Схемы компьютерных блоков питания 50 шт – Схема компьютерного блока питания – Cхемы компьютерных блоков питания ATX — Спутниковое телевидение в Бийске,антенны,ресиверы,ЖК ТВ,DVD и Blue-ray плееры — Мир Антенн

Cхемы компьютерных блоков питания ATX

Не редко при ремонте или переделке блока питания ATX в автомобильное зарядное устройство необходима схема этого блока. С учетом того, что на данный момент, моделей блоков огромное количество, мы решили собрать небольшую подборку из сети, где будут размещены типовые схемы компьютерных блоков питания ATX. На данном этапе подборка далеко не полная и будет постоянно пополняться. Если у Вас есть схемы компьютерных блоков питания ATX, которые не вошли в данную статью и желание поделиться, мы всегда будем рады добавить новые и интересные материалы.

Cхемы компьютерных блоков питания ATX

Схема JNC LC-250ATX

Схема JNC LC-B250ATX

Схема JNC SY-300ATX

Схема JNC LC-B250ATX



Схема FSP145-60SP

Схема Enlight HPC-250 и HPC-350

Схема Linkworld 200W, 250W и 300W

Схема Green Tech MAV-300W-P4

Схема AcBel API3PCD2 ATX-450P-DNSS 450W

Схема AcBel API4PC01 400W

Схема Maxpower PX-300W

Схема PowerLink LPJ2-18 300W

Схема Shido LP-6100 ATX-250W

Схема Sunny ATX-230

Схема KME PM-230W

Схема Delta Electronics DPS-260-2A

Схема Delta Electronics DPS-200PB-59

Схема InWin IW-P300A2-0

Схема SevenTeam ST-200HRK

Схема SevenTeam ST-230WHF

Схема DTK PTP-2038

Схема PowerMaster LP-8

Схема PowerMaster FA-5-2

Схема Codegen 200XA1 250XA1 CG-07A CG-11

Схема Codegen 300X 300W

Схема ISO-450PP

Схема PowerMan IP-P550DJ2-0

Схема LWT 2005

Схема Microlab 350w

Схема Sparkman SM-400W (STM-50CP)

Схема GEMBIRD 350W (ShenZhon 350W)

Схема блока питания FSP250-50PLA (FSP500PNR)

Схема блока ATX Colorsit 330U (Sven 330U-FNK) на SG6105

Схема блока NT-200ATX (KA3844B+LM339)

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

Cхемы компьютерных блоков питания ATX

Не редко при ремонте или переделке блока питания ATX в автомобильное зарядное устройство необходима схема этого блока. С учетом того, что на данный момент, моделей блоков огромное количество, мы решили собрать небольшую подборку из сети, где будут размещены типовые схемы компьютерных блоков питания ATX. На данном этапе подборка далеко не полная и будет постоянно пополняться. Если у Вас есть схемы компьютерных блоков питания ATX, которые не вошли в данную статью и желание поделиться, мы всегда будем рады добавить новые и интересные материалы.

Cхемы компьютерных блоков питания ATX

Схема JNC LC-250ATX

Схема JNC LC-B250ATX

Схема JNC SY-300ATX

Схема JNC LC-B250ATX



Схема FSP145-60SP

Схема Enlight HPC-250 и HPC-350

Схема Linkworld 200W, 250W и 300W

Схема Green Tech MAV-300W-P4

Схема AcBel API3PCD2 ATX-450P-DNSS 450W

Схема AcBel API4PC01 400W

Схема Maxpower PX-300W

Схема PowerLink LPJ2-18 300W

Схема Shido LP-6100 ATX-250W

Схема Sunny ATX-230

Схема KME PM-230W

Схема Delta Electronics DPS-260-2A

Схема Delta Electronics DPS-200PB-59

Схема InWin IW-P300A2-0

Схема SevenTeam ST-200HRK

Схема SevenTeam ST-230WHF

Схема DTK PTP-2038

Схема PowerMaster LP-8

Схема PowerMaster FA-5-2

Схема Codegen 200XA1 250XA1 CG-07A CG-11

Схема Codegen 300X 300W

Схема ISO-450PP

Схема PowerMan IP-P550DJ2-0

Схема LWT 2005

Схема Microlab 350w

Схема Sparkman SM-400W (STM-50CP)

Схема GEMBIRD 350W (ShenZhon 350W)

Схема блока питания FSP250-50PLA (FSP500PNR)

Схема блока ATX Colorsit 330U (Sven 330U-FNK) на SG6105

Схема блока NT-200ATX (KA3844B+LM339)

VK

Facebook

Twitter

Odnoklassniki

comments powered by HyperComments

Схемы компьютерных блоков питания ATX Codegen JNS KME FSP Sunny Colors It PowerMaster InWin PowerMan Hiper Microlab Antech MaxPower Green Tech = Электроника и Медтехника

Наименование Формат Размер, кБ
Схема блока питания LC-250 ATX ch. 200-ATX ver. 2.02B фирмы JNC Computer Co.
Основной источник: ШИМ DBL494, супервайзер LM339N, 3,3 В — A431 и магнитный стабилизатор
Источник дежурного питания +5V SB (дежурка): Высоковольтный ключ KSC5027 и стабилизатор 7805
GIF 110
Схема блока питания LC-B250ATX ch. Y-B200-ATX ver. 2.9 фирмы JNC Computer Co.
Основной: ШИМ и супервайзер 2003, 3,3 В — магнитный стабилизатор
Дежурка: Высоковольтный ключ — SSS2N60A, оптрон 1010, стабилизатор AZ431
GIF 103
Схема блоков питания 200XA1 и 250XA1 ch. CG-07A и CG-11 фирмы Codegen
Основной: ШИМ KA7500B, супервайзер A6393D или KIA393P, 3,3 В — отдельный выпрямитель
Дежурка: Высоковольтный ключ и стабилизатор 7805
GIF 103
Схема источника +5V SB блока питания SY-300ATX ch. Y-B2002 ATX ver 1,0
Основной:
Дежурка: Высоковольтный ключ — BV-1 501, оптрон 817, стабилизатор 431
GIF 30
Схема источника +5V SB блока питания KME PX-230W ATX ch. KME-08-3A1
Основной:
Дежурка:
Высоковольтный ключ — 2SC5353, стабилизатор 7805
GIF 24
Схема платы RD-DW-P009B источника +5V SB блока питания EN-8156901 model SFX-2015 (150W)
Основной:
Дежурка: Высоковольтный ключ — TFK617 BUF640, оптрон PC817, стабилизатор 431P
GIF 21
Схема источника +5V SB блока питания 300X ch. CG-13c фирмы Codegen
Основной:
Дежурка: Высоковольтный ключ — SSS2N60B, оптрон PC817, стабилизатор TL431-A
GIF
72
Статья о ремонте компьютерных блоков питания ATX (Ver.1.0) HTML 18
Транзисторы, применяемые в компьютерных блоках питания HTML 28
Микросхемы, применяемые в компьютерных блоках питания HTML 23
Импульсные блоки питания для IBM PC
В книге рассматриваются вопросы схемотехники, принципа работы, методика диагностики и ремонта компьютерных источников питания ATX
DJVU 2910
Блоки питания для системных модулей IBM PC XT AT
В книге освещаются вопросы схемотехники, принципа работы компьютерных источников питания на микросхеме TL494. Особое внимание уделяется вопросам поиска неисправностей и регулировке компьютерных блоков питания.
DJVU 900
Источники питания ПК и периферии (часть 1)
Подробно разобраны принципы работы отдельных узлов источников питания, алгоритмы и методики поиска неисправностей, типовые неисправности блоков питания компьютеров, мониторов и др. Рассматриваются вопросы построения качественных и энергоэффективных систем электропитания вычислительной техники.
RAR+DJVU 4000
Источники питания ПК и периферии (часть 2) RAR+DJVU 4000
Источники питания ПК и периферии (часть 3) RAR+DJVU 3627
Статья о методике доработки компьютерных блоков питания ATX, модернизация, повышение надежности, способы снижения помех и пульсаций HTML 25
Схемы блоков питания ATX
Классическая схема блока питания ATX на TL494 и LM393, использованная фирмой Rolsen
Основной: ШИМ TL494, супервайзер LM393, 3,3 В — TL431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — 2SC3457, стабилизатор 7805
GIF 57
Схема PowerMaster модель LP-8 v. 2.03 230W (AP-5-E v. 1.1), и FA-5-2 PCB FA_5-F v. 3.2
Основной: ШИМ TL494, супервайзер на дискретных транзисторах, 3,3 В — линейный регулятор на SPF36N03 или 45N03L и SP431
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор 7805
GIF 159
Схема PowerMaster FA-5-2 v. 3.2 250W
Основной: ШИМ TL494, супервайзер на дискретных транзисторах, 3,3 В — линейный регулятор на SPF36N03 или 45N03L и SP431
Дежурка: Высоковольтный ключ — KSC5027, оптрон PC817, стабилизатор TL431
GIF 158
Схема блока питания ATX фирмы Microlab мощностью 350W
Основной: ШИМ KA7500B, супервайзер LM339, 3,3 В — KA431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — KSC5027, оптрон LTV817, стабилизатор KA431
PDF 44
Схема БП Microlab ATX-5400X мощностью 400W
Основной: ШИМ KA7500B, супервайзер LM339, 3,3 В — KA431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — KSC5027, оптрон LTV817, стабилизатор KA431
PDF 43
Схема SevenTeam ST-200HRK
Основной: ШИМ UTC51494, супервайзер LM339, 3,3 V формируется на отдельной плате ST-DD33 A60320 из источника +12V: ШИМ UC3843AN, полевой ключ 2SK1388
Дежурка: Высоковольтный ключ — 2SC4020, стабилизатор MC78L05ACP
GIF 184
Схема DTK PTP-2038 мощностью 250 Вт
Основной: ШИМ TL494, супервайзер LM393, 3,3 V — TL431C и магнитный стабилизатор
Дежурка: Высоковольтный ключ — 2SC3457, стабилизатор 78L05
PNG 25
Схема Codegen ATX300W мощностью 300 Вт
Основной: ШИМ KA7500B, супервайзер на дискретных транзисторах, 3,3 V линейный параметрический стабилизатор на 40N03P и TL431
Дежурка: Высоковольтный ключ — полевой SSP2N60B, оптрон 817B, стабилизатор TL431
GIF 229
Схема блока питания 330U фирмы Nuitek (COLORS iT)
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — стабилизатор линейный параметрический на полевике 7030
Дежурка: Высоковольтный ключ — полевой SSS2N60, ШИМ на TDA865, оптрон PC817B
GIF 319
Схема блока питания 350T Фирмы Nuitek (COLORS iT)
Основной: ШИМ на IC3842, супервайзер на KA339, 2-х оптронах PC817, и IC431, однотактный инвертор на полевом ключе 2SK2648, 3,3 V на источнике опорного напряжения IC431, регуляторе на 2SA928 и магнитный стабилизатор на дросселе.
Дежурка: ШИМ + высоковольтный полевой ключ — M605, оптрон KPC817, стабилизатор IC431
PDF 62
Схема блока питания 350U фирмы Nuitek (COLORS iT)
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, силовые ключи MJE13009, 3,3 V на 2SA733 и магнитный стабилизатор на дросселе.
Дежурка: ШИМ и высоковольтный ключ на 5H0165R, оптрон KPC817
PDF 63
Схема блока питания 400T Фирмы Nuitek (COLORS iT)
Основной: ШИМ на IC3842, супервайзер на KA339, 2-х оптронах PC817, и IC431, однотактный инвертор на полевом ключе 2SK1940, 3,3 V на источнике опорного напряжения IC431, регуляторе на 2SA928 и магнитный стабилизатор на дросселе.
Дежурка: ШИМ + высоковольтный полевой ключ — M605, оптрон KPC817, стабилизатор IC431
PDF 62
Схема блока питания 400U фирмы Nuitek (COLORS iT)
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, силовые ключи 2SC2625, 3,3 V на 2SA733 и магнитный стабилизатор на дросселе.
Дежурка: ШИМ и высоковольтный ключ на 5H0165R, оптрон KPC817
PDF 63
Схема блока питания 500T фирмы Nuitek (COLORS iT)
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V на 2SA733 и магнитный стабилизатор на дросселе.
Дежурка: ШИМ и высоковольтный ключ на 5H0165R, оптрон KPC817
PDF 64
Схема блока питания 600T фирмы Nuitek (COLORS iT)
Основной: ШИМ на UC3843, супервайзер — WT7525, силовые ключи 2SK2082, оптрон PC817, 3,3 V на источнике опорного напряжения TL431, регуляторе 2SB772, магнитный стабилизатор на дросселе
Дежурка: ШИМ и высоковольтный ключ на ICE3B0365, оптрон KPC817, источник опорного напряжения TL431
PDF 49
Схема FSP145-60SP от Fortron Source
Основной: ШИМ и супервайзер на KA3511 на отдельной плате, 3,3 V — KA431 и магнитный стабилизатор
Дежурка: ШИМ с высоковольтным ключом на KA1H0165R, оптрон 817, стабилизатор KA431
GIF 48
Схема БП ATX-200W, ATX-250W, ATX-300W от Alim
Основной: ШИМ на TL494C, супервайзер на дискретных элементах, 3,3 V — источник опорного напряжения на TL431, регулятор 2SA1015 и магнитный стабилизатор на дросселе
Дежурка: Преобразователь на высоковольтном ключе на 2SC3150, стабилизатор 7805
PDF 395
Схема InWin IW-ISP300A3-1 PowerMan с корректором фактора мощности
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105D, 3,3 V — магнитный стабилизатор, noise killer (регулятор скорости вращения вентилятора) на отдельной плате GDD-002 на LM358
Дежурка: Высоковольтный ключ — полевой 02N60P, оптрон PC817C
GIF 218
Схема InWin IW-P300A2-0 R1.2
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105D, 3,3 V — магнитный стабилизатор
Дежурка: Высоковольтный ключ — полевой SSS2N60B или SPU02N60P, оптрон CT324 или EL817
GIF 51
Схема Sirtec HPC-360-302DF rev.C0 с активным корректором фактора мощности на отдельной плате
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — магнитный стабилизатор, noise killer (управление вентилятором) на отдельной плате N038052 на LM339
Дежурка: Высоковольтный ключ — полевой SSP2N60B, оптрон LIV817BY
Активный корректор фактора мощности (АКФМ): Контроллер — UCC3818N, высоковольтный ключ — полевой 2 x FQP9N50
PDF 176
Схема Sirtec HPC-420-302DF rev.C0 с активным корректором фактора мощности на отдельной плате
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — магнитный стабилизатор, noise killer (управление вентилятором) на отдельной плате N038052 на LM339
Дежурка: Высоковольтный ключ — полевой SSP2N60B, оптрон LIV817
Активный корректор фактора мощности (АКФМ): Контроллер — UCC3818N, высоковольтный ключ — полевой 2 x SPP11N60C3
PDF 182
Схема БП Delta Electronics DPS-200PB-59
Основной: ШИМ TL494, супервайзер на отдельной платеLM339D, 3,3 V на отдельной плате A431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — 2SC3457, стабилизатор 78L05
GIF 236
Схема БП Delta Electronics DPS-260-2A c активным корректором фактора мощности, схемотехнически необычная, достаточно высокого уровня качества
Основной: ШИМ и АКФМ на отдельной плате DC-988 2960095601 на NE556 и ML4824-1, супервайзер на отдельной плате DC-989 2960095700 на LM339D, 2-х LM358 и TL431, однотактный инвертор на полевом ключе 2SK2611, 3,3 V на отдельной плате DC-986 2960095401 TL431 и магнитный стабилизатор
Дежурка: ШИМ + высоковольтный полевой ключ — TOP200, стабилизатор PQ05RF11
АКФМ: Высоковольтный ключ — полевой 2 x IRFP450
RAR+GIF 454
Фирменная схема JNC SY-300ATX на микросхеме AT2005
Основной: ШИМ, супервайзер и источник опорного +3,3V на микросхеме AT2005, 3,3 V — магнитный стабилизатор
Дежурка: Высоковольтный ключ — полевой KSC5027, KSC5027-1, или BV-1 501 в корпусе TO-126, оптрон 817, стабилизатор 431
PDF 55
Фирменная схема JNC LC-B250ATX на микросхеме 2003
Основной: ШИМ, супервайзер и источник опорного +3,3V на микросхеме 2003, 3,3 V — магнитный стабилизатор
Дежурка: Высоковольтный ключ — полевой SSS2N60B, оптрон 817, стабилизатор 431
GIF 53
Схема БП фирмы JNC
Основной: ШИМ TL494, супервайзер LM339, 3,3 V — TL431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор MC7805
GIF 123
Фирменная схема блока питания KME PM-230W
Основной: ШИМ TL494, супервайзер LM393, 3,3 V линейный параметрический стабилизатор на STP40NE03L и SP431
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор PJ7805
GIF 63
Фирменная оригинальная схема Sunny ATX-230. Схема сильно отличается от других блоков питания!
Основной: ШИМ однотактный на UC3843, высоковольтный ключ — 2SK2545, оптрон TCET1109, стабилизатор TL431, супервайзер TPS5510P, цепь стабилизации напряжения питания ШИМ включает оптрон 817C, управляет которым супервайзер, 3,3 V — линейный параметрический стабилизатор на полевом транзисторе P3020L и TL431
Дежурка: Высоковольтный ключ — полевой 2SK3067, оптрон 817C, стабилизатор TL431
GIF 53
Фирменная схема Shido ATX-250W LP-6100
Основной: ШИМ TL494, супервайзер LM339, 3,3 V — отдельный выпрямитель
Дежурка: Высоковольтный ключ — 2SC3150, оптрон 817, стабилизатор TL431
PNG 37
Схема PowerLink LPJ2-18 мощностью 300W
Основной: ШИМ и супервайзер на LPG-899, 3,3 V — TL431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — KSC5027, оптрон 817, стабилизатор 431
GIF 54
Схема Maxpower PX-300W
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — линейный параметрический стабилизатор на полевом транзисторе P40NF03
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор 7805
GIF 51
Вариант схемы на SG6105 мощностью 250 Вт
Основной: ШИМ, супервайзер и источник опорного +3,3V SG6105, 3,3 V — линейный параметрический стабилизатор на полевом транзисторе P40NE0
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор 7805
GIF 47
Схема блока питания AcBel API4PC01 мощностью 400W
Основной: без номиналов
Дежурка: без номиналов
PNG 96
Схема блока питания AcBel API3PCD2 ATX-450P-DNSS мощностью 450W
Основной: без номиналов
Дежурка: без номиналов
PNG 46
Схема БП Green Tech MAV-300W-P4
Основной: ШИМ TL494, супервайзер WT7510, 3,3 V линейный параметрический стабилизатор на полевом транзисторе P45N03L
Дежурка: Высоковольтный полевой ключ — PFB2N60, оптрон COSMO1010, стабилизатор TL431
GIF 203
Схема БП ATX-300P4 PFC ATX-310T v. 2.03. Корректор фактора питания пассивный
Основной: ШИМ TL494, супервайзер LM339, 3,3 V — TL431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — 2SC3866, оптрон ???, стабилизатор TL431
PNG 37
Схема БП ShenZhon мощностью 350 Вт на микросхеме — супервайзере AT2005
Основной: ШИМ, супервайзер и источник опорного +3,3V на микросхеме AT2005, 3,3 V — магнитный стабилизатор
Дежурка: Высоковольтный ключ — полевой KSC5027, оптрон 817, стабилизатор 431
PNG 332
Схема серии БП фирмы Linkworld мощностью 200W, 250W и 300W
Основной: ШИМ TL494C, супервайзер ???, 3,3 V — TL431 и магнитный стабилизатор
Дежурка: Высоковольтный ключ — 2SC3150, оптрон ???, стабилизатор 7805
PDF 395
ШИМ и высоковольтные полевые ключи БП Hiper HPU-4K580
Основной: ШИМ TL3842P, однотактный инвертор на 2-х полевых ключах 2SK2607
Дежурка:
PNG 136
Часть схемы БП IP-P350AJ2-0 мощностью 350 Вт, включающая источник дежурного напряжения +5VSB
Основной: ШИМ AIC3843, супервайзер WT751002, 2 оптрона 817, однотактный инвертор на полевом ключе W12NK90Z
Дежурка: ШИМ и высоковольтный ключ — ICE2A0565Z, оптрон 817, стабилизатор TL431
PNG 24
Фрагмент схемы блока питания ATX Enlight HPC-250 и HPC-350
Основной: ШИМ TL494C, супервайзер LM339, опорное — TL431
Дежурка:
GIF 266
Источник дежурного напряжения +5VSB Codegen-300W model 300X v2.03
Основной:
Дежурка: ШИМ и высоковольтный ключ — 5H0165R, оптрон LF311
GIF 40
Источник дежурного напряжения +5VSB Espada KPY-350ATX
Основной:
Дежурка: Высоковольтный полевой ключ — 02N60, оптрон
GIF 8
Источник дежурного напряжения +5VSB FSP ATX-300GTF
Основной:
Дежурка: Высоковольтный полевой ключ — 02N60, оптрон
GIF 8
Источник дежурного напряжения +5VSB FSP600 Epsilon FX600 GLN
Основной:
Дежурка: ШИМ и высоковольтный ключ — FSDM0265R, оптрон PC817, стабилизатор TL431
PNG 66
Часть схемы БП LEC971 мощностью 250 Вт, включающая источник дежурного напряжения +5VSB
Основной:
Дежурка: Высоковольтный ключ — KSC5027, стабилизатор 7805
GIF 29
Еще одна схема БП ATX
Основной: ШИМ TL494
Дежурка:
BMP 391
Схемы блоков питания AT
Схема БП на TL494 и LM339 мощностью 200W GIF 44
Схема на TL494, KA34063F и LM393 GIF 369
Схема на mPC494C и HA17339 GIF 71
Схема на TL494C PNG 70
Схема на DBL494 PNG 177
Схема на TL494C и LM339 PNG 72
Схема Sunny CWT9200C-1 на KA7500(TL494) PNG 50
Схема Enermax мощностью 200W GIF 51
Схема AUVA VIP P200B мощностью 200W без номиналов PNG 45
Схема PE-050187 от Power Efficiency Electronic Co Ltd без номиналов PNG 51
Схема на mPC494C GIF 89
Еще одна схема БП AT GIF 65
Схема БП мощностью 200W PNG 36
Схема БП мощностью 200W без номиналов GIF 33
Схема БП без номиналов GIF 33
Схема БП без номиналов GIF 135
Еще одна схема БП без номиналов GIF 31

ATX БЛОК ПИТАНИЯ — СХЕМА

ATX БЛОК ПИТАНИЯ, СХЕМА

     С каждым днём всё более популярны среди радиолюбителей компьютерные блоки питания ATX. При относительно небольшой цене, они представляют собой мощный, компактный источник напряжения 5 и 12 В 250 – 500 ватт. БП ATX  можно использовать и в зарядных устройствах для автомобильных аккумуляторов, и в лабораторных блоках питания, и в сварочных инверторах, и ещё массу применений можно найти для них при определённой фантазии. Причём если схема БП ATX и подвергается переделке, то минимальной.

ATX БЛОК ПИТАНИЯ КОРПУС

 

     Схемотехника этих блоков питания примерно одинакова практически у всех производителей. Небольшое отличие касается лишь БП AT и ATX. Главное различие между ними заключается в том, что БП в AT не поддерживает программно стандарт расширенного управления питанием. Отключить данный БП можно, лишь прекратив подачу напряжение на его вход, а в блоках питания формата ATX есть возможность программного отключения сигналом управления с материнской платы. Как правило плата ATX имеет большие размеры чем AT и вытянута по вертикали. 

схема ATX БЛОКА ПИТАНИЯ

     В любом компьютерном БП, напряжение +12 В предназначено для питания двигателей дисковых накопителей. Источник питания по этой цепи должен обеспечивать большой выходной ток, особенно в компьютерах с множеством отсеков для дисководов. Это напряжение также подается на вентиляторы. Они потребляют ток до 0.3 А, но в новых компьютерах это значение ниже 0.1 А. Питание +5 вольт подаётся на все узлы компьютера, поэтому имеет очень большую мощность и ток, до 20 А, а напряжение +3.3 вольта предназначено исключительно для запитки процессора. Зная что современные многоядерные процессоры имеют мощность до 150 ватт, нетрудно подсчитать ток этой цепи: 100 ватт/3.3 вольт=30 А! Отрицательные напряжения -5 и -12 В раз в десять слабее основных плюсовых, поэтому там стоят простые 2-х амперные диоды без радиаторов.

     В задачи БП входит и приостановка функционирования системы до тех пор, пока величина входного напряжения не достигнет значения, достаточного для нормальной работы. В каждом блоке питания перед получением разрешения на запуск системы выполняется внутренняя проверка и тестирование выходного напряжения. После этого на системную плату посылается специальный сигнал Power Good. Если этот сигнал не поступил, компьютер работать не будет.

ATX БП СХЕМА

     Сигнал Power Good можно использовать для сброса вручную если подать его на микросхему тактового генератора. При заземлении сигнальной цепи Power Good, генерация тактовых сигналов прекращается и процессор останавливается. После размыкания переключателя вырабатывается кратковременный сигнал начальной установки процессора и разрешается нормальное прохождение сигнала — выполняется аппаратная перезагрузка компьютера. В компьютерных БП типа ATX, предусмотрен сигнал, называемый PS ON, он может использоваться программой для отключения источника питания.

     Здесь можно скачать сборник схем компьютерных блоков питания, а тут очень полезная книга по описанию, видам и принципу действия БП AT и ATX. Для проверки работоспособности блока питания, следует нагрузить БП лампами для автомобильных фар и замерять все выходные напряжения тестером. Если напряжения в пределах нормы. Также стоит проверить изменение выдаваемое БП напряжение с изменением нагрузки.

     Работа этих блоков питания очень стабильна и надёжна, но в случае сгорания, чаще всего выходят из строя мощные транзисторы, низкоомные резисторы, выпрямительные диоды на радиаторе, варисторы, трансформатор и предохранитель.

     

ФОРУМ по компьютерным БП

   Схемы блоков питания

Переделка компьютерного блока питания — Блоки питания — Источники питания

Подробное описание.

 

Хороший лабораторный блок питания — это довольно дорогое удовольствие и не всем радиолюбителям оно по карману.
Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов.
Собирают такие блоки питания радиолюбители, как правило из компьютерных БП АТХ, которые везде доступны и дешевы.

В этой статье уделено мало внимания самой переделке АТХ, так как переделать компьютерный БП для радиолюбителя средней квалификации в лабораторный, или для каких то иных целей, обычно не составляет особого труда, а вот у начинающих радиолюбителей возникает по этому поводу много вопросов. В основном какие детали в БП нужно удалить, какие оставить, что добавить, чтобы такой БП превратить в регулируемый, ну и так далее.

Вот специально для таких радиолюбителей, я хочу в этой статье подробно рассказать о переделке компьютерных блоков питания АТХ в регулируемые БП, которые можно будет использовать и как лабораторный блок питания, и как зарядное устройство.

Для переделки нам понадобится исправный блок питания АТХ, который выполнен на ШИМ контроллере TL494 или его аналогах.
Схемы блоков питания на таких контроллерах в принципе отличаются друг от друга не сильно и все в основном похожи. Мощность блока питания не должна быть меньше той, которую планируете в будущем снимать с переделанного блока.

Давайте рассмотрим типовую схему блока питания АТХ, мощностью 250 Вт. У блоков питания «Codegen» схема почти не отличается от этой.

Схемы всех подобных БП состоят из высоковольтной и низковольтной части. На рисунке печатной платы блока питания (ниже) со стороны дорожек, высоковольтная часть отделена от низковольтной широкой пустой полосой (без дорожек), и находится справа (она меньше по размеру). Её мы трогать не будем, а будем работать только с низковольтной частью.
Это моя плата и на её примере я Вам покажу вариант переделки БП АТХ.

Низковольтная часть рассматриваемой нами схемы, состоит из ШИМ контроллера TL494, схемы на операционных усилителях, которая контролирует выходные напряжения блока питания, и в случае их несоответствия — даёт сигнал на 4-ю ножку ШИМ контроллера на выключение блока питания.
Вместо операционного усилителя на плате БП могут быть установлены транзисторы, которые в принципе выполняют ту же самую функцию.
Дальше идёт выпрямительная часть, которая состоит из различных выходных напряжений, 12 вольт, +5 вольт, -5 вольт, +3,3 вольта, из которых для наших целей будет необходим только выпрямитель +12 вольт (жёлтые выходные провода).
Остальные выпрямители и сопутствующие им детали необходимо будет удалить, кроме выпрямителя «дежурки», который нам понадобится для питания ШИМ контроллера и куллера.
Выпрямитель дежурки даёт два напряжения. Обычно это 5 вольт и второе напряжение может быть в районе 10-20 вольт (обычно около 12-ти).
Мы будем использовать для питания ШИМа второй выпрямитель. К нему также подключается и вентилятор (куллер).
Если это выходное напряжение будет значительно выше 12-ти вольт, то вентилятор подключать к этому источнику нужно будет через дополнительный резистор, как будет далее в рассматриваемых схемах.
На схеме ниже, я пометил высоковольтную часть зелёной линией, выпрямители «дежурки» — синей линией, а всё остальное, что необходимо будет удалить — красным цветом.

Итак всё, что помечено красным цветом — выпаиваем, а в нашем выпрямителе 12 вольт меняем штатные электролиты (16 вольт) на более высоковольтные, которые будут соответствовать будущему выходному напряжению нашего БП. Также необходимо будет выпаять в цепи 12-ой ножки ШИМ контроллера и средней части обмотки согласующего трансформатора — резистор R25 и диод D73 (если они есть в схеме), и вместо них в плату впаять перемычку, которая на схеме нарисована синей линией (можно просто замкнуть диод и резистор не выпаивая их). В некоторых схемах этой цепи может и не быть.

Далее в обвязке ШИМа на первой его ноге оставляем только один резистор, который идёт к выпрямителю +12 вольт.
На второй и третьей ноге ШИМа — оставляем только Задающую RC цепочку (на схеме R48 C28).
На четвёртой ноге ШИМа оставляем только один резистор (на схеме обозначен как R49. Да, ещё во многих схемах между 4-ой ногой и 13-14 ножками ШИМа — обычно стоит электролитический конденсатор, его (если он есть) тоже не трогаем, так как он предназначен для мягкого старта БП. В моей плате его просто не было, поэтому я его поставил.
Ёмкость его в стандартных схемах 1-10 мкФ.
Потом освобождаем 13-14 ножки от всех соединений, кроме соединения с конденсатором, и также освобождаем 15-ю и 16-ю ножки ШИМа.

После всех выполненных операций у нас должно получиться следующее.

Вот как это выглядит у меня на плате (ниже на рисунке).
Дроссель групповой стабилизации я здесь перемотал проводом 1,3-1,6 мм в один слой на родном сердечнике. Поместилось где то около 20-ти витков, но можно этого не делать и оставить тот, что был. С ним тоже всё хорошо работает.
На плату я так же установил другой нагрузочный резистор, который у меня состоит из двух параллельно включенных резисторов по 1,2 кОм 3W, общее сопротивление получилось 560 Ом.
Родной нагрузочный резистор рассчитан на 12 вольт выходного напряжения и имеет сопротивление 270 Ом. У меня выходное напряжение будет около 40-ка вольт, поэтому я поставил такой резистор.
Его нужно рассчитывать (при максимальном выходном напряжении БП на холостом ходу) на ток нагрузки 50-60 мА. Так как работа БП совсем без нагрузки не желательна, поэтому он и ставится в схему.

Вид платы со стороны деталей.

Теперь что необходимо будет нам добавить в подготовленную плату нашего БП, чтобы превратить его в регулируемый блок питания;

В первую очередь, чтобы не пожечь силовые транзисторы, нам нужно будет решить проблему стабилизации тока нагрузки и защиту от короткого замыкания.
На форумах по переделке подобных блоков, встретил такую интересную вещь — при экспериментах с режимом стабилизации тока, на форуме pro-radio, участник форума DWD привёл такую цитату, приведу её полностью:

«Я как-то рассказывал, что не смог получить нормальную работу ИБП в режиме источника тока при низком опорном напряжении на одном из входов усилителя ошибки ШИМ контроллера.
Более 50мВ — нормально, а меньше — нет. В принципе, 50мВ это гарантированный результат, а в принципе, можно получить и 25мВ, если постараться. Меньше — ни как не получалось. Работает не устойчиво и возбуждается или сбивается от помех. Это при плюсовом напряжении сигнала с датчика тока.
Но в даташите на TL494 есть вариант, когда с датчика тока снимается отрицательное напряжение.
Я переделал схему на этот вариант и получил отличный результат.
Вот фрагмент схемы.

Собственно, всё стандартно, кроме двух моментов.
Во первых, лучшая стабильность при стабилизации тока нагрузки при минусовом сигнале с датчика тока это случайность или закономерность?
Схема прекрасно работает при опорном напряжении в 5мВ!
При положительном сигнале с датчика тока стабильная работа получается только при более высоких опорных напряжениях (не менее 25мВ).
При номиналах резисторов 10Ом и 10КОм ток стабилизировался на уровне 1,5А вплоть до КЗ выхода.
Мне ток нужен больше, по этому поставил резистор на 30Ом. Стабилизация получилась на уровне 12…13А при опорном напряжении 15мВ.
Во вторых (и самое интересное), датчика тока, как такового у меня нет…
Его роль выполняет фрагмент дорожки на плате длиной 3см и шириной 1см. Дорожка покрыта тонким слоем припоя.
Если в качестве датчика использовать эту дорожку на длине 2см, то ток стабилизируется на уровне 12-13А, а если на длине 2,5см, то на уровне 10А.»

 

Так как этот результат оказался лучше стандартного, то и мы пойдём таким-же путём.

Для начала нужно будет отпаять от минусового провода средний вывод вторичной обмотки трансформатора (гибкую косу), или лучше не выпаивая её (если позволяет печатка) — перерезать печатную дорожку на плате, которая соединяет её с минусовым проводом.
Дальше нужно будет впаять между разрезом дорожки токовый датчик (шунт), который будет соединять средний вывод обмотки с минусовым проводом.

Шунты лучше всего брать из неисправных (если найдёте) стрелочных ампервольтметров (цешек), или из китайских стрелочных или цифровых приборов. Выглядят они примерно так. Вполне достаточно будет куска длинной 1,5-2,0 см.

Можно конечно попробовать поступить и так, как написал выше DWD, то есть если дорожка от косы к общему проводу достаточной длинны, то попробовать её использовать в качестве токового датчика, но я этого делать не стал, у меня плата попалась другой конструкции, вот такая, где обозначены красной стрелкой две проволочные перемычки, которые соединяли вывод косы с общим проводом, а между ними проходили печатные дорожки.

Поэтому после удаления лишних деталей с платы, я выпаял эти перемычки и на их место впаял токовый датчик от неисправной китайской «цешки».
Потом на место припаял перемотанный дроссель, установил электролит и нагрузочный резистор.
Вот ка выглядит кусок платы у меня, где я красной стрелкой пометил установленный токовый датчик (шунт) на месте проволочной перемычки.


Потом отдельным проводом необходимо этот шунт соединить с ШИМом. Со стороны косы — с 15-ой ножкой ШИМа через резистор 10 Ом, а 16-ю ножку ШИМ-а соединить с общим проводом.
С помощью резистора 10 Ом можно будет подобрать максимальный выходной ток нашего БП. На схеме DWD стоит резистор 30 Ом, но начните пока с 10-ти Ом. Увеличение номинала этого резистора — увеличивает максимальный выходной ток БП.

Как я уже раньше говорил, выходное напряжение блока питания у меня около 40-ка вольт. Для этого я перемотал себе трансформатор, но в принципе можно не перематывать, а повысить выходное напряжение другим способом, но для меня этот способ оказался удобнее.
Обо всём этом я расскажу немного позже, а пока продолжим и начнём устанавливать на плату необходимые дополнительные детали, чтобы у нас получился работоспособный блок питания или зарядное устройство.

Ещё раз напомню, что если у Вас на плате между 4-ой и 13-14 ножками ШИМа не стоял конденсатор (как в моём случае), то его желательно добавить в схему.
Так же нужно будет установить два переменных резистора (3,3-47 кОм) для регулировки выходного напряжения (V) и тока (I) и соединить их с нижеприведённой схемой. Провода соединения желательно делать как можно короче.
Ниже я привёл только часть схемы, которая нам необходима — в такой схеме проще будет разобраться.
На схеме вновь установленные детали обозначены зелёным цветом.

Схема вновь установленных деталей.

Приведу немного пояснений по схеме;
— Самый верхний выпрямитель — это дежурка.
— Величины переменных резисторов показаны, как 3,3 и 10 кОм — стоят такие, какие нашлись.
— Величина резистора R1 указана 270 Ом — он подбирается по необходимому ограничению тока. Начинайте с малого и у Вас он может оказаться совсем другой величины, например 27 Ом;
— Конденсатор С3 я не пометил, как вновь установленные детали в расчёте на то, что он может присутствовать на плате;
— Оранжевой линией обозначены элементы, которые может придётся подбирать или добавлять в схему в процессе наладки БП.

Дальше разбираемся с оставшимся 12-ти вольтовым выпрямителем.
Проверяем, какое максимальное напряжение способен выдать наш БП.
Для этого временно отпаиваем от первой ноги ШИМа — резистор, который идёт на выход выпрямителя (по схеме выше на 24 кОм), затем нужно включить блок в сеть, предварительно соединить в разрыв любого сетевого провода, в качестве предохранителя — обычную лампу накаливания 75-95 Вт. Блок питания в этом случае выдаст нам максимальное напряжение, на которое он способен.

Прежде, чем включать блок питания в сеть, убедитесь, что электролитические конденсаторы в выходном выпрямителе заменены на более высоковольтные!

Все дальнейшие включения БП производить только с лампой накаливания, она убережёт БП от аварийных ситуаций, в случае каких либо допущенных ошибок. Лампа в этом случае просто загорится, а силовые транзисторы останутся целыми.

Дальше нам нужно зафиксировать (ограничить) максимальное выходное напряжение нашего БП.
Для этого резистор на 24 кОм (по схеме выше) от первой ноги ШИМа, меняем временно на подстроечный, например 100 кОм, и выставляем им необходимое нам максимальное напряжение. Желательно выставить так, что бы оно было меньше процентов на 10-15 от максимального напряжения, которое способен выдать наш БП. Потом на место подстроечного резистора впаять постоянный.

Если Вы планируете этот БП использовать в качестве зарядного устройства, то штатную диодную сборку используемую в этом выпрямителе, можно оставить, так как её обратное напряжение 40 вольт и для зарядного устройства она вполне подойдёт.
Тогда максимальное выходное напряжение будущего зарядного нужно будет ограничить выше описанным способом, в районе 15-16 вольт. Для зарядного устройства 12-ти вольтовых АКБ это вполне достаточно и повышать этот порог не нужно.
Если планируете использовать Ваш переделанный БП в качестве регулируемого блока питания, где выходное напряжение будет больше 20-ти вольт, то эта сборка уже не подойдёт. Её нужно будет заменить на более высоковольтную с соответствующим током нагрузки.
Себе на плату я поставил две сборки в параллель по 16 ампер и 200 вольт.
При конструировании выпрямителя на таких сборках, максимальное выходное напряжение будущего блока питания может быть от 16-ти и до 30-32 вольт. Всё зависит от модели блока питания.
Если при проверке БП на максимально-выдавамое напряжение, БП выдаёт напряжение меньше планируемого, и кому то нужно будет больше напряжения на выходе (40-50 вольт например), то нужно будет вместо диодной — сборки собрать диодный мост, косу отпаять от своего места и оставить висеть в воздухе, а минусовой вывод диодного моста соединить на место выпаянной косы.

Схема выпрямителя с диодным мостом.

С диодным мостом выходное напряжение блока питания будет в два раза больше.
Очень хорошо для диодного моста подходят диоды КД213 (с любой буквой), выходной ток с которыми может достигать до 10-ти ампер, КД2999А,Б (до 20-ти ампер) и КД2997А,Б (до 30-ти ампер). Лучше всего конечно последние.
Все они выглядят вот так;

Нужно будет в таком случае продумать крепление диодов к радиатору и изоляцию их друг от друга.
Но я пошёл другим путём — просто перемотал трансформатор и обошёлся, как говорил выше. двумя диодными сборками в параллель, так как на плате было для этого предусмотрено место. Для меня этот путь оказался проще.

Перемотать трансформатор особого труда не составляет и как это сделать — рассмотрим ниже.

Для начала выпаиваем трансформатор из платы и смотрим по плате, к каким выводам припаяны 12-ти вольтовые обмотки.

В основном встречаются двух видов. Такие, как на фото.
Дальше нужно будет разобрать трансформатор. Проще конечно будет справиться с меньшими по размеру, но и бОльшие тоже поддаются.
Для этого нужно очистить сердечник от видимых остатков лака (клея), взять небольшую ёмкость, налить в неё воды, положить туда трансформатор, поставить на плиту, довести до кипения и «поварить» наш трансформатор 20-30 минут.

Для меньших трансформаторов это вполне достаточно (можно и меньше) и подобная процедура абсолютно не повредит сердечнику и обмоткам трансформатора.
Потом, придерживая сердечник трансформатора пинцетом (можно прямо в таре) — острым ножом пробуем отсоединить ферритовую перемычку от Ш-образного сердечника.

Делается это довольно легко, так как лак размягчается от такой процедуры.
Дальше так же аккуратно, пробуем освободить каркас от Ш-образного сердечника. Это тоже довольно просто делается.

Потом сматываем обмотки. Сначала идёт половина первичной обмотки, в основном около 20-ти витков. Сматываем её и запоминаем направление намотки. Второй конец этой обмотки можно и не отпаивать от места его соединения с другой половиной первички, если это не мешает дальнейшей работе с трансформатором.

Потом сматываем все вторички. Обычно идёт 4 витка сразу обеих половин 12-ти вольтовых обмоток, потом 3+3 витка 5-ти вольтовых. Всё сматываем, отпаиваем от выводов и наматываем новую обмотку.
Новая обмотка будет содержать 10+10 витков. Наматываем её проводом, диаметром 1,2 — 1,5 мм, или набором более тонких проводов (легче мотать) соответствующего сечения.
Начало обмотки припаиваем к одному из выводов, к которым была припаяна 12-ти вольтовая обмотка, мотаем 10 витков, направление намотки роли не играет, выводим отвод на «косу» и в том же направлении, что и начинали — мотаем ещё 10 витков и конец припаиваем на оставшийся вывод.
Дальше изолируем вторичку и наматываем на неё, смотанную нами ранее, вторую половину первички, в том же направлении, как она была намотана ранее.
Собираем трансформатор, впаиваем в плату и проверяем работу БП.

Если в процессе регулировки напряжения возникают какие либо посторонние шумы, писки, трески, то чтобы избавиться от них, нужно будет подобрать RC-цепочку, обведённую оранжевым эллипсом ниже на рисунке.

В некоторых случаях можно совсем убрать резистор и подобрать конденсатор, а в некоторых без резистора нельзя. Можно будет попробовать добавить конденсатор, или такую же RC цепочку, между 3 и 15 ножками ШИМа.
Если это не помогает, то нужно установить дополнительные конденсаторы (обведены оранжевым), номиналы их приблизительно 0,01 мкф. Если это мало помогает, то установить ещё и дополнительный резистор 4,7 кОм от второй ноги ШИМа к среднему выводу регулятора напряжения (на схеме не показан).

Потом нужно будет нагрузить выход БП, например автомобильной лампой ватт на 60, и попробовать регулировать ток резистором «I».
Если предела регулировки тока будет мало, то нужно увеличить номинал резистора, который идёт от шунта (10 Ом), и снова попробовать регулировать ток.
Не следует ставить вместо этого резистора подстроечный, изменяйте его величину, только установкой другого резистора с большим или меньшим номиналом.

Может случиться так, что при увеличении тока — лампа накаливания в цепи сетевого провода загорится. Тогда нужно уменьшить ток, выключить БП и вернуть номинал резистора к предыдущему значению.

Ещё, для регуляторов напряжения и тока, лучше всего попробовать приобрести регуляторы СП5-35, которые бывают с проволочными и жесткими выводами.

Это аналог многооборотных резисторов (всего на полтора оборота), ось которого совмещена с плавным и грубым регулятором. Регулируется сначала «Плавно», потом когда у него заканчивается предел, начинает регулироваться «Грубо».
Регулировка такими резисторами очень удобна, быстра и точна, гораздо лучше, чем многооборотником. Но если их достать не удастся, то приобретите обычные многооборотные, такие например;


Ну вот вроде я всё Вам и рассказал, что планировал довести по переделке компьютерного БП, и надеюсь, что всё понятно и доходчиво.

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их ЗДЕСЬ на форуме.

Удачи Вам в конструировании!

 

750 ваттный, каскадный регулируемый импульсный источник питания из трёх АТХ/АТ блоков питания по 300W

750 ваттный, каскадный регулируемый импульсный источник питания из трёх АТХ/АТ блоков питания по 300W

 «Один импульсный блок питания хорошо, а три — трижды хорошо!

 

Уважаемый РадиоКот! От всей души поздравляю Тебя с Днем Рождения, ведь ШЕСТЬ лет, это уже очень серьезный и умный Кот! Всего Тебе самого лучшего, много, удачи и активного развития! Так же огромное СПАСИБО за Ваш сайт, за Ваш труд, благодаря которому мы все набираемся знаний и опыта! А в подарок небольшое, красочное  повествование.

 

    Здравствуйте уважаемые читатели! Сегодня наше путешествие в мир электроники пройдет под знаменем русской поговорки «ВМЕСТЕ МЫ СИЛА!», где под «МЫ», имеются в виду блоки АТАТХ. Очень часто владельцы источников питания АТХ/АТ задают вопрос о возможности параллельного или последовательного включения блоков. Такая возможность присутствует во всех АТХ/АТ блоков питания после небольшой и полностью беззатратной переделки. Но, конечно, необходимо соблюдать некоторые правила соединения двух и более источников питания. При параллельном подключении источников необходимо, чтобы все источники были с одинаковым номиналом выходного напряжения (например, 10В/50А и 10В/50А, на выходе будет 10В/100А). При последовательном подключении источников, необходимо, чтобы все источники были с одинаковым номиналом выходного тока (например, 10В/50А и 15В/50А, на выходе будет 25В/50А). Подключение источников с разными номиналами может привести к перекосу распределения мощности между блоками и, как следствие, возможной перегрузке какого либо из блоков.

    Я поведаю Вам о том, как же преодолеть барьер высоких мощностей (достаточных для радиоКота), совершенно простыми и подручными средствами. Каждый наверняка сталкивался с необходимостью в мощном регулируемом источнике питания. Кому то приносили мощные автомобильные усилители с током потребления в 50 ампер по питанию 12в, разные UPSы, да и прочую технику. Ну, а может кто-то из Вас хотел заняться гальваникой? А может Вы просто хотели зимой завести авто от розетки? Во всех этих случаях Вам, конечно же не хватало мощного источника питания. А ведь такой мощный блок просто так на коленке быстро не собрать, и на это нужно много времени и сил. Так давайте же вместе развеем этот миф, и соберем такой мощный блок, на все случаи жизни, всего за…… два вечера, придя после работы домой!  «Не может быть!» невольно возразите Вы, а как же необходимые детали, трансформаторы, ферриты, мосты, и прочее, прочее…..  А зачем нам это все?  Нам достаточно заглянуть каждому в свою кладовку (или под рабочий стол) и там все необходимое у каждого радиоКота уже есть и, так сказать, давно там пылится!!! Заглянули?  И что мы там видим? Ха! Совершенно верно – компьютерный блок питания! Да и не один! Ну и на кой они Вам? Так и будут дальше валяться? Конечно нет! Мы с вами соорудим мощный блок питания для всех случаев жизни радиоКота. Это и зарядка, и пусковое, и  лабораторный блок питания, и источник для гальваники и т.д. и т.п. Каскадное соединение источников питания — просто необходимость. Давно уже просматривается тенденция в получении больших мощностей с помощью большого числа блоков, меньшей мощности и работающих совместно на одну нагрузку.

   Все необходимые детали у нас для этого уже есть. Нам надо всего 3 одинаковых АТ или АТХ блока питания. Помянем добрым словом жителей Китая, за то, что они большую часть работы уже сделали за нас. Будем собирать блок питания с такими параметрами:

Напряжение входное…………………………………………………….~170в – 240в

Напряжение выходное регулируемое………………………… от 6в до 18в

Мощность максимальная……………………………………………….750W

Ток выходной регулируемый…………………………………………от 6 ампер  до 50 ампер

Вес ……………………………………………………………………………………3 кг.

Возможность наращивания мощности……………………………ЕСТЬ.

   Я, надеюсь, Вам понравились показатели Вашего будущего блока питания?  Ну а если мало этого, то я в конце путешествия расскажу Вам как их еще поднять до 1500W, или до 3000W, ведь вы поговорку еще не забыли? Выглядит «трио-блок» примерно так:

Рис1.

Рис1а.

Рис2.

    Тогда начнем! Особо в схемотехнику АТ, АТХ блоков питания вдаваться не будем, так как её знает любой радиоКот уже на столько, что разбуди его ночью и спроси «Как?», все расскажет как,  куда и зачем. Все еще помнят, чему нас учили в школе, на уроках физики? Там были уроки про элементы питания, которые можно собирать в батареи как угодно, хочешь последовательно, хочешь параллельно, хочешь параллельно – последовательно. Ну так вот, мы и продолжим наш урок, только вместо элементов у нас будут — компьютерные источники питания. Это наши такие своеобразные «кирпичики» для построения каскадного мощного блока питания. Ведь все же знают, что если Вы соедините последовательно например, три блока или аккумулятора по 5В и каждый из которых может отдать ток 50А (например), то ток 50А от получившихся 15В мы получим, но ни как не 150А, как ни старайтесь (полный закон Ома). Примерно так же и в нашем случае. Б_о_льший ток мы получим при параллельном соединении БП (при том же напряжении 5В в примере с аккумуляторами). При последовательном соединении аккумуляторов, главное требование — одинаковость их характеристик. Компьютерный блок тоже самое. Но собираемые в каскады блоки питания должны быть одинаковыми. Ведь в разных блоках могут стоять разные диодные сборки, разные дросселя групповой стабилизации и конденсаторы. Может, даже, в одном блоке стоят дополнительные дроссели по питанию, а в другом — нет. Частоты блоков и текущие длительности импульсов ШИМ, так же, могут отличаться. Всё это определяет выходное сопротивление каждого блока. Если эти сопротивления окажутся сильно разными, то на предельных токах нельзя будет получить равного распределения выходной мощности между блоками. Значит, один блок будет выдавать большее напряжение, чем другой. Перекос мощности, конечно же, скажется на надёжности работы. Но насколько опасен, такой перекос, сказать трудно, так как слишком от многих факторов он зависит. Поэтому все же приведем наши блоки к одному общему знаменателю (лучше сразу взять три одинаковых).

   Мы будем соединять блоки питания последовательно, а не параллельно, исходя из экономических соображений и простоты реализации. Диоды шоттки низковольтные на 40 вольт и на 30 ампер легче найти (их с блоков можно набрать целую ладонь) и их можно соединить параллельно, тем самым  получить диод 40 вольт 60 ампер. Это означает, теоретически, такое соединение диодов в двухтактном режиме может обеспечить протекание тока в 60 ампер. Падение на 6 диодах шоттки меньше при последовательном соединении блоков, чем на 6 диодах ультрафаст при параллельном соединении блоков питания (а они тогда нужны уже не менее 200 вольт, плюс желателен подбор по одинаковым параметрам).

Давайте рассмотрим структурную схему из которой нам всё сразу станет ясно:

Рис3.

    Все линии одной расцветки имеют одноименное назначение. Например, линия красно-синяя с дежурного блока питания 20-25в — означает, что это питание заводится во все функциональные блоки от данного блока питания. Три кирпичика А, В, С каждый дают напряжение от 2 до 6 вольт и ток от 6 до 50 ампер. Но, надо учитывать максимально допустимую мощность, если выставили 18 вольт, то даем максимальный ток только 40А, ну а если 12 вольт, то можно брать ток в нагрузку и все 50А.

 План действий по разбору схемы будет таким:  Сначала читаете, вникаете. Разбираем каждый функциональный блок отдельно. Осциллограммы, наладка, проверка каждого блока. Потом я приведу полную принципиальную схему, в которой нам станет все понятно. И, только потом начнем по пунктам собирать  и отлаживать «трио-блок». Поехали!

   Схема контроля тока и напряжения может быть совершенно любой, главное, что бы хорошо работала, а «нагуглить» в интернете можно много самых разных вариаций. Данная схема взята из форума радиокота, из-за того, что имеет самую простую реализацию, очень удобную настройку и хорошо себя зарекомендовала в работе. В данной схеме «токовый» усилитель включен в диагональ измерительного моста образованного резисторами R11,R12 и R1,R2,R3,R4,R5,шунт. Шунт является источником напряжения, вызывающего разбаланс измерительного моста. На первом этапе построения блока нам надо получить соответствие напряжения и осциллограмм на выводах микросхемы.

Рис4. Схема.

Начальная наладка данного узла сводится к следующим шагам:

  1. установке на выводе 2, 15 половины опорного напряжения = 2,5 вольт с помощью R11, R12.
  2. установке на выводе 16 половины опорного напряжения = 2,49 вольт. Резисторы R1,R2 установить в положение максимального сопротивления. Резистором R4 выставить такое положение, когда TL494 только начинает давать коротенькие импульсы, и так пока оставить.
  3. Подогнать с помощью R7, R9 и R10 диапазон регулировки напряжения от 6 до 18 вольт. Для этого подключим временно сопротивление R18 1к и будем подавать напряжение от 6 в до 18 вгоняя в заданный диапазон. Ориентиром будет появление или пропадание импульсов с выхода 494  с выводов 8 или 11. После примерной калибровки так пока оставить.
  4. Установка дополнительного мертвого времени. Данный пункт необходим для дополнительного повышения надёжности блока, полностью исключая возможные пробои силовых ключей из-за сквозного тока. Для лучшей наглядности нужно установить временное соединение выводов 8 и 11 перемычкой. Далее настроим минимально допустимую ширину импульсов (дед-тайм) с помощью R14. Выставляем  около 2 -4 мкс (см. рисунок 6).

      Когда подключим силовой каскад блока питания С, то все настройки продолжим и отполируем.

      Теперь подключив только 20 вольт, и не подключая силу и распределитель, посмотрим осциллограммы. Осциллограммы с выходом ни куда не нагруженным (в воздухе), поэтому напряжение импульса будет в размахе 20 вольт. Здесь показано какую ширину смотреть, для отсчета 2 — 4 мкс. Можно было оставить как и было — 2 мкс, но для подстраховки лучше увеличить мертвое времени до 4 мкс, хуже от этого точно не будет.  Это лишний раз убережет выходные транзисторы от сквозного тока, если они вдруг окажутся ну слишком медленными.

Все резисторы которые нужно настраивать обведены в пунктирный красный кружок.

Рис6.

Теперь снимаем временную перемычку, чтобы не забыть.

        Схема распределителя импульсов представляет собой несколько изменённый простейший двухтактный эмиттерный повторитель. В каждый добавлена форсирующая цепь и ограничительный резистор в цепи коллектора обратного транзистора.  Таких повторителей всего шесть, по два на каждый блок питания.

    Рис7.

    Плата в стадии сборки:

    Рис8.

    Рис9.

     

    Рис10.

     

    Настройка распределителя не требуется, и если всё собрано из исправных деталей, то начинает работать сразу.  Формы сигналов приведены ниже.

    Рис11.

     

         Для лучшей наглядности и понимания что же происходит на выходе и как управляется силовой выходной каскад, лучше проводить наблюдения двух лучевым осциллографом. Но можно и с одним лучом. Для наблюдения можно временно добавить резистор на 470 ом между 8 и 11 выводом 494. Тогда мы увидим такую картину (смотрим рисунок, там пояснения), за одно можно еще раз проверить мертвое время.

    Рис12

        Теперь проверим работу форсирующей цепи, которая ускоряет переключение транзисторов. Для этого станем осциллографом в точку соединения двух баз КТ315 и КТ361, и наблюдаем на спаде импульса не большое отрицательное напряжение. Если оно есть, то цепь исправна.

    Рис13. проверка работы форсирующей RC цепи:

      Рис14.

           Схема стандартна, и её каждый знает, поэтому описывать нет смысла. Сразу переходим к безопасным  испытаниям силовой части блока, так мы можем смело все облазить и обмерять. Для этого понадобится соединить сетевой вход блока с 20В, которые мы используем для питания ШИМ 494 и распределителя. Полярность не важна, т.к. там на входе есть мост. Подключаем 20 вольт.  На выходе диодного моста должно быть напряжение 18-19В.  Соответственно на каждом электролите высокого напряжения будет примерно по 9В.  Между эмиттером и коллектором каждого силового транзистора также должно быть 9В.    Теперь перемычкой замыкаем (припаиваем) выход 2-6в накоротко. Делаем это для того, что бы в полной мере заработал согласующий трансформатор. Осциллограммы на коллекторе, или базе силового транзистора измерять относительно его эмиттера. Напряжение будет меняться от 0 до 19В если на коллекторе, и в пределах 4 вольт если на базе).  При этом процесс перехода напряжения на коллекторе от низкого уровня к высокому должен быть как можно круче, почти мгновенным.   Если переходной процесс происходит плавно (присутствует небольшой наклон),  то скорее всего уже через несколько минут радиатор силовых транзисторов очень сильно нагреется. (при нормальной работе — радиатор должен быть холодный)

      Рис15.

          Для лучшего закрывания и надежного удержания одного силового транзистора в закрытом состоянии, на время коммутации второго силового транзистора напряжение на базе должно быть отрицательным, если транзистор закрыт, и положительным, если открыт (см. рис15). Желательно маленькие электролиты в базовых цепях заменить на новые или на неэлектролитические (пленочные например). На этом предварительную проверку силового блока можно завершить.

        Рис16.

            Блок шим и распределитель импульсов питается от двухполупериодного выпрямителя, а вентиляторы от однополупериодного, для снижения на них напряжения. Стрелкой показано течение тока для питания вентиляторов.

            Вот и всё, все блоки по отдельности рассмотрели. Далее привожу всю   схему   целиком  и начнем сборку и наладку. Схема довольно большая, формат А0, поэтому её лучше скачать отдельно и посмотреть в любой программе просмотра изображений, а не в браузере:

        Рис 17.

           Общая подготовка к запуску старых АТ и АТХ  БП о которых не известно — сколько они проработали и как долго и в каких условиях после этого хранились. После внешнего осмотра и разборки промывем и сушим плату. Затем выпаиваем все электролиты: по питанию TL494, в цепи плавного пуска меняем на новые. В базовых цепях ключей – меняем на новые обязательно или лучше на керамику того же номинала. Затем  формуем фильтрующие электролиты — 220-680 мкф на 200-250в. Для этого соединяем параллельно и через диодный мост и лампочку 220в 15 — 25 Вт подключаем к латру. Напряжение повышаем постепенно по 20 — 30 в каждые полчаса, контролируя при этом ток утечки по падению напряжения на лампе. Весь процесс довольно длительный и занимает 3-5 часов. Этот процесс необходим высоковольтным электролитам после долгого хранения. Если утечек нет — измеряем ёмкость, и если нормально впаиваем в плату, если нет то меняем на новые. Если возиться не хочется, то просто сразу меняем на новые, только проверить на емкость.

           Для переделки брались три блока фирмы CODEGEN 300, как самые распространенные. Из трех одинаковых берем два блока. Эти два блока приводим в соответствие со схемой функционального блока силовой части. Выпаиваем 494, и все транзисторы мелкие, кроме предвыходных…. Вообще идем по схеме. Для дросселя используем обмотки канала 5 вольт, (они там в два провода намотаны). Диоды SBL3040 ставим два в параллель. Тот, который там стоял, так и оставляем, и ставим туда еще один. Желательно диоды брать одной фирмы. В блоках CODEGEN 300 они уже стояли в канале 3,3 вольта, и я их просто перекинул перемычками на 5 вольтовую обмотку силового трансформатора. Обмотка с канала 12 вольт силового трансформатора не используется.

        Должно получиться примерно как на фото. Это блоки А и В.

        Рис18.

           В третьем блоке силу делаем одинаково, как и все предыдущие, но не выпаиваем 494 с обвязкой, а также если исправна дежурка, то можно использовать родную (я использовал родную), а так все согласно схеме. Допаиваем нужные резисторы, переменные резисторы, шунт.  Шунт берем три толстых кусочка манганина длинной 3 см диаметром 1 -3 мм. Удельное сопротивление 0.548 ом на метр длины.  Сопротивление не важно, там будет около 0,006-0,01ома. Впаиваем их паралелльно торчком в плату, где выходили черные провода минуса, а ко второму концу припаиваем переменный резистор одним крайним выводом и бегунком. Этот же конец шунта в воздухе и будет минусовым выходом. По порядку все делаем  по схеме, кроме одного: пока не перерезайте дорожки идущие от 8 и 11 вывода к 945 транзисторам. (это потом сделаем, когда все настроим и будем добавлять распределитель и драйверы).

        Фото третьего блока С:

        Рис19.

            Когда все сделали, включаем в сеть через одну лампочку 100W и продолжаем настройку. Убеждаемся что на 2 выводе 2,5 вольт. Проверяем напряжение на выходе, и настраиваем с помощью R8 и R10 (все позиционные обозначения смотрим по полной схеме) диапазон регулировки напряжения от 6 до 18 вольт. Когда это сделали, включаем в сеть через три — четыре лампочки 100W параллельно (на всякий случай) и продолжаем настройку.  Резисторы R1, R3 установить в положение максимального сопротивления. R7- в среднее положение. Подключить амперметр на выход напрямую. Резистором R1 выставить минимальный ток 6А. Переведя R2 в положение минимального сопротивления — подстройкой R7 выставить максимальный ток равный 50 ампер (для этого нужно заблаговременно сделать такой амперметр). Переведя R2 в положение макс. сопротивления проверить мин. ток (6А). После настройки подстроечные сопротивления R7, R1 лучше заменить на постоянные. Далее  подключить через амперметр нагрузку 0,1 – 0,3 ома, и по сети убрать лампы, и повторить проверку диапазонов регулирования тока.

            В итоге получится один ведущий блок на напряжение от 3 до 6 вольт и ток от 6 до 50 ампер, который будет управлять оставшимися двумя ведомыми. Теперь разрезаем дорожки идущие от 8 и 11 вывода к 945 транзисторам, при этом резисторы которые идут на +20в с этих выводов должны остаться с микросхемой, для подтяжки коллекторов в микросхеме к плюсу. Теперь подключаем распределитель импульсов согласно схеме. Он будет находиться в третьем блоке, над основной платой дорожками вверх для удобства пайки проводов. Входы верхний ключ и нижний подключаем к 494, а выхода распределяем по блокам каждому по паре — верхний ключ и нижний. Для этого берем обычный двойной провод с сечением 0,2 мм^2. Далее на каждый блок заводим питание 20 вольт (на третьем оно уже заведено с дежурки), тоже используем обычный двойной провод с сечением 0,2 мм^2. Далее заводим каждому блоку корпус. У каждой платы блока разрезаем дорожки, идущие на сам металлический корпус под болты. Отключать минус выходных напряжений от металлического корпуса блока необходимо и это обязательно. Это для того, что бы не было связи мимо шунта, при случайном коротыше на металлический корпус. Все Y конденсаторы со всех блоков питания соединяем с общим корпусом. Подаем от третьего блока каждому следующему 220 вольт внешней гибкой перемычкой в двойной изоляции (например, проводом ПВС).

            Теперь включаем «трио – блок» в сеть 220в через лампу 100W. Проверяем напряжение на выходе каждого блока, что бы оно было примерно одинаковым. Например, выставили 6 вольт, то и на каждом должно быть примерно по 6 вольт. Выключаем. Теперь соединяем выхода каждого блока согласно схеме – последовательно.  Для соединения берем выходные провода, которые отпаяли от блоков перед переделкой. Для этого надо скрутить по 10 — 15 проводов вместе на один провод. Я скручивал только по семь в один и они ощутимо греются, поэтому лучше брать больше. Включаем. Меряем напряжение на выходе трех последовательно соединенных блоках питания. Оно должно быть в три раза больше чем на одном. Выключаем. Резистором R2 выставить минимальный ток, переведя его в положение макс. сопротивления. Подключить амперметр на выход напрямую. Включаем. Ток должен быть 6А. Далее увеличиваем ток до 12А, медленно вращая переменный резистор. Выключаем. Проверяем радиаторы на предмет перегрева, и если все нормально, то продолжаем дальше. Подключаем вентиляторы, для обдува каждого блока питания. Включаем в сеть через три – четыре лампочки 100W параллельно (ну на всякий случай) и продолжаем проверку. Далее увеличиваем ток до 30А, медленно вращая переменный резистор. Выключаем. Проверяем радиаторы на предмет перегрева, и если все нормально, то продолжаем дальше. Включаем в сеть напрямую и продолжаем проверку. Далее очень – очень плавно увеличиваем ток до 50А, медленно вращая переменный резистор. Выключаем. Проверяем радиаторы на предмет перегрева, и если все нормально, то продолжаем дальше. Подключаем нагрузку 0,2 ома. (много нихромовых коротких проволок параллельно с обдувом вентиляторами). Включаем в сеть напрямую и продолжаем проверку. Плавно увеличиваем ток с 6А до 30А, медленно вращая переменный резистор (вентиляторы при этом обдувают блоки). Держим 1 минуту. Выключаем. Проверяем радиаторы на предмет перегрева, и если все нормально, то продолжаем дальше. Плавно увеличиваем ток с 30А до 50А, медленно вращая переменный резистор (вентиляторы при этом обдувают блоки – это обязательно!). Держим 1 минуту. Выключаем. Проверяем радиаторы на предмет перегрева, и если все нормально (примерно градусов 40 – 50), то настройка завершена.

            По корпусу: нужно повернуть перегородки спереди и сзади поперек корпуса, для лучшего движения потока воздуха. Далее собираем всё в корпус, и проверяем температурный режим в корпусе (температура будет выше примерно градусов 10-20, чем в разобранном виде на столе), включив сначала на 1 минуту, потом на 10, потом на час.

            Контролировать напряжение (заводить ОС по напряжению) надёжней на третьем блоке (блок С). Тогда в случае выхода из строя одного блока, ширина управляющих импульсов не изменится, и не будет стремиться к максимуму для компенсации провала напряжения на треть. Но тогда стабилизация напряжения немного хуже чем, если контролировать выходное напряжения со всех блоков питания сразу (на схеме показано пунктирной линией).

        Общий вид блока со снятой крышкой с блока В и С:

        Рис20.

        На фото видно как разогнуть щели продувки для лучшего охлаждения.

        Рис21.

        Компоновка платы распределителя в блоке С. Видны на фото также диоды SBL3040 в паре, а также родная рабочая дежурка, которая использовалась для питания +20в и для вентиляторов +12в.

        Рис22.

        Фото блока в работе на нагрузку, как видно в запасе еще около 20 ампер.

        Рис23.

        Ампервольметр использовался со статьи «моддинг блока питания», только переделан на измерение до 99,9 А и 99,9 В.

        А это домашняя нагрузка:

        Рис24.

          Теперь, как и обещал, расскажу как можно увеличить мощность, ток, напряжение простыми средствами. Наши «кирпичики» (блоки питания) можно наращивать в столбик, для повышения напряжения до безграничного количества (теоретически, но в принципе можно соединить 20 штук). Если нужен больший ток, тогда соединяем параллельно. Можно и параллельно – последовательно.

        Вот пример построения мощного блока от 12 до 36 вольт:

        Рис25.

        Просто добавили еще шесть повторителей в распределитель, и добавили еще блоков типа А и В три штуки.

        Можно соединять параллельно:

        Рис26.

        Можно нарастить мощности:

        Рис27.

        Можно применить и смешанное соединение:

        Рис28.

          Скажу, что по данной методике можно переделать БП АТ/АТХ и на другие заданные параметры, этот я делал для использования в качестве лабораторного мощного источника питания и для гальваники. Сейчас думаю поставить такой двойной трио блок для запуска зимой автомобиля, а то ведь и зима может неожиданно нагрянуть…..

          Вот и подошло к концу наше интересное путешествие, и у Вас на столе надеюсь, появился уже мощный каскадный блок из АТ/АТХ, который монотонно жужжит своими тремя черными вентиляторами, питая Ваш мощный автоусилитель с сабвуферами.

        До встречи на форуме.

        За сим я откланяюсь, и пойду паяльник греть, для следующего путешествия в увлекательнейший  безграничный мир электроники.

         

        В приложенных файлах — печатные платы в Sprint-Layout 5.0, картинки, схемы в Splan7.0, даташиты на 494.

        Файлы:
        Даташиты
        плата
        архив картинок
        схемы спл

        Все вопросы в Форум.

        Переделка компьютерного блока питания FSP ATX-500PNR 500W в зарядное устройство

        Не всегда для переделки в зарядное устройство используются старые, никому не нужные блоки питания компьютера. Сегодня у нас переделка компьютерного блока питания FSP-500PNR в зарядное устройство. Фотоматериалы нам предоставил Александр Прошкин, которому в процессе мы давали подсказки и подробные инструкции.

        Переделка компьютерного блока питания FSP ATX-500PNR 500W в зарядное устройство

        Главная цель – поднять выходное напряжение блока питания по шине +12 В до 14-14,5В. В таком случае АКБ будет заряжаться постоянным напряжением, меняться будет лишь сила тока. При начальном этапе сила тока заряда будет составлять порядка 8-10 А, по мере зарядки ток будет падать. При токе 0,5 А АКБ будет уже полностью заряжен.

        Переделка компьютерного блока питания FSP ATX-500PNR 500W будет производиться в два этапа:

        1. Отключение супервизора WT7527 и организация автоматического старта БП.
        2. Корректировка выходного напряжения.

        Отключения супервизора WT7527 и организация автоматического старта БП

        Полной схемы FSP ATX-500PNR 500W в сети найти не удалось. Попадаются лишь фрагменты дежурки блока и др. Перед началом корректировки напряжения необходимо отключить защиту, которая построена на супервизоре WT7527.

        Мы будем работать с доработанной схемой типового включения WT7527, которую можно найти в технической документации представленной производителем.

        И так, для отключения супервизора необходимо установить перемычку (отмечена красным) на выход оптопары, которая подключена через резистор к 3-й ножке WT7527.






        Установив в необходимом месте перемычку, WT7527 уже никак не будет влиять на работу блока. С учетом того, что ранее именно WT7527 отвечала за старт блока и мониторинг выходных напряжений, после установки перемычки блок будет включаться сразу же при включении в сеть.

        Корректировка выходного напряжения в блоке питания

        Перед началом корректировки желательно ознакомиться с максимально приближенной схемой этого БП. Это будет схема от блока FSP250-50PLA. Отличие от FSP500PNR  – дежурка и супервизор другие, но ШИМ CM6800 и силовая часть ну очень похожи.

        Нам необходим лишь небольшой участок схемы.

        Важно внимательно рассмотреть трассировку дорожек и не ошибиться с поиском резистора, который отмечен красной рамкой.

        Выпаиваем CMD резистор и измеряем его сопротивление (4,6кОм). Устанавливаем на его место подстроечный резистор на 33кОм, предварительно настроенный также на 4,6кОм. Регулируя подстроечный резистор, мы сможем корректировать выходное напряжение и выставить необходимые 14-14,5В.

        Останется лишь измерить текущее сопротивление подстроечного резистора после корректировки и заменить его постоянным.

        Далее желательно подключить вольтапмерметр. Также необходимо учесть, что такое зарядное устройство из блока питания компьютера боится переполюсовки, для защиты на выходе можно использовать схему защиты от переполюсовки и короткого замыкания.

        Вконтакте

        Facebook

        Twitter

        Одноклассники

        comments powered by HyperComments

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *