой и обратной последовательностей, т. е. только часть тока к.з.
В рассматриваемой схеме ток в реле при 3-х фазных симметричных режимах в раз больше тока в фазе, поэтому коэффициент схемыКСХ =.
В соответствии с таблицей 3 коэффициент схемы при 2-х фазных к.з. для разных реле соответствует значениям КСХ = 2 или 1 , а при однофазных к.з. – КСХ = 1или 0.
Описанная выше схема применяется в основном для дифференциальных и дистанционных защит
Схема соединения двух ТТ и одного реле, включённого на разность токов двух фаз.
ТТ устанавливаются в 2-х фазах (обычно А и С), их вторичные обмотки соединяются разноимёнными зажимами, к которым параллельно подключается токовое реле. В некоторой литературе эту схему называют схемой неполного треугольника.
Рисунок 26 – Схема соединения двух ТТ и одного реле, включённого на разность токов двух фаз.
В рассматриваемой схеме ток в реле равен геометрической сумме токов двух фаз, в которых установлены ТТ:
, где , .
При симметричной нагрузке и в режиме 3-х фазного к.з. ток в реле I(3)Р = IФ и К(3)СХ =.
При 2-х фазных к.з. между фазами, в которых установлены ТТ (А и С) в реле будет протекать двойной ток, т.к. в этом случае IA = — IC, и следовательно I(2)Р = 2 IФ и К(2)СХ.АС = 2.
При замыканиях между фазами АВ или ВС в реле поступает только ток той фазы, в которой установлен ТТ (Iа или Iс), поэтому I(2)Р = IФ и К(2)СХ.АВ = 1, К(2)СХ.ВС = 1.
При 1 фазных к.з. на фазах, в которых установлены ТТ в реле появляется фазный ток, при этом К(1)СХ. = 1, а при 1ф. к.з. на фазе, в которой ТТ не устанавливается (В) ток в реле будет отсутствовать и К(1)СХ. = 0.
Анализ поведения схемы при различных повреждениях показывает, что такое соединение позволяет выполнить защиту от всех видов междуфазных замыканий. Схема отличается экономичностью, но в то же время обладает сравнительно невысокой надежностью — отказ реле ведет к отказу защиты.
Защита, выполненная по этой схеме, имеет разную чувствительность к различным видам междуфазных замыканий Наименьший ток Iр, и поэтому наихудшая чувствительность, будет при к.з. между двумя фазами (АВ и ВС), из которых одна фаза (В) не имеет трансформатора тока. Данная схема имеет худшую чувствительность при к.з. между АВ и ВС по сравнению со схемой полной и двухфазной звезды.
В случае однофазных к.з. на фазе, не имеющей трансформаторов тока, ток в реле равен нулю, поэтому схема с включением на разность токов двух фаз не может использоваться в качестве защиты от однофазных к.з.
Рассматриваемая схема может применяться только для защиты от междуфазных к.з. в тех случаях, когда она обеспечивает необходимую чувствительность при двухфазных к.з.
Схема соединения ТТ в фильтр токов нулевой последовательности
ТТ устанавливаются во всех фазах, а одноимённые зажимы их вторичных обмоток соединяются параллельно и к ним подключается обмотка реле (рисунок 27).
Рисунок 27 – Схема соединения трансформаторов тока в фильтр токов нулевой последовательности
В рассматриваемой схеме ток в реле равен геометрической сумме вторичных токов трёх фаз:
;
Ток в реле появляется только в режимах 1ф. к.з. и 2-х фазных к.з. на землю, так как только в этих режимах появляется ток нулевой последовательности.
В режимах симметричной нагрузки и междуфазных к.з. без земли сумма первичных и вторичных токов трёх фаз равна нулю и реле не действует.
Однако, в этих режимах из-за погрешностей ТТ в реле появляется ток небаланса Iн.б., который необходимо учитывать при применении схемы.
Рассматриваемую схему часто называют трёхтрансформаторным фильтром токов I0 и применяют для защит от однофазных и 2-х фазных к.з. на землю.
В режимах 2-х фазных к.з. за трансформаторами с соединением обмоток / и / и при 1 фазных к.з. за трансформаторами с соединением обмоток / различные схемы соединений ТТ и реле работают не одинаково.
Распределение токов к.з. в фазах линии при перечисленных к.з. за трансформаторами характеризуется тем, что токи проходят во всех фазах, причем в одной из фаз ток в 2 раза больше, чем в двух других, и сдвинут по отношению к ним по фазе на 1800. На рисунке 26 в виде примера приведён случай 2-х фазного к.з. между фазами А и В за силовым трансформатором /-11 с nТ = 1.
Рисунок 28 – Замыкание между двумя фазами за трансформатором с соединением обмоток /-11.
Защита по схеме полной звезды реагирует всегда на больший из токов, проходящий по одному из трёх реле.
Защита по схеме неполной звезды может оказаться в фазах с меньшими токами, поэтому она будет иметь в 2 раза меньшую чувствительность.
Защита по схеме неполного треугольника вообще не будет работать, т.к. ток в ней окажется равным нулю.
Исходя из вышеизложенного, в распределительных сетях напряжением до 35 кВ широкое применение получили защиты от междуфазных к.з. со схемой неполной звезды. Некоторые её недостатки по сравнению со схемой полной звезды – в 2 раза меньшая чувствительность при двухфазных к.з. за трансформаторами / и / и однофазных к.з. за трансформаторами / с заземлённой нейтралью могут быть устранены включением в обратный провод третьего реле тока. Ток в этом реле будет равен:
;
Ток Iр равен току третьей фазы (где отсутствует ТТ) и эта схема работает как схема полной звезды.
Схема неполного треугольника по сравнению со схемой неполной звезды имеет ряд недостатков:
– непригодна в качестве резервной защиты от двухфазных и однофазных к.з. за трансформаторами;
– имеет пониженную чувствительность для МТЗ при двухфазных к.з. между фазами, в одной из которых отсутствует ТТ.
Схема полной звезды является наиболее дорогой и не нашла широкого использования, т.к. требует установки 3-х ТТ.
Схема полного треугольника используется только на понижающих трансформаторах с глухозаземлёнными нейтралями.
Нагрузка трансформаторов тока
Выше отмечалось, что погрешность трансформатора тока зависит от величины его нагрузки. Сопротивление нагрузки трансформатора тока равно:
,
где U2 и I2 — напряжение и ток вторичной обмотки ТТ.
Чтобы определить ZН, нужно вычислить напряжение U2, равное падению напряжения в сопротивлении нагрузки ZН от проходящего в нем тока IН.
Сопротивление нагрузки состоит из сопротивления проводов rп и сопротивления реле ZР, которые для упрощения суммируются арифметически: ZН = rп + ZР.
Величина U2 = I2ZР зависит от схемы соединения трансформаторов тока, величины нагрузки ZН, вида к.з. и сочетания повреждённых фаз.
Для схемы полной звезды при трёх и двухфазных к.з.U2 равно падению напряжения в нагрузке фазы, т.е. U2 = I2 (rп + ZР), поэтому
;
При однофазном к.з. U2 равно падению напряжения в сопротивлении петли «фаза – нуль» и в сопротивлении реле в фазе ZР.Ф.и нулевом проводе ZР.0:
;
В схеме неполной звезды максимальная нагрузка на трансформаторы тока имеет место при двухфазных к.з. между фазой, имеющей ТТ и фазой, не имеющей его и равна ZН = 2rп + ZР.
При включении ТТ на разность токов двух фаз максимальная нагрузка на трансформаторы тока имеет место при двухфазных к.з. между фазами, имеющими трансформаторы тока и составляет:
;
В схеме треугольника трансформаторы тока имеют наибольшую нагрузку, равную как при 3-х, так и при 2-х фазных к.з. ZН = 3(rп + ZР).
Для уменьшения нагрузки на ТТ применяют последовательное включёние вторичных обмоток трансформаторов тока. При этом нагрузка распределяется поровну (уменьшается в два раза). Ток в цепи, равный I2=I1/nТ остается неизменным, а напряжение, приходящееся на каждый ТТ составляет I2ZН/2.
Выбор трансформаторов тока
Выбор трансформаторов тока для релейной защиты выполняется по следующему алгоритму:
Определяется рабочий ток защищаемого объекта I раб.
По найденному значению тока и номинальному напряжению выбирается трансформатор тока.
Определяется максимально возможное значение тока повреждения защищаемого объекта I к.макс..
Рассчитывается кратность тока короткого замыкания как отношение
,
где I1.ном – номинальный первичный ток ТТ.
5. Зная кратность К, по кривой 10%-й погрешности определяется допустимая нагрузка ZН. доп для выбранного трансформатора тока.
Учитывая схему соединения ТТ, рассчитывается фактическая нагрузка трансформаторов тока ZН.факт. и сравнивается с допустимой ZН. доп.
7. Если ZН.факт ≤ ZН. доп считается, что трансформатор тока удовлетворяет требованиям точности и его можно использовать для данной схемы защиты. Если ZН.факт > ZН. доп, то необходимо принять меры для уменьшения нагрузки. В качестве таких мер можно назвать следующие:
— выбор трансформатора тока с увеличенным значением коэффициента трансформации;
— увеличение сечения контрольного кабеля;
— использование вместо одного трансформатора тока группу трансформаторов, соединенных последовательно.
Нормальным режимом работы для ТТ является режим короткого замыкания, в котором погрешности ТТ имеют наименьшие значения.
Работа трансформатора тока с разомкнутой вторичной обмоткой недопустима, т. к. в этом случае отсутствует размагничивающий поток в сердечнике ТТ, что приводит к его насыщению, резкому росту тока намагничивания и, как следствие, недопустимому нагреву трансформатора и разрушению изоляции. Раскорачивание вторичной обмотки ТТ при наличии тока в первичной приводит к перенапряжению во вторичных цепях и пробою изоляции.
Трансформаторы тока | Заметки электрика
Здравствуйте, уважаемые читатели сайта «Заметки электрика».
Мы уже с Вами много говорили про трансформаторы тока (ТТ) и сегодня я решил открыть новый раздел на сайте, посвященный полностью этой теме.
Чтобы начать изучать данный раздел, необходимо точно понимать их смысл и назначение.
Самое главное назначение трансформаторов тока — это преобразование первичного переменного тока сети до значений, безопасных для его измерений.
Вторым назначением трансформаторов тока является отделение низковольтных приборов учета и реле, подключенных ко вторичной обмотке, от первичного высокого напряжения сети. Этим обеспечивается электробезопасность оперативного и ремонтного персонала электрослужбы.
Трансформаторы тока нашли широкое применение в цепях релейной защиты. С помощью трансформаторов тока получают питание токовые цепи защиты. В случае повреждений или ненормальных режимов работы электрооборудования от ТТ зависит правильное и надежное срабатывание устройств релейной защиты.
Также трансформаторы тока применяются для питания цепей измерения и учета электроэнергии.
Пример 1
В первом примере я покажу Вам как выполнен учет электроэнергии на мощном потребителе с током нагрузки примерно 400 (А). Соответственно, при таком большом токе нагрузки подключать электросчетчик и другие приборы учета (амперметр) прямым включением в сеть НЕ ДОПУСТИМО!!! Они сгорят и выйдут из строя. Поэтому в этом случае необходимо применить ТТ с коэффициентом трансформации 400/5 или еще больше.
На фотографии ниже показаны низковольтные трансформаторы тока с коэффициентом трансформации 400/5. Они установлены на присоединении отдельного потребителя подстанции напряжением 0,23 (кВ) с изолированной нейтралью. Первичные их обмотки подключены последовательно к силовым выводам фазы «А» и «С» (схема неполной звезды).
А ко вторичным обмоткам ТТ подключен трехфазный счетчик электрической энергии САЗУ-ИТ и щитовой амперметр Э378.
Трехфазный индукционный счетчик САЗУ-ИТ.
Читайте статью о конструкции и схеме подключения подобного трехфазного индукционного счетчика САЗУ-И670М.
Вторичные провода выполняются медным проводом сечением 2,5 кв.мм. В начале вторичные провода с трансформаторов тока идут на промежуточный клеммник, а с него уже на приборы учета. На этот же клеммник подключаются цепи напряжения.
Про все действующие схемы подключения счетчика через трансформаторы тока я уже Вам рассказывал и на этом останавливаться сейчас не буду. Вот знакомьтесь:
Конечно же, на фото я показал Вам «старенькое» электрооборудование. Но смысл от этого не меняется. Вот так выглядит электрооборудование по современнее.
В этом случае первичные обмотки трансформаторов тока подключены последовательно во всех фазах. Вторичные обмотки соединяются проводами с электросчетчиком через испытательную переходную коробку (КИП).
Пример 2
Аналогично можно сказать и про цепи релейной защиты.
Во втором примере я покажу Вам как выполняется релейная защита на потребителе напряжением 10 (кВ), с током нагрузки примерно 1000 (А). Соответственно, при таком большом токе нагрузки и высоком напряжении сети, подключать реле прямым включением в сеть НЕ ДОПУСТИМО!!!
В этом случае нам необходимо применить высоковольтные трансформаторы тока ТПЛ-10 с коэффициентом трансформации 1000/5 (для питания обмоток токовых реле) и измерительные трансформаторы напряжения, например, НТМИ-10, с коэффициентом 10000/100 (для питания обмоток реле напряжения и электросчетчиков).
В релейном отсеке ячейки КРУ установлены токовые реле защиты на базе РТ-40.
На двери релейного отсека размещены трехфазный счетчик СЭТ-4ТМ.03М.01 и щитовой амперметр Э30.
Как выполнено подключение такого счетчика я подробно рассказывал в этой статье: подключение счетчика СЭТ-4ТМ.03М.01 через два трансформатора тока и трансформаторы напряжения в сеть 10 (кВ)
С помощью ТТ возможно установить приборы учета и реле, подключенные ко вторичным цепям, на значительные расстояния от контролируемых и измеряемых участков сети.
Например, амперметры всех потребителей подстанции, могут быть установлены в удобном и отапливаемом помещении (щитовой или пульте учета) для контроля их нагрузки.
Ниже я представляю Вашему вниманию список статей на тему ТТ (список будет пополняться по мере написания статей):
- Классификация трансформаторов тока
- Одновитковые и многовитковые ТТ
- Основные характеристики и параметры ТТ
- Маркировка вторичных цепей ТТ
- Последствия при перегрузке трансформаторов тока (реальный пример)
P.S. Следите за обновлениями, подписывайтесь на выпуски новых статей на сайте (форма подписки в правой колонке). Новость о выходе новой статьи будет приходить Вам прямо на почту.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Схема подключения трехфазного счетчика через трансформаторы тока
Содержание:
- Принцип работы измерительных трансформаторов
- Схемы подключения
- Установка счетчика с трансформаторами тока
В электрических сетях, с напряжением 380 вольт, потребляемой мощностью свыше 60 кВт и током более 100 ампер, используется схема подключения трехфазного счетчика через трансформаторы тока. Данный вариант известен как косвенное подключение. Подобная схема дает возможность измерения высокой потребляемой мощности приборами учета, рассчитанными на низкие показатели мощности. Разница между высокими и низкими значениями компенсируется с помощью коэффициента, определяющего окончательные показатели счетчика.
Принцип работы измерительных трансформаторов
Принцип действия данных устройств довольно простой. По первичной обмотке трансформатора, включенной последовательно, протекает фазовый ток нагрузки. За счет этого возникает электромагнитная индукция, создающая ток во вторичной обмотке устройства. В эту же обмотку осуществляется включение токовой катушки трехфазного электросчетчика.
В зависимости от коэффициента трансформации, ток во вторичной цепи будет значительно меньше фазного тока нагрузки. Именно этот ток обеспечивает нормальную работу счетчика, а снимаемые показатели умножаются на величину коэффициента трансформации.
Таким образом, трансформаторы тока или измерительные трансформаторы преобразуют высокий первичный ток нагрузки в безопасное значение, удобное для проведения измерений. Трансформаторы тока для электросчетчиков нормально функционируют при рабочей частоте в 50 Гц и вторичном номинальном токе в 5 ампер. Поэтому, если коэффициент трансформации составляет 100/5, это означает максимальную нагрузку в 100 ампер, а значение измерительного тока – 5 ампер. Следовательно, в этом случае показания трехфазного счетчика умножаются в 20 раз (100/5). Благодаря такому конструктивному решению, отпала необходимость в изготовлении более мощных приборов учета. Кроме того, обеспечивается надежная защита счетчика от коротких замыканий и перегрузок, поскольку сгоревший трансформатор меняется значительно легче по сравнению с установкой нового счетчика.
Существуют определенные недостатки при таком подключении. Прежде всего, измерительный ток в случае малого потребления, может быть меньше стартового тока счетчика. Следовательно, счетчик не будет работать и выдавать показания. В первую очередь это касается счетчиков индукционного типа с очень большим собственным потреблением. Современные электросчетчики такого недостатка практически не имеют.
Особое внимание при подключение нужно обращать на соблюдение полярности. Первичная катушка имеет входные клеммы. Одна из них предназначена для подключения фазы и обозначается Л1. Другой выход – Л2 необходим, чтобы подключиться к нагрузке. Измерительная обмотка также имеет клеммы, обозначаемые соответственно, как И1 и И2. Кабель, подключаемый к выходам Л1 и Л2, рассчитывается на необходимую нагрузку.
Для вторичных цепей используется проводник, поперечное сечение которого должно быть не ниже 2,5 мм2. Рекомендуется применять разноцветные промаркированные провода с обозначенными выводами. Нередко подключение вторичной обмотки к счетчику осуществляется с помощью опломбированного промежуточного клеммника. Использование клеммника позволяет проводить замену и обслуживание счетчика без отключения электроэнергии, поступающей к потребителям.
Схемы подключения
Подключение измерительного трансформатора к счетчику может быть выполнено разными способами. Запрещается использовать трансформаторы тока с приборами учета, предназначенными для прямого включения в электрическую сеть. В подобных случаях вначале изучается сама возможность такого подключения, выбирается наиболее подходящий трансформатор, в соответствии с индивидуальной электрической схемой.
Если измерительные трансформаторы имеют различный коэффициент трансформации, они не должны подключаться к одному и тому же к счетчику.
Перед подключением необходимо внимательно изучить схему расположения контактов, имеющихся на трехфазном счетчике. Общий принцип действия электросчетчиков является одинаковым, поэтому контактные клеммы располагаются на одних и тех же местах во всех приборах. Контакт К1 соответствует питанию цепи трансформатора, К2 – подключение цепи напряжения, К3 является выходным контактом, подключаемым к трансформатору. Таким же образом подключается фаза «В» через контакты К4, К5 и К6, а также фаза «С» с контактами К7, К8, К9. Контакт К10 является нулевым, к нему подключаются обмотки напряжения, расположенные внутри счетчика.
Чаще всего применяется наиболее простая схема раздельного подключения вторичных токовых цепей. К фазному зажиму от входного автомата сети подается фазовый ток. Для удобства монтажа с этого же контакта выполняется подключение второй клеммы катушки напряжения фазы на счетчике.
Выход фазы является окончанием первичной обмотки трансформатора. Его подключение осуществляется к нагрузке распределительного щита. Начало вторичной обмотки трансформатора соединяется с первым контактом токовой обмотки фазы счетчика. Конец вторичной обмотки трансформатора соединяется с окончанием токовой обмотки прибора учета. Таким же образом подключаются остальные фазы.
В соответствии с правилами выполняется соединение и заземление вторичных обмоток в виде полной звезды. Однако это требование отражено не в каждом паспорте электросчетчиков, поэтому во время ввода в действие иногда приходится отключать заземляющий шлейф. Выполнение всех монтажных работ должно происходить в строгом соответствии с утвержденным проектом.
Существует и другая схема подключения трехфазного счетчика через трансформаторы тока, применяемая очень редко. В данной схеме используются совмещенные цепи тока и напряжения. Возникает большая погрешность в показаниях. Кроме того, при такой схеме невозможно своевременно выявить обмоточный пробой в трансформаторе.
Большое значение имеет правильный выбор трансформатора. Максимальная нагрузка требует величины тока во вторичной цепи не менее 40% от номинала, а минимальная нагрузка – 5%. Все фазы должны чередоваться в установленном порядке и проверяться специальным прибором – фазометром.