Схема управления реверсивным электродвигателем
Цель:Сформировать умение собирать схему реверсирования асинхронного электродвигателя с короткозамкнутым ротором.
По окончании выполнения лабораторной работы студент должен
знать:
— элементный состав схемы реверсирования асинхронного электродвигателя с короткозамкнутым ротором;
— назначение, устройство и принцип действия каждого элемента схемы;
— безопасные правила эксплуатации;
уметь:
— собирать схему пуска, реверсирования и останова асинхронного электродвигателя с короткозамкнутым ротором.
Основные теоретические положения:
Схема реверса приведена на рисунке 28.
При включении автоматического выключателя QF напряжение подается к цепи управления и к разомкнутым силовым контактам IKMI – IKM3, 2KMI – 2KM3. При нажатии кнопки ISBI, механически связанной с кнопкой ISB2, образуется цепь: точка С, катушка IKM, кнопка ISB4, точка В. По катушке электромагнитного пускателя IKM протекает ток, замыкаются его контакты IKMI –IKM3 в силовой цепи. На двигатель подается напряжение, он начинает вращаться в прямом направлении. Кроме того, замыкается контакт IKM5 в цепи управления, поэтому, независимо от состояния кнопочного выключателя ISBI, катушка IKM остается под напряжением.
Для реверса АД необходимо изменить чередование фаз питающего напряжения, т.е. переключить два линейных провода, подключенных к обмотке статора. Эту функцию выполняют силовые контакты 2KMI – 2KM3. При нажатии кнопки 2SBI, технически связанной с кнопкой 2SB2, размыкается предыдущая цепь и образуется новая цепь: точка С, катушка 2KM, кнопка 2SBI, кнопка 2SB2, контакт 3КК – 4КК, контакт IKM4, контакт IB4. Ток протекает по катушке 2КМ, а катушка IKM обесточивается, силовые контакты IKMI – IKM3 размыкаются, а контакты 2KMI – 2KM3 замыкаются, двигатель тормозится и разгоняется в обратном направлении. При этом контакт 2КМ5 находится в замкнутом состоянии, и ток через катушку 2КМ протекает, независимо от состояния кнопки 2SBI.
В случае недопустимого нагрева двигателя при вращении в прямом или обратном направлении размыкаются контакты теплового реле соответственно IKK-2KK или 3KK – 4KK, катушка IKM или 2КМ обесточивается, двигатель отключается от сети. Для остановки двигателя нажимают кнопку ISB4, цепь управления обесточивается, и силовые контакты IKMI – IKM3 или 2KMI – 2KM3 размыкаются.
Рисунок 28 – Реверсивная схема пуска асинхронного двигателя с короткозамкнутым ротором
Монтажная схема для лучшего понимания кнопочного поста приведена на рисунке 29.
Рисунок 29 – Монтажная схема к рисунку 28
Порядок выполнения работы:
1. Выполнить задание лабораторной работы.
2. Составить отчет.
3. Ответить на контрольные вопросы.
Ход работы:
Рабочий инструмент: отвертка плоская, бокорезы, монтажный нож, кабель (провод) одножильный, круглогубцы, плоскогубцы, трехфазная вилка с питающим шнуром (рисунок 30).
Рисунок 30 – Рабочий инструмент для сборки схемы
Необходимые машины и аппараты для реализации схемы приведены на рисунке 31.
Рисунок 31 – Элементный состав схемы
Обозначения элементов схемы приведены на рисунке 32.
Рисунок 32 – Элементы схемы реверса асинхронного электродвигателя
Расшифровка кнопок (рисунок 33):
Рисунок 33 – Расшифровка кнопок кнопочного поста
Виды контактов приведены на рисунке 34.
Рисунок 34 – Виды контактов
Например, контакты на магнитном пускателе ПМЕ-211 (рисунки 35, 36):
Рисунок 35 – Виды контактов магнитного пускателя
Рисунок 36 – Виды контактов магнитного пускателя
Такой же контакт стоит в кнопке «пуск» и «стоп» (рисунки 37, 38).
Рисунок 37 – Виды контактов кнопок
Рисунок 38 – Виды контактов кнопок
Технологический процесс сборки схемы реверса асинхронного двигателя (АД) с короткозамкнутым ротором.
Цепь управления:
1. Питающий кабель присоединяем с фазы «В» на нормально замкнутый контакт (3) кнопки SB3 (рисунки 39-41).
Рисунок 39 – Сборка питающего кабеля на принципиальной схеме
Рисунок 40 – Сборка питающего кабеля на монтажной схеме
Рисунок 41 – Сборка питающего кабеля на стенде
2. С нормально замкнутого контакта (4) кнопки SB3 присоединить перемычку на нормально разомкнутый контакт (1) кнопки SB2 (рисунки 42-44).
Рисунок 42 – Сборка перемычки между кнопками на принципиальной схеме
Рисунок 43 – Сборка перемычки между кнопками на монтажной схеме
Рисунок 44 – Сборка перемычки между кнопками на стенде
3. С нормально замкнутого контакта (4) кнопки SB3 присоединить перемычку на нормально разомкнутый контакт (1) кнопки SB1 (рисунки 45-47).
Рисунок 45 – Сборка перемычки между кнопками на принципиальной схеме
Рисунок 46 – Сборка перемычки между кнопками на монтажной схеме
Рисунок 47 – Сборка перемычки между кнопками на стенде
4. С нормально разомкнутого контакта (2) кнопки SB1 присоединить провод на нормально замкнутый контакт магнитного пускателя КМ2 (рисунки 48-51).
Рисунок 48 – Сборка соединения пусковой кнопки прямого вращения двигателя с блок-контактом магнитного пускателя на принципиальной схеме
Рисунок 49 – Сборка соединения пусковой кнопки прямого вращения двигателя с блок-контактом магнитного пускателя на монтажной схеме
Рисунок 50 – Сборка соединения пусковой кнопки прямого вращения двигателя с блок-контактом магнитного пускателя на стенде
Рисунок 51 – Нормально разомкнутый контакт пусковой кнопки
прямого вращения двигателя
5. С нормально замкнутого контакта магнитного пускателя КМ2 присоединяем провод на катушку К1 магнитного пускателя КМ1 (рисунки 52-54).
Рисунок 52 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на принципиальной схеме
Рисунок 53 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на монтажной схеме
Рисунок 54 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на стенде
6. С нормально разомкнутого контакта (1) кнопки SB1 присоединяем провод на нормально разомкнутый контакт магнитного пускателя КМ1 (рисунки 55-58).
Рисунок 55 – Шунтирование пусковой кнопки прямого вращения двигателя блок-контактом магнитного пускателя на принципиальной схеме
Рисунок 56 – Шунтирование пусковой кнопки прямого вращения двигателя блок-контактом магнитного пускателя на монтажной схеме
Рисунок 57 – Шунтирование пусковой кнопки прямого вращения двигателя блок-контактом магнитного пускателя на стенде
Рисунок 58 – Нормально разомкнутый контакт кнопки
прямого вращения двигателя
7. С нормально разомкнутого контакта магнитного пускателя КМ1, присоединяем перемычку на нормально замкнутый контакт магнитного пускателя КМ2 (рисунки 59-61).
Рисунок 59 – Сборка перемычки между блок-контактами магнитного пускателя схеме прямого вращения двигателя на принципиальной схеме
Рисунок 60 – Сборка перемычки между блок-контактами магнитного пускателя схеме прямого вращения двигателя на монтажной схеме
Рисунок 61 – Сборка перемычки между блок-контактами магнитного пускателя схеме прямого вращения двигателя на стенде
8. С нормально разомкнутого контакта (2) кнопки SВ2 присоединить провод на нормально замкнутый контакт магнитного пускателя КМ1 (рисунки 62-65).
Рисунок 62 – Сборка соединения пусковой кнопки обратного вращения двигателя с блок-контактом магнитного пускателя на принципиальной схеме
Рисунок 63 – Сборка соединения пусковой кнопки обратного вращения двигателя с блок-контактом магнитного пускателя на монтажной схеме
Рисунок 64 – Сборка соединения пусковой кнопки обратного вращения двигателя с блок-контактом магнитного пускателя на стенде
Рисунок 65 – Нормально разомкнутый контакт пусковой кнопки
9. С нормально замкнутого контакта магнитного пускателя КМ1 присоединяем провод на катушку магнитного пускателя КМ2 (рисунки 66-68).
Рисунок 66 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на принципиальной схеме
Рисунок 67 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на монтажной схеме
Рисунок 68 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на стенде
10. С нормально разомкнутого контакта (1) кнопки SВ2 присоединить провод на нормально разомкнутый контакт магнитного пускателя КМ2 (рисунок 69-72).
Рисунок 69 – Шунтирование пусковой кнопки обратного вращения блок-контактом магнитного пускателя на принципиальной схеме
Рисунок 70 – Шунтирование пусковой кнопки обратного вращения блок-контактом магнитного пускателя на монтажной схеме
Рисунок 71 – Шунтирование пусковой кнопки обратного вращения блок-контактом магнитного пускателя на стенде
Рисунок 72 – Нормально разомкнутый контакт пусковой кнопки
11. С нормально разомкнутого контакта магнитного пускателя КМ2 присоединяем перемычку на нормально замкнутый контакт магнитного пускателя КМ1 (рисунки 73-75).
Рисунок 73 – Сборка перемычки между блок-контактами магнитного пускателя схеме обратного вращения двигателя на принципиальной схеме
Рисунок 74 – Сборка перемычки между блок-контактами магнитного пускателя схеме обратного вращения двигателя на монтажной схеме
Рисунок 75 – Сборка перемычки между блок-контактами магнитного пускателя схеме обратного вращения двигателя на стенде
12. Закрыть крышку кнопочного поста (рисунок 76).
Рисунок 76 – Сборка кнопочного поста завершена
13. Делаем перемычку между катушками К1 и К2 магнитных пускателей КМ1и КМ2 (рисунки 77, 78).
Рисунок 77 – Сборка перемычки между катушками магнитных пускателей на принципиальной схеме
Рисунок 78 – Сборка перемычки между катушками
магнитных пускателей на стенде
14. От катушки К1 магнитного пускателя КМ1 присоединить провод к замкнутому контакту теплового реле КК (рисунки 79, 80).
Рисунок 79 – Сборка соединения между магнитным пускателем и тепловым реле на принципиальной схеме
Рисунок 80 – Сборка соединения между магнитным пускателем и тепловым реле на стенде
15. С нормально замкнутого контакта теплового реле КК присоединяем провод на фазу «С» (рисунки 81, 82).
Рисунок 81 – Соединение теплового реле с фазой «С» на принципиальной схеме
Рисунок 82 – Соединение теплового реле с фазой «С» на стенде
16. На магнитных пускателях осуществить реверс путём переключения контактов по схеме (рисунки 83, 84).
Со стороны двигателя:
Со стороны подключения кнопочного поста:
Рисунок 83 – Сборка цепей силовых контактов магнитных пускателей на монтажной схеме (подключение к фазам сети)
Рисунок 84 – Сборка цепей силовых контактов магнитных пускателей на стенде (подключение к фазам сети)
17. Подключение двигателя с КЗ-ротором фазой «В» к фазе «В» на магнитный пускатель. Фазу «А» и «С» подключаем к выходным контактам теплового реле КК (рисунок 85).
Рисунок 85 – Подключение двигателя к фазам на стенде
18. С выходных концов теплового реле КК присоединить провода к фазе «А» и к фазе «С» (рисунки 86, 87).
Рисунок 86 – Подключение тепловых реле к фазам «А» и «С» сети
на монтажной схеме
Рисунок 87 – Подключение тепловых реле к фазам «А» и «С» сети
19. Подключить трёхфазную вилку к магнитному пускателю на фазы «А», «В» и «С» (рисунки 88-90).
Рисунок 88 – Подключение трехфазной вилки к магнитному пускателю на фазы «А», «В», «С» сети на монтажной схеме
Рисунок 89 – Подключение трехфазной вилки к магнитному пускателю на фазы «А», «В», «С» сети на стенде
Рисунок 90 – Подключение трехфазной вилки к магнитному пускателю на фазы «А», «В», «С» сети на стенде
20. Проверить правильность сборки схемы реверса асинхронного двигателя и только после этого подать напряжение и запустить двигатель.
Задание.
Собрать и запустить схему реверсирования асинхронного электродвигателя с короткозамкнутым ротором по приведенной выше наглядной инструкции.
Контрольные вопросы:
1. Приведите примеры электроприводов электроприемников, в которых требуется реверсирование электродвигателя?
2. Как устроен реверсивный магнитный пускатель?
3. Как устроен кнопочный пост для реверсивной схемы?
4. Зачем в схеме используются тепловые реле?
Лабораторная работа №9
Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Направление вращения вала электродвигателя иногда требуется изменить. Для этого необходима реверсивная схема подключения. Ее вид зависит от того, какой у вас мотор: постоянного или переменного тока, 220В или 380В. И совсем по-другому устроен реверс трехфазного двигателя, включенного в однофазную сеть.
Переменная сеть: мотор 380 к сети 380
Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:
Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:
Для подключения дополнительно понадобятся:
- Магнитный пускатель (или контактор) – КМ2;
- Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).
Важно! В электрике нормально замкнутый контакт – это состояние кнопочного контакта, у которого есть только два несимметричных состояния. Первое положение (нормальное) – рабочее (замкнуто), а второе – пассивное (разомкнуто). Точно так же формулируется понятие нормально разомкнутого контакта. В первом положении кнопка пассивна, а во втором – активна. Понятно, что такая кнопка будет называться «СТОП», в то время как две другие: «ВПЕРЕД» и «НАЗАД».
Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.
Для запуска двигателя:
- Включите автоматы АВ1 и АВ2;
- Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
- Двигатель работает.
Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.
Переменная сеть: электродвигатель 220 к сети 220
Реверс электродвигателя 220В возможен только в том случае, если выводы обмоток лежат вне корпуса. На рисунке ниже – схема однофазного включения, когда пусковая и рабочая намотки расположены внутри и выводов наружу не имеют. Если это ваш вариант, вы не сможете изменить направление вращения вала.
В любом другом случае для реверсирования однофазного конденсаторного АД необходимо поменять направление рабочей обмотки. Для этого вам понадобятся:
Схема однофазного агрегата почти ничем не отличается от той, что представлена для трехфазного асинхронного двигателя. Ранее мы перекидывали фазы: А и В. Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой – вместо нулевого фазный. И наоборот.
Переменная сеть: 380В к 220В
Для подключения трехфазного асинхронного двигателя к электросети 220В необходимо использовать один или два конденсатора для компенсации отсутствующей фазы: рабочий и пусковой. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.
Чтобы заставить вал вращаться в другую сторону, обмотку №3 необходимо подключить с помощью конденсатора к тумблеру с двумя позициями. Он должен иметь два контакта, соединенных с обмотками №1 и №2. Ниже показана подробная схема.
Такой мотор будет играть роль однофазного, поскольку подключение происходило с помощью одного фазного провода. Чтобы запустить его, необходимо перевести реверсирующий тумблер в нужное положение («вперед» или «назад), затем перевести тумблер «пуск» в положение «включено». На момент запуска необходимо нажать одноименную кнопку – «пуск». Держать ее нужно не более трех секунд. Этого будет достаточно для разгона.
Постоянный электроток: особенности
Двигатели постоянного тока подключаются труднее моторов, питающихся от переменной сети. Потому что для того чтобы соединить обмотки, нужно точно знать, какой марки ваш агрегат. Только потом можно найти подходящую схему.
Но в любом электромоторе постоянного тока есть якорь и намотка возбуждения. От способа их включения их делят на агрегаты:
- с возбуждением независимым,
- с самостоятельным возбуждением (делится еще на три группы: последовательное, параллельное и смешанное подключение).
Электродвигатели постоянного тока с независимым возбуждением (схематично изображены ниже) применяется на производствах. Их намотка никак не связана с якорем, потому что подключается к другому электрическому источнику.
В станках и вентиляторах применяются моторы однофазного питания с параллельным возбуждением. Тут нет надобности во втором источнике.
В электротранспорте применяются агрегаты с последовательным возбуждением.
Если одна намотка параллельна якорю, а другая последовательна, то такой способ подключения – смешанный. Он встречается редко.
Все способы включения электродвигателей постоянного тока могут реверсироваться:
- Если возбуждение последовательное, то направление тока нужно поменять либо в возбуждающей намотке, либо в якоре;
- В любом другом случае рекомендуется менять обмотку только в якоре. Если менять в намотке, то есть опасность, что она оборвется. Это приведет к резкому возрастанию электродвижущей силы, которая приведет к повреждению изоляции.
Реверсирование двигателя постоянного тока с независимым возбуждением выполняется так же.
Имейте в виду, что в розетке ток переменный. Но это не значит, что он переменный во всех электроприборах, оснащенных электродвигателем и включенных в нее. Ток из переменного фазного может стать постоянным, пройдя через выпрямитель. Фазного питания вообще может не быть, если двигатель запитан от батареи.
В домашнем хозяйстве приходится использовать различные приборы, которые помогают облегчить выполнение какой-то задачи. В некоторых случаях под потребности приходится собирать какой-то конкретный инструмент, который стоит довольно дорого или под него просто есть все необходимые компоненты. Часто для этого важно знать, как сделать схему подключения электродвигателя. Заставить его вращаться не так сложно, а изменить направление движения уже сложнее. В статье будет рассказано о том, как выполнить схему реверсивного подключения двигателя.
Принцип работы
Электрический двигатель представляет собой механизм, в котором вращение осуществляется под воздействием электромагнитных волн. В основу положено всего два компонента:
Вращается только первый элемента, а импульс на него подается со второго элемента. Чем выше мощность двигателя, тем больше его габариты. Из всего разнообразия различают:
В двигателях коллекторного типа питание на ротор подается через угольные щетки, которые касаются ламелей коллектора. Такие двигатели еще называют короткозамкнутыми. В асинхронных двигателях схема действия несколько отличается. В этом случае вращение происходит под воздействием двух сил:
Напряжение от источника питания подается на фиксированные обмотки статора. При этом в нем возникают электромагнитные волны. Если напряжение переменное, тогда магнитное поле нестабильно и имеет определенные колебания. Благодаря этим колебаниям и происходит смещение ротора. Между ротором и статором есть небольшой воздушный зазор, благодаря которому и возможно беспрепятственное смещение. Магнитные волны из обмоток статора воздействуют на обмотки ротора, создавая напряжение. Благодаря такому воздействию возникает электродвижущая сила или ЭДС. Она заставляет магнитные волны взаимодействовать в обратном направлении тем, что есть в статоре, поэтому двигатель и называется асинхронным.
Требуемые компоненты
Самостоятельное подключение двигателя для реверсивного вращения не вызовет особых сложностей, если руководствоваться приведенной схемой. Одним из важных компонентов, который облегчит такую задачу является магнитный пускатель или контактор. На самом деле магнитный пускатель и контактор не являются тождественными понятиями. Если говорить просто, то контактор входит в состав магнитного пускателя, но для упрощения в статье оба понятия используются как равнозначные. Магнитные пускатели как раз и применяются для запуска, реверсивного движения и остановки асинхронных двигателей.
Возможно, возникает вопрос о том, почему нельзя использовать обычный рубильник или силовой автомат. В принципе, это допустимо, но не всегда пусковые токи, которые необходимы двигателю для нормального начала функционирования являются безопасными для человека. При включении может возникнуть пробой, который выведет из строя как выключатель, так и навредит оператору. Чтобы свести риски к минимуму, потребуется пускатель. В нем контактная часть отделена от той, с которой взаимодействует оператор. В нем есть отдельный модуль с катушкой, которая создает электромагнитное поле. Для работы катушки может потребоваться напряжение в 12 или больше вольт. При подаче этого напряжения происходит взаимодействие с металлическим сердечником, который втягивается внутрь катушки. К сердечнику закреплена пластина, которая уходит к контактной группе. Они замыкаются и происходит запуск двигателя. Остановка происходит в обратном порядке.
Кроме контактора, потребуется трехкнопочная станция. Одна клавиша выполняет функцию остановки, а две других функции запуска с разницей в направлении вращения. В трехкнопочной станции должно быть два нормально разомкнутых контакта и один нормально замкнутый. Если говорить просто, то нормальным положением контактора называется его нерабочее положение. То есть при воздействии на контакт он либо замыкается, либо размыкается. Если в рабочем состоянии он замкнут, то обозначается как НО, а если разомкнут, то обозначается как НЗ. Контакт НЗ применяется для кнопки остановки.
Принципиальная схема
На иллюстрации выше можно видеть принципиальную схему реверсивного подключения двигателя. Она отличается от обычной только наличием дополнительного модуля. Если говорить точнее, то в схеме задействуется два модуля управления. Один из них заставляет вращаться двигатель вправо, а другой влево. Взаимодействие оператора с модулями происходит посредством кнопок SB2 и SB3. Латинскими буквами A, B, C на схеме обозначены подводящие линии трехфазной сети. Они подходят к общему выключателю, который обозначен QF1. Далее идут два контактора КМ и цифровым обозначением. От контакторов цепь уходит к обмоткам двигателя. Каждый из этих контакторов вынесен отдельно и находится справа, где дополнительно можно рассмотреть их составные компоненты.
Процесс включения
Процесс включения двигателя довольно просто описать, используя все ту же схему. Первым делом происходит задействование общего рубильника QF1. Как только он включается, происходит подача напряжения по трем фазам. Но это напряжение не подается непосредственно на сам двигатель, т. к. еще нет четких указаний, в каком направлении он должен вращаться. Далее проводники проходят через автомат SF1 он выполняет защитную функцию, обесточивая всю систему в случае короткого замыкания. Далее следует кнопка выключения, которая также способна быстро разомкнуть цепь питания. Только после этого напряжение следует к клавишам SB2 и SB3, после воздействия на который, питание проходит к двигателю.
Чтобы двигатель получил достаточное усилие для обратного вращения, необходимо переключить силовые фазы, для чего и предназначен пускатель КМ2. Если еще раз обратить внимание на схему, то можно заметить, что пускатель КМ1 имеет прямое подключение фаз к двигателю, а КМ2 обеспечивает некоторое смещение. Все происходит за чет первой фазы, она в этой схеме является ждущей. Как только она размыкается, прекращается подача напряжения на двигатель.
После полной остановки может быть задействована кнопка SB3. Она активирует второй пускатель. Последний меняет положение фаз, как показано на схеме. При этом дежурная фаза остается неизменной, питание от нее все так же подается на первый контакт двигателя. Изменения происходят во второй и третьей фазе. Благодаря этому обеспечивается реверсивное движение.
Этапы подключения
Подключение двигателя для реверсивного движения отличается в зависимости от того, какая сеть будет выступать питающей 220 или 380. Поэтому есть смысл рассмотреть их отдельно.
К трехфазной сети
Руководствуясь представленной схемой легко составить последовательность, в которой должно производиться подключение электродвигателя. Первым делом устанавливается основной силовой автомат. Его номинальное напряжение и сила тока должны быть рассчитаны на те, которые будет потреблять двигатель. Только в этом случае можно быть уверенным в бесперебойной работе. Перед монтажом автомата для двигателя потребуется обесточить сеть. Следующим устанавливается предохранительный выключатель. После него фазный кабель уходит на разрыв, на кнопку стоп, а уже от нее делается подключение к контакторам. На каждом элементе контактора и кнопочного поста обычно делаются соответствующие обозначения, которые упрощают процесс подключения. Видео о сборке тестовой схемы можно посмотреть ниже.
К однофазной сети
В домашних условиях часто приходится задействовать асинхронный двигатель, но не в каждом хозяйстве есть трехфазная сеть, поэтому важно знать, как подключить двигатель к однофазной сети. Для запуска от одной фазы требуется дополнительный импульс, чтобы его обеспечить подбирается конденсатор требуемой емкости. Если говорить проще, то конденсаторов должно быть два. Один из них является пусковым и подключается параллельно первому. Соединение обмоток двигателя выполняется по схеме «звезда». Если обмотки соединены другим способом и нет возможности его изменить, тогда не получиться выполнить требуемую схему.
Чтобы реверсивная схема функционировала потребуется переключение питания, которое поступает от конденсаторов между полюсами. Понадобится два выключателя и одна не фиксируемая кнопка. Одни из выключателей будет отвечать за подачу напряжения в цепь питания двигателя. Второй выключатель должен иметь три положения. В одном из них он будет выключенным, а в двух других изменять подачу питания от конденсаторов на обмотки. Не фиксируемая кнопка будет дополнительно подключать второй конденсатор на момент запуска двигателя.
Два вывода конденсатора подключаются между собой. К двум другим происходит подключение пусковой кнопки. Средний вывод трехпозиционного переключателя подключается к конденсаторам в том месте, где они объединены между собой. Два других вывода подключаются к клеммам двигателя, на которые приходит питание. Конденсаторы подключаются к выходу обмотки, которая применяется для запуска. Кнопка включения ставится в разрыв фазного провода.
Чтобы привести весь механизм в действие, необходимо подать питание на цепь двигателя основным выключателем. После этого задается направление вращения двигателя трехпозиционным выключателем. Далее нажимается кнопка пуска до момента выхода двигателя на рабочие обороты. Если возникает необходимость изменить направление вращения, тогда потребуется обесточить двигатель и дождаться его полной остановки, переключить трехпозиционный тумблер в противоположное крайнее положение и повторить процесс.
Резюме
Как видно реверсивное подключение требует определенных навыков, но может быть осуществлено без особых сложностей при соблюдении всех рекомендаций. Теперь не будет препятствий в использовании трехфазных агрегатов от однофазной сети, при этом следует понимать, что максимальная мощность будет ограничена, т. к. невозможен выход на полное потребление. На компонентах для подключения лучше не экономить, т. к. это скажется на сроке службы всей схемы. Во время сборки и запуска необходимо придерживаться всех правил безопасности работы с электрическим током.
Схема управления реверсивным двигателем
Данный раздел экспериментальный, целью которого, является представить посетителям возможности создания интерактивных схем.
Несмотря на то, что время на создание таких схем значительно выше, они могут помочь более наглядно объяснить работу схемы, а в случае сложного алгоритма работы схемы с большим количеством элементов, стать неплохим помощником в поиске неисправности при ремонте оборудования.
Для демонстрации возможности интерактивных схем и обсуждения, создана одна из самых простых схем — схема управления реверсивным двигателем с короткозамкнутым ротором.
Так как подобных схем я пока не встречал, хотелось бы узнать Ваше мнение, которое Вы можете оставить в комментариях:
- о рациональности построения интерактивных схем;
- возможные варианты их использования;
- замечания и предложения по функциональности и отображению состояния элементов схемы
В процессе обсуждения, будут создаваться варианты схем созданные с учетом ваших рекомендаций, и сопровождаться моими комментариями.
Схема управления реверсивным двигателем, вариант1
Загрузить схему к себе на компьютер, Вы можете в формате chm: Скачать
Схема управления реверсивным двигателем, вариант 2
Добавлены изменения, с учетом Ваших рекомендаций:
Комментарии посетителей | Мои комментарии |
1. Текст комментария #3 : Как по мне, схеме несколько не хватает функциональности: не видно замыкания замыкающего контакта кнопки «Вправо» («Влево») при её нажатии и его размыкания при отпускании. Аналогично дело обстоит с размыкающим контактом кнопки «Стоп». | Данную функциональность добавил. Пока для кнопок «Вправо» и «Влево». Как получилось, смотрите на схеме. В целесообразности этой функции, я не совсем уверен, поэтому прошу продолжить высказывать свое мнение. |
1. Текст комментария #3 : … можно будет показать вращающийся вправо или влево ротор электродвигателя я (вращающаяся по кругу стрелка). | Эту функцию я рассматривал с самого начала. Но потом пришлось отказаться. И причина, даже не в увеличении размера файла. С вращающимся ротором получилось красиво, но, данный эффект не позволяет сосредоточить внимание на самой схеме (взгляд и внимание самопроизвольно перемещаются на вращающийся объект). |
Текст комментария #4: Ещё одно замечание. Исходное состояние – электродвигатель неподвижен. Обе группы линейных проводников, идущие от разомкнутых замыкающих контактов контакторов КМ1 и КМ2 к двигателю обесточены и имеют синий цвет. При замыкании контактов контактора КМ1 отходящие от них линейные проводники, идущие к статору асинхронного двигателя, меняют цвет с синего на красный. В то же время линейные проводники, идущие от оставшихся разомкнутыми контактов контактора КМ2, должны оставаться синими. При замыкании контактов контактора КМ2 наоборот. | В первом варианте схемы, синий цвет был выбран для токоведущих частей, на которых нет напряжения; красный цвет, для токоведущих частей которые находятся под напряжением. В новом варианте схемы:
Вот только выбранные цвета (выбирал из стандартных цветов), мне что-то не нравится. |
Загрузить схему к себе на компьютер, Вы можете в формате chm: Скачать
Управление асинхронным двигателем. Наиболее популярные схемы.
Здравствуйте, дорогие читатели! Сегодня поговорим про управление асинхронным двигателем, а так же рассмотрим три простые схемы, которые применяются наиболее часто.
Все электрические принципиальные схемы станков, установок и машин содержат определенный набор типовых блоков и узлов, которые комбинируются между собой определенным образом. В релейно-контакторных схемах главными элементами управления двигателями являются электромагнитные пускатели и реле.
Наиболее часто в качестве привода в станках и установках применяются трехфазные асинхронные двигатели с короткозамкнутым ротором. Эти двигатели просты в устройстве, обслуживании и ремонте. Они удовлетворяют большинству требований к электроприводу станков. Главными недостатками асинхронных двигателей с короткозамкнутым ротором являются большие пусковые токи (в 5-7 раз больше номинального) и невозможность простыми методами плавно изменять скорость вращения двигателей.
С появлением и активным внедрением в схемы электроустановок преобразователей частоты такие двигатели начали активно вытеснять другие типы двигателей (асинхронные с фазным ротором и двигатели постоянного тока) из электроприводов, где требовалось ограничивать пусковые токи и плавно регулировать скорость вращения в процессе работы.
Асинхронный двигатель с короткозамкнутым ротором
Одной из преимуществ использования асинхронных двигателей с короткозамкнутым ротором является простота их включения в сеть. Достаточно подать на статор двигателя трехфазное напряжение и двигатель сразу запускается. В самом простом варианте для включения можно использовать трехфазный рубильник или пакетный выключатель. Но эти аппараты при своей простоте и надежности являются аппаратами ручного управления.
В схемах же станков и установок часто должна быть предусмотрена работа того или иного двигателя в автоматическом цикле, обеспечиваться очередность включения нескольких двигателей, автоматическое изменение направления вращения ротора двигателя (реверс) и т.д.
Обеспечить все эти функции с аппаратами ручного управления невозможно, хотя в ряде старых металлорежущих станков тот же реверс и переключение числа пар полюсов для изменения скорости вращения ротора двигателя очень часто выполняется с помощью пакетных переключателей. Рубильники и пакетные выключатели в схемах часто используются как вводные устройства, подающие напряжение на схему станка. Все же операции управления двигателями выполняются электромагнитными пускателями.
Включение двигателя через электромагнитный пускатель обеспечивает кроме всех удобств при управлении еще и нулевую защиту. Что это такое будет рассказано ниже.
Электромагнитный пускатель
Наиболее часто в станках, установках и машинах применяются три электрические схемы:
схема управления нереверсивным двигателем с использованием одного электромагнитного пускателя и двух кнопок «пуск» и «стоп»,
схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок.
схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок, в двух из которых используются спаренные контакты.
Разберем принцип работы всех этих схем.
1. Управление асинхронным двигателем с помощью одного магнитного пускателя
Схема показана на рисунке.
Управление асинхронным двигателем с помощью магнитного пускателя
При нажатии на кнопку SB2 «Пуск» катушка пускателя попадает под напряжение 220 В, т.к. она оказывается включенной между фазой С и нулем (N). Подвижная часть пускателя притягивается к неподвижной, замыкая при этом свои контакты. Силовые контакты пускателя подают напряжение на двигатель, а блокировочный замыкается параллельно кнопке «Пуск». Благодаря этому при отпускании кнопки катушка пускателя не теряет питание, т.к. ток в этом случае идет через блокировочный контакт.
Если бы блокировочный контакт не был бы подключен параллельно кнопки (по какой-либо причине отсутствовал), то при отпускании кнопки «Пуск» катушка теряет питание и силовые контакты пускателя размыкаются в цепи двигателя, после чего он отключается. Такой режим работы называют «толчковым». Применяется он в некоторых установках, например в схемах кран-балок.
Остановка работающего двигателя после запуска в схеме с блокировочным контактом выполняется с помощью кнопки SB1 «Стоп». При этом, кнопка создает разрыв в цепи, магнитный пускатель теряет питание и своими силовыми контактами отключает двигатель от питающей сети.
В случае исчезновения напряжения по какой-либо причине магнитный пускатель также отключается, т.к. это равносильно нажатию на кнопку «Стоп» и созданию разрыва цепи. Двигатель останавливается и повторный запуск его при наличии напряжения возможен только при нажатии на кнопку SB2 «Пуск». Таким образом, магнитный пускатель обеспечивает т.н. «нулевую защиту». Если бы он в цепи отсутствовал и двигатель управлялся рубильником или пакетным выключателем, то при возврате напряжения двигатель запускался бы автоматически, что несет серьезную опасность для обслуживающего персонала.
2. Схема управления реверсивным двигателем с помощью двух магнитных пускателей
Схема работает аналогично предыдущей. Изменение направления вращения (реверс) ротор двигателя меняет при изменении порядка чередования фаз на его статоре. При включении пускателя КМ1 на двигатель приходят фазы — A, B, С, а при включении пускателя KM2 — порядок фаз меняется на С, B, A.
Схема показана на рис. 2.
Управление асинхронным двигателем с помощью двух магнитных пускателей
Включение двигателя на вращение в одну сторону осуществляется кнопкой SB2 и электромагнитным пускателем KM1. При необходимости смены направления вращения необходимо нажать на кнопку SB1 «Стоп», двигатель остановится и после этого при нажатии на кнопку SB3 двигатель начинает вращаться в другую сторону. В этой схеме для смены направления вращения ротора необходимо промежуточное нажатие на кнопку «Стоп».
Кроме этого, в схеме обязательно использование в цепях каждого из пускателей нормально-закрытых (размыкающих) контактов для обеспечения защиты от одновременного нажатия двух кнопок «Пуск» SB2 — SB3, что приведет к короткому замыканию в цепях питания двигателя. Дополнительные контакты в цепях пускателей не дают пускателям включится одновременно, т.к. какой-либо из пускателей при нажатии на обе кнопки «Пуск» включиться на секунду раньше и разомкнет свой контакт в цепи другого пускателя.
Необходимость в создании такой блокировки требует использования пускателей с большим количеством контактов или пускателей с контактными приставками, что удорожает и усложняет электрическую схему.
3. Схема управления реверсивным двигателем с помощью двух магнитных пускателей и трех кнопок (две из которых имеют контакты с механической связью)
Схема показана на рисунке.
Управление асинхронным двигателем с помощью двух магнитных пускателей и трех кнопок (две из которых имеют контакты с механической связью)
Отличие этой схемы от предыдущей в том, что в цепи каждого пускателя кроме общей кнопки SB1 «Стоп»включены по 2 контакта кнопок SB2 и SB3, причем в цепи КМ1 кнопка SB2 имеет нормально-открытый контакт (замыкающий), а SB3 — нормально-закрытый (размыкающий) контакт, в цепи КМ3 — кнопка SB2 имеет нормально-закрытый контакт (размыкающий), а SB3 — нормально-открытый. При нажатии каждой из кнопок цепь одного из пускателей замыкается, а цепь другого одновременно при этом размыкается.
Такое использование кнопок позволяет отказаться от использования дополнительных контактов для защиты от одновременного включения двух пускателей (такой режим при этой схеме невозможен) и дает возможность выполнять реверс без промежуточного нажатия на кнопку «Стоп», что очень удобно. Кнопка «Стоп» нужна для окончательной остановки двигателя.
Приведенные в статье схемы являются упрощенными. В них отсутствуют аппараты защиты (автоматические выключатели, тепловые реле), элементы сигнализации. Такие схемы также часто дополняются различными контактами реле, выключателей, переключателей и датчиков. Также возможно питание катушки электромагнитного пускателя напряжение 380 В. В этом случае он подключается от двух любых фаз, например, от А и B. Возможно использование понижающего трансформатора для понижения напряжения в схеме управления. В этом случае используются электромагнитные пускатели с катушками на напряжение 110, 48, 36 или 24 В.
Смотрите также по этой теме:
Короткозамкнутый и фазный ротор. В чем различие?
Асинхронный двигатель. Устройство и принцип работы.
Как работает электродвигатель. Преимущества и недостатки разных видов.
Асинхронный двигатель. Устройство и принцип работы.
Принцип работы электродвигателя. Простыми словами о сложном.
Будем рады, если подпишетесь на наш Блог!
[wysija_form id=»1″]
Автоматическое управление электроприводом
Основная функция автоматического управления электроприводом — запуск электродвигателя, остановка, торможение, реверсирование, поворот на определенный угол механизма в зависимости от времени или пути. В практике управления электроприводами известно большое количество схем, которые отражают многообразие требований, предъявляемых к электроприводу различных производственных машин. Однако различия в схемах часто не являются принципиальными, так как даже самые сложные из них представляют собой сочетание некоторого ограниченного числа стандартных узлов и простейших цепей, связывающих эти узлы.
1. Управление включением асинхронных электродвигателей с короткозамкнутым ротором
Схема управления с помощью магнитного пускателя (рис. 1). Магнитные пускатели широко применяют для пуска асинхронных электродвигателей мощностью до 75 кВт. Они обеспечивают дистанционный пуск, остановку, нулевую защиту и, с помощью теплового реле, защиту от перегрузок двигателя. При нажатии кнопки «Пуск» главные контакты ПМ включают двигатель; блок — контакты ПМ шунтируют кнопку «Пуск»; для отключения нужно нажать кнопку «Стоп».
Схема управления с помощью реверсивного магнитного пускателя (рис. 2). В тех случаях, когда в процессе работы необходимо изменять направление вращения электродвигателя, применяют реверсивные магнитные пускатели. Такой пускатель состоит из двух нереверсивных, помещенных в один кожух и имеющих блокировку (размыкающие контакты Н и В) от возможности одновременного включения главных контактов в цепи двигателя.
Для лучшей блокировки от возможности одновременного включения обеих пускателей применяются кнопки с нормально замкнутыми и нормально разомкнутыми контактами. При нажатии кнопки «Вперед» одновременно размыкаются контакты «Назад» (рис. 3).
Схема управления с динамическим торможением (рис. 4). Для быстрого торможения в обмотку статора подается постоянный ток. При нажатии кнопки «Стоп» отключается контактор П и включается контактор Т. С последним связано маятниковое реле, которое с выдержкой времени размыкает свой размыкающий контакт. Контактор Т отключает питание двигателя постоянным током.
Схема управления с переключением при пуске обмотки со «звезды» на «треугольник» (рис. 5). При нажатии кнопки «Пуск» включается линейный контактор КЛ и получает питание катушка реле времени РВ, размыкающий блок-контакт которого включает катушку контактора К3.
Рис. 1. Схема управления асинхронным электродвигателем при помощи магнитного пускателя
Рис. 2. Схема управления асинхронным электродвигателем при помощи реверсивного магнитного пускателя
Рис. 3. Схема управления реверсивным пускателем с блокировочными кнопками
Рис. 4. Схема управления асинхронным электродвигателем с динамическим торможением
При этом размыкается блок-контакт К3 в цепи катушки КТ. Двигатель разгоняется при включении обмоток цепи в «звезду». Через 5—10 с (в зависимости от установленной выдержки времени) размыкается замыкающий контакт реле времени РВ. Это приводит к отключению контактора К3 и включению контактора КТ. Одновременное включение контакторов К3 и КТ исключается размыкающим блок-контактом К3.
Рис. 5. Схема управления асинхронным электродвигателем с переключением при пуске обмотки статора со «звезды» на «треугольник»
Рис. 6. Электрическая схема управления двухскоростным асинхронным электродвигателем
Схема управления двухскоростным асинхронным электродвигателем (рис. 6). Конструкция многоскоростного асинхронного электродвигателя позволяет изменять число полюсов обмотки статора. Изменение числа пар полюсов меняет скорость вращения асинхронного электродвигателя. Для производственных механизмов, требующих две скорости вращения, отличающиеся в два раза, применяют двухскоростные асинхронные электродвигатели. Нажимая кнопку «Пуск», включают контактор К, который своими главными контактами подготавливает цепь включения статора двигателя. Воздействуя на кнопку
«Пуск медленно», включают контактор 1К, который подключает обмотку статора, соединенную в треугольник. Если необходимо увеличить скорость, нажимают кнопку «Пуск быстро». Образуется замкнутая цепь питания параллельно включенных катушек 2К и 3К. При этом число пар полюсов уменьшается вдвое, и электродвигатель вращается с большей скоростью.
Схема управления реверсивным двухскоростным электродвигателем (рис. 7). Нажатием кнопок «Пуск 1» или «Пуск 2» устанавливают необходимую частоту вращения при соединениях обмоток двигателя в «треугольник» или в «двойную звезду». Контакторы В или Н включаются нажатием кнопок
«Пуск вперед» или «Пуск назад». Двухцепные кнопки позволяют осуществить дополнительную блокировку, исключающую одновременное включение контакторов В, Н и 1К, 2К.
Торможение асинхронного электродвигателя противовключением (рис. 8). При торможении противовключением электродвигатель включается на время торможения в сеть с соединением обмоток статора с противоположным направлением вращения. При этом необходимо, чтобы двигатель отключился от сети в момент достижения скорости вращения, близкой к нулю.
Рис. 7. Схема управления реверсивным двухскоростным электродвигателем
Рис. 8. Торможение асинхронного короткозамкнутого электродвигателя противовключением
Для этого в цепь катушки контактора 2К включены замыкающие контакты реле контроля скорости РС, работающего от вала двигателя. При работе двигателя эти контакты замкнуты, а размыкающие контакты контактора 1К разомкнуты и контактор торможения 2К отключен. В режиме торможения, когда нажата кнопка «Стоп», катушка 1К обесточивается, электродвигатель отключается от сети. Одновременно размыкающий дополнительный контакт 1К замыкается и включает контактор торможения 2К. При достижении скорости, близкой нулю, реле РС срабатывает, его контакт отключает цепь питания контактора 2К и двигатель затормаживается.
Схема управления реверсивным электродвигателем с торможением противовключением и использованием реле контроля скорости (рис. 9). При нажатии кнопок «Вперед» или «Назад» замыкаются соответственно цепи катушек контакторов В или Н, срабатывают их контакты, статор двигателя подключается к сети, ротор начинает вращаться.
Рис. 9. Схема управления реверсивным электродвигателем с торможением противовключением
Одновременно с началом вращения приводится в действие вал реле контроля скорости и замыкаются соответствующие контакты реле РКСВ или РКСН, которые подготавливают цепи катушек контакторов «Вперед» или «Назад» к работе (при работе двигателя в режиме «Вперед» подготавливается к работе цепь катушки контактора
«Назад», и наоборот). При остановке двигателя, когда нажата кнопка «Стоп», разрывается цепь работающей катушки («Вперед» или «Назад»), главные контакты отключают двигатель от сети, а блок-контакты замыкают цепь катушки контактора «Назад» в том случае, когда двигатель работал вращаясь «Вперед», и наоборот. Таким образом, двигатель переключается в реверсивный режим, однако по инерции продолжает вращаться в прежнем направлении, работая в тормозном режиме противовключения. Из-за действия тормозного момента частота вращения ротора постепенно снижается и при достижении частоты, близкой к нулю, контакты реле контроля скорости размыкают цепи катушек контакторов
«Вперед» или «Назад» и отключают статор двигателя от сети.
2. Управление электроприводами с асинхронными электродвигателями с фазным ротором
Схема управления в функции времени (рис. 10). Эта схема является типичной для двигателей длительного режима с использованием маятниковых реле времени. При нажатии кнопки «Пуск» включается контактор Л. При включении контактора Л начинает работать маятниковое реле, которое через заданный промежуток времени включит своими контактами контактор 1У. Далее процесс повторяется. Замыкающий блок-контакт Л (1—2) предназначен для облегчения работы контактов маятникового реле.
Схема управления в функции времени с несколькими реле времени
Рис. 10. Схема управления асинхронным электродвигателем с фазным ротором в функции времени
Асинхронный электродвигатель с фазным ротором пускают с помощью пусковых реостатов, состоящих из нескольких ступеней, включаемых в фазы обмоток ротора.
При нажатии на кнопку «Пуск» катушка магнитного пускателя ПМ получает питание, и электродвигатель включается на полное сопротивление пускового реостата. Одновременно включается реле времени 1РВ, которое через выдержку времени, достаточную для разгона двигателя на этой ступени, включает контактор 1К, и он своими контактами закорачивает первую ступень пускового реостата. Блок-контакты контактора блокируют катушку
Включается одновременно с катушкой 1К реле времени 2РВ, которое через заданную выдержку времени включает второй контактор 2К, а он отключает вторую ступень пускового реостата. Третья ступень пускового реостата отключается аналогично.
Необходимо обеспечивать выбор правильных выдержек времени реле 1РВ, 2РВ и 3РВ. Чрезмерно большие выдержки времени затягивают процесс пуска, а заниженные — не обеспечивают разгон до нужной скорости и вызывают повышенные броски тока. При нажатии на кнопку «Стоп» электродвигатель отключается, и все ступени пускового реостата включаются по фазам ротора.
Схема управления в функции тока (рис. 12). В роторную цепь включены катушки токовых реле ускорения 1РУ, 2РУ, 3РУ, настроенные на срабатывание при токах I1РУ, I2РУ, I3РУ. Контактор 1У включается при спаде силы пускового тока в роторной цепи до значения, соответствующего уставке реле 1РУ.
Рис. 11. Электрическая схема управления асинхронным электродвигателем с фазным ротором
При большей силе тока в цепи ротора размыкающий контакт 1РУ будет разомкнут. Реле ускорения 2РУ и 3РУ, контакторы 2У и 3У работают так же. Из-за возможности вибраций размыкающих контактов реле ускорения
Схема управления в функции частоты (рис. 13). Работа этой схемы обеспечивается с помощью частотных реле 1ЧР, 2ЧР и 3ЧР, катушки которых включены в цепь ротора. Магнитный поток реле создается совместным действием магнитодвижущих сил катушки и короткозамкнутого витка (гильзы). При пуске, т.е. при большой частоте переменного тока в роторе двигателя, размагничивающее действие тока, протекающего по витку, будет велико, и магнитный поток реле будет относительно мал. При уменьшении частоты тока в роторе магнитный поток реле возрастает, так как происходит уменьшение тока в короткозамкнутом витке. При каком-то определенном значении частоты якорь притягивается и замыкает контакты реле частоты (
Рис. 12. Схема управления асинхронным электродвигателем с фазным ротором в функции силы тока
Рис. 13. Схема управления асинхронным электродвигателем с фазным ротором в функции частоты
Схема реверсивного управления асинхронного электродвигателя с короткозамкнутым ротором
Всем привет. Рад вас видеть у себя на сайте. Тема сегодняшней статьи: Реверсивное управление асинхронным электродвигателем с короткозамкнутым ротором.
В наше время асинхронные двигателя очень широко используются на производственных предприятиях. Их устанавливают практически на всём оборудование. А ещё бы и не ставить, ведь они самые простые в конструкции, имеют самую простую схему запуска и практически не требуют профилактических ремонтов.
Но мы сегодня не будем говорить о достоинствах и преимуществах этих двигателей, давайте лучше поговорим, о том, как же изменить направления движения этих электрических машин.
Но прежде чем рассматривать схему реверса, я советую вам почитать такие статьи:
Схема пуска асинхронного двигателя.
Расчёт тока электродвигателя.
Думаю, эти статьи будут вам очень полезны.
Теперь, переходим к практике. Специально для читателей своего сайта, я нарисовал схему реверса на листке бумаги, сфотографировал её, и делюсь с вами. Картинка получилась неплохо, и все основные элементы на ней видно. Но если вдруг вам что-то не понятно, то задавайте свои вопросы в комментариях. Я с радостью на них отвечу.
Схема запуска и реверсивного управления трёхфазного асинхронного электродвигателя с короткозамкнутым ротором.
Давайте для начала рассмотрим все элементы схемы.
QF – автоматический выключатель. Нужен для коммутации электрической схемы и для защиты от токов короткого замыкания.
KM1, KM2 – электромагнитные пускатели. Нужны для дистанционного запуска электродвигателя, и в данной схеме используются для реверса.
KK – тепловое реле. Используется для защиты электропривода от перегруза.
FU – предохранитель. Нужен для защиты цепей управления от токов короткого замыкания. И так же выступает в роли защиты от самопроизвольного включения привода в работу.
SB3 – кнопка стоп
SB1 – кнопка пуск «вперёд» или «вправо» и так далее.
SB2 – кнопка пуск «назад» или «влево» и так далее.
KM1, KM2 – блок-контакты электромагнитных пускателей. Нужны для подхвата.
KM1, KM2 – дополнительные блок-контакты пускателей. Выступают в роли блокировки от включения двух пускателей одновременно.
KM1, KM2 – катушки пускателей. Нужны для управления электромагнитными пускателями.
К – контакт теплового реле.
М – мотор
По элементам разобрались. Теперь давайте поговорим о том, как работает эта схема.
Для того чтобы запустить в работу электродвигатель, мы должны подать на него напряжение. Для этого включаем автоматический выключатель QF. Напряжение подаётся на контакты пускателей, и на цепь управления.
Теперь, чтобы двигатель начал вращаться нажимаем кнопку SB1. Этим действием мы подаём напряжение на катушку пускателя КМ1, пускатель втягивается, замыкаются силовые контакты и так же замыкается блок-контакт КМ1, а блок-контакт КМ2 размыкается. Двигатель при этом начинает вращаться
Теперь, чтобы запустить двигатель в другую сторону, нам нужно его сначала остановить. Для этого нажимаем кнопку SB3. Этим движением мы прекращаем подачу напряжения на цепь управления, и двигатель в любом случае остановиться, независимо от того в какую сторону он вращался.
Теперь для запуска электродвигателя в противоположную сторону. Нажимаем кнопку SB2. Напряжение подаются на катушку второго пускателя, он втягивается, замыкаются силовые контакты, замыкаются блок-контакты для подхвата, и размыкаются дополнительные блок-контакты. Двигатель начинает вращаться.
По сути, если разобраться, то схема очень простая. Главное понять принцип действия, и тогда вы легко сможете эту схему, переделать под свой какой-то вариант.
На этом у меня всё. Если есть вопросы, то задавайте их в комментариях. Если статья была вам полезной, то поделитесь нею со своими друзьями в социальных сетях, вступайте в группу и подписывайтесь на обновления сайта. Пока.
С уважением Александр!