Трансформатор тесла схема – Трансформатор Тесла на качере Бровина своими руками и съем энергии. Радиантная энергия. Беспроводная передача энергии

Содержание

Трансформатор Теслы — Википедия

Разряды с провода на терминале

Трансформа́тор Те́слы, или кату́шка Те́слы (англ. Tesla coil) — устройство, изобретённое Николой Теслой и носящее его имя. Является резонансным трансформатором, производящим высокое напряжение высокой частоты. Прибор был запатентован 22 сентября 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала»[1].

Трансформатор Теслы основан на использовании резонансных стоячих электромагнитных волн в катушках. Его первичная обмотка содержит небольшое число витков и является частью искрового колебательного контура, включающего в себя также конденсатор и искровой промежуток. Вторичной обмоткой служит прямая катушка провода. При совпадении частоты колебаний колебательного контура первичной обмотки с частотой одного из собственных колебаний (стоячих волн) вторичной обмотки вследствие явления резонанса во вторичной обмотке возникнет стоячая электромагнитная волна и между концами катушки появится высокое переменное напряжение

[2].

Работу резонансного трансформатора можно объяснить на примере обыкновенных качелей. Если их раскачивать в режиме принудительных колебаний, то максимально достигаемая амплитуда будет пропорциональна прилагаемому усилию. Если раскачивать в режиме свободных колебаний, то при тех же усилиях максимальная амплитуда вырастает многократно. Так и с трансформатором Теслы — в роли качелей выступает вторичный колебательный контур, а в роли прилагаемого усилия — генератор. Их согласованность («подталкивание» строго в нужные моменты времени) обеспечивает первичный контур или задающий генератор (в зависимости от устройства).

Схема простейшего трансформатора Теслы

Простейший трансформатор Теслы включает в себя входной трансформатор, катушку индуктивности, состоящую из двух обмоток — первичной и вторичной, разрядник (прерыватель, часто встречается английский вариант Spark Gap), конденсатор, тороид (используется не всегда) и терминал (на схеме показан как «выход»).

Первичная обмотка обычно содержит всего несколько витков медной трубки или провода большого диаметра, а вторичная около 1000 витков провода меньшей площади сечения. Первичная катушка может быть плоской (горизонтальной), конической или цилиндрической (вертикальной). В отличие от обычных трансформаторов, здесь нет ферромагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у трансформаторов с ферромагнитным сердечником. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник.

Разрядник, в простейшем случае, обыкновенный газовый, представляет собой два массивных электрода с регулируемым зазором. Электроды должны быть устойчивы к протеканию больших токов через электрическую дугу между ними и иметь хорошее охлаждение.

Вторичная катушка также образует колебательный контур, где роль конденсатора, главным образом, выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя.

Терминал может быть выполнен в виде диска, заточенного штыря или сферы и предназначен для получения предсказуемых искровых разрядов большой длины.

Таким образом, трансформатор Теслы представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов. Для полноценной работы трансформатора эти два колебательных контура должны быть настроены на одну резонансную частоту. Обычно в процессе настройки подстраивают первичный контур под частоту вторичного путём изменения ёмкости конденсатора и числа витков первичной обмотки до получения максимального напряжения на выходе трансформатора.

Трансформатор Теслы рассматриваемой простейшей конструкции, показанной на схеме, работает в импульсном режиме. Первая фаза — это заряд конденсатора до напряжения пробоя разрядника. Вторая фаза — генерация высокочастотных колебаний в первичном контуре. Разрядник, включённый параллельно, замыкая источник питания (трансформатор), исключает его из контура, иначе источник питания вносит определенные потери в первичный контур и этим снижает его добротность. На практике это влияние может во много раз уменьшить длину разряда, поэтому в схеме трансформатора Теслы разрядник всегда ставится параллельно источнику питания.

Заряд[править | править код]

Заряд конденсатора производится внешним источником высокого напряжения на базе повышающего низкочастотного трансформатора. Ёмкость конденсатора выбирается таким образом, чтобы вместе с индуктором она составляла резонансный контур с частотой резонанса, равной высоковольтному контуру. Однако ёмкость будет отличаться от расчетной, так как часть энергии тратится на «накачку» второго контура. Напряжение заряда ограничено напряжением пробоя разрядника, которое, (в случае воздушного разрядника), можно регулировать, изменяя расстояние между электродами или их форму. Обычно напряжение заряда конденсатора лежит в диапазоне 2-20 киловольт. Знак напряжения при заряде конденсатора имеет значение в том смысле, что он не должен сильно «закорачивать» конденсатор, на котором напряжение постоянно меняет знак — Колебательный контур тут

Генерация[править | править код]

После достижения между электродами разрядника напряжения пробоя, в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. После разряда конденсатора, напряжение пробоя разрядника резко уменьшается из-за оставшихся в газе носителей заряда (ионов). Поэтому цепь колебательного контура, состоящего из первичной катушки и конденсатора, остаётся замкнутой через разрядник, и в ней возникают высокочастотные колебания. Колебания постепенно затухают, в основном, из-за потерь в разряднике и ухода электромагнитной энергии на вторичную катушку, но продолжаются до тех пор, пока ток создаёт достаточное количество носителей заряда для поддержания напряжения пробоя разрядника существенно меньшего, чем амплитуда напряжения колебаний в LC контуре. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высокого напряжения.

Во всех типах трансформаторов Теслы основной элемент трансформатора — первичный и вторичный контуры — остается неизменным. Однако, одна из его частей — генератор высокочастотных колебаний может иметь различную конструкцию.

На данный момент существуют:

SGTC (Spark Gap Tesla Coil) — классическая катушка Теслы — генератор колебаний выполнен на искровом промежутке (разряднике).

Для мощных трансформаторов Теслы наряду с обычными разрядниками (статическими) используются более сложные конструкции разрядника.

Например, RSG (от англ. Rotary Spark Gap, можно перевести как роторный/вращающийся искровой промежуток) или статический искровой промежуток с дополнительными дугогасительными устройствами. В этом случае, частоту работы промежутка целесообразно выбирать синхронно частоте подзарядки конденсатора, и схема в этом случае ближе к картинке, а не тому, как она здесь описана. В конструкции роторного искрового промежутка используется двигатель (обычно это электродвигатель), вращающий диск с электродами, которые приближаются, (или просто замыкают), к ответным электродам для замыкания первичного контура. Скорость вращения вала и расположение контактов выбираются исходя из необходимой частоты следования пачек колебаний. Различают синхронные и асинхронные роторные искровые промежутки в зависимости от управления двигателем. Также использование вращающегося искрового промежутка сильно снижает вероятность возникновения паразитной дуги между электродами. Иногда обычный статический разрядник заменяют многоступенчатым статическим разрядником. Для охлаждения разрядников, их иногда помещают в жидкие или газообразные диэлектрики, например, в масло. Типовой прием для гашения дуги в статическом разряднике — это продувка электродов мощной струей воздуха. Иногда классическую конструкцию дополняют вторым, защитным разрядником. Его задача — защита питающей (низковольтной части) от высоковольтных выбросов.

VTTC (Vacuum Tube Tesla Coil) (рус. ЛКТ) — ламповая катушка Теслы. В ней в качестве генератора ВЧ колебаний используются электронные лампы. Обычно, это мощные генераторные лампы, такие как ГУ-81, однако встречаются и маломощные конструкции. Одна из особенностей — отсутствие необходимости в высоком напряжении. Для получения сравнительно небольших разрядов достаточно 300—600 Вольт. Также VTTC практически не издает шума, появляющегося при работе катушки Теслы на искровом промежутке.

SSTC (Solid State Tesla Coil) — генератор выполнен на полупроводниках. Он включает в себя задающий генератор (с регулируемой частотой, формой, длительностью импульсов) и силовые ключи (мощные полевые MOSFET транзисторы). Данный вид катушек Теслы является самым интересным по нескольким причинам: изменяя тип сигнала на ключах, можно кардинально изменять внешний вид разряда. Также ВЧ сигнал генератора можно промодулировать звуковым сигналом, например музыкой — звук будет исходить из самого разряда. Впрочем, аудиомодуляция возможна (с небольшими доработками) и в VTTC. К прочим достоинствам, можно отнести низкое питающее напряжение и отсутствие шумного искрового разрядника, как в SGTC.

DRSSTC (Dual Resonant Solid State Tesla Coil) — за счёт двойного резонанса, разряды у такого вида катушек значительно больше чем у обычной SSTC. Для накачки первичного контура используется генератор на полупроводниковых ключах — IGBT или MOSFET транзисторах.

В аббревиатурах названий катушек Теслы, питаемых постоянным током, часто присутствуют буквы DC, например DCSGTC.

QCW DRSSTC (Quasi Continious Wave) — особый тип транзисторных катушек Теслы, характеризующийся, так называемой, плавной накачкой: постепенным и плавным, (а не резким ударным, как в обычных катушках), нарастанием ряда параметров, (а именно: напряжения первичного контура и тока первичного контура, и, возможно, напряжения вторичного контура). В классической импульсной катушке Теслы рост тока в первичной обмотке обычно происходит в течение времени, сравнимым с длительностью периода (от 2—3 до 7—10 и более периодов) резонансной частоты, то есть, за время порядка десятков — сотен микросекунд. В QCW время нарастания составляет десятки миллисекунд, то есть, больше примерно на два порядка. Простым примером около-QCW являются ламповые катушки Теслы с шифтером. Из-за 50-герцового синуса на его выходе возникает эффект полуплавной накачки, которая обеспечивает довольно внушительный прирост длины разряда относительно типичного жёсткого прерывания (по катоду, или сетке). В результате данного приёма достигается характерный вид молний в виде длинных и практически прямых, мечевидных разрядов, длина которых многократно превышает длину намотки вторичной обмотки. Дело в том, что полное напряжение на терминале QCW DRSSTC никогда не достигает пробойного для вторички: оно всегда остаётся довольно небольшим, десятки киловольт или типа того. Возникший на небольшом напряжении стример продолжает подпитываться энергией в течение всего времени накачки, и поэтому растёт вверх, по силовым линиям поля, вместо того, чтобы пробиваться сбоку тороида на страйкринг. Именно для этого и делается плавная накачка в катушках Теслы. За счёт такого приёма достигается следующий эффект: вначале появляется небольшой разряд, который затем растёт не с высокой скоростью, пробивая плазменный канал в случайном направлении, а с низкой (так, что этот процесс развития можно даже заснять обычными видеокамерами), что обусловливает его неразветвление и огромную относительно длины вторичной обмотки длину. По сути, мы постоянно подогреваем небольшой возникший разряд, который удлиняется по мере перекачки энергии во вторичную обмотку. Но напряжение на выходе такой катушки Теслы невелико и не превышает десятков киловольт.

В отдельную категорию также относят магниферные катушки Теслы.

Разряд трансформатора Теслы Разряд с конца провода

Выходное напряжение трансформатора Теслы может достигать нескольких миллионов вольт. Это напряжение в частоте минимальной электрической прочности воздуха способно создавать внушительные электрические разряды в воздухе, которые могут иметь многометровую длину. Эти явления очаровывают людей по разным причинам, поэтому трансформатор Теслы используется как декоративное изделие.

Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (радиоуправление), беспроводной передачи данных (радио) и беспроводной передачи энергии. В начале XX века трансформатор Теслы также нашёл популярное использование в медицине.[3][4] Пациентов обрабатывали слабыми высокочастотными токами, которые, протекая по тонкому слою поверхности кожи, не причиняли вреда внутренним органам (см.: скин-эффект, Дарсонвализация), оказывая при этом «тонизирующее» и «оздоравливающее» влияние.

Неверно считать, что трансформатор Теслы не имеет широкого практического применения. Он используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах. Тем не менее, основное его применение в наши дни — познавательно-эстетическое. В основном это связано со значительными трудностями при необходимости управляемого отбора высоковольтной мощности или тем более передача её на расстояние от трансформатора, так как при этом устройство неизбежно выходит из резонанса, а также значительно снижается добротность вторичного контура.

Эффекты, наблюдаемые при работе трансформатора Теслы[править | править код]

Во время работы катушка Теслы создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов. Многие люди собирают трансформаторы Теслы ради того, чтобы посмотреть на эти впечатляющие, красивые явления. В целом катушка Теслы производит 4 вида разрядов:

  1. Стримеры (от англ. Streamer) — тускло светящиеся тонкие разветвлённые каналы, которые содержат ионизированные атомы газа и отщеплённые от них свободные электроны. Протекает от терминала (или от наиболее острых, искривлённых ВВ-частей) катушки прямо в воздух, не уходя в землю, так как заряд равномерно стекает с поверхности разряда через воздух в землю. Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.
  2. Спарк (от англ. Spark) — это искровой разряд. Идёт с терминала (или с наиболее острых, искривлённых ВВ частей) непосредственно в землю или в заземлённый предмет. Представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвлённых полосок — искровых каналов. Также имеет место особый вид искрового разряда — скользящий искровой разряд.
  3. Коронный разряд — свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг ВВ-частей конструкции с сильной кривизной поверхности.
  4. Дуговой разряд — образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет, между ним и терминалом может загореться дуга (иногда нужно непосредственно прикоснуться предметом к терминалу и потом растянуть дугу, отводя предмет на большее расстояние). Особенно это свойственно ламповым катушкам Теслы. Если катушка недостаточно мощна и надёжна, то спровоцированный дуговой разряд может повредить её компоненты.

Часто можно наблюдать (особенно вблизи мощных катушек), как разряды идут не только от самой катушки (её терминала и т. д.), но и в её сторону от заземлённых предметов. Также на таких предметах может возникать и коронный разряд. Редко можно наблюдать также тлеющий разряд. Интересно заметить, что некоторые ионные химические вещества, нанесённые на разрядный терминал, способны менять цвет разряда. Например, ионы натрия меняют обычный окрас спарка на оранжевый, а бора — на зелёный.

Работа резонансного трансформатора сопровождается характерным электрическим треском. Появление этого явления связано с превращением стримеров в искровые каналы (см. статью искровой разряд), который сопровождается резким возрастанием силы тока и количества энергии, выделяющейся в них. Каждый канал быстро расширяется, в нём скачкообразно повышается давление, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры.

Являясь источником высокого напряжения, трансформатор Теслы может быть смертельно опасен. Особенно это касается сверхмощных ТТ с управлением на лампах или полевых транзисторах. В любом случае, даже для маломощных трансформаторов Тесла характерен выброс высоковольтной высокочастотной энергии, способной вызвать локальные повреждения кожного покрова в виде плохо заживающих ожогов. Для трансформаторов Тесла средней мощности (50-150 Ватт), такие ожоги могут привести к повреждению нервных окончаний и значительное повреждение подкожных слоев включая повреждение мышц и связок. Трансформаторы Тесла с искровым возбуждением менее опасны с точки зрения ожогов, однако, высоковольтные разряды следующие с паузами, наносят больший вред нервной системе и способны вызвать остановку сердца (у людей с проблемами сердца). В любом случае, вред, который могут нанести высокочастотные мощные генераторы, к которым относятся Трансформаторы Тесла, сугубо индивидуален и, зависит от особенностей организма и психического состояния конкретного человека.

Замечен факт, что женщины наиболее остро реагируют на излучения мощных радиочастотных устройств, соответственно и реакция на ТТ у женщин острее чем у мужчин[источник не указан 531 день]. К трансформатору Теслы, как к любому электроприбору, нельзя допускать детей без присмотра взрослых.

Однако существует и другое мнение[источник не указан 1896 дней], касающееся некоторых видов трансформаторов Теслы. Так как высокочастотное высокое напряжение имеет скин-эффект, то несмотря на потенциал в миллионы вольт, разряд в тело человека не может вызвать остановку сердца или другие серьёзные повреждения организма, несовместимые с жизнью.

В противоположность этому другие высоковольтные генераторы, например, высоковольтный умножитель телевизора и иные бытовые высоковольтные генераторы постоянного тока, имеющие несравненно меньшее выходное напряжение (порядка 25 кВ), могут являться смертельно опасными. Всё это потому, что в вышеуказанных преобразователях используется частота в 50 герц (в умножителе классического телевизора частота около 15кГц, в мониторах еще выше), следовательно, скин-эффект отсутствует, или исчезающе слаб, и ток потечёт через внутренние органы человека (опасным для жизни считается ток в десятки мА).

Несколько другая картина со статическим электричеством, которое может очень чувствительно ударить током при разряде (при прикосновении к металлу), но при этом не смертельно, так как статический заряд сравнительно небольшой, и протекающий ток не успеет нанести вред человеку (заряд равен произведению тока и времени).[источник не указан 1896 дней]Еще одна опасность, которая подстерегает при использовании трансформатора Теслы, — это избыток озона в крови, который может повлечь за собой головные боли, так как при работе устройства производятся большие порции этого газа.

В фильмах[править | править код]

В фильме Джима Джармуша «Кофе и сигареты» один из эпизодов строится на демонстрации трансформатора Теслы. По сюжету, Джек Уайт, гитарист и вокалист группы «The White Stripes» рассказывает Мег Уайт, барабанщице группы, о том, что земля является проводником акустического резонанса (теория электромагнитного резонанса — идея, которая занимала ум Теслы многие годы), а затем «Джек демонстрирует Мэг машину Тесла».

В фильме «Престиж» Кристофера Нолана, для победы одного иллюзиониста над другим в мастерстве «телепортации», Роберт Энджер (Хью Джекман), обращается к Николе Тесле за помощью. Никола же в свою очередь сделал ему машину, с трансформатором Теслы, у которой оказалась одна недоработка — она не телепортировала, а клонировала. Телепортация же была побочным эффектом.

В фильме «Ученик чародея» в одном из эпизодов демонстрируется музыкальное свойство катушек. Этот эффект достигается уменьшением и увеличением частоты.

В японском фильме «Легенда о маске» также присутствует трансформатор Теслы.

В фильме Три икса (xXx) в цитадели преступной организации, ночном клубе используют огромные трансформаторы Теслы, дающие внушительные разряды по всёму помещению, с декоративной целью.

В телесериале «Хранилище 13» главные герои используют трансформатор в виде оружия.

В фильме «Звуки шума» один из барабанщиков пробует играть на только что сделанной барабанной установке которая выдает электрические дуги в такт ударам по ней.

В фильме «Metallica: Сквозь невозможное» при исполнении песни «Ride the Lightning (песня)» были использованы трансформаторы Теслы для подачи разряда к подвешенному над сценой креслу, модель которого изображена на обложке альбома «Ride the Lightning».

В мультсериале «Смешарики: Пин-код» один из главных героев, Лосяш, создаёт аналог трансформатора Теслы — «Генератор Лосяша».

В компьютерных играх[править | править код]

В игре Kingdom Rush можно проапгрейдить обычную пушку до трансформатора Теслы.

В серии игр Command & Conquer: Red Alert советская сторона может строить оборонительное сооружение в виде башни со спиралевидным проводом (катушка Теслы), которая поражает противника мощными электрическими разрядами. Ещё в игре присутствуют танки (танк Теслы) и пехотинцы (солдат Теслы), использующие эту технологию. В игре Command & Conquer Red Alert 3 — Uprising есть скаты, это боевые амфибии оснащенные орудиями Тесла. Также в игре Tremulous люди (Humans) могут строить трансформаторы Теслы для защиты своих баз.

В играх серии Wolfenstein есть оружие, именуемое «Орудие Тесла», поражающее противника электрическим разрядом на большом расстоянии.

В игре Tomb Raider: Legend на одном из уровней есть статичные «установки Тесла» их можно использовать для притягивания и поднятия тяжелых объектов (почти также, как в «Half-Life 2»). А также с помощью одной из них можно умертвить огромного монстра-босса.

В модификации Half-Life 2 Dystopia также существует оружие «Tesla Gun», способное создавать разряды и в режиме альтернативной стрельбы — шаровые молнии. Состоит из цевья и металлического шара вместо дула, внешне похожего на сферическую астролябию.

В игре Fallout присутствует броня Теслы, также она есть и в игре Arcanum, также в загружаемом дополнении «Broken Steel» для игры «Fallout 3» присутствует пушка Теслы и сама катушка Теслы. В игре Fallout New Vegas это оружие можно приобрести в некоторых магазинах, например у Ван Граффов или у оружейников, в дополнении Fallout: New Vegas — Old World Blues, мозг главного героя заменили на катушку Теслы передающею сигналы мозга героя.

В игре Arcanum (жанр RPG) существуют соответствующие запчасти (Tesla coil и т. п.) и виды вооружения (Tesla rod, Tesla gun и т. п.), различные электрические щиты и т. п. Они имеют свойство наносить особый тип повреждений — electric damage.

В первой редакции игры Blood также присутствовало оружие под названием Tesla, поражавшее противника либо молниевидным разрядом, либо неким подобием шаровой молнии.

В игре Вивисектор присутствует оружие, называемое «Тесла», бьющее электрическим разрядом по противнику.

В игре Quake 4 есть оружие Lightning Gun, генерирующее электрический разряд, аннигилирующий слабых противников.

В игре Nancy Drew: Secret of the Old Clock, используется как вход в «тайный» чердак.

В игре Assassin’s Creed 2 при прохождении Истины рассказывается выдуманная история о Никола Тесле, якобы он получил всемогущий артефакт, но позже его отняли потомки тамплиеров. Также во время прохождении Истины появляются 2 фотографии трансформатора Теслы.

В игре Xenus: Точка кипения при прохождении последних заданий, в одной из комнат стоит огромная катушка Теслы.

В игре SCP-Containment Breach в коридорах могут сгенерироваться Тесла-ворота, которые при приближении к ним сразу убивают игрока.

В игре Minecraft с дополнением (модом) IndustrialCraft можно скрафтить катушку Теслы, которая вызывает смерть всем существам, находящимся в радиусе 4 блоков от катушки, а с дополнением (модом) GregTech можно скрафтить посох Теслы, который сжигает заряд брони другого игрока.

В игре Dishonored есть ТТ на различных уровнях, также есть миссия связанная с этим трансформатором

В игре Nancy Drew: The Deadly Device сюжет завязывается вокруг трансформатора Теслы, от которого погибает учёный.

В игре Clash of Clans есть защитное сооружение «Потайная Тесла», которая бьет нападающие войска электрическими разрядами, также в игре Clash Royal от разработчиков Clash of Clans существует персонаж Спарки (Sparky) который стреляет шаром электричества.

В игре Overwatch один из персонажей Винстон использует оружие, напоминающие катушку Тесла. Механика подразумевает бой на ближних дистанциях, из-за не дальнобойности электрических молний. Так же, такое оружие бьет сквозь любые барьеры и щиты, что обуславливается особенностями электрических молний.

В игре Alien Swarm присутствует катушка тесла, которая и поражает приближающихся противников электрическими разрядами, а также пушка тесла.

В музыкальном искусстве[править | править код]

Российская группа Tesla Musiс Band записала первый в мире музыкальный альбом с оригинальным звучанием музыкального трансформатора Теслы[5]. Также группа Tesla Music Band использует музыкальные трансформаторы Теслы в создании шоу[6].

Американская группа ARC ATTACK использует трансформаторы Теслы в качестве источника звуков. То есть разряд, создаваемый трансформатором, может звучать, «петь».

Российская команда Tesla-FX утверждает, что впервые[7][нет в источнике] сыграла гимн России[8] на созданном ими музыкальном трансформаторе Теслы.

(ещё гимн России на трансформаторе Теслы: https://www.youtube.com/watch?v=QFFgeQ3ptLQ)

Для записи песни «Thunderbolt» с альбома Biophilia певица Бьорк также использовала катушку Теслы для создания звуков, имитирующих разряды молний[9].

В шоу-бизнесе[править | править код]

Трансформатор Теслы может применяться для создания спецэффектов в различных шоу. Шоу Full-Moon-Party с использованием двух трансформаторов Теслы прошло в ночь с 13 на 14 августа 2011 года в Москве в клубе Arena-Moscow[10][11]. Первое в России шоу[12] с трансформаторами Теслы состоялось 21 мая 2011 г. на презентации нового Ferrari FF в подмосковной Барвихе.

Трансформатор тесла принцип работы, схема, применение

катушка тесла - молнии

Трансформатор (катушка) Тесла (Tesla Coil, TC) — это повышающий высокочастотный резонансный трансформатор — два колебательных контура, настроенных на одинаковую резонансную частоту. В сети можно найти множество примеров ярких реализаций этого необычного устройства.

Катушка без ферромагнитного сердечника, состоящая из множества витков тонкого провода, увенчанная тором, испускает настоящие молнии, впечатляя изумленных зрителей.

С точки зрения электротехники в нашем примитивном понимании, трансформатор Теслы — это первичная и вторичная обмотка, простейшая схема, которая обеспечивает питание первичной обмотки на резонансной частоте вторичной обмотки, но выходное напряжение возрастает в сотни раз. В это сложно поверить, но каждый может убедиться в этом сам.

Как работает трансформатор тесла

Катушка Тесла названа так в честь ее изобретателя Николы Тесла (около 1891 года). История данного изобретения начинается с конца 19 века, когда гениальный ученый-экспериментатор Никола Тесла, работая в США, только поставил перед собой задачу научиться передавать электрическую энергию на большие расстояния без проводов. Аппарат для получения токов высокой частоты и высокого потенциала был запатентован Теслой в 1896 году.

Не смотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты.

Трансформатор Тесла – прекрасная игрушка для тех, кто хочет сделать что-то эдакое. Это устройство не перестает поражать окружающих мощью своих огромных разрядов. Более того, сам процесс конструирования трансформатора очень увлекателен – не часто так много физических эффектов сочетаются в одной несложной конструкции.

Несмотря на то, что сама по себе “Тесла” очень проста, многие из тех, кто пытаются ее сконструировать не понимают как работает трансформатор Тесла.

катушка теслакатушка тесла

Принцип действия трансформатора Тесла похож на работу обычного  трансформатора.  Трансформатор Тела состоит из двух обмоток – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную.

схема катушки теслатрансформатор тесла схема

Вторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.

схема катушки теслаколебания напряжения в трансформаторе Тесла

Тесла обладает тремя основными характеристиками:

  1. резонансной частотой вторичного контура,
  2. коэффициентом связи первичной и вторичной обмоток,
  3. добротностью вторичного контура.

Коэффициент связи определяет насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.

Основные детали  и конструкции трансформатора Тесла

конструкция трансформатора теслаКонструкция трансформатора тесла

Тороид

Тороид – выполняет три функции.

Первая – уменьшение резонансной частоты – это актуально для SSTC и DRSSTC, так как силовые полупроводники плохо работают на высоких частотах.

Вторая – накопление энергии перед образованием стримера.

Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.

Чем больше тороид, тем больше в нем накоплено энергии  и, в момент, когда воздух пробивается, тороид отдает эту энергию в стример, таким образом,  увеличивая его. Для того, чтобы извлечь выгоду из этого явления в теслах с непрерывной накачкой энергии, используют прерыватель.

Третья – формирование электростатического поля, которое отталкивает стример от вторичной обмотки теслы. От части, эту функцию выполняет сама вторичная обмотка, но тороид может ей хорошо помочь. Именно по причине электростатического отталкивания стримера, он не бьет по кратчайшему пути во вторичку.

От использования тороидоа больше всего выиграют теслы с импульсной накачкой – SGTC, DRSSTC и теслы с прерывателями. Типичный внешний диаметр тороида – два диаметра вторички.

Тороиды обычно изготавливают из алюминиевой гофры, хотя есть множество других технологий,

Вторичная обмотка – основная деталь Теслы

Типичное отношение длинны обмотки теслы к ее диаметру намотки 4:1 – 5:1.

Диаметр провода для намотки теслы обычно выбирают так, чтобы на вторичке помещалось 800-1200 витков.

ВНИМАНИЕ!

Не стоит мотать слишком много витков на вторичке тонким проводом. Витки на вторичке нужно распологать как можно плотнее друг к другу.

Для защиты от царапин и от разлезания витков, вторичные обмотки обычно покрывают лаками. Чаще всего для этого применяются эпоксидная смола и полиуретановый лак. Лакировать стоит очень тонкими слоями. Обычно, на вторичку, наносят минимум 3-5 тонких слоев лака.

Мотают вторичную обмотку на воздуховодных (белых) или, что хуже, канализационных (серых) ПВХ трубах. Найти эти трубы можно в любом строительном магазине.

Защитное кольцо

Защитное кольцо – предназначено для того, чтобы стример, попав в первичную обмотку не вывел электронику из строя. Эта деталь устанавливается на теслу, если длинна стримера больше длинны вторичной обмотки. Представляет собой незамкнутый виток медного провода (чаще всего, немного толще, чем тот из которого изготавливается первичная обмотка трансформатора тесла). Защитное кольцо заземляется на общее заземление отдельным проводом.

Первичная обмотка

Первичная обмотка – обычно изготавливается из медной трубы для кондиционеров. Должна обладать очень маленьким сопротивлением для того, чтобы по ней можно было пропускать большой ток. Толщину трубки обычно выбирают на глаз, в подавляющем большинстве случаев, выбор падает на 6 мм трубку. Так-же в качестве первички используют провода большего сечения.

Относительно вторичной обмотки устанавливается так, чтобы обеспечить нужный коэффициент связи.

Часто играет роль построечного элемента в тех теслах, где первичный контур является резонансным. Точку подключения к первичке делают подвижной и ее перемещением изменяют резонансную частоту первичного контура.

Первичные обмотки обычно делают цилиндрическими, плоскими или  коническим. Обычно, плоские первички используются в SGTC, конические- в SGTC  и DRSSTC, а цилиндрические — в SSTC, DRSSTC и VTTC.

первичные обмотки трансформатора теслапервичные обмотки трансформатора тесла

Заземление

Заземление – как не странно, тоже очень важная деталь теслы. Очень часто задаются вопросом – куда же бьют стримеры? — стримеры бьют в землю!

первичные обмотки трансформатора теслаСтримеры замыкают ток, показанный на картинке синим цветом

Таким образом, если заземление будет плохое, стримерам будет некуда деваться и им придется бить в теслу (замыкать свой ток), вместо того, чтобы извергаться  в воздух.

Поэтому задавая вопрос обязательно ли заземлять теслу?

Заземление для теслы – обязательно.

Существуют трансформаторы Тесла без первичной обмотки. У них питание подается прямо на “земляной” конец вторички. Такой метод питания называется “бэйзфид” (basefeed).

Иногда, в качестве источника бэйзфидного питания используется другой трансформатор Тесла, такой метод питания называют “магниферным” (Magnifier).

Существуют так называемые биполярные теслы, они отличаются тем, что разряд происходит не в в воздух, а между двумя концами вторичной обмотки. Таким образом, путь тока легко может замкнуться и заземление не нужно.

Вот самые распространенные типы катушек Тесла в зависимости от способа управления ими:

  1. SGTC (СГТЦ, Spark Gap Tesla Coil) – трансформатор Тесла на искровом промежутке. Это классическая конструкция, подобную схему изначально применял сам Тесла. В качестве коммутирующего элемента здесь используется разрядник. В конструкциях малой мощности разрядник представляет собой два куска толстого провода, расположенных на некотором расстоянии, а в более мощных применяются сложные вращающиеся разрядники с использованием двигателей. Трансформаторы этого типа изготавливают если требуется лишь большая длинна стримера, и не важна эффективность.
  2. VTTC (ВТТЦ, Vacuum Tube Tesla Coil) – трансформатор Тесла на электронной лампе. В качестве коммутирующего элемента здесь используется мощная радиолампа, например ГУ-81. Такие трансформаторы могут работать в непрерывном режиме и производить довольно толстые разряды. Данный тип питания чаще всего используют для построения высокочастотных катушек, которые из-за типичного вида своих стримеров получили название “факельники”.
  3. SSTC (ССТЦ, Solid State Tesla Coil) – трансформатор Тесла, в котором в качестве ключевого элемента применяются полупроводники. Обычно это IGBT или MOSFET транзисторы. Данный тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых такой катушкой может быть самым разным. Этим типом трансформаторов Тесла проще управлять, например можно играть на них музыку.
  4. DRSSTC (ДРССТЦ, Dual Resonant Solid State Tesla Coil) – трансформатор Тесла с двумя резонансными контурами, здесь в качестве ключей используются, как и в SSTC, полупроводники. ДРССТЦ – наиболее сложный в управлении и настройке тип трансформаторов Тесла.

Для получения более эффективной и эффектной работы трансформатора Тесла применяют именно схемы топологии DRSSTC, когда мощный резонанс достигается и в самом первичном контуре, а во вторичном соответственно — более яркая картина, более длинные и толстые молнии (стримеры).

Виды эффектов от катушки Тесла

  • Дуговой разряд – возникает во многих случаях. Он характерен ламповым трансформаторам.
    Коронный разряд является свечением воздушных ионов в электрическом поле повышенного напряжения, образует голубоватое красивое свечение вокруг элементов устройства с высоким напряжением, а также имеющим большую кривизну поверхности.
  • Спарк по-другому называют искровым разрядом. Он протекает от терминала на землю, либо на заземленный предмет, в виде пучка ярких разветвленных полосок, быстро исчезающих или меняющихся.
  • Стримеры – это тонкие слабо светящиеся разветвляющиеся каналы, содержащие ионизированные атомы газа и свободные электроны. Они не уходят в землю, а протекают в воздух. Стримером называют ионизацию воздуха, образуемую полем трансформатора высокого напряжения.

Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии. Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.

Практическое  применение трансформатор тесла

Величина напряжения на выходе трансформатора Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.

Катушка Тесла нашла практическое применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.

Трансформатор Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.

Иногда на практике такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.

Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх.

В настоящее время катушка Тесла не нашла широкого применения на практике в быту.

Новое в трансформаторах тесла

В настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей. Взгляды Тесла актуальны сегодня не только в технике и науке, но и для работ в новых изобретениях, применения новых технологий на производстве. Наше будущее даст объяснение явлениям и эффектам, открытым Теслой. Он заложил для третьего тысячелетия основы новейшей цивилизации.

трансформатор тесла схема

схема трансформатора тесла на транзисторе

Схема трансформатора тесла выглядит невероятно просто и состоит из:

  1. первичной катушки, выполненной из провода сечением не менее 6 мм², около 5-7 витков;
  2. вторичной катушки, намотанной на диэлектрик, это провод диаметром до 0,3 мм, 700-1000 витков;
  3. разрядника;
  4. конденсатора;
  5. излучателя искрового свечения.

Главное отличие трансформатора Теслы от всех остальных приборов — в нем не применяются ферросплавы в качестве сердечника, а мощность прибора, независимо от мощности источника питания, ограничена только электрической прочностью воздуха. Суть и принцип действия прибора в создании колебательного контура, который может реализовываться несколькими методами:

  1. Генератор колебаний частоты, построенный на основе разрядника, искрового промежутка.
  2. Генератор колебания на лампах.
  3.  На транзисторах.

 

Видео: Стоячие волны в Трансформаторе Тесла, резонанс, коэффициент трансформации

Видео: Трансформатор ТЕСЛА своими руками

Видео: Трансформатор Тесла

Пошаговое объяснение процесса сборки и запуска одного из самых мощных трансформаторов Тесла в России. Конструктор: Блотнер Борис

Трансформатор Тесла: принцип работы и схема

Тесла-трансформатор представляет собой высоковольтный резонансный прибор, работающий на высокой частоте. Конструкция агрегата относительно простая. Подобные приборы демонстрируют разряды электричества, красиво смотрящиеся в темноте. Трансформаторы типа Тесла испускают настоящие молнии. Поэтому его использование сводится к декоративным функциям. Особенности чудо-прибора интересно узнать каждому.

Трансформатор Тесла в работе

История изобретения

Резонансный трансформатор Тесла появился в результате многолетней работы ученого и экспериментатора Н. Тесла. Он стремился найти способ передавать электричество на большие расстояния без проводов. В 1891 году изобретатель продемонстрировал наглядные эксперименты, проводимые в этом направлении.

Практическое применение его трудов (по мнению самого ученого) заключалось в обеспечении светом любого здания, частного дома и прочих объектов посредством тока высокого напряжения и частоты. Ученый раскрывал особенности получения, применения подобных токов, применения их для электроснабжения.

Постепенно ученый начал задумываться об использовании открытого способа для передачи электричества на большие расстояния. На разработку теории исследователь потратил несколько лет. Ученый проводил множество экспериментов, совершал каждый элемент схемы. Экспериментатор трудился над созданием прерывателей, контроллеров цепей, стойких конденсаторов высокого вольтажа. Замысел исследователь в жизнь так и не воплотил в том масштабе, в каком было изначально задумано.

Однако каждый его патент, статья, лекция были сохранены. Их можно сегодня перечитать, обдумать. Например, патент № 649621 и №787412 представлен в интернете. Документы размещены в открытом доступе для широкой общественности. Видео работы агрегата в действии легко отыскать в сети.

Основной принцип, открытый великим изобретателем, ныне применяется для изготовления люминесцентных осветителей.

Схема и основные компоненты

Чтобы понять, как работает трансформатор Тесла, необходимо рассмотреть его устройство. В схему входит две обмотки – вторичная и первичная. Контуры выполнены из медной проволоки толщиной 0,1-0,2 мм².

К первичной обмотке подводится переменный ток. Это позволяет получить магнитное поле, передающее электричество от первой ко второй катушке. В этот момент вторичная обмотка будет производить контур колебательного типа. Обмотка будет накапливать получаемое электричество. Некоторое время нагрузка будет здесь храниться как определенное напряжение.

Схема резонансного трансформатора Тесла может иметь разное строение катушек. Контуры обладают схожими чертами. Тороидальные разновидности катушек Тесла представлены на фото.

Схема тороидальной катушки Тесла

Трансформатор конструкции Николы Тесла содержит в составе тороид. Элемент выполняет три основные функции:

  1. Способствует накоплению электричества перед тем, как будет получен стример. Большие габариты позволяют тороиду вместить значительное количество энергии. В устройстве часто применяется прерыватель.
  2. Уменьшает резонансную частоту.
  3. Образует электростатическое поле, отталкивающее стример. В некоторых типах конструкций эту функцию выполняет вторичная катушка.

Для подобных устройств важно выдерживать правильное соотношение между диаметром и длиной вторичной катушки. Пропорция должна составлять 1:4. Защитное кольцо схемы препятствует выходу электроники из строя. Деталь выглядит как специальное кольцо, изготовленное из меди.

Для правильной работы трансформатора Тесла защитное кольцо должно заземляться. Стримеры замыкают ток, ударяясь в землю. Если контур надежен, молнии ударяют непосредственно в агрегат.

В первичной обмотке определяется небольшое сопротивление. Это обеспечивает на практике надежную передачу электроэнергии. Точка подключения характеризуется высокой подвижностью. Это позволяет менять резонансную частоту. Понимая соотношение представленных элементов, удастся вникнуть в принцип работы трансформатора Тесла.

Принцип работы

Емкостной трансформатор Тесла характеризуется определенным принципом работы. Он заряжает конденсатор при помощи дросселя. Чем меньше уровень индуктивности, тем быстрее будет происходить зарядка. Спустя некоторое время его показатели напряжения значительно увеличиваются. В разряднике появится дуга. Она станет хорошим проводником.

Емкостным аппаратам требуется обеспечивать заряд аккумулятора от аккумулятора высокого напряжения. Обычные батарейки для этого не подходят. Питание первичной цепи выполняется различными способами. Это может быть статический искровой промежуток с подключением к высоковольтному прибору от микроволнового нагревателя. Также для этих целей применяются схемы из транзисторов на программируемых контроллерах.

Работающий аппарат при сочетании катушки и конденсатора характеризуется хорошим контуром. За счет образовавшейся нагрузки возникают колебания. В этот момент в конденсаторе и катушке произойдет энергообмен. Ее первая часть исчезнет в виде тепловых лучей. Вторая часть электричества проявится в разряднике. Индуктивность будет способствовать образованию еще одного контура. Частота всех компонентов должна быть одинаковой.

Первый контур передает свою нагрузку. Амплитуда колебаний будет равняться нулю. Обменом энергии этот процесс не заканчивается. После исчезновения дуги остаточная энергия может быть заперта. Весь процесс может повторяться. При сильной связи скорость обмена энергией будет высокой.

Некоторые поклонники творческих идей великого изобретателя утверждают, что КПД емкостного трансформатора Тесла составляет более 100%. Однако это не так. Коэффициент полезного действия, которым характеризуется данное устройство, подчиняется законам сохранения энергии. Поэтому такое утверждение не имеет под собой никаких оснований.

Применение

Помимо декоративного применения представленного устройства существует и практическая польза от его эксплуатации. Коронный разряд заряжает воздух озоном. Это освежает атмосферу в помещении. При этом не стоит допускать длительное воздействие прибора. Большое содержание озона приводит к плохому самочувствию.

Также применение представленного устройства позволяет реанимировать работу вышедшей из строя люминесцентной лампы. Если приблизить прибор к осветительному прибору, последний снова будет функционировать. Однако не стоит подносить близко к излучателю мобильные устройства. Это может вывести гаджет из строя.

Это уникальное, до конца не изведанное изобретение. Его применение должно выполняться с осторожностью. Простота конструкции позволяет собрать прибор самостоятельно.

Схема трансформатора Тесла. Трансформатор Тесла

Трансформатор Тесла (принцип работы аппарата рассмотрим далее) был запатентован в 1896-м году, 22 сентября. Аппарат представили как прибор, производящий электрические токи высокого потенциала и частоты. Устройство было изобретено Николой Тесла и названо его именем. Рассмотрим далее этот аппарат подробнее.

трансформатор тесла

Трансформатор Тесла: принцип работы

Суть действия прибора можно объяснить на примере всем известных качелей. При их раскачивании в условиях принудительных колебаний амплитуда, которая будет максимальной, станет пропорциональной прилагаемому усилию. При раскачивании в свободном режиме максимальная амплитуда при тех же усилиях многократно возрастет. Такова суть и трансформатора Тесла. В качестве качелей в аппарате используется колебательный вторичный контур. Генератор играет роль прилагаемого усилия. При их согласованности (подталкивании в строго необходимые периоды времени) обеспечивается задающий генератор либо первичный контур (в соответствии с устройством).

Описание

Простой трансформатор Тесла включает в себя две катушки. Одна – первичная, другая – вторичная. Также резонансный трансформатор Тесла состоит из тороида (применяется не всегда), конденсатора, разрядника. Последний – прерыватель – встречается в английском варианте Spark Gap. Трансформатор Тесла также содержит «выход» – терминал.

трансформатор тесла энергия из эфира

Катушки

Первичная содержит, как правило, провод большого диаметра либо медную трубку с несколькими витками. Во вторичной катушке имеется кабель меньшего сечения. Его витков – около 1000. Первичная катушка может иметь плоскую (горизонтальную), коническую или цилиндрическую (вертикальную) форму. Здесь, в отличие от обычной трансформатора, нет ферромагнитного сердечника. За счет этого существенно снижается взаимоиндукция между катушками. Вместе с конденсатором первичный элемент формирует колебательный контур. В него включен разрядник – нелинейный элемент.

Вторичная катушка тоже формирует колебательный контур. В качестве конденсатора выступают тороидная и собственная катушечная (межвитковая) емкости. Вторичная обмотка часто покрыта слоем лака либо эпоксидной смолы. Это делается во избежание электрического пробоя.

Разрядник

Схема трансформатора Тесла включает в себя два массивных электрода. Эти элементы должны обладать устойчивостью к протеканию сквозь электрическую дугу больших токов. Обязательно наличие регулируемого зазора и хорошего охлаждения.

Терминал

В резонансный трансформатор Тесла этот элемент может быть инсталлирован в разном исполнении. Терминал может представлять собой сферу, заточенный штырь или диск. Он предназначается для получения искровых предсказуемых разрядов с большой длиной. Таким образом, два связанных колебательных контура образуют трансформатор Тесла.

Энергия из эфира – одна из целей функционирования аппарата. Изобретатель прибора стремился достичь волнового числа Z в 377 Ом. Он изготавливал катушки все большего размера. Нормальная (полноценная) работа трансформатора Тесла обеспечивается в случае, когда оба контура настроены на одну частоту. Как правило, в процессе корректировки осуществляется подстройка первичного под вторичный. Это достигается за счет изменения емкости конденсатора. Также меняется количество витков у первичной обмотки до появления на выходе максимального напряжения.

В будущем предполагается создать несложный трансформатор Тесла. Энергия из эфира будет работать на человечество в полной мере.

трансформатор тесла принцип работы

Действие

Трансформатор Тесла функционирует в импульсном режиме. Первая фаза – конденсаторный заряд до напряжения пробоя разрядного элемента. Вторая – генерация высокочастотных колебаний в первичном контуре. Включенный параллельно разрядник замыкает трансформатор (источник питания), исключая его из контура. В противном случае он будет вносить определенные потери. Это, в свою очередь, снизит добротность первичного контура. Как показывает практика, такое влияние существенно уменьшает длину разряда. В связи с этим в построенной грамотно схеме разрядник всегда ставится параллельно источнику.

Заряд

Его производит внешний источник высокого напряжения на основе низкочастотного повышающего трансформатора. Конденсаторная емкость выбирается так, чтобы она составляла вместе с индуктором определенный контур. Частота его резонанса должна быть равна высоковольтному контуру.

На практике все несколько иначе. Когда осуществляется расчет трансформатора Теслы, не учитывается энергия, которая пойдет на накачку второго контура. Напряжение заряда ограничивается напряжением у пробоя разрядника. Его (если элемент воздушный) можно регулировать. Напряжение пробоя корректируется при изменении формы либо расстояния между электродами. Как правило, показатель находится в пределах 2-20 кВ. Знак напряжения не должен слишком «закорачивать» конденсатор, на котором происходит постоянная смена знака.

резонансный трансформатор тесла

Генерация

После того как будет достигнуто напряжение пробоя между электродами, в разряднике формируется электрический лавинообразный пробой газа. Происходит разряжение конденсатора на катушку. После этого резко снижается напряжение пробоя в связи с оставшимися ионами в газе (носителями заряда). Вследствие этого состоящая из конденсатора и первичной катушки цепь контура колебания через разрядник остается замкнутой. В ней образуются высокочастотные колебания. Они постепенно затухают, преимущественно вследствие потерь в разряднике, а также ухода на вторичную катушку электромагнитной энергии. Тем не менее колебания продолжаются, пока током создается достаточное количество зарядных носителей для поддержания в разряднике существенно меньшего напряжения пробоя, чем амплитуда колебаний LC-контура. Во вторичной цепи появляется резонанс. Это приводит к возникновению высокого напряжения на терминале.

Модификации

Какого бы типа ни была схема трансформатора Тесла, вторичный и первичный контуры остаются неизменными. Тем не менее один из компонентов основного элемента может быть разной конструкции. В частности, речь идет о генераторе высокочастотных колебаний. Например, в модификации SGTC этот элемент выполняется на искровом промежутке.

трансформатор тесла на транзисторах

RSG

Трансформатор Тесла высокой мощности включает в себя более сложную конструкцию разрядника. В частности, это касается модели RSG. Аббревиатура расшифровывается как Rotary Spark Gap. Ее можно перевести следующим образом: вращающийся/роторный искровой либо статический промежуток с дугогасительными (дополнительными) устройствами. В таком случае частота работы промежутка подбирается синхронно частоте конденсаторной подзарядки. Конструкция искрового роторного промежутка включает в себя двигатель (как правило, он электрический), диск (вращающийся) с электродами. Последние или замыкают, или приближаются к ответным компонентам для замыкания.

Выбор расположения контактов и скорости вращения вала основывается на необходимой частоте следования колебательных пачек. В соответствии с типом управления двигателем различают искровые роторные промежутки асинхронные и синхронные. Также применение искрового вращающегося промежутка значительно понижает вероятность образования паразитной дуги между электродами.

В некоторых случаях обычный разрядник заменяют многоступенчатым. Для охлаждения этот компонент иногда помещают в газообразные или жидкие диэлектрики (в масло, к примеру). В качестве типового приема гашения дуги статистического разрядника используется продувка электродов с помощью мощной воздушной струи. В ряде случаев трансформатор Тесла классической конструкции дополняется вторым разрядником. Задача этого элемента состоит в обеспечении защиты низковольтной (питающей) зоны от высоковольтных выбросов.

как сделать трансформатор тесла

Ламповая катушка

В модификации VTTC используют электронные лампы. Они играют роль генератора колебаний ВЧ. Как правило, это достаточно мощные лампы типа ГУ-81. Но иногда можно встретить и маломощные конструкции. Одной из особенностей в данном случае является отсутствие необходимости обеспечения высокого напряжения. Чтобы получить относительно небольшие разряды, нужно порядка 300-600 В. Кроме того, VTTC почти не издает шума, который появляется, когда трансформатор Тесла функционирует на искровом промежутке. С развитием электроники появилась возможность значительно упростить и уменьшить размер прибора. Вместо конструкции на лампах стали применять трансформатор Тесла на транзисторах. Обычно используется биполярный элемент соответствующей мощности и тока.

Как сделать трансформатор Тесла?

Как выше было сказано, для упрощения конструкции используется биполярный элемент. Несомненно, намного лучше применить полевой транзистор. Но с биполярным проще работать тем, кто недостаточно опытен в сборке генераторов. Обмотка катушек связи и коллектора осуществляется проводом в 0.5-0.8 миллиметров. На высоковольтной детали провод берется 0.15-0.3 мм толщиной. Делается приблизительно 1000 витков. На «горячем» конце обмотки ставится спираль. Питание можно взять с трансформатора в 10 В, 1 А. При использовании питания от 24 В и более значительно увеличивается длина коронного разряда. Для генератора можно использовать транзистор КТ805ИМ.

Применение прибора

На выходе можно получить напряжение в несколько миллионов вольт. Оно способно создавать в воздухе внушительные разряды. Последние, в свою очередь, могут обладать многометровой длиной. Эти явления очень привлекательны внешне для многих людей. Любителями трансформатор Тесла используется в декоративных целях.

Сам изобретатель применял аппарат для распространения и генерации колебаний, которые направлены на беспроводное управление приборами на расстоянии (радиоуправление), передачи данных и энергии. В начале ХХ столетия катушка Тесла стала использоваться в медицине. Больных обрабатывали высокочастотными слабыми токами. Они, протекая по тонкому поверхностному слою кожи, не вредили внутренним органам. При этом токи оказывали оздоравливающее и тонизирующее воздействие на организм. Кроме того, трансформатор используется при поджиге газоразрядных ламп и при поиске течей в вакуумных системах. Однако в наше время основным применением аппарата следует считать познавательно-эстетическое.

Эффекты

Они связаны с формированием разного рода газовых разрядов в процессе функционирования устройства. Многие люди коллекционируют трансформаторы Тесла, чтобы иметь возможность наблюдать за захватывающими эффектами. Всего аппарат производит разряды четырех видов. Зачастую можно наблюдать, как разряды не только отходят от катушки, но и направлены от заземленных предметов в ее сторону. На них также могут возникать коронные свечения. Примечательно, что некоторые химические соединения (ионные) при нанесении на терминал могут изменить цвет разряда. К примеру, натриевые ионы делают спарк оранжевым, а борные – зеленым.

работа трансформатора тесла

Стримеры

Это тускло светящиеся разветвленные тонкие каналы. Они содержат ионизированные газовые атомы и свободные электроны, отщепленные от них. Эти разряды протекают от терминала катушки или от самых острых частей непосредственно в воздух. По своей сути стример можно считать видимой ионизацией воздуха (свечением ионов), которая создается ВВ-полем у трансформатора.

Дуговой разряд

Он образуется достаточно часто. К примеру, если у трансформатора достаточная мощность, при поднесении к терминалу заземленного предмета может образоваться дуга. В некоторых случаях требуется прикосновение предмета к выходу, а затем отведение на все большее расстояние и растягивание дуги. При недостаточной надежности и мощности катушки такой разряд может повредить компоненты.

Спарк

Этот искровой заряд отходит с острых частей или с терминала напрямую в землю (заземленный предмет). Спарк представлен в виде быстро сменяющихся или исчезающих ярких нитевидных полосок, разветвленных сильно и часто. Существует также особый тип искрового разряда. Он называется скользящим.

Коронный разряд

Это свечение ионов, содержащихся в воздухе. Оно происходит в высоконапряженном электрическом поле. В результате создается голубоватое, приятное для глаза свечение около ВВ-компонентов конструкции со значительной кривизной поверхности.

Особенности

В процессе функционирования трансформатора можно услышать характерный электрический треск. Это явление обусловлено процессом, в ходе которого стримеры превращаются в искровые каналы. Он сопровождается резким увеличением количества энергии и силы тока. Происходит быстрое расширение каждого канала и скачкообразное повышение давления в них. В итоге на границах образуются ударные волны. Их совокупность от расширяющихся каналов формирует звук, который воспринимается как треск.

Воздействие на человека

Как и другой источник такого высокого напряжения, катушка Тесла может быть смертельно опасной. Но существует иное мнение, касающееся некоторых типов аппарата. Поскольку у высокочастотного высокого напряжения есть скин-эффект, а ток существенно отстает от напряжения по фазе и сила тока очень мала, несмотря на потенциал, разряд в человеческое тело не может спровоцировать ни остановку сердца, ни прочие серьезные нарушения в организме.

Трансформатор Тесла: инструкция по изготовлению

Трансформатор Тесла способен демонстрировать красивые электрические заряды. Они могут иметь большие величины и именно поэтому достаточно часто его используют как декоративное украшение в доме. Он имеет простую конструкцию, которую изготовить может практически каждый. Но вам необходимо помнить о том, что во время работы следует быть осторожным, так как работать вам придется с током.

Трансформатор Тесла и основные компоненты для его изготовления

В схему этого устройства входит две обмотки:

  • Первичная.
  • Вторичная.

К первичной обмотке вам необходимо будет подсоединить переменное напряжение. В результате этого вы получите магнитное поле. Поле будет передавать энергию из первичной обмотки на вторичную. Вторичная обмотка при этом должна будет создать колебательный контур, который будет накапливать эту энергию. Определенное время эта энергия будет храниться в контуре в виде напряжения.

Компоненты трансформатора Тесла

Трансформатор Тесла может иметь несколько видов катушек, но у них похожие черты.

Тороид, который находится в его конструкции способен выполнять три функции. Вот его основные функции:

  • Уменьшение резонансной частоты.
  • Накопление энергии перед получением стримера. При этом вам следует учитывать то чем больше тороид тем больше в нем скопится энергии. Для того чтобы получить выгоду в этом устройстве часто используют прерыватель.
  • Образование электростатического поля, которое будет отталкивать стример. Иногда эту функцию может выполнять и вторичная обмотка.

Перед тем как вы решите сделать трансформатор Тесла вам необходимо знать, что основной деталью здесь является вторичная обмотка. Типичное соотношение между ее длиной и диаметром должно составлять 4:1. Защитное кольцо необходимо для того чтобы электроника не вышла из строя. Деталь представляет собою специальное кольцо, которое изготавливают из медного провода.

Защитное кольцо также обязательно должно иметь заземление. Первичная обмотка должна иметь небольшое сопротивление, чтобы обеспечивать надежную передачу тока. Точка подключения здесь должна быть подвижной. В этом случае вы легко сможете менять резонансную частоту.

Заземление также считается важною деталью для Теслы. В этом случае стримеры будут ударять в землю, и замыкать ток.

Именно поэтому если заземление будет надежным, ваши стримеры будут быть в трансформатор.

Принцип работы устройства

Перед тем как сделать Тесла своими руками вам необходимо знать, как он работает. Тесла работает следующим образом. Трансформатор через дроссель должен заряжать конденсатор. Чем его индуктивность меньше, тем заряд будет происходить быстрее.

Через определенное время его напряжение может значительно увеличиться. Дуга, которая находится в разряднике, выступит отличным проводником. Именно поэтому конденсатор и катушка вместе создадут замечательный контур. Силовой трансформатор имеет подобный принцип работы. За счет энергии, которая здесь образуется, будут происходить колебания.

Во время колебаний в конденсаторе и в катушке должен произойти обмен энергией. Определенная ее часть исчезнет в виде теплового излучения, а вторая половина проявится в разряднике. Показатели индуктивности будут способствовать созданию еще одного контура. Номиналы всех компонентов следует подирать так, чтобы частота их была одинаковой.

Первичный контур должен будет передать свою энергию и со временем она вся будет там. Показатели амплитуды колебаний в этот момент должны быть нулевыми. Весь процесс не закончиться на обмене энергией. Когда дуга полностью исчезнет, остатки энергии могут остаться запертыми.

Дальше весь процесс будет постепенно повторяться. Чем сильнее их связь, тем с большей скоростью они будут обмениваться энергией.

Практические советы

Благодаря советам, которые мы здесь разместили, вы узнаете, как изготовить трансформатор средних размеров своими руками.

Для изготовления вторичной обмотки вам потребуется труба с диаметром в 2 дюйма. Эмалированный провод длиною в 100 метров. ПВХ фитинг диаметром 2 дюйма.

Металлический фланец с диаметром в 2 дюйма.

Краска для эмали.

Болты, гайки, шайбы.

Для вторичной обмотки вам также необходима медная трубка. Ее длина должна быть не менее трех метров.

Для изготовления конденсатора необходимы следующие детали:

  • Несколько стеклянных бутылок.
  • Соль.
  • Фольга.
  • Специальное масло.

Последовательность сборки

Для начала необходимо намотать вторичную обмотку. Конец провода обязательно нужно закрепить вверху трубки. Наматывать ее вам необходимо так чтобы витки не переплетались. Между ними также не должно быть пространства.

Катушку можно зафиксировать с помощью малярного скотча. Мотать его необходимо через каждые 20 витков.

Вам необходимо плотно обернуть обмотку и закрепить ее с помощью краски.

Для намотки витков вы легко сможете изготовить специальное приспособление.

Для того чтобы направлять проволоку можно использовать деревянный брусок.

На этом этапе вам потребуется подготовить и сделать первичную обмотку. Сделать ее несложно. Для этого нужно установить металлический фланец по центру доски и сделать отверстия для болтов.

Первичную обмотку нужно закрепить гайками.

Из медной трубы вам потребуется изготовить специальную спираль. Потом ее необходимо растягивать. В итоге у вас должен получиться конус.

Изготовление разрядника. Он может представлять собою два болта, которые помещают в открытую деревянную коробку.

Монтаж конденсаторов. Сделать их достаточно просто. Для этого обычно используют соленую воду, масло и фольгу. Это все вы набираете в бутылку, а верх обматываете фольгой. После этого в отверстия следует вставить металлическую проволоку.

Вам следует перейти к соединению проводов. Делать все нужно как указано на схеме. Обмотка обязательно должна заземляться. Благодаря этому трансформатор Тесла будет защищен от поломки. Количество витков в обмотке должно составлять:

  • В первичной 7 витков.
  • Во вторичной 600 витков.

Испытание прибора

Первое испытание обязательно должно проводиться на улице. Другие типы трансформаторов тока также необходимо испытывать. Это обеспечит вам надежную безопасность. После включения должно появиться шоу из разрядов. Трансформатор Тесла должен издавать искры длиною в 15 сантиметров.

Читайте: подключение трансформатора тока.

Трансформатор Тесла на Качере Бровина от 220 вольт

В этой статье я расскажу о том, как изготовить Качер Бровина относительно не маленькой мощности притом же наборе деталей. Так что же такое «качер», по своей сути это подобие катушки Тесла, которая же я является резонансным трансформатором с помощью которого можно получить огромное напряжение высокой частоты и следовательно сильное электромагнитное поле которое обладает довольно интересными свойствами. И так оставим слова и перейдем собственно к процессу сборки установки.

 Но конечно прежде чем собрать, что-то нужно понять, как это работает и  из чего собирается.

Вот схема установки.

Питается схема напряжением сети 220 В которое прежде чем перейди собственно к основной генераторной части качера выпрямляется через диод D1 и понижается по средствам дросселя, в качестве дросселя я использовал трансформатор на 12 вольт который включается обмоткой 220 проще говоря берем два провода к которым на трансформаторе подключается сеть 220 и один из них так же подключаем к 220 а второй идет на питание качера к конденсатору С1. Теперь перейдем к резисторам, R2 можно использовать средней мощности я использовал советский среднего размера, что касается R1 у меня просто не было в наличии такого наминала и я использовал 4 по 12 КОм  большой мощности и все резисторы остались холодными даже после долгой работы. Теперь коснемся транзистора самой дефицитной деталью установки. КТ828 можно взять только в крайнем случае если нет возможности достать импортные, а именно отличную работу показал транзистор С5244А фирмы Panasonic   но не повторяйте моих ошибок не пытайтесь убирать дроссель или ставить очень маленький, в моём случае я убрал его вообще и транзистор взорвался довольно не слабо. Можно использовать и  2SA1943 и похожие с такими параметрами напряжения и тока, транзистор как обычно в этих случаях ставится на радиатор.

Вот вся электроника.

Спаиваем все по схеме и вот что получилось у меня 

 

Теперь основная не очень технологичная и жутко нудная часть. Мотаем катушку L1 (первичка) Медным проводом диаметр не менее 5 мм Порядка 5 -7 витков, диаметр катушки примерно 14 см.

 

Теперь то за что многие не берутся собирать подобные установки это намотка L2 (вторичка) Пластиковая труба диаметром 5 см, высоты в 25-30 см достаточно можно больше, если хватит терпения. Я намотал две катушки проводом разного диаметра

Первая проводом 0,2-0,3 и высотой 25 см.

И диаметром 0,5-0,8 мм На высоту 35 см.

(Свет слева просто светильник. Это не эффект качера)

Больше эффекта все таки удалось получить из второй катушки, за счет очевидно больше площади.

И теперь собственно собираем как на фото выше, и ниже.

Первый запуск (если все работает) не затягивайте для начала включите на 1-2 минуты и посмотрите как греется транзистор и остальные детали чтобы не перегреть их при длительной работе. 

Не вздумайте касаться всех металлических частей это опасно для жизни!

 Так вот у меня все заработало при первом включении если все сделано верно, у вас будет тоже самое. Если нет. Поменяйте концы первички, проверьте «жив» ли транзистор и диод

Теперь собственно то ради чего мы все это осуществили, эффекты которые можно получить

1. Коронный разряд

Это разряд который сходит с свободного конца вторички который должен быть заострен лучше взять иглу. Выглядит это очень красиво, фиолетовая корона. Коронный разряд создает так называемый электрический ветер, т.е. можно заметить небольшой ветерок, пахнущий озоном, на этом эффекте и собирается так называемый «ионный двигатель». Если коснутся разряда пальцем боли не будет т.к.  как ток высокой частоты проходит по поверхности кожи, некоторые источники говорят что это полезно обладает сосудорасширяющим эффектом  и чуть ли не панацея, спасающая от всех болезней, лично я не чего кроме мельчайшего ожога и небольшого дымка из пальца нечего не заметил. Но Никола Тесла, который собственно и открыл высокочастотный ток и подвергал своё тело разрядам дожил до 86 лет. Но я все таки не советую злоупотреблять такими опытами. Да также разряд начинает выходить из ножа в руке, если подносить его к виткам вторички. Так же разряд обладает не маленькой температурой, в близи легко загорается газ зажигалки и можно даже заставить тлеть тонкий листок бумаги. 

 

Камера плохо передает всю красоту этого явления

2. ВЧ Поле

Речь идет о электромагнитном поле которое окружает качер, это поле высокой частоты. По сути нечего волшебного оно не делает. Хотя может «не посвященным» это и  покажется чудом. Если взят в руку лампу газоразрядную, поднести её к качеру она загорится в ваших руках  и довольно ярко, у меня легко загорались две лампы мощностью даже в 36W при этом в лампе наблюдался эффект неких полос  то же довольно красиво смотрится, (для тех кто мечтал по играть в «звездные войны»)

Вот лампа на 18W

 4х6W    

 

Освещение, две по 18W 

Так же по средствам того же поле можно продемонстрировать эффект передачи электричества на расстояние без проводов. Для этого необходима еще одна катушка желательно с абсолютно такими же параметрами (кол. витков  сечение провода и т.д.) в этом случае можно добиться значительно лучшего эффекта. Собираем катушку дублера устанавливаем так же как и излучающею катушку. Отличием будет то что к выходам первички  подключается диодный мост

 

Диоды необходимо взять высокочастотные, ввиду того что у меня под рукой таких не нашлось не удалось проверить этот эффект, но во вторичке возникало напряжение об этом говорили разряды которые можно было вытащить из дублера.

Вот собственно и все что хотелось сказать про данное устройство.

Автор не несет не какой ответственности за вашу жизнь и здоровье, напряжение в 220В опасно для жизни, перед сборкой рекомендуется, ознакомится с техникой безопасности. Так же оказывает вредное воздействие ВЧ поле окружающее качер. Советую делать перерывы.

 Желающим повторить удачи!

Качер Бровина и трансформатор Тесла

Качер – устройство, которое генерирует высокое напряжение (5000-20000 вольт) высокой частоты. Не бойтесь — вас не убьет током. Это не такой ток как в розетке — у него высокая частота (до 250 кГц), а у нас в розетке 50 Гц. При высокой частоте ток проходит по поверхности вашего тела.
Самая простая схема приведена на рисунке 1. Для того чтобы собрать эту схему, потребуется минимум деталей, которые можно найти в старых телевизорах:Качер Бровина и трансформатор Тесла

1. 2-а резистора
2. 1 транзистор перехода р- n -р (он должен быть мощным и высокочастотным, например
кт805. Смотрите по каталогу)
3. 1 Конденсатор
4. Медная проволока 0,15 — 0,25 мм (можно приобрести в радио магазине либо размотав любой силовой трансформатор)

Качер Бровина и трансформатор Тесла
Качер Бровина и трансформатор Тесла
Качер Бровина и трансформатор Тесла
Качер Бровина и трансформатор Тесла
Качер Бровина и трансформатор Тесла

Резисторы покупаем либо выкручиваем с любых радио плат. Конденсатор тоже можете вытащить с плат. Транзистор можно так же выкрутить с платы – они обычно укреплены на радиаторах. Обратите внимание на то, чтобы транзистор был имел р-n-р переход, если будет n-p-n переход – нужно поменять коллектор и эмиттер местами подключения. Что можно сказать о радиаторе, то он должен быть большим, а если у вас нету большого радиатора, то установите на малый радиатор кулер. Медную проволоку достаем из любого трансформатора.

Качер Бровина и трансформатор Тесла

Теперь приступаем к сборке:
Берем трубку из картона и мотаем вторичную обмотку виток к виточку проволоку (0,15-0,25) периодически заливая лаком. Это самая кропотливая работа. Чем больше витков, тем лучше конечный результат. Теперь вокруг вторичной обмотки делаем 3-4 витка более толстым проводом (проволокой, пластиной) толщина (ширина) которой должна быть 1-4 мм. Далее подключаем эти 2-е обмотки к схеме и включаем это устройство в сеть. И что мы видим? При поднесении к данному прибору люминесцентной лампа она горит без проводов… Мы можем проводить электричество через тело не навредив ни одному органу, для этого достаточно поднести руку к к вторичной обмотке а второй рукой схватиться плотно к одному из контактов люминесцентной лампы…

Качер Бровина и трансформатор Тесла
Качер Бровина и трансформатор Тесла

Примечание: Если прибор не заработал, то переверните первичную обмотку, т.е. магнитные поля обмоток должны совпадать. Если мотаете по часовой стрелке одну обмотку, то и вторая должна быть намотана таким же образом.

Качер Бровина и трансформатор Тесла
Качер Бровина и трансформатор Тесла
Качер Бровина и трансформатор Тесла
Качер Бровина и трансформатор Тесла
Качер Бровина и трансформатор Тесла
Качер Бровина и трансформатор Тесла
Качер Бровина и трансформатор Тесла

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *