Схема зарядного автоматического устройства – Самодельное автоматическое зарядное устройство для автомобильного аккумулятора из принтера!

Схемы зарядных устройств | 2 Схемы

Сборник радиосхем зарядных устройств для свинцовых, никель-кадмиевых и литиевых аккумуляторов. Есть зарядки для авто на 12 В, есть для электровелосипедов и электромобилей. Все пойдут для сборки своими руками.

Хотим представить довольно удачный цифровой выпрямитель для зарядки автомобильных аккумуляторов, сделанный некоторое время назад сразу в двух экземплярах. Предыдущий простой выпрямитель, который сделан был на …

Знакомые с автобазы маршрутных микроавтобусов попросили сделать зарядное устройство для зарядки аккумуляторов 12 В и 24 В. Поскольку пользоваться им будут абсолютно неподготовленные люди, решено …

А это ещё один зарядный аппарат для авто аккумулятора по схеме автоматического выпрямителя на 12 В / 5 А. Зарядное устройство было сделано для периодической …

Здравствуйте уважаемые радио-авто-любители, представляем интересный проект зарядного устройства для автомобильных аккумуляторов на основе драйвера TL494. В эпоху доступности таких устройств и их привлекательных цен можно …

Здравствуйте все посетители сайта 2 Схемы. Представляем очередной девайс для самостоятельное сборки, которое работает как зарядное устройство гелевой батареи. Представленное ЗУ состоит из трансформатора ТС25/6 …

Данный зарядный выпрямитель к мощным аккумуляторам основан на схеме, которую за последние 30 лет повторили уже наверное тысячи раз. Сюда только добавлен простой контроллер вентилятора, …

Вот самодельный выпрямитель для небольших кислотных или гелевых необслуживаемых батарей. Устройство имеет возможность изменять выходное напряжение под АКБ 6 и 12 В. Многие из аккумуляторов, …

Это схема очень мощного самодельного пуско-зарядного устройства для авто АКБ 14,5 В на ток 500 А, представляет собой однотранзисторный прямоходовый преобразователь. Для ключа использован регенеративный …

Здесь вы сможете посмотреть схему и готовую конструкцию автоматического зарядного устройства для батареек Крона типоразмера 6F22 (на 9 В), выполненное на специализированном чипе MAX712. Зарядное …

Большой популярностью среди автолюбителей самодельщиков пользуются тиристорные автозарядки, в которых питание от мощного трансформатора поступает на АКБ через тиристор, управляемый открывающими его импульсами от генератора. …

Зима неумолимо приближается и скоро начнется сезон покупки (сборки) автомобильных зарядных устройств. Хотим представить зарядное устройство, которое изготовлено самостоятельно для собственных потребностей в зарядке двух …

Все кто имел дело с мощным зарядным устройством знает, что обратное подключение полярности аккумулятора может повредить или зарядное устройство, или сам аккумулятор. Но далеко не …

Как всегда неожиданно пришли холода и снова пришло понимание, что нужно купить для аккумулятора машины зарядный выпрямитель. Все знают, что мороз не нравится батареям, а …

Это зарядное устройство верой и правдой служит уже года 4, причём оно в отличии от многих других самодельных и промышленных автозарядок имеет несколько преимуществ, которые …

Это уже второй собранный зарядный выпрямитель, первый был очень успешным в действии и теперь понадобилось другое похожее зарядное устройство. Практически все детали были в наличии, …

После очень морозной зимы пришел к выводу, что в гараже нет приличного зарядного выпрямителя. Наличие какого-то ветхого промышленного зарядного устройства не в счёт — оно …

Почти все автолюбители имеют ЗУ на 12 В чтоб заряжать аккумуляторную батарею, но как правило это обычный зарядник, который не сможет запустить работу двигателя авто, …

Возможно это не идеальная навороченная зарядка, имеющая кучу настраиваемых автоматических режимов для работы со свинцовыми 12В АКБ, но она уже несколько лет прекрасно выполняет свою …

Целью проекта было создание многофункционального зарядного устройства, которое позволило бы полностью зарядить автомобильные аккумуляторы с жидким электролитом. То есть получая плотность электролита 1,27 г/см3. Для …

Редакция 2 Схемы.ру продолжает знакомить вас с новинками цифровых зарядных устройств и сегодня на очереди T240 от фирмы HTRC. На китайских сайтах данный девайс продаётся …

Автоматическое автомобильное зарядное устройство на 15А

Данный зарядный выпрямитель к мощным аккумуляторам основан на схеме, которую за последние 30 лет повторили уже наверное тысячи раз. Сюда только добавлен простой контроллер вентилятора, так как зарядные токи циркулируют очень большие и нагрев тиристора возможен не малый.

Схема зарядного на тиристоре 15 А

Вся ЗУ питается трансформатором 400 ВА с вторичной вторичной обмоткой 24 В, чтобы получить 19 В после выпрямления и падения. Трансформатор имеет вспомогательную обмотку 12 В. Исполнительный тиристор — BT152. Диодный мост выпрямителя состоит из двух мостов по 50 А, соединенных параллельно (каждый мост соединен в полумост, чтобы обеспечить наилучшую тепловую связь между диодами).

Изначально предполагалось поставить диоды от генератора, но пришлось использовать в итоге именно такое включение. Предохранитель на вторичной стороне — это автомат B10, только сняли с него защиту от перегрузки, присутствует лишь защита от короткого замыкания, он легко выдерживает ток 15–18 А и немедленно отключается при коротком замыкании, отлично защищая тиристор.

Тем кто будет собирать схему, посоветуем заменить тиристор на более сильный. Всё-таки тиристор BT152 неспособен противостоять более высоким токам чем 1 А, несмотря даже на солидный радиатор. После замены на другой тиристор на ток около 40 А, всё работает надежно и радиатор намного холоднее.

Действительно, ток 15 А может быть немного выше в импульсах. Не забывайте про термопроводящую пасту под тиристор и диодный мост. В качестве лучшего аналога рекомендуем BTA41-600B. При непрерывной мощности 1 кВт после теста 12 часов он едва нагревается. Ещё одно его преимущество — малая цена и изоляция касательной поверхности с радиатором.

Схема кулера охлаждения с термистором

Вольт и ампер метры в зарядке

Для таких устройств достаточно аналоговых индикаторов. Конечно вы можете использовать дешевые цифровые вольтметры с Алиэкспресс, но не факт что он справится с постоянным пульсирующим напряжением (когда используем ручной режим, а батарея не подключена).

Ещё сейчас стало модно ставить для зарядки авто АКБ компьютерные АТХ блоки питания после переделки, но у них есть большой недостаток — на высоких токах (особенно при включении нагрузки) часто срабатывает защита, поэтому связка обычный трансформатор + мощный тиристор гораздо предпочтительнее.

Самодельное автоматическое зарядное устройство для автомобильного аккумулятора из принтера!


Сегодня у нас весьма полезная самоделка для автолюбителей, особенно в зимнюю пору! На этот раз мы расскажем как сделать своими руками из старого принтера самодельное зарядное устройство!
Если у Вас есть старый принтер не спешите его выбрасывать, в нем есть блок питания из которого можно сделать простенькое автоматическое зарядное устройство для автомобильного аккумулятора с функцией регулировки напряжения и тока заряда. В свое время я делал самодельные снпч к принтерам Canon запас прочности которых был больше чем у принтерных печатающих головок. В связи с этим у меня дома скопилось пара-тройка принтеров с абсолютно рабочими блоками питания, вполне пригодными для создания маломощных автоматических зарядных устройств для автомобильных аккумуляторов.

По сути, это маломощный лабораторный блок питания с нижним пределом 4 Вольта и верхним пределом напряжения 14.5 Вольт имеющий селектор ограничения тока на 500мА и 800мА. Задумка была сделать устройство которое позволит в гараже зарядить практически любой аккумулятор начиная от Li-on Li-po аккумуляторов мобильных телефонов, заканчивая АКБ для скутеров, мотоциклов и автомобильных аккумуляторов.

Принципиальная схема самодельного автоматического зарядного устройства

Схема автоматического зарядного устройства простая и не содержит дорогостоящих или дефицитных компонентов, собрать ее своими руками сможет каждый начинающий радиолюбитель.

В основе схемы лежит 2 стабилизатора:

  1. Стабилизатор тока на микросхеме LM317
  2.  Регулируемый стабилизатор напряжения выполненный на микросхеме (регулируемом стабилитроне) TL431

Так же в устройстве задействован еще одна микросхема стабилизатор Lm7812 от нее питается 12 Вольтовой кулер (который и был изначально в этом корпусе).

Собрано зарядное устройство в корпусе компьютерного ATX блока питания, все содержимое блока, кроме кулера, удалено. Микросхемы стабилизаторы Lm317 и Lm 7812 установлены каждая на свой радиатор , которые прикручены к пластиковому корпусу (ВНИМАНИЕ на общий радиатор их ставить нельзя !).

 

Схема собрана навесным монтажом на микросхемах стабилизаторов. Резисторы R2 и R3  мощностью 2-5 Ватт в керамических корпусах отвечают за ограничение тока заряда. Они устанавливаются так, что бы через них проходил воздушный поток создаваемый кулером. Их значение рассчитывается по формуле R=1.25(V) /I(A)    можете рассчитать необходимый Вам максимальный ток заряда. Раз пошла речь о рассчетах напомню, что у нас есть онлайн калькулятор для расчета резистора для подключения  светодиодов. Если Вам необходимо плавно регулировать ток заряда, можно установить мощный реостат с дополнительным ограничивающим резистором (что бы не превысить максимально допустимый ток для Lm317 )
В моем случае был блок питания на 24 Вольта с максимальным током нагрузки 1Ампер. Необходимо из этого 1Ампера зарезервировать 0.1 Ампера на запитку кулера (на наклейке указан ток потребления) + я оставил 10% на запас прочности, соответственно под основное назначение- на зарядный ток остается 0.8 Ампера.

тест

Понятно, что током в 800 мА быстро автомобильный Акб не зарядишь. За сутки аккумулятору можно сообщить 24ч*0.8А=19.2 Ампер часа, что составляет 30-45% от емкости аккумулятора легкового автомобиля (как правило 45-65 Ач).
Если у Вас будет «донор» блок питания с током 1.5 Ампера Вы за сутки сможете сообщить 30 Ампер часов, чего возможно хватит с головой для бывшего не один год в употреблении аккумулятора.

Но, с другой стороны, заряд малым током более полезен для Акб «лучше усваивается», достаточно выкрутить пробки из акб (если он обслуживаемый), подключить зарядное устройство к акб и все! Можно заниматься своими делами и не переживать, что аккумулятор перезарядится, максимальное напряжение на батарее не превысит 14.5 Вольт, а малый ток заряда не допустит чрезмерный перегрев и выкипание электролита. В связи с тем, что можно не контролировать процесс окончания заряда, думаю данную самоделку можно смело назвать автоматическим зарядным устройством для автомобильных акб, хотя никакой «следящей автоматики» в схеме нет.
Для удобства, зарядное устройство можно снабдить Вольт метром который даст возможность наглядно контролировать процесс заряда аккумулятора. Например таким за пару у.е.

Зарядное устройство необходимо обязательно снабдить защитой от «переполюсовки». Роль такой защиты выполняют два диода с допустимым током  5 Ампер подключенные на выходя зарядного устройства в сочетании с предохранителем на 2 Ампера (при монтаже будьте внимательны и соблюдайте полярность подключения диодов!!!).   При неправильном подключении зарядного к АКБ, ток акб пойдет в зарядное через предохранитель и «упрется» в диод, когда значение тока достигнет 2 Ампера предохранитель спасет мир!  Также не забудьте снабдить устройство предохранителями по цепи 220 Вольт (в моем случае по цепи 220 Вольт предохранитель уже имеется внутри блока питания).

К автомобильному аккумулятору зарядное подключаемся при помощи специальных зажимов «крокодилов», при покупке их в интернете обращайте внимание на физический размер указанный в характеристиках, так как можно легко купить крокодилы для «лабораторного блока питания» которые будут всем хороши, но не смогут налезть на плюсовую клемму акб, а надежный контакт, как Вы сами понимаете вещь обязательная в таких вопросах. Для удобства на проводах и корпусе есть несколько капроновых стяжек-липучек с помощью которых можно аккуратно и компактно сматывать провода.

Надеюсь эта идея утилизации принтера кому-нибудь пригодится. Если Вы делали самодельные автоматические зарядные устройства для автомобильных аккумуляторов, (или не автоматические) пожалуйста поделитесь с читателями нашего сайта,- пришлите нам на почту фото, схему и небольшое описание Вашего устройства. Если есть вопросы по схеме и принципу работы, задавайте в комментариях,- отвечу.

Смотрите так же:

Самоделкин

Живу в Мире самоделок, размещаю статьи которые присылают читатели. Иногда пишу на темы: полезные самоделки для дома и самоделки для радиолюбителей.

Новые самоделки автора Самоделкин (Смотреть все)

Зарядные устройства

Доброе время суток. Сегодня речь пойдет об ЗУ для АКБ. ( автоматическом зарядном устройстве для свинцово-кислотных аккумуляторных батарей) После поездки по городу на своей машине, я поставил ее в гараж и забыл выключить подфарники, и только на третье сутки когда нужно было срочно  ехать по делам, я обратил внимание что аккумулятор полностью мертв. И тогда задумался об ЗУ, и тут наткнулся на данную схему. Первоисточник и автор схемы указан в низу статьи. 


В этой статье речь пойдет о том, как из компьютерного блока питания формата АТ/АТХ и самодельного блока управления изготовить довольно-таки «умное» зарядное устройство для свинцово-кислотных аккумуляторных батарей. К ним относятся т.н. «УПС-овые», автомобильные и другие АКБ широкого применения.


Описание
Устройство предназначено для зарядки и тренировки (десульфатации) свинцово-кислотных АКБ ёмкостью от 7 до 100 Ач, а также для приблизительной оценки уровня их заряда и емкости. ЗУ имеет защиту от неправильного включения батареи (переполюсовки) и от короткого замыкания случайно брошенных клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей «добивкой» до 100%-го уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор (настраиваемые профили) или выбрать уже заложенные в управляющей программе. Конструктивно зарядное устройство состоит из блока питания АТ/АТХ, который нужно немного доработать и блока управления на МК ATmega16A.
Всё устройство свободно монтируется в корпусе того же блока питания. Система охлаждения (штатный кулер БП) включается/отключается автоматически.
Достоинства данного ЗУ — его относительная простота и отсутствие трудоёмких регулировок, что особенно актуально для начинающих радиолюбителей.

1. Режим зарядки — меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:
— первый этап- зарядка стабильным током 0.1С до достижения напряжения14.6В
— второй этап-зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С
— третий этап-поддержание стабильного напряжения 13.8В, пока ток не упадет до 0.01С. Здесь С — ёмкость батареи в Ач.
— четвёртый этап — «добивка». На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала.
Для стартерных АКБ (от 45 Ач и выше) применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается «добивка». Это — четвёртый этап. Процесс заряда проиллюстрирован графиками рис.1 и рис.2.

2. Режим тренировки (десульфатации) — меню «Тренировка». Здесь осуществляется тренировочный цикл: 
10 секунд — разряд током 0,01С, 5 секунд — заряд током 0.1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее — обычный заряд.

3. Режим теста батареи. Позволяет приблизительно оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ.

4. Контрольно-тренировочный цикл (КТЦ). Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим. При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор». В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С — 0.05С (ток 10-ти или 20-ти часового разряда).
Перемещение по меню осуществляется кнопками «влево», «вправо», «выбор». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню.

Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля — П1 и П2. Настроенные параметры сохраняются в энергонезависимой памяти (EEPROM-е).
Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор», выбрать «установки», «параметры профиля», профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор». Стрелки «влево» или «вправо» сменятся на стрелки «вверх» или «вниз», что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM.

Значения настроек:

1. «Алгоритм заряда». Выбирается IUoU или IUIoU. См. графики на рис.1 и рис.2.
2. «Емкость АКБ». Задавая значение этого параметра, мы задаем ток зарядки на первом этапе I=0.1C, где С- емкость АКБ В Ач. (Таким образом, если нужно задать ток заряда, например 4.5А, следует выбрать емкость АКБ 45Ач).
3. «Напряжение U1». Это напряжение, при котором заканчивается первый этап зарядки и начинается второй. По умолчанию задано значение 14.6В.
4. «Напряжение U2». Используется только, если задан алгоритм IUIoU. Это напряжение, при котором заканчивается третий этап зарядки. По умолчанию — 16В.
5. «Ток 2-го этапа I2». Это значение тока, при котором заканчивается второй этап зарядки. Ток стабилизации на третьем этапе для алгоритма IUIoU. По умолчанию задано значение 0.2С.
6. «Окончание заряда I3». Это значение тока, по достижению которого зарядка считается оконченной. По умолчанию задано значение 0.01С.
7. «Ток разряда». Это значение тока, которым осуществляется разряд АКБ при тренировке зарядно-разрядными циклами.

Выбор и переделка блока питания.
В нашей конструкции мы используем блок питания от компьютера. Почему? Причин несколько. Во–первых, это — практически готовая силовая часть. Во-вторых, это же и корпус нашего будущего устройства. В-третьих, он имеет малые габариты и вес. И, в-четвёртых, его можно приобрести практически на любом радиорынке, барахолке и в компьютерных сервисных центрах. Как говорится, дёшево и сердито.
Из всего многообразия моделей блоков питания нам лучше всего подходит блок формата АТX, мощностью не менее 250 Вт. Нужно только учесть следующее. Подходят лишь те блоки питания, в которых применён ШИМ-контроллер TL494 или его аналоги (MB3759, КА7500, КР1114ЕУ4). Можно также применить и БП формата AT, только придется изготовить еще маломощный блок дежурного питания (дежурку) на напряжение 12В и ток 150-200мА. Разница между AT и ATX – в схеме начального запуска. АТ запускается самостоятельно, питание микросхемы ШИМ–контроллера берётся с 12-вольтовой обмотки трансформатора. В ATX для начального питания микросхемы служит отдельный источник 5В, называемый «источник дежурного питания» или «дежурка».

Итак, блок питания имеется. Сначала необходимо его проверить на исправность. Для этого его разбираем, вынимаем предохранитель и вместо него подпаиваем лампу накаливания 220 вольт мощностью 100-200Вт. Если на задней панели БП имеется переключатель сетевого напряжения, то он должен быть установлен на 220В. Включаем БП в сеть. Блок питания АТ запускается сразу, для ATX нужно замкнуть зелёный и чёрный провода на большом разъёме. Если лампочка не светится, кулер вращается, а все выходные напряжения в норме — значит, нам повезло и наш блок питания рабочий. В противном случае, придётся заняться его ремонтом. Оставляем лампочку пока на месте.

Для переделки БП в наше будущее зарядное устройство, нам потребуется немного изменить «обвязку» ШИМ-контроллера. Несмотря на огромное разнообразие схем блоков питания, схема включения TL494 стандартная и может иметь пару вариаций, в зависимости от того, как реализованы защиты по току и ограничения по напряжению. Схема переделки показана на рис.3. 

На ней показан только один канал выходного напряжения: +12В. Остальные каналы: +5В,-5В, +3,3В не используются. Их обязательно нужно отключить, перерезав соответствующие дорожки или выпаяв из их цепей элементы. Которые, кстати, нам могут и пригодиться для блока управления. Об этом — чуть позже.
Красным цветом обозначены элементы, которые устанавливаются дополнительно. Конденсатор С2 должен иметь рабочее напряжение не ниже 35В и устанавливается взамен существующего в БП. После того, как «обвязка» TL494 приведена к схеме на рис.3, включаем БП в сеть. Напряжение на выходе БП определяется по формуле: Uвых=2,5*(1+R3/R4) и при указанных на схеме номиналах должно составлять около 10В. Если это не так, придется проверить правильность монтажа. На этом переделка закончена, можно убирать лампочку и ставить на место предохранитель.

Схема и принцип работы.

Схема блока управления показана на рис.4.

Она довольно проста, так как все основные процессы выполняет микроконтроллер. В его память записывается управляющая программа, в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4,C9,R7,C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера — встроенным АЦП и управляемым дифференциальным усилителем. Напряжение АКБ на вход АЦП подается с делителя R10R11, Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5R6R10R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине.
Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения — на элементах VD1,EP1 ,R13. При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии. В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда (режим тренировки) и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.

Детали и конструкция.

Микроконтроллер. В продаже обычно встречаются в корпусе DIP-40 или TQFP-44 и маркируются так: ATMega16А-PU или ATMega16A-AU. Буква после дефиса обозначает тип корпуса: «P»- корпус DIP, «A»- корпус TQFP. Встречаются также и снятые с производства микроконтроллеры ATMega16-16PU, ATMega16-16AU или ATMega16L-8AU. В них цифра после дефиса обозначает максимальную тактовую частоту контроллера. Фирма- производитель ATMEL рекомендует использовать контроллеры ATMega16A (именно с буквой «А») и в корпусе TQFP, то есть, вот такие: ATMega16A-AU, хотя в нашем устройстве будут работать все вышеперечисленные экземпляры, что и подтвердила практика. Типы корпусов отличаются также и количеством выводов (40 или 44) и их назначением. На рис.4 изображена принципиальная схема блока управления для МК в корпусе DIP.
Резистор R8 –керамический или проволочный, мощностью не менее 10 Вт, R12- 7-10Вт. Все остальные- 0.125Вт. Резисторы R5,R6,R10 и R11 нужно применять с допустимым отклонением 0.1-0.5%. Это очень важно! От этого будет зависеть точность измерений и, следовательно, правильная работа всего устройства.
Транзисторы T1 и Т2 желательно применять такие, как указаны на схеме. Но если придется подбирать замену, то необходимо учитывать, что они должны открываться напряжением на затворе 5В и, конечно же, должны выдерживать ток не ниже 10А. Подойдут, например, транзисторы с маркировкой 40N03GР, которые иногда используются в тех же БП формата АТХ, в цепи стабилизации 3.3В. 
Диод Шоттки D2 можно взять из того же БП, из цепи +5В, которая у нас не используется. Элементы D2, Т1 иТ2 через изолирующие прокладки от радиатора размещаются на одном радиаторе площадью 40 квадратных сантиметров. Зумер EP1- со встроенным генератором, на напряжение 8-12 В, громкость звучания можно подрегулировать резистором R13.
Жидкокристаллический индикатор – Wh2602 или аналогичный, на контроллере HD44780, KS0066 или совместимых с ними. К сожалению, эти индикаторы могут иметь разное расположение выводов, так что, возможно, придется разрабатывать печатную плату под свой экземпляр.

Программа
Управляющая программа содержится в папке «Программа» Конфигурационные биты (фузы) устанавливаются следующие:
Запрограммированы (установлены в 0 это значит там нужно поставить галочки):
CKSEL0
CKSEL1
CKSEL3
SPIEN
SUT0
BODEN
BODLEVEL
BOOTSZ0
BOOTSZ1

все остальные — незапрограммированы (установлены в 1).

Наладка.
Итак, блок питания переделан и выдает напряжение около 10В. При подключении к нему исправного блока управления с прошитым МК, напряжение должно упасть до 0.8..15В. Резистором R1 устанавливается контрастность индикатора. Наладка устройства заключается в проверке и калибровке измерительной части. Подключаем к клеммам аккумулятор, либо блок питания напряжением 12-15В и вольтметр. Заходим в меню «Калибровка». Сверяем показания напряжения на индикаторе с показаниями вольтметра, при необходимости, корректируем кнопками «<» и «>». Нажимаем «Выбор». Далее идет калибровка по току при КУ=10. Теми же кнопками «<» и «>» нужно выставить нулевые показания тока. Нагрузка (аккумулятор) при этом автоматически отключается, так что ток заряда отсутствует. В идеальном случае там должны быть нули или очень близкие к нулю значения. Если это так, это говорит о точности резисторов R5,R6,R10,R11,R8 и хорошем качестве дифференциального усилителя. Нажимаем «Выбор». Аналогично — калибровка для КУ=200. «Выбор». На дисплее отобразится «Готово» и через 3 сек. устройство перейдет в главное меню.
Калибровка окончена. Поправочные коэффициенты хранятся в энергонезависимой памяти. Здесь стоит отметить, что если при самой первой калибровке значение напряжения на ЖКИ сильно отличается от показаний вольтметра, а токи при каком — либо КУ сильно отличаются от нуля, нужно применить (подобрать) другие резисторы делителя R5,R6,R10,R11,R8, иначе в работе устройства возможны сбои. При точных резисторах (с допуском 0,1-0,5%) поправочные коэффициенты равны нулю или минимальны. На этом наладка заканчивается. Если же напряжение или ток зарядного устройства на каком-то этапе не возрастает до положенного уровня или устройство «выскакивает» в меню, нужно ещё раз внимательно проверить правильность доработки блока питания. Возможно, срабатывает защита.

Весь материал одним архивом можно скачать здесь1.87 MB


А вот Фото что получилось у меня.

Вместо лампочки которая стоит в качестве нагрузки можно пременить не сложную схему электроной нагрузки которая отлично работает!

Автор данной разработки: Sergey212

 

Печатная плата в lay 

Обсудить на форуме.

Источник: http://electronics-lab.ru 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *