Пусковое реле для асинхронного электродвигателя
Разное
Главная Радиолюбителю Разное
Хочу поделиться своим опытом по изготовлению пускового реле для асинхронных электродвигателей, в том числе трёхфазных, питаемых от однофазной сети. Надеюсь, это кому-нибудь пригодится.
Чтобы обеспечить работу такого двигателя, используют фазосдвигающий конденсатор. Причём его ёмкость при пуске двигателя должна быть в четыре раза больше, чем во время работы. Поэтому на время запуска (1…3 с) параллельно рабочему конденсатору подключают пусковой соответствующей ёмкости.
Самый простой способ подключать пусковой конденсатор — применить кнопочный выключатель с дополнительными контактами, которые замкнуты только во время удержания кнопки «Пуск» нажатой. Основные контакты выключателя также замыкаются в момент нажатия на кнопку «Пуск», а чтобы разомкнуть их, требуется нажать на кнопку «Стоп».
Такое решение (оно использовалось в старых стиральных машинах) возможно лишь при ручном управлении двигателем. Но иногда его необходимо запускать дистанционно, лишь подавая питающее напряжение. В таких случаях не обойтись без пускового реле, подключающего дополнительный конденсатор при подаче сетевого напряжения, а через заданное время отключающее его.
Рис. 1
Возможная схема включения двигателя с таким реле показана на рис. 1. При подключении его к сети 220 В на выходе выпрямителя, собранного на диодном мосте VD1, появляется постоянное напряжение. Начинается зарядка конденсатора С4. Его зарядного тока достаточно для срабатывания электромагнитного реле К1. Своими замкнувшимися контактами оно подключает параллельно рабочему фазосдвигающему конденсатору Сраб электродвигателя М1 пусковой конденсатор СпуСк. Конденсатор СЗ — искрогасящий.
По мере зарядки конденсатора С4 ток через обмотку реле К1 уменьшается и через некоторое время достигает тока отпускания. Контакты реле размыкаются и отключают от двигателя пусковой конденсатор. Таким образом, время, на которое подключается пусковой конденсатор, зависит от свойств реле К1 и тем больше, чем больше ёмкость конденсатора С4. Повторный пуск двигателя возможен после отключения устройства от сети на время, достаточное для разрядки конденсаторов С2 и С4 через резистор R2.
Ёмкость конденсатора С1 выбирают исходя из тока срабатывания реле, с некоторым запасом. Ориентировочно — 1 мкФ ёмкости на каждые 50 мА тока. Конденсатор должен быть рассчитан на продолжительную работу при переменном напряжении 220 В, 50 Гц. Подойдёт, например, К73-17 на постоянное напряжение 630 В. Нужную ёмкость можно получить параллельным соединением нескольких конденсаторов.
Реле К1 должно иметь напряжение срабатывания, не превышающее напряжение стабилизации стабилитрона VD2 (27 В для указанного на схеме Д816Б). Его контакты должны быть рассчитаны на коммутацию напряжения не менее 350 В и тока, в два раза превышающего пусковой ток двигателя. Если имеется несколько подходящих реле, выбирайте то, у которого разность значений напряжения (тока) срабатывания и отпускания больше.
Рис. 2
Если контакты имеющегося реле недостаточно мощные, подключать пусковой конденсатор к двигателю можно с помощью симисторного узла, собранного по схеме, изображённой на рис. 2. Его подключают к точкам А и Б исходной схемы вместо показанных там контактов реле и конденсатора СЗ. Симистор VS1 выбирают исходя из коммутируемого напряжения и тока. Контакты К1.1 теперь включены в цепь управляющего электрода симистора, где ток очень мал.
Рис. 3
Чтобы вообще отказаться от электромагнитного реле, его можно заменить симисторным оптроном по схеме, приведённой на рис. 3. Входную цепь оптрона подключают к точкам В и Г (см. рис. 1) вместо обмотки реле К1 с обязательным соблюдением полярности, а выходную — к точкам Д и Е (см. рис. 2) вместо контактов К1.1. Диод VD3 защищает излучающий диод оптрона от обратного напряжения, приложенного к нему при разрядке конденсатора С4.
Можно обойтись и без показанного на рис. 2 симистора, если воспользоваться не маломощным оптроном, а оптосимистором, либо специальным электронным реле достаточной для непосредственной коммутации конденсаторов мощности. К сожалению, такие приборы довольно дороги.
Последовательно с конденсатором С1 целесообразно включить ‘ резистор сопротивлением 51…82 Ом мощностью 0,5 Вт. Он ограничит импульс тока , через диоды выпрямителя при подключении устройства к сети.
Автор: К. Субботин, г. Кузнецк Пензенской обл.
Дата публикации: 10.01.2012
Мнения читателей
- Геннадий / 07.05.2017 — 11:30
Ребятки внимательно пррверяем то что паяем.всё работает на ура.автору большое спасибо. - ВАдим / 25.07.2012 — 18:52
Схему спаял , ни хрена не работает, реле срабатывает несколько раз без конденсатора С4, а с ним мертво как в танке. - Жека / 14.01.2012 — 14:18
реле пуска - Иван / 13.01.2012 — 22:45
В момент пуска R3 на рис.2 сгорит там должно быть 510кОм.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:
Пусковое реле для асинхронного электродвигателя
Хочу поделиться своим опытом по изготовлению пускового реле для асинхронных электродвигателей, в том числе трёхфазных, питаемых от однофазной сети. Надеюсь, это кому-нибудь пригодится.
Чтобы обеспечить работу такого двигателя, используют фазосдвигающий конденсатор. Причём его ёмкость при пуске двигателя должна быть в четыре раза больше, чем во время работы. Поэтому на время запуска (1…3 с) параллельно рабочему конденсатору подключают пусковой соответствующей ёмкости.
Самый простой способ подключать пусковой конденсатор — применить кнопочный выключатель с дополнительными контактами, которые замкнуты только во время удержания кнопки «Пуск» нажатой. Основные контакты выключателя также замыкаются в момент нажатия на кнопку «Пуск», а чтобы разомкнуть их, требуется нажать на кнопку «Стоп».
Возможная схема включения двигателя с таким реле показана на рис. 1. При подключении его к сети 220 В на выходе выпрямителя, собранного на диодном мосте VD1, появляется постоянное напряжение. Начинается зарядка конденсатора С4. Его зарядного тока достаточно для срабатывания электромагнитного реле К1. Своими замкнувшимися контактами оно подключает параллельно рабочему фазосдвигающему конденсатору Сраб электродвигателя М1 пусковой конденсатор Спуск. Конденсатор СЗ — искрогасящий.
Схема пускового реле для асинхронного эл.двигателя
По мере зарядки конденсатора С4 ток через обмотку реле К1 уменьшается и через некоторое время достигает тока отпускания. Контакты реле размыкаются и отключают от двигателя пусковой конденсатор. Таким образом, время, на которое подключается пусковой конденсатор, зависит от свойств реле К1 и тем больше, чем больше ёмкость конденсатора С4. Повторный пуск двигателя возможен после отключения устройства от сети на время, достаточное для разрядки конденсаторов С2 и С4 через резистор R2.
Реле К1 должно иметь напряжение срабатывания, не превышающее напряжение стабилизации стабилитрона VD2 (27 В для указанного на схеме Д816Б). Его контакты должны быть рассчитаны на коммутацию напряжения не менее 350 В и тока, в два раза превышающего пусковой ток двигателя. Если имеется несколько подходящих реле, выбирайте то, у которого разность значений напряжения (тока) срабатывания и отпускания больше. Если контакты имеющегося реле недостаточно мощные, подключать пусковой конденсатор к двигателю можно с помощью симисторного узла, собранного по схеме, изображённой на рис. 2. Его подключают к точкам А и Б исходной схемы вместо показанных там контактов реле и конденсатора СЗ. Симистор VS1 выбирают исходя из коммутируемого напряжения и тока. Контакты К1.1 теперь включены в цепь управляющего электрода симистора, где ток очень мал.
Чтобы вообще отказаться от электромагнитного реле, его можно заменить симисторным оптроном по схеме,
приведённой на рис. 3. Входную цепь оптрона подключают к точкам В и Г (см. рис. 1) вместо обмотки реле К1 с обязательным соблюдением полярности, а выходную — к точкам Д и Е (см. рис. 2) вместо контактов К1.1. Диод VD3 защищает излучающий диод оптрона от обратного напряжения, приложенного к нему при разрядке конденсатора С4.
Можно обойтись и без показанного на рис. 2 симистора, если воспользоваться не маломощным оптроном, а оптосимистором, либо специальным электронным реле достаточной для непосредственной коммутации конденсаторов мощности. К сожалению, такие приборы довольно дороги.
К. СУББОТИН,г. Кузнецк Пензенской обл.
По материалам : Журнал Радио № 10 2011 стр.47
Схема включения асинхронные двигатели электромотор электродвигатель Пусковое реле
Пусковое реле для асинхронного электродвигателя
Хочу поделиться своим опытом по изготовлению пускового реле для асинхронных электродвигателей, в том числе трёхфазных, питаемых от однофазной сети. Надеюсь, это кому-нибудь пригодится.
Самый простой способ подключать пусковой конденсатор — применить кнопочный выключатель с дополнительными контактами, которые замкнуты только во время удержания кнопки «Пуск» нажатой. Основные контакты выключателя также замыкаются в момент нажатия на кнопку «Пуск», а чтобы разомкнуть их, требуется нажать на кнопку «Стоп».
Возможная схема включения двигателя с таким реле показана на рис. 1. При подключении его к сети 220 В на выходе выпрямителя, собранного на диодном мосте появляется постоянное напряжение. Начинается зарядка конденсатора С4. Его зарядного тока достаточно для срабатывания электромагнитного реле К1. Своими замкнувшимися контактами оно подключает па-
По мере зарядки конденсатора С4 ток через обмотку реле К1 уменьшается и через некоторое время достигает тока отпускания. Контакты реле размыкаются и отключают от двигателя пусковой конденсатор. Таким образом, время, на которое подключается пусковой конденсатор, зависит от свойств реле К1 и тем больше, чем больше ёмкость конденсатора С4. Повторный пуск двигателя возможен после отключения устройства от сети на время, достаточное для разрядки конденсаторов С2 и С4 через резистор R2.
Ёмкость конденсатора С1 выбирают исходя из тока срабатывания реле, с некоторым запасом. Ориентировочно — 1 мкФ ёмкости на каждые 50 мА тока. Конденсатор должен быть рассчитан на продолжительную работу при переменном напряжении 220 В, 50 Гц. Подойдёт, например, К73-17 на постоянное напряжение 630 В. Нужную ёмкость можно получить параллельным соединением нескольких конденсаторов.
Его подключают к точкам А и Б исходной схемы вместо показанных там контактов реле и конденсатора СЗ. Симистор V51 выбирают исходя из коммутируемого напряжения и тока. Контакты К1.1 теперь включены в цепь управляющего электрода симистора, где ток очень мал.
Чтобы вообще отказаться от электромагнитного реле, его можно заменить симисторным оптроном по схеме, приведённой на рис. 3.
Входную цепь оптрона подключают к точкам В и Г (см. рис. 1) вместо обмотки реле К1 с обязательным соблюдением полярности, а выходную — к точкам Д и Е (см. рис. 2) вместо контактов К1.1. Диод УОЗ защищает излучающий диод оптрона от обратного напряжения, приложенного к нему при разрядке конденсатора С4.
Последовательно с конденсатором С1 целесообразно включить резистор сопротивлением 51…82 Ом мощностью 0,5 Вт. Он ограничит импульс тока через диоды выпрямителя при подключении устройства к сети.
К. СУББОТИН, г. Кузнецк Пензенской обл.
Пусковое реле для асинхронного двигателя
Электроника в быту
материалы в категории
Чтобы обеспечить работу асинхронного двигателя, используют фазосдвигающий конденсатор. Причём его ёмкость при пуске двигателя должна быть раза в четыре больше, чем во время работы. Поэтому на время запуска (1…3 с) параллельно рабочему конденсатору подключают пусковой соответствующей ёмкости.
В общем-то про все про это уже был отдельный разговор, здесь-же мы попробуем весь этот процесс автоматизировать
Самый простой способ подключать пусковой конденсатор — применить кнопочный выключатель с дополнительными контактами, которые замкнуты только во время удержания кнопки «Пуск» нажатой. Основные контакты выключателя также замыкаются в момент нажатия на кнопку «Пуск», а чтобы разомкнуть их, требуется нажать на кнопку «Стоп».
Такое решение (оно использовалось в старых стиральных машинах) возможно лишь при ручном управлении двигателем. Но иногда его необходимо запускать дистанционно, лишь подавая питающее напряжение. В таких случаях не обойтись без пускового реле, подключающего дополнительный конденсатор при подаче сетевого напряжения, а через заданное время отключающее его.
Возможная схема включения двигателя с таким реле показана на рис. 1. При подключении его к сети 220 В на выходе выпрямителя, собранного на диодном мосте появляется постоянное напряжение. Начинается зарядка конденсатора С4. Его зарядного тока достаточно для срабатывания электромагнитного реле К1. Своими замкнувшимися контактами оно подключает па-
раллельно рабочему фазосдвигающему конденсатору Сраб электродвигателя М1 пусковой конденсатор Спуск. Конденсатор СЗ — искрогасящий.
По мере зарядки конденсатора С4 ток через обмотку реле К1 уменьшается и через некоторое время достигает тока отпускания. Контакты реле размыкаются и отключают от двигателя пусковой конденсатор. Таким образом, время, на которое подключается пусковой конденсатор, зависит от свойств реле К1 и тем больше, чем больше ёмкость конденсатора С4.
Повторный пуск двигателя возможен после отключения устройства от сети на время, достаточное для разрядки конденсаторов С2 и С4 через резистор R2.
Ёмкость конденсатора С1 выбирают исходя из тока срабатывания реле, с некоторым запасом. Ориентировочно — 1 мкФ ёмкости на каждые 50 мА тока. Конденсатор должен быть рассчитан на продолжительную работу при переменном напряжении 220 В, 50 Гц. Подойдёт, например, К73-17 на постоянное напряжение 630 В. Нужную ёмкость можно получить параллельным соединением нескольких конденсаторов.
Реле К1 должно иметь напряжение срабатывания, не превышающее напряжение стабилизации стабилитрона VD2 (27 В для указанного на схеме Д816Б). Его контакты должны быть рассчитаны на коммутацию напряжения не менее 350 В и тока, в два раза превышающего пусковой ток двигателя. Если имеется несколько подходящих реле, выбирайте то, у которого разность значений напряжения (тока) срабатывания и отпускания больше.
Если в наличие нет подходящего реле или контакты имеющегося реле недостаточно мощные, то можно немного переиграть ситуацию, заменив реле симисторным узлом. Схема такого узла показана на рисунке 2
Его подключают к точкам А и Б исходной схемы вместо показанных там контактов реле и конденсатора СЗ. Симистор V51 выбирают исходя из коммутируемого напряжения и тока. Контакты К1.1 теперь включены в цепь управляющего электрода симистора, где ток очень мал.
Чтобы вообще отказаться от электромагнитного реле, его можно заменить симисторным оптроном по схеме, приведённой на рис. 3.
Входную цепь оптрона подключают к точкам В и Г (см. рис. 1) вместо обмотки реле К1 с обязательным соблюдением полярности, а выходную — к точкам Д и Е (см. рис. 2) вместо контактов К1.1. Диод УОЗ защищает излучающий диод оптрона от обратного напряжения, приложенного к нему при разрядке конденсатора С4.
Можно обойтись и без показанного на принципиальной схеме (см. рис. 2) симистора, если воспользоваться не маломощным оптроном, а оптосимистором, либо специальным электронным реле достаточной для непосредственной коммутации конденсаторов мощности. К сожалению, такие приборы довольно дороги.
Последовательно с конденсатором С1 целесообразно включить резистор сопротивлением 51…82 Ом мощностью 0,5 Вт. Он ограничит импульс тока через диоды выпрямителя при подключении устройства к сети.
К. СУББОТИН, г. Кузнецк Пензенской обл.
Пусковое реле для асинхронного электродвигателя
Хочу поделиться своим опытом по изготовлению пускового реле для асинхронных электродвигателей, в том числе трёхфазных, питаемых от однофазной сети. Надеюсь, это кому-нибудь пригодится.
Чтобы обеспечить работу такого двигателя, используют фазосдвигающий конденсатор. Причём его ёмкость при пуске двигателя должна быть в четыре раза больше, чем во время работы. Поэтому на время запуска (1…3 с) параллельно рабочему конденсатору подключают пусковой соответствующей ёмкости.
Самый простой способ подключать пусковой конденсатор — применить кнопочный выключатель с дополнительными контактами, которые замкнуты только во время удержания кнопки “Пуск” нажатой. Основные контакты выключателя также замыкаются в момент нажатия на кнопку “Пуск”, а чтобы разомкнуть их, требуется нажать на кнопку “Стоп”.
Такое решение (оно использовалось в старых стиральных машинах) возможно лишь при ручном управлении двигателем. Но иногда его необходимо запускать дистанционно, лишь подавая питающее напряжение. В таких случаях не обойтись без пускового реле, подключающего дополнительный конденсатор при подаче сетевого напряжения, а через заданное время отключающее его.
Возможная схема включения двигателя с таким реле показана на рис. 1. При подключении его к сети 220 В на выходе выпрямителя, собранного на диодном мосте появляется постоянное напряжение. Начинается зарядка конденсатора С4. Его зарядного тока достаточно для срабатывания электромагнитного реле К1. Своими замкнувшимися контактами оно подключает па-
раллельно рабочему фазосдвигающему конденсатору Сраб электродвигателя М1 пусковой конденсатор Спуск. Конденсатор СЗ — искрогасящий.
По мере зарядки конденсатора С4 ток через обмотку реле К1 уменьшается и через некоторое время достигает тока отпускания. Контакты реле размыкаются и отключают от двигателя пусковой конденсатор. Таким образом, время, на которое подключается пусковой конденсатор, зависит от свойств реле К1 и тем больше, чем больше ёмкость конденсатора С4. Повторный пуск двигателя возможен после отключения устройства от сети на время, достаточное для разрядки конденсаторов С2 и С4 через резистор R2.
Ёмкость конденсатора С1 выбирают исходя из тока срабатывания реле, с некоторым запасом. Ориентировочно — 1 мкФ ёмкости на каждые 50 мА тока. Конденсатор должен быть рассчитан на продолжительную работу при переменном напряжении 220 В, 50 Гц. Подойдёт, например, К73-17 на постоянное напряжение 630 В. Нужную ёмкость можно получить параллельным соединением нескольких конденсаторов.
Реле К1 должно иметь напряжение срабатывания, не превышающее напряжение стабилизации стабилитрона VD2 (27 В для указанного на схеме Д816Б). Его контакты должны быть рассчитаны на коммутацию напряжения не менее 350 В и тока, в два раза превышающего пусковой ток двигателя. Если имеется несколько подходящих реле, выбирайте то, у которого разность значений напряжения (тока) срабатывания и отпускания больше.
Если контакты имеющегося реле недостаточно мощные, подключать пусковой конденсатор к двигателю можно с помощью симисторного узла, собранного по схеме, изображённой на рис. 2.
Его подключают к точкам А и Б исходной схемы вместо показанных там контактов реле и конденсатора СЗ. Симистор V51 выбирают исходя из коммутируемого напряжения и тока. Контакты К1.1 теперь включены в цепь управляющего электрода симистора, где ток очень мал.
Чтобы вообще отказаться от электромагнитного реле, его можно заменить симисторным оптроном по схеме, приведённой на рис. 3.
Входную цепь оптрона подключают к точкам В и Г (см. рис. 1) вместо обмотки реле К1 с обязательным соблюдением полярности, а выходную — к точкам Д и Е (см. рис. 2) вместо контактов К1.1. Диод УОЗ защищает излучающий диод оптрона от обратного напряжения, приложенного к нему при разрядке конденсатора С4.
Можно обойтись и без показанного на принципиальной схеме (см. рис. 2) симистора, если воспользоваться не маломощным оптроном, а оптосимистором, либо специальным электронным реле достаточной для непосредственной коммутации конденсаторов мощности. К сожалению, такие приборы довольно дороги.
Последовательно с конденсатором С1 целесообразно включить резистор сопротивлением 51…82 Ом мощностью 0,5 Вт. Он ограничит импульс тока через диоды выпрямителя при подключении устройства к сети.
Файл: 19.jpg18.jpg20.jpg
Как подключить пусковое реле холодильника напрямую от компрессора
Пусковое реле отключается после набора необходимого количества оборотов дополнительный защиты. В первые минуты своего рабочего режима устройство тратит максимальное количество электроэнергии, вследствие чего происходит нагрев биметаллической пластины. Она воздействует на контакты, которые разъединяясь останавливают реле.
Пусковое реле
Существует несколько разновидностей пусковых устройств. Принцип их действия остается прежним, а в конструкции наблюдаются некоторые отличия. Наиболее популярными сегодня считается пускозащитные (пусковые) реле, которые относят к индукционным и «Таблеткам».
Исходным материалом для последних является вещество, способное расширяться при повышении температурного режима. Своевременное отключение реле происходит за счет нагрева таблетки, которая, расширяясь, вызовет расхождение контактов. Цепь прервется, и пусковая катушка остановится.
Реле на компрессоре
В индукционном пусковом или пускозащитном реле все построено на основе электромагнитов. Когда необходимые обороты для запуска компрессора набраны, сердечник с контактами катушки начинают свое взаимодействие, что провоцирует падение силы тока и последующее отключение пускового реле.
Из чего состоит пускозащитное устройство
Рассмотрим конструкцию реле на примере «Таблетки». Интересующая нас деталь находится возле мотора-компрессора. Ее цвет черный, так как он лучше всех остальных оттенков впитывает тепло. Далее необходимо отметить две фазы (одна на 220 В, а другая для заземления) и, соответственно, два входа/выхода. В некоторых моделях холодильников предусмотрено три фазы (третьей считается фаза земли). Также имеется обмотка двигателя и непосредственно пусковая.
Компрессор
Подключить пусковое реле холодильника не сложно. Главное иметь определенные навыки, электрическую схему и инструкцию к холодильнику. Для облегчения работы мастерам и обычным пользователям провода уже окрашены. Просто при снятии старого реле нужно запомнить их расположение, а при установке нового вернуть их на место. Далее останется только подключить работоспособное устройство.
Но даже провода, оформленные каждый в свой цвет, не предотвратят возникшую неисправность. Вне зависимости от операции все движения должны быть аккуратными и плавными. Одним резким рывком реально вывести холодильник из строя насовсем. Перед тем, как начинать работать, следует проверить все контакты. Легче всего это сделать, сняв немного краски с корпуса, но так поступать нужно только в самом крайнем случае.
Схема подключения для «таблетки»
Разница в местоположении реле разных типов
Прежде чем подключать реле, следует определиться с тем, где оно находится. Ведь разновидностей много, следовательно, и конструкций тоже. Первое, что бросается в глаза, это размеры, далее следует способ крепления (без присоединения к раме, на проводе) и показатели силы тока, например, реле ДХМ работает на меньших параметрах, чем ДХР.
Если возникла необходимость напрямую подключить холодильник без реле, то эти нюансы не пригодятся. Подбор подходящей детали должен осуществляться с учетом марки холодильника, типа мотора-компрессора, техническим параметрам и требуемой конструкции. Желательно, чтобы последняя была такой же, что и у предыдущего реле.
Пусковое реле холодильника Антант присоединяется к кожуху мотора-компрессора. Чтобы разместить устройство правильно, необходимо ориентироваться на стрелку, изображенную на крышке. Пример на фото.
Компрессор подготовлен для ремонта
Что такое компрессор
Это одна из самых главных запчастей холодильной установки. Крепится он с помощью двух труб и четырех гаек. При демонтаже детали гайки придется отвернуть. Перед тем, как подключить компрессор от холодильника без реле, необходимо проверить его исправность.
Данный элемент находится в рабочем состоянии, если
- он, будучи подключенным к сети, шумит;
- показывает нулевое сопротивление при проверке тестером
Чтобы осуществить эту процедуру следует правильно снять крышку с самого компрессора, аккуратно со всеми предосторожностями вынуть пусковой механизм и попарно проверить контакты. Если все нормально, то извлеченные детали в обратном порядке устанавливают на место.
Значение пускозащитного реле Р1 в холодильнике Атлант
Данная деталь отвечает за запуск мотора-компрессора и защиту от перегрева. Без реле холодильники Атлант не эксплуатировались бы так долго. Ведь качественная работа агрегатов напрямую зависит от бесперебойного передвижения хладагента.
Он, в свою очередь, начинает функционировать после начала работы компрессора, который подключается из-за получения сигнала от реле. А исходное действие за терморегулятором, который подает сигнал на устройство в случае повышения температуры в морозильной и холодильной камере.
Как подключить холодильник напрямую без реле?
Для начала нужно правильно прозвонить общий вывод на компрессоре. Заметить его легко, он находится чуть поодаль от остальных. Далее к нему приставляется клемма, аналогичная ей деталь требуется и на обмотку рабочего типа.
При установке клемм напрямую нужно быть уверенным в том, что выбрана именно рабочая, а не пусковая обмотка. Удостоверится в правильности выбора поможет тестер. Следует просто подключить электропитание, и проверить сопротивление. Обмотка, на которой его показатели меньше, и является рабочей.
Если неправильно подключить компрессор холодильника напрямую без реле, то произойдет перегрев мотора. Тогда его придется менять в обязательном порядке. Еще одним важным показателем считается пробиваемость корпуса обмотками. Проверять его руками не рекомендуется, ведь если компрессор используется уже долгий период времени, то вас может ударить током.
Нужно поступать по технике безопасности, поэтому клемму стоит только присоединить к выходу. У противоположной детали сразу же повысится напряжение. Подобную процедуру следует правильно провести со всеми клеммами. Если выяснится, что они не пропускают электрический ток, то компрессор безопасен и работоспособен.
Если требуется подключить реле Р1 в агрегате Атлант или обеспечить его работу без данного устройства, вам помогут профессионалы сервисного центра. Они проконсультируют, а при необходимости и подключат компрессор напрямую без риска для производительности холодильника Атлант. Порядок их действий запечатлен на видео.
Электронный запуск электродвигателей
электроника для дома
В статье приведены схемы электронного запуска электродвигателей с пусковой обмоткой различной бытовой и промышленной техники, которая выпускается с пусковыми устройствами, содержащими электрические контакты. Описываются принципы работы, наладки и конструктивные особенности электронных пусковых устройств на тиристорах и симисторах, даны рекомендации по изготовлению и эксплуатации этих устройств.
Однофазные электродвигатели с пусковой обмоткой применяются в холодильниках, электрозаточных, деревообрабатывающих станках и другой разнообразной бытовой технике.
Для запуска таких двигателей применяются пусковые реле или специальные выключатели, которые после запуска двигателя выключают пусковую обмотку. Подача и отключение напряжения в этих устройствах осуществляется через электрические контакты, которые, естественно, искрят и подгорают в процессе эксплуатации, что существенно снижает их срок службы, а при потере контакта приводит к повреждению двигателя.
Некоторыми авторами предложены схемы с электронными устройствами, которые снижают токи через электрические контакты, но не исключают их полностью.
Автором разработана и использована для некоторых бытовых устройств электронная схема запуска, которая в течение длительного времени показала надежную работу.
Работа данной схемы основана на запирании диодного моста, включенного в цепь управления тиристоров или симистора, при заряде конденсатора постоянным током диодного моста (рис.1). Во время заряда конденсатора тиристоры открыты, и все напряжение поступает в нагрузку. После полного заряда конденсатора ток через управляющие электроды прекращается, тиристоры запираются, и напряжение от нагрузки отключается. Время открытого состояния тиристоров определяется емкостью конденсатора, т.е. это своего рода реле времени, которое через определенное время отключает нагрузку. Для повторного включения нагрузки необходимо разрядить конденсатор, иначе он длительное время будет держать диоды моста и тиристоры в закрытом состоянии.
Для устройств, которые включаются с помощью выключателя, необходимо использовать тумблер с двумя перекидными контактами, один из которых при включении нагрузки подключал бы к конденсатору резистор номиналом 10… 100 кОм Практически действующая схема для запуска электродвигателя бытового заточного станка мощностью 210 Вт показана на рис.2.
Рис.1
В связи с разбросом параметров тиристоров схема требует несложной наладки, которая заключается в подборе конденсатора необходимой емкости, от которой зависит время подачи напряжения на пусковую обмотку. Это время должно быть минимальным, но достаточным для надежного запуска двигателя при пониженном напряжении питающей сети до допустимого минимума 180 В.
Необходимо отметить, что ток заряда конденсатора составляет доли миллиампера, поэтому диодный мост может быть маломощным, но рассчитанным на напряжение не менее 300 В, а конденсатор — на напряжение не менее 400 В, так как при пробое конденсатора пусковая обмотка окажется под полным напряжением сети, что может вывести из строя электродвигатель. К этому также может привести пробой любого элемента схемы. Учитывая, что надежность используемых элементов часто неизвестна, необходимо некоторое время понаблюдать за работой схемы. Для этого временно или постоянно параллельно электронному выключателю необходимо подключить светодиод с гасящим резистором. После запуска двигателя на электронном выключателе появляется сетевое напряжение, и светодиод начинает светиться, что свидетельствует о том, что пусковая обмотка отключено.
Рис.2
Рис.3
Для электродвигателей, которые включаются и выключаются автоматически, как в холодильнике, разряд конденсатора осуществляется через резистор от 10 до 100 МОм, подключенный параллельно конденсатору. Этот резистор большого номинала не влияет на заряд конденсатора и не открывает тиристоры, так как ток через этот резистор мал (составляет микроамперы) и его недостаточно для открывания тиристоров. После запуска двигателя заряд конденсатора (R1 отключен от С1) поддерживается микротоками, не способными открыть тиристоры. После автоматического отключения двигателя датчиком устройства конденсатор успевает разрядиться до следующей подачи напряжения на двигатель.
Эксперименты показали, что чем больше мощность двигателя, тем большего номинала требуется резистор R1. Например, при тех же тиристорах для двигателя мощностью 210 Вт минимальное сопротивление резистора составляло 9 МОм, а для двигателя мощностью 800 Вт — 18 МОм. После снятия напряжения, через несколько секунд, двигатель готов нормально запуститься. Это говорит о том, что увеличение сопротивления данного резистора на 30…50% от минимального не повлияет на работу устройства, например холодильника, а только повысит надежность отключения пусковой обмотки при завышенном напряжении сети. Например, разряд конденсатора емкостью 0,1 мкФ на резистор сопротивлением 20 МОм происходит за время t=RC=2 с. Эксперименты также показали, что емкость конденсатора и сопротивление разрядного резистора подбираются индивидуально в зависимости от параметров тиристоров или симистора, мощности двигателя и необходимого времени надежного запуска
Практическая схема электронного запуска двигателя заточного станка мощностью 210 Вт на симисторе показана на рис.3. Наладка данной схемы аналогична схеме на тиристорах.
Детали
Для двигателей мощностью до 2 кВт тиристоры могут устанавливаться без радиаторов. Диоды VD1 и VD2 (рис.2) можно заменить резисторами номиналом 120… 160 кОм, а при использовании тиристоров с близкими параметрами схема нормально работает и без этих элементов. Детали R2, VD3 и VD4 можно убрать после испытаний схемы в течение некоторого времени. Отключение пусковой обмотки в период испытаний схемы можно контролировать вольтметром. Необходимо отметить, что приведенные схемы также можно использовать в качестве таймеров для бесконтактного отключения мощных электрических устройств через необходимое время, подобрав соответствующий номинал С1 и тип симистора (тиристоров), например аппаратов точечной сварки, нагревателей для сварки пластиковых труб, кратковременного освещения больших помещений и т.п.
А.Н. Журенков.
Читайте также :
Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети
Pабота трехфазного двигателя в однофазной сети