изготовление своими руками по схемам
В быту очень часто появляется необходимость в регулировке мощности различных электрических приборов: газовых плит, чайника, паяльника, кипятильника, различных ТЭНов и т. п. В автомобиле может понадобиться регулировка оборотов двигателя. Для этого можно использовать простую конструкцию — регулятор напряжения на тиристоре. Своими руками к тому же его сделать несложно.
Некоторые нюансы выбора
Сделать тиристорный регулятор напряжения своими руками несложно. Это может быть первой поделкой начинающего радиолюбителя, которая сможет обеспечить регулировку температуры жала паяльника. К тому же паяльники с возможностью регулировки температуры заводского производства стоят дороже простых моделей без такой возможности. Поэтому можно ознакомиться с основами пайки и радиоконструирования, а также сэкономить немалую сумму. С помощью небольшого количества комплектующих можно собрать простой тиристор с навесным монтажом.
Навесной тип монтажа осуществляется без необходимости использования специальной печатной платы. С хорошими умениями в этой области можно таким способом собрать простые схемы достаточно быстро.
Можно сэкономить время и установить на паяльник готовый тиристор. Но если есть желание разобраться в схеме полностью, то тиристорный регулятор мощности придётся сделать своими руками.
Важно! Такое устройство, как тиристор, является регулятором общей мощности. Кроме этого, применяется для регулировки числа оборотов различного оборудования.
Но в первую очередь требуется понять общий принцип работы устройства, разобраться с его схемой. Это даст возможность правильно рассчитать необходимую мощность для оптимальной работы оборудования, на котором оно будет выполнять свои прямые обязанности.
Конструктивные особенности
Тиристор — это полупроводниковый элемент, которым можно управлять. Он может очень быстро при необходимости провести ток в одном направлении. В отличие от классических диодов с помощью тиристора выполняется регулировка момента подачи напряжения.
Он имеет сразу три элемента для вывода тока:
- катод;
- анод;
- управляемый электрод.
Работать такой элемент будет только при соблюдении определённых условий. Во-первых, он должен размещаться в схеме под общим напряжением. Во-вторых, на управляющую часть электрода должен быть подан необходимый кратковременный импульс. Это позволит регулировать мощность прибора в нужном направлении. Можно будет выключать устройство, включать его и изменять режимы работы. В отличие от транзистора тиристор не требует удержания управляющего сигнала.
Применять тиристор в целях обеспечения постоянного тока является нецелесообразным, поскольку тиристор легко закрыть, если перекрыть поступление в него тока по цепи. А для переменного тока в таких устройствах, как тиристорный регулятор, применение тиристора обязательно, поскольку схема выполнена таким методом, чтобы полностью обеспечивать необходимое закрывание полупроводникового элемента. Любая полуволна способна полностью закрыть отдел тиристора в случае такой потребности.
Схему начинающим довольно сложно понять, но воспользовавшись инструкциями от специалистов, они значительно упростят себе процесс создания.
Области и цели использования
Важно! Тиристорный регулятор не может менять обороты автоматически в асинхронных двигателях. А вот в коллекторном двигателе, оборудованном специальным щелочным узлом, работать регулировка будет корректно и полноценно.
Принцип действия
Особенность работы заключается в том, что в любом приборе напряжение будет регулироваться мощностью и перебоями в электросети согласно синусоидальным законам.
Любой тиристор общей мощности может пропускать ток только в одном направлении. Если тиристор не отключить, то он будет продолжать работать и отключится только после совершения определённых действий.
При самостоятельном изготовлении необходимо спроектировать конструкцию таким образом, чтобы внутри было достаточно свободного места для установки регулирующего рычага или кнопки. В том случае когда устройство устанавливается по классической схеме, целесообразно подключение через особый выключатель, который будет изменять цвет при разном уровне мощности.
Кроме этого, такое дополнение позволяет частично предотвратить возникновение ситуаций с поражением человека током. Не нужно будет искать подходящий корпус, а также прибор будет иметь привлекательный внешний вид.
Способы закрывания тиристора
Существует множество способов закрывания тиристоров. Но в первую очередь необходимо помнить, что подача любых сигналов на электрод не сможет закрыть его и погасить действие. Электрод способен только запустить устройство. Существуют и аналоги — запираемые тиристоры. Но их прямое предназначение немного шире, чем у обычных выключателей. Классическую схему тиристорного регулятора напряжения можно выключить только прерыванием подачи тока на уровне анод-катод.
Закрыть регулятор мощности на тиристоре ку202н можно минимум 3 способами. Можно просто отключить всю схему от батарейки. Таким образом диод выключится. Но если повторно включить устройство, то оно не включится, поскольку тиристор остаётся в закрытом состоянии. Он будет находиться в таком положении, пока не будет нажата соответствующая кнопка.
Вторым способом
Если вместо светодиода установить нагревательную спираль большой мощности, то можно получить законченный тиристорный регулятор.
Третий способ заключается в том, чтобы уменьшить напряжение питания до минимального, после чего изменить полярность на противоположную. Такая ситуация приведёт к выключению устройства.
Простой регулятор напряжения
Для производства простейшей системы, работающей на 12 вольтах, понадобятся такие ключевые элементы, как выпрямитель, генератор и аккумулятор. Генератор является одним из главных компонентов. Для изготовления понадобятся вышеупомянутые радиодетали, а также схема простейшего регулятора мощности. Стоит отметить, что в ней нет стабилизаторов.
Для изготовления необходимо подготовить такие элементы:
- 2 резистора;
- 1 транзистор;
- 2 конденсатора;
- 4 диода.
Специально для транзистора лучше устанавливать систему охлаждения. Это позволит избежать перегрузок системы. Устройство лучше устанавливать с хорошим запасом мощности, чтобы заряжать в последующем аккумуляторы с небольшой ёмкостью.
ТИРИСТОРНЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ
Данный регулятор напряжения собирался мной для использования в различных направлениях: регулирование скорости вращения двигателя, изменение температуры нагрева паяльника и т.д. Возможно название статьи покажется не совсем корректным, и эта схема иногда встречается как регулятор мощности, но тут надо понимать, что по сути происходит регулировка фазы. То есть времени, в течении которого сетевая полуволна проходит в нагрузку. И с одной стороны регулируется напряжение (через скважность импульса), а с другой — мощность, выделяемая на нагрузке.Следует учесть, что наиболее эффективно данный прибор будет справляться с резистивной нагрузкой – лампы, нагреватели и т.д. Потребители тока индуктивного характера тоже можно подключать, но при слишком малой его величине надёжность регулировки снизится.
Для увеличения мощности подключаемого устройства нужно использовать другие диоды или диодные сборки, рассчитанные на необходимый вам ток.
Так-же нужно заменять и тиристор, ведь КУ202 рассчитан на предельный ток до 10А. Из более мощных рекомендуются отечественные тиристоры серии Т122, Т132, Т142 и другие аналогичные.
Форум по радиосхемам
Обсудить статью ТИРИСТОРНЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ
Простой регулятор мощности на двух тиристорах / Sandbox / Habr
Здравствуйте, уважаемые хабровчане!Данный пост посвящен созданию устройства для регулировки мощности бытовых приборов (лампочки, паяльники, обогреватели, электроплитки). Конструкция устройства очень простая, количество элементов минимальное, его способен собрать даже начинающий. Без радиаторов мощность нагрузки до 1 кВт, с использованием радиаторов можно увеличить до 1,5 кВт. Мной устройство было собрано за один вечер. Ниже видео, демонстрирующее работу.
Подробности:
Девайс был размещен в корпусе от старого CD-ROM-а. Для передней и задней стороны корпуса необходимо вырезать пластмассовые стороны 4х14,5 см., и либо прикрутить либо приклеить к корпусу. Девайс в сборе выгладит так:
Перечень элементов, принципиальная схема и описание работы:
Нам понадобится:
- Тиристоры: КУ-202Н, М — 2 шт.
- Динисторы: КН-102А, Б — 2 шт
- Резисторы: Любые, R=220 Ом, мощностью 0,5 Вт
- Конденсаторы: 0,1 мкФ, 400 В — 2 шт.
- Любой переменный резистор сопротивлением 220 — 330 кОм (в случае с 220 кОм нижний предел регулировки будет выше чем 330 кОм)
- Провод с вилкой для подключения к сети и розетка для подключения нагрузки
- Для защиты можно добавить предохранитель
Принципиальная электрическая схема выглядит так:
Данный регулятор использует принцип фазового управления. Он основан на изменении момента включения тиристора относительно перехода сетевого напряжения через ноль. На начало полу периода тиристор закрыт, ток через него не идет. Через некоторое время (в зависимости от текущего сопротивления переменного резистора) напряжение на конденсаторе достигает уровня необходимого для открытия динистора, он открывается и в свою очередь открывает тиристор. Для второго полу периода все аналогично.
График прохождения тока через нагрузку:
Подробности сборки и окончательный вид:
На момент сборки устройства в моем арсенале не было приспособлений для изготовления печатных плат, поэтому сборка делалась на куске старой платы, на которой до этого был какой то прибор. После соединения всех деталей и упаковки всего внутрь корпуса от CD-ROM-а готовое изделие внутри выглядит вот так:
Итоги:
За очень короткое время собрана полезная вещь из старых деталей. Но есть и некоторые недостатки, это то что пределы регулировки немного изменяются в зависимости от нагрузки, наличие радиопомех и некоторая нестабильность на небольшом участке регулировки.
Тиристорный регулятор мощности — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 12 февраля 2018; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 12 февраля 2018; проверки требует 1 правка.Тиристорный регулятор мощности — электронная схема позволяющая изменять подводимую к нагрузке мощность путём задержки включения тиристора на полупериоде переменного тока.
Ключевым компонентом данной схемы является тиристор, открывающийся при появлении сигнала на управляющем электроде. Чем больше задержка включения, тем меньшая мощность поступает в нагрузку.
Транзисторы VT1 и VT2 работают в ключевом режиме. Как только напряжение на конденсаторе C1 будет равно напряжению в точке между резисторами R3 и R4, то транзисторы открываются и подают сигнал на управляющий электрод тиристора VS1, при этом конденсатор разряжается, тиристор открывается до следующего полупериода.
Достоинства: | Недостатки: |
---|---|
простота схемы, при использовании рабочих деталей схема начинает работать сразу после включения. | целых 5 силовых элементов, которые при работе греются, этого недостатка лишены симисторные регуляторы с одним силовым элементом. |
Применяется для управления мощностью универсального коллекторного двигателя (УКД), ламп накаливания (диммер) и некоторых других видов нагрузок переменного тока.
Для управления светом в кино-концертных залах применяются силовые тиристорные блоки с цифровой системой управления по протоколу DMX-512.
Тиристорный регулятор напряжения простая схема, принцип работы
Тиристор это один из мощнейших полупроводниковых приборов, именно поэтому он часто используется в мощных преобразователях энергии. Но он обладает своей спецификой управления: его можно открыть импульсом тока, а вот закроется он только когда ток опуститься почти до нуля (если быть точнее, то ниже тока удержания). Из этого тиристор в основном применяются для коммутирования переменного тока.
Фазовое регулирование напряжения
Существует несколько способов регулирования переменного напряжения тиристорами: можно пропускать или запрещать на выход регулятора целые полупериоды (или периоды) переменного напряжения. А можно включать не в начале полупериода сетевого напряжения, а с некоторой задержкой — ‘a’. В течении этого времени напряжение на выходе регулятора будет равно нулю, а мощность не будет передаваться на выход. Вторую часть полупериода тиристор будет проводить ток и на выходе регулятора появиться входное напряжение.
Время задержки ещё часто называют углом открывания тиристора, так вот при нулевом угле практически всё напряжение со входа будет попадать на выход, только падение на открытом тиристоре будет теряться. При увеличении угла тиристорный регулятор напряжения будет снижать выходное напряжение.
Регулировочная характеристика тиристорного преобразователя при работе на активную нагрузку приведена на следующем рисунке. При угле равном 90 электрических градусов на выходе будет половина входного напряжения, а при угле 180 эл. градусов на выходе будет ноль.
На основе принципов фазового регулирования напряжения можно построить схемы регулирования, стабилизации, а также плавного пуска. Для плавного пуска напряжение нужно повышать постепенно от нуля до максимального значения. Таким образом угол открывания тиристора должен изменяться от максимального значения до нуля.
Схема тиристорного регулятора напряжения
Таблица номиналов элементов
- C1 – 0,33мкФ напряжение не ниже 16В;
- R1, R2 – 10 кОм 2Вт;
- R3 – 100 Ом;
- R4 – переменный резистор 33 кОм;
- R5 – 3,3 кОм;
- R6 – 4,3 кОм;
- R7 – 4,7 кОм;
- VD1 .. VD4 – Д246А;
- VD5 – Д814Д;
- VS1 – КУ202Н;
- VT1 – КТ361B;
- VT2 – КТ315B.
Схема построена на отечественной элементной базе, собрать её можно из тех деталей, которые провалялись у радиолюбителей 20-30 лет. Если тиристор VS1 и диоды VD1-VD4 установить на соответствующие охладители, то тиристорный регулятор напряжения будет способен отдавать в нагрузку 10А, то есть при напряжении 220 В получаем возможность регулировать напряжение на нагрузке в 2,2 кВт.
В устройстве всего два силовых компонента диодный мост и тиристор. Они рассчитаны на напряжение 400В и ток 10А. Диодный мост превращает переменное напряжение в однополярное пульсирующее, а фазовое регулирование полупериодов осуществляет тиристор.
Параметрический стабилизатор из резисторов R1, R2 и стабилитрона VD5 ограничивает напряжение, которое подается на систему управления на уровне 15 В. Последовательное включение резисторов нужно для увеличения пробивного напряжения и увеличения рассеиваемой мощности.
В самом начале полупериода переменного напряжения С1 разряжен и в точке соединения R6 и R7 тоже нулевое напряжение. Постепенно напряжения в этих двух точках начинают расти и чем меньше сопротивление резистора R4, тем быстрее напряжение на эмиттере VT1 перегонит напряжение на его базе и откроет транзистор.
Транзисторы VT1, VT2 составляют маломощный тиристор. При появлении напряжения на база-эмиттерном переходе VT1 больше порогового, транзистор открывается и открывает VT2. А VT2 отпирает тиристор.
Представленная схема достаточно проста, её можно перевести на современною элементную базу. Также можно при минимальных переделках снизить мощность или напряжение работы.
Тиристорный регулятор мощности | Радиобездна
Друзья, приветствую вас! Сегодня я хочу рассказать о самой распространенной самоделки радиолюбителей. Речь пойдет о тиристорном регуляторе мощности.Благодаря способности тиристора мгновенно открываться и закрываться, его с успехом применяют в различных самоделках. При этом он обладает низким тепловыделением. Схема тиристорного регулятора мощности достаточно известна, но она имеет отличительную особенность от подобных схем. Схема построена таким образом, что при первоначальном включении устройства в сеть отсутствует скачок тока через тиристор, благодаря чему через нагрузку не протекает опасный ток.
Ранее я рассказывал о регуляторе температуры для паяльника, в котором в качестве регулирующего устройства используется тиристор. Данный регулятор может управлять нагрузкой мощностью 2 киловатта. Если силовые диоды и тиристор заменить на более мощные аналоги, то нагрузку можно увеличить в несколько раз. И можно будет использовать этот регулятор мощности для электрического тэна. Я же использую данную самоделку для пылесоса.
Схема регулятора мощности на тиристоре
Сама схема проста до безобразия. Я думаю, что не стоит объяснять принцип её работы:
Детали устройства:
- Диоды; КД 202Р, четыре выпрямительных диода на ток не меньше 5 ампер
- Тиристор; КУ 202Н, или другой с током не меньше 10 ампер
- Транзистор; КТ 117Б
- Резистор переменный; 10 Ком, один
- Резистор подстроечный; 1 Ком, один
- Резисторы постоянные; 39 Ком, мощностью два ватта, два штуки
- Стабилитрон: Д 814Д, один
- Резисторы постоянные; 1,5 Ком, 300 Ом, 100 Ком
- Конденсаторы; 0,047 Мк, 0,47 Мк
- Предохранитель; 10 А, один
Тиристорный регулятор мощности своими руками
Готовое устройство, собранное по этой схеме выглядит вот так:
Так как деталей в схеме используется не очень много, можно применить навесной монтаж. Я же использовал печатный:
Регулятор мощности собранный по этой схеме очень надежен. Сначала этот тиристорный регулятор использовался для вытяжного вентилятора. Эту схему я реализовал около 10 лет назад. Первоначально я не использовал радиаторы охлаждения, так как ток потребления вентилятора очень мал. Затем я стал использовать эту электронную самоделку для пылесоса мощностью 1600 ватт. Без радиаторов силовые детали нагревались значительно, рано или поздно они вышли бы из строя. Но и без радиаторов это устройство проработало целых 10 лет. Пока не пробило тиристор. Первоначально я использовал тиристор марки ТС-10:
Теперь я решил поставить теплоотводы. Не забываем нанести тонкий слой теплопроводящей пасты КПТ-8 на тиристор и 4 диода:
Если у вас не окажется однопереходного транзистора КТ117Б:
то его можно заменить двумя биполярными собранными по схеме:
Сам я такую замену не производил, но должно получиться.
По данной схеме в нагрузку поступает постоянный ток. Это не критично, если нагрузка активная. Например: лампы накаливания, нагревательные тэны, паяльник, пылесос, электродрель и другие устройства, имеющие коллектор и щетки. Если же вы планируете, данный регулятор использовать для реактивной нагрузки, например электродвигателя вентилятора, то нагрузку стоит включить перед диодным мостом, как это показано на схеме:
Резистором R7 регулируют мощность на нагрузке:
а резистором R4 устанавливают границы интервала регулирования:
При таком положении движка резистора на лампочку приходит 80 вольт:
Внимание! Будьте внимательны, эта самоделка не имеет трансформатора, поэтому некоторые радиодетали могут находиться под высоким потенциалом сети. Будьте осторожны при настройке регулятора мощности.
Обычно тиристор не открывается из-за малости напряжение на нём и скоротечности процесса, а если и откроется, то будет закрыт при первом же переходе напряжения сети через 0. Таким образом, использование однопереходного транзистора решает задачу принудительной разрядки накопительного конденсатора, в конце каждого полупериода питающей сети.
Собранное устройство я поместил в старый ненужный корпус от трансляционного радио. Переменный резистор R7 я установил на штатное место. Осталось поставить на него ручку и проградуировать шкалу напряжения:
Корпус слегка великоват, но зато тиристор и диоды охлаждаются просто великолепно:
С боку устройства я поместил розетку, чтобы можно было подключить вилку от любой нагрузки. Для подключения собранного устройство к электросети я использовал шнур от старого утюга:
Как я говорил ранее, этот тиристорный регулятор мощности очень надёжен. Я им пользуюсь уже не один год. Схема очень проста, её сможет повторить даже начинающий радиолюбитель.
Тиристорный регулятор мощности — Diodnik
В быту иногда возникает необходимость регулировки небольших мощностей, с этой задачей с легкостью справляются симмисторные или тиристорные регуляторы. Типовые схемы тиристорных регуляторов очень подробно описывались в журнале Радио №12 за 1971г и №10 за 1975г. С учетом того, что схемы достаточно простые, надежные и не содержат дефицитных компонентов, они до сих пор не утратили свою актуальность. Сегодня мы соберем довольно простой тиристорный регулятор мощности своими руками, а также посмотрим, как он работает.
Тиристорный регулятор мощности – схема
Основным элементом в этой схеме является тиристор КУ202Н. Транзисторы T1-T2 (КТ315 и КТ361) составляют аналог однопереходного транзистора. Когда напряжение на конденсаторе 470 nF будет равно напряжению в точке соединения резисторов R3 и R4 (10 кОм и 2,2кОм), тогда транзисторы откроются и подадут сигнал на управляющий электрод тиристора, при этом конденсатор С1 разряжается, а тиристор откроется до следующего полупериода.
Тиристорный регулятор мощности своими руками
Как видим, данная схема содержит минимальное количество компонентов и с легкостью сможет поместиться даже в корпусе от обычной розетки.
Мощность данного регулятора ограничена диодным мостом и тиристором. В нашем случае, слабое звено — диодный мост RS407 (1000В; 4А), это даст возможность регулировать мощность лишь до 800Вт, что для бытовых нужд более чем достаточно.
Если надо больше, то самодельные тиристорные регуляторы мощности необходимо снабжать более мощными тиристорами и диодными мостами, установленными на радиаторы достаточной площади. Вот такой получился у нас тиристорный регулятор мощности своими руками.
Тиристор, а также диодный мост желательно устанавливать на небольшой радиатор. Резистор R1 необходимо брать мощностью минимум 2Вт. Стабилитрон Д814В можно заменить любым другим с напряжением стабилизации 10-15В.
Демонстрация работы регулятора
Схема начинает работать с пол оборота и дополнительной настройки не требует.
Из недостатков данного регулятора можно отметить, что в нем немного греются диоды и тиристор, а также резистор R1. Такой тиристорный регулятор отлично справляется с резистивной нагрузкой (лампочки, ТЭНы и др.), а при подключении индуктивной нагрузки — стабильность регулировки заметно снижается, для таких целей рационально использовать немного другие схемы.
Вконтакте
Одноклассники
comments powered by HyperComments