Схема проверки стабилитронов – Тестер стабилитронов как отдельный прибор, так и приставка к карманному осциллографу Хамелеон D.

Прибор для проверки стабилитронов, схема

Радиолюбители иногда сталкиваются с проблемой проверки стабилитронов без маркировки. Естественно существует множество способов, например лабораторный блок питания с функцией ограничения тока и т.п., но многие пользуются самодельными регулируемыми стабилизаторами напряжения без функции ограничения тока, либо блок питания имеет функцию не стабилизации, а защиты по току. Было решено построить простой автономный тестер, который может проверить напряжение стабилизации стабилитронов.stabilitron-sxema-1 stabilitron-sxema-2 stabilitron-sxema-3 Для этих целей использованы готовые модули купленные в китайских интернет-магазинах.
1) Повышающий DC-DC преобразователь напряжения на базе микросхемы MT3608. Такие преобразователи довольно популярны и стоят копейки, могут обеспечивать выходное напряжение 28-30 Вольт.

stabilitron-sxema-4 stabilitron-sxema-6 2) Плата заряда LI-ION аккумуляторов от USB. Плата по сути из себя представляет автоматическое зарядное устройство для одной банки Li-Ion аккумулятора, обеспечивает максимальный ток заряда до 1 Ампер.
stabilitron-sxema-8 stabilitron-sxema-9 3) Литий-ионный аккумулятор любого стандарта, емкость тоже особо большой роли не играет.
stabilitron-sxema-10
4) Цифровой Вольт-Амперметр на напряжение 30 Вольт
stabilitron-sxema-11 stabilitron-sxema-12 5) Панелька для микросхем DIP, такие панельки предназначены для беспаечного монтажа, сюда будет вставляться стабилитрон, который нужно тестировать.
stabilitron-sxema-13 Это основные компоненты, остальное мелочь.
stabilitron-sxema-14
stabilitron-sxema-17 В качестве корпуса для этой конструкции был использован футляр от дешевого повербанка за доллар.
stabilitron-sxema-18 stabilitron-sxema-19 Из-за ограниченного места в корпусе я использовал никель-металл-гидридные аккумуляторы по 1,2 Вольт, которые соединены последовательно. В этом случае можно и не ставить специализированную плату для зарядки, поскольку никелевые аккумуляторы не так критичны к зарядке как литиевые.
stabilitron-sxema-22
stabilitron-sxema-23 Схема конструкции сейчас перед вами.
18Изначально берем плату DC-DC преобразователя и вращаем подстроечный резистор до тех пор, пока на выходе не получим максимально возможное напряжение.
Исходя из этого, становиться ясно, что наш тестер может проверять стабилитроны с напряжением стабилизации не более 28-30 Вольт.

Ограничительный резистор предназначен для ограничения тока через стабилитрон, если его не устанавливать, то подопытный стабилитрон сгорит.


Электролитический конденсатор на выходе платы предназначен для сглаживания пульсаций с преобразователя, это нужно для избежания ложных показаний вольтметра, поскольку на выходе таких плат довольно большие пульсации.

Выключатель, думаю понятно для чего предназначен, может быть заменен на кнопку любой мощности.
stabilitron-sxema-24 stabilitron-sxema-25 С учетом того, что такой тестер будет работать кратковременно, заряда батареи хватит на очень долгое время, поэтому при желании источник питания может быть заменен на батарейку стандарта 6F22 (обычная крона на 9 Вольт).
stabilitron-sxema-26 stabilitron-sxema-27
stabilitron-sxema-28 stabilitron-sxema-29 Показания снимаются напрямую со стабилитрона, прибор работает довольно точно и может корректно проверять стабилитроны буквально любой мощности.
stabilitron-sxema-30 stabilitron-sxema-31 stabilitron-sxema-32
В практике применяется не так часто как мультиметр, но является незаменимым инструментом, когда быстро нужно проверить стабилитрон.

Автор; АКА КАСЬЯН

ТЕСТЕР СТАБИЛИТРОНОВ И ДИОДОВ

В связи с распространением дешевых малогабаритных цифровых вольтметров, появилась возможность изготовить простые приборы-пробники для контроля различных величин. Данный прибор позволяет измерить падние напряжения на переходах полупроводников при фиксированном токе. Контроль напряжения ведется по цифровому вольтметру, который и определяет точность результатов. Прибор состоит из трех частей, собственно вольтметра, источника тока и преобразователя напряжения. Источник тока собран по классической схеме на стабилизаторе LM317. Трехпозиционный переключатель с нейтральным средним положением и набор резисторов обеспечивают три значения тока: 1, 5 и 10 мА. Если требуется большая точность рабочего тока, к примеру что бы оценивать номиналы резисторов, то нужно подобрать номиналы резисторов. На схеме приведены расчетные данные, но если высокая точность не нужна, можно ставить резисторы из ближайшего ряда.

Схема принципиальная

Ток СТАБИЛИТРОНОВ И ДИОДОВ - схема

Преобразователь собран на 555 таймере, и служит для повышения напряжения с 12 рабочих, да 32 максимальных для вольтметра. Подстройка выходного напряжения осуществляется подстроечным резистором. 

ТЕСТЕР СТАБИЛИТРОНОВ И ДИОДОВ - схема инвертора

ТЕСТЕР СТАБИЛИТРОНОВ И ДИОДОВ - плата

Печатная плата здесь. Собран прибор в пластиковом корпусе, размерами 40Х85х57 мм. Микросхема источника тока устанавливается на небольшой радиатор, транзистор преобразователя в охлаждении не нуждается. 

ТЕСТЕР СТАБИЛИТРОНОВ - сборка деталей

В качестве примера измерение прямого и обратного стабилитрона из кучи.

ТЕСТЕР СТАБИЛИТРОНОВ И ДИОДОВ

ТЕСТЕР СТАБИЛИТРОНОВ И ДИОДОВ 2

Сравнение напряжения холостого хода с эталонным прибором. Сказывается нелинейность на краю диапазона, в районе вольта показания встроенного вольтметра и эталонного практический совпадают.

ТЕСТЕР СТАБИЛИТРОНОВ - настройка и проверка

Номиналы дросселей не известны, ставил что нашлось, если удастся купить измеритель попытаюсь измерить индуктивность дросселя аналогичного тому который в преобразователе, тот который в фильтре вообще не критичен. В общем основное применение такой игрушки отбор нужного радиоэлемента из кучи, а мультиметры только до вольта, да и ток поди знай какой, а тут сразу все наглядно, светодиоды при разном токе удобно смотреть. С вами был SecreT UseR.

   Форум по измерителям

   Обсудить статью ТЕСТЕР СТАБИЛИТРОНОВ И ДИОДОВ


Самоделка, проверяющая стабилитроны, диоды и светодиоды


Здравствуйте дорогие друзья Самоделкины и гости сайта!

Многим из вас доводилось проверять стабилитроны. Не все их можно проверить при помощи мультиметра и определить напряжение стабилизации стабилитрона, если на нем стерта надпись. Я предлагаю вашему вниманию простую схему, которая поможет индентифицировать и проверить стабилитроны. Вот схема приставки

Я взял ее из интернета. Предлагаемая схема служит для простого определения номинала напряжения стабилизации стабилитрона с помощью вольтметра, а также для определения его исправности.


Сейчас промышленностью выпускается большое количество различных электронных компонентов и часто при сборке радиоэлектронного изделия возникает много затруднений по определению номинала компонента. Особенно в этом плане отличилась отечественная промышленность – в частности стабилитроны в стеклянном корпусе имеют, порой ,очень похожую маркировку, отличить которую не представляется возможным. Например, это стабилитроны КС 211 и КС 175 – иногда встречаются варианты маркировки, в которых оба выглядят как маленький выводной стеклянный диод с черной полосой. Так или иначе, запоминать цветовую маркировку стабилитронов не самая лучшая идея, учитывая насколько просто их можно проверить.

Для сборки этого устройства нам понадобятся следующие детали и инструменты


1 – небольшая монтажная плата, размером 5 на 2,5 см; микропереключатель МТ – 3; алюминиевый уголок, размером 2 на 2 см и длинной 3 см; Резистор МЛТ – 0, 25 вт 1 ком и 2,2 ком; два разъема «Мама» из военного штекера для подключения мультиметра; и два таких же разъема, только поменьше – для подключения стабилитронов; кембрик; монтажные провода.

2 – паяльник; припой; пинцет; кусачки; пассатижи; дрель и сверла.

Собираем следующим образом


Шаг 1

На уголке закрепляю тумблер, и устанавливаю его на плату.

Шаг 2

Спаиваю всю схему. Проверяю правильность сборки. Обычно диапазон рабочего тока маломощных стабилитронов лежит в пределах 1 -10 МА , поэтому сопротивление резистора R1 выбрано 2,2 ком. Это оптимально для проверки маломощных стабилитронов. Для проверки мощных стабилитронов сопротивление придется уменьшить, для этого и стоит переключатель В1.

Шаг 3. Проверяем работу собранного устройства

Для этого к разъему Х1 и Х2 подключаем мультиметр в режиме измерения постоянного напряжения. К разъему Х3 и Х4 подключаем проверяемый стабилитрон, как показано на схеме. Подаем питание 20 в на схему, если стабилитрон подсоединен правильно, то вольтметр покажет его напряжение стабилизации, а если неправильно – какое-то очень малое напряжение около нуля

Если при одном подключении мультиметр показывает минимум напряжения, а при другом – максимальное, равное напряжению источника питания, значит проверяемый радиоэлемент либо простой диод, либо стабилитрон с напряжением стабилизации выше напряжения источника питания.

Если вы уверены, что это стабилитрон – нужно увеличить напряжение источника до предполагаемой величины и проверить еще раз.


Если вольтметр показывает минимальное напряжение или же напряжение питания при любом подключении – значит этот стабилитрон или диод неисправен.

Если напряжение стабилизации показывается при любом подключении – значит это двухсторонний стабилитрон . Этим способом можно проверять исправность диодов и светодиодов, только полярность будет противоположная. Способ хорош тем, что позволяет узнать падение напряжения, что очень важно. Проверяя светодиоды необходимо уменьшить напряжение источника питания до 9В.

Все способы проверки стабилитрона, диода и светодиода показаны на фото




При простоте схемы достигается быстрая проверка указанных радиодеталей.

Вот и все, желаю всем вам успехов в создании своих самоделок.

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Анатолий Беляев (Mr.ALB) — персональный сайт

Универсальный тестер проверки DB3, оптронов, стабилитронов и других компонентов

Мне в последнее время приходилось возиться с разными электронными балластами и в их составе с динистором DB3, оптронами и стабилитронами из других устройств. Поэтому для быстрой проверки этих компонентов пришлось разработать и изготовить специализированный тестер. Дополнительно, кроме динисторов и оптронов, чтобы не создавать ещё тестеры для подобных компонентов, тестер может проверять стабилитроны, светодиоды, диоды, переходы транзисторов. В нём использована световая и звуковая индикация и дополнительно цифровой измеритель напряжения для оценки уровня срабатывания динисторов и падения напряжения на переходе проверяемых стабилитронов, диодов, светодиодов, транзисторов.

2017-03-04
Описание схемы

Схема тестера представлена ниже на Pic 1.

Примечание: для подробного просмотра картинки – кликните по ней.

Pic 1. Схема тестера DB3 (динисторов), оптронов, стабилитронов, диодов, светодиодов и переходов транзисторов

Основу тестера составляет генератор высоковольтных импульсов, который собран на транзисторе VT1 по принципу преобразователя DC-DC, то есть высоковольтные импульсы самоиндукции поступают в накопительный конденсатор C1 через высокочастотный диод VD2. Трансформатор генератора намотан на ферритовом кольце, взятом от электронного балласта (можно использовать любое подходящее). Количество витков около 30 на каждую обмотку (не критично и намотка может быть выполнена одновременно двумя проводами сразу). Резистором R1 добиваются максимального напряжения на конденсаторе C1. У меня получилось около +73.2 В. Выходное напряжение поступает через R2, BF1, HL1 на контакты панельки XS1, в которую вставляются проверяемые компоненты.

На контакты 15, 16 панельки XS1 подключен цифровой вольтметр PV1. Куплен на Алиэкспрессе за 60 Р. При проверке динисторов, вольтметр показывает напряжение открывания динистора. Если на эти контакты XS1[15, 16] подключать светодиоды, диоды, стабилитроны, переходы транзисторов, то вольтметр PV1 показывает напряжение на их переходе.

При проверке динисторов индикаторный светодиод HL1 и звуковой излучатель BF1 работают в импульсном режиме – указывая на исправность динистора. Если динистор пробит, то светодиод будет светиться постоянно и напряжение на вольтметре будет около 0 В. Если динистор в обрыве, то напряжение на вольтметре будет около 70 В, а светодиод HL1 светиться не будет. Аналогично проверяются оптроны, только индикаторный светодиод для них – HL2. Чтобы работа светодиода была импульсная в контакты XS1[15, 2] вставлен исправный динистор DB3 (КН102). При исправном оптроне свечение индикаторного светодиода импульсное. Оптроны имеют исполнение в корпусах DIP4, DIP6 и их необходимо устанавливать в соответствующие им контакты палельки XS1. Для DIP4 – это XS1[13, 12, 4, 5], а для DIP6 – XS1[11, 10, 9, 6, 7, 8].

Если проверять стабилитроны, то их подключать к XS1[16, 1]. Вольтметр будет показывать либо напряжение стабилизации, если катод стабилитрона подключен к контакту 16, либо напряжение на переходе стабилитрона в прямом направлении, если к контакту 16 подключить анод.

На контакты XS1[14, 3] выведено напрямую напряжение с конденсатора C1. Иногда есть необходимость засветить мощный светодиод или использовать полное выходное напряжение высоковольтного генератора.

Питание на тестер подаётся только во время проверки компонентов, при нажатии на кнопку SB1. Кнопка SB2 предназначена для контроля напряжения питания тестера. При одновременном нажитии на кнопки SB1 и SB2, вольтметр PV1 показывает напряжение на батарейках. Так сделал, чтобы можно было своевременно поменять батарейки, когда они разрядятся, хотя, думаю, что это будет не скоро , так как работа тестера кратковременная и потеря энергии батареек скорее за счёт их саморазряда, чем из-за работы самого тестера при проверке компонентов. Для питания тестера использованы две батарейки типа AAA.

Для работы цифрового вольтметра использовал покупной преобразователь DC-DC. На его выходе установил +4.5 В – напряжение поступающее и на питание вольтметра и на цепь светодиода HL2 — контроль работы выходного каскада оптронов.

В тестере использовал планарный транзистор 1GW, но можно использовать любой подходящий и не только планарный, который обеспечит напряжение на конденсаторе C1 больше 40 В. Можете попробовать использовать даже отечественный КТ315 или импортный 2N2222.

Фотообзор по изготовлению тестера

Далее небольшой фотоотчёт об этапах сборки окончательной конструкции тестера.

Pic 2. Печатная плата тестера. Вид со стороны панельки.

На этой стороне платы устанавливаются панелька, звуковой излучатель, трансформатор, индикаторные светодиоды и кнопки управления.


Pic 3. Печатная плата тестера. Вид со стороны печатных проводников.

На этой стороне платы устанавливаются планарные компоненты и больше-габаритные детали – конденсаторы С1 и С2, подстроечный резистор R1. Печатная плата была изготовлена упрощенным методом – прорезанием канавок между проводниками, хотя можно и провести травление. Файл с разводкой печатной платы можно скачать внизу страницы.


Pic 4. Внутреннее содержимое тестера.

Корпус тестера состоит из двух частей: верхней и нижней. В верхнюю часть устанавливается вольтметр и плата тестера. В нижнюю часть установлен преобразователь DC-DC для питания вольтметра и контейнер для батареек питания. Обе части корпуса соединяются за счёт защёлок. Традиционно корпус изготовлен из пластика ABS толщиной 2.5 мм. Размеры тестера 80 х 56.5 х 33 мм (без учёта ножек).


Pic 5. Основные части тестера.

Перед установкой преобразователя на его место в корпусе, произведена настройка выходного напряжения на +4.5 В.


Pic 6. Перед сборкой.

В верхней крышке прорезаны отверстия под индикатор вольтметра, под контактную панельку, под индикаторные светодиоды и под кнопки. Отверстие индикатора вольтметра закрыто кусочком оргстекла красного цвета (можно любым подходящим, к примеру, у меня с оттенком пурпурного, фиолетового). Отверстия под кнопки зазенкованы так, чтобы можно было нажать на кнопку, которая не имеет толкателя.


Pic 7. Сборка и подключение частей тестера.

Вольтметр и плата тестера крепятся на саморезах. Плата крепится так, чтобы индикаторные светодиоды, панелька и кнопки прошли в соответствующие им отверстия в верхней крышке.


Pic 8. Перед проверкой работы собранного тестера.

В панельку установлен оптрон PC111. В контакты 15 и 2 панельки вставлен заведомо исправный динистор DB3. Он будет использоваться как генератор импульсов подаваемых на входную цепь для проверки правильной работоспособности выходной части оптрона. Если использовать простое свечение светодиода через выходную цепь, то это было бы неправильно, так как если бы выходной транзистор оптрона был бы пробит, то светодиод светился бы тоже. А это неоднозначная ситуация. При использовании импульсной работы оптрона видим однозначно работоспособность оптрона в целом: как входную, так и выходную его части.


Pic 9. Проверка работоспособности оптрона.

При нажатии на кнопку проверки компонента, видим импульсное свечение первого индикаторного светодиода (HL1), указывающего на исправность динистора, работающего как генератор, и одновременно видим свечение второго индикаторного светодиода (HL2), который импульсной работой показывает на исправность оптрона в целом.

На вольтметре выводится напряжение срабатывания генераторного динистора, оно может быть от 28 до 35 В, в зависимости от индивидуальных особенностей динистора.

Аналогично проверяется и оптрон с четырьмя ножками, только устанавливается он в соответствующие ему контакты панельки: 12, 13, 4, 5.

Контакты панельки нумеруются по кругу против часовой стрелки, начиная с нижнего левого и далее вправо.


Pic 10. Перед проверкой оптрона с четырьмя ножками.
Pic 11. Проверка динистора DB3.

Проверяемый динистор вставляется в контакты 16 и 1 панельки и нажимается кнопка проверки. На вольтметре выводится напряжение срабатывания динистора, а первый индикаторный светодиод импульсной работой указывает на исправность проверяемого динистора.


Pic 12. Проверка стабилитрона.

Проверяемый стабилитрон устанавливается в контакты где проверяется и динисторы, только свечение первого индикаторного светодиода будет не импульсным, а постоянным. Работоспособность стабилитрона оценивается по вольтметру, где выводится напряжение стабилизации стабилитрона. Если стабилитрон вставить в панельку контактами наоборот, то при проверке на вольтметре будет выводиться падение напряжения на переходе стабилитрона в прямом направлении.


Pic 13. Проверка другого стабилитрона.

Точность показаний напряжения стабилизации может быть несколько условной, так как не задан определённый ток через стабилитрон.. Так, в данном случае проверялся стабилитрон на 4.7 В, а показания на вольтметре 4.9 В. Ещё может на это влиять и индивидуальная характеристика конкретного компонента, так как стабилитроны на определённое напряжение стабилизации имеют между собой некоторый разброс. Тестер же показывает напряжение стабилизации конкретного стабилитрона, а не значение его типа.


Pic 14. Проверка яркого светодиода.

Для проверки светодиодов можно использовать либо контакты 16 и 1, где проверяются динисторы и стабилитроны, тогда будет выведено падение напряжение на работающем светодиоде, либо использовать контакты 14 и 3, на которые напрямую выводится напряжение с накопительного конденсатора С1. Этот способ удобен для проверки свечения более мощных светодиодов.


Pic 15. Контроль напряжения на конденсаторе С1.

Если не подключать никакие компоненты для проверки, то вольтметр покажет напряжение на накопительном конденсаторе С1. У меня оно достигает 73.2 В, что даёт возможность проверять динисторы и стабилитроны в широком диапазоне рабочих напряжений.


Pic 16. Проверка напряжения питания тестера.

Приятная функция тестера – контроль напряжения на батареях питания. При нажатии одновременно на две кнопки, на индикаторе вольтметра показывается напряжение батарей питания и одновременно светится первый индикаторный светодиод (HL1).


Pic 17. Разные ракурсы на корпус тестера.

На виде сбоку видно, что кнопки управления не выступают за верхнюю сторону крышки, сделал так, чтобы не было случайного нажатия на кнопки, если тестер положить в карман.


Pic 18. Разные ракурсы на корпус тестера.

Корпус снизу имеет небольшие ножки, для устойчивого положения на поверхности и чтобы не протирать и не шоркать нижнюю крышку.


Pic 19. Законченный вид.

На фото законченный вид тестера. Его размеры можно представить по размещённому рядом стандартному коробку спичек. В миллиметрах же размеры тестера 80 х 56.5 х 33 мм (без учёта ножек), как и указывал выше.


Pic 20. Цифровой вольтметр.

В тестере применён покупной цифровой вольтметр. Использовал измеритель от 0 до 200 В, но можно и от 0 до 100 В. Стоит он недорого, в пределах 60…120 P.

Печатная плата тестера: ALB_DB3_tester.lay

. Ссылка на статью: #1

Устройство для проверки стабилитронов и светодиодов — radiohlam.ru

Наверняка у многих радиохламеров пылятся в кладовках кучи радиодеталей, неизвестно когда и откуда выпаяных, но внешне похожих на диоды (у меня по-крайней мере так). И многих наверное мучают вопросы: как проверить их исправность, нет ли среди них стабилитронов и, если есть, то как узнать напряжение стабилизации этих стабилитронов. Похожие вопросы возникают и по-поводу выпаянных светодиодов: как узнать живые они или нет, как узнать где у них катод, а где анод (ноги-то у выпаянных светиков одинаковой длины).

Обычные диоды легко прозваниваются большинством мультиметров, но в случае со стабилитронами и светодиодами мультиметры не подходят, — у них слишком маленький тестовый ток и низкое напряжение питания.

Помочь в данном случае может описанное ниже небольшое устройство на весьма распространённой микрухе TL431. По-сути это небольшой источник тока, способный выдавать 2-4 мА, чего уже вполне достаточно для проверки маломощных светодиодов или стабилитронов.

Итак, схема:

  1. R1=3,6 кОм, R2=510 Ом, R3=500 Ом
  2. T1 — любой маломощный npn транзистор, выдерживающий напряжение Uкэ=30-35 В
  3. Напряжение питания схемы = 9-28 В

Схема работает очень просто — TL-ка управляет транзистором таким образом, чтобы напряжение на её первой ноге было постоянным и равным 2,495 В. Получается, что в большей или меньшей степени открывая транзистор, TL-ка фактически стабилизирует падение напряжения на резисторах R2R3, а значит и ток через них. Этот ток складывается из тока коллектора и тока базы транзистора, но учитывая, что ток базы значительно меньше тока коллектора, мы можем считать, что ток коллектора тоже получается стабильным. А ток коллектора — это и есть наш тестовый ток, которым мы будем проверять светики и стабилитроны.

Падание напряжения на подопытной детали, при заданном тестовом токе, нужно измерять между точками test+ и test-. Для стабилитронов это и будет искомое напряжение стабилизации (это если правильно включили, иначе мультик покажет падение на pn-переходе в прямом направлении).

Подстроечный резистор позволяет в некоторых пределах менять тестовый ток. С указанными номиналами мы можем менять его от 2,495/(510+500)=2,47 мА до 2,495/510=4,9 мА.

Резистор R1 рассчитывается исходя из того, что напряжение на 3-й ноге TL-ки при любом напряжении питания должно быть примерно на 0,5 В выше, чем напряжение на первой ноге (выше на величину Uбэ транзистора) и при этом ток через TL-ку должен быть в рабочих пределах (1-100 мА по даташиту). Ну и конечно желательно, чтобы этот резистор поменьше грелся.

С указанными значениями R1 и напряжения питания, ток через TL-ку будет меняться от (9-0,5-2,495)/3,6 = 1,67 мА до (28-0,5-2,495)/3,6 = 6,95 мА, что вписывается в диапазон рабочего тока TL-ки. Причём вписывается как раз ближе к минимальной границе, что обеспечивает минимальный нагрев.

Следует учесть, что напряжение питания схемы определяет максимальное напряжение стабилизации, которое мы можем проверить (оно примерно на 3-3,5 В ниже напряжения питания). То есть, например, при 9-ти вольтовом питании схемы, мы сможем проверять только стабилитроны с напряжением стабилизации до 5,5-6 В (например на 4,7 В или на 5,1 В), а при 28-вольтовом питании можно проверять стабилитроны с напряжением стабилизации до 24,5-25 В.

Фото готового устройства:

Скачать плату (DipTrace, разводка под SMD)

В качестве клемм test+, test- я использовал держатель для миниатюрных круглых предохранителей, в качестве блока питания — ноутбучную зарядку на 19,5 Вольт (для тех, кто читал ветку про самопальный зарядник для автомобильного аккумулятора, — да, да, ту самую ноутбучную зарядку.)

Если такой чудной зарядки у вас нет, то можно изготовить самодельный повышающий преобразователь (здесь есть нужные схемы). Преобразователь нужен маломощный, токи-то в нашей схеме всего лишь миллиамперные.

Вот в общем-то и всё, удачи.

Тестер стабилитронов.(Светодиодных линеек,матриц)

Тестер стабилитронов


Переделывал блок питания и там стоит стеклянный стабилитрон не понятно на какое напряжение и в коробочке у меня есть несколько не понятно на какое напряжение стабилизации.

Вот и решил сделать простенький приборчик, схему нарыл в интернете добавил аккумулятор и контролер заряда.

 

Вольтметр китайский 0-100 Вольт.

Контроллер заряда 

Изменение тока зарядки модуля TP4056

VT1= C4242 в оригинальной схеме КТ817.

 

VD1=1N4007  имеется в зарядках.

 

R1=1 кОм правда я его совсем убрал так как наибольшее напряжение достигается при где то 800 Ом.

R2=5-10 кОм.

R3=1 мОм.

Вот материал который нарыл на сайтах https://yadi.sk/d/uU74Buth4HuJYB ( схема, печатка описание)

О трансформаторе:

 

Взят из какой то зарядки телефона  подойдет от лягушки. Сопротивление катушек могут быть другими.

 

Если выводы обмоток по другому расположены то печатка с сайта оригинала не подойдет.

Мне тоже пришлось одну обмотку пришлось перевернуть, а то не запускалось.

 

 

 

 

 

 

 

 

Поделиться ссылкой:

Похожее

Отправить ответ

avatar
  Подписаться  
Уведомление о