Схема простая электрическая – Схема электропроводки в частном доме своими руками – как сделать схему подключения электрики

Радиосхемы. — Начинающим

раздел

Этот раздел сделан специально для начинающих радиолюбителей.

То есть для тех кто только начинает заниматься таким увлекательным занятием как радиолюбительство. Все схемы которые находятся в этом разделе очень просты и вас не затруднит изготовить их своими руками.

Сюда вошли не только простые схемы для самостоятельной сборки но и общие сведения про пайку, различные флюсы и припои.
Здесь вы также узнаете как изготовить свое первое изделие: просто как макет, использовать навесной монтаж или изготовить печатную плату.

Ну а если вдруг у Вас возникнут вопросы то мы всегда поможем- подскажем. Для этого Вам всего-лишь нужно зайти к нам на ФОРУМ.

 

Итак:

РАДИОЛЮБИТЕЛЬСКИЕ ТЕХНОЛОГИИ

Припои, флюсы, паяльники
Навесной монтаж
Монтаж на печатной плате
Изготовление печатных плат самостоятельно
Раствор для травления печатных плат из подручных материалов
Самодельный фоторезист
Демонтаж многовыводных элементов
Регулятор мощности паяльника
Простейший способ регулировки температуры жала паяльника

Как правильно паять (видео)
Даже старая техника может еще пригодиться!
Автоматический регулятор температуры паяльника
Терморегулятор для низковольтного паяльника
Практические советы начинающим радиолюбителям
Нанесение надписи на металлическую поверхность
Основные правила при монтаже микросхем
Простые правила пайки
Создание контрольных точек при сборке радиосхем
монтаж мощных радиоэлементов
полезные советы при сборке печатных плат
Проверка радиодеталей осциллографом
Как защитить электрические контакты от загрязнения
Печатная плата без травления
Умная подставка для паяльника

ПРОСТЫЕ СХЕМЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ

Мультивибраторы, мигалки
двухтональный звонок
мелодичный звонок
Мигалки на тиристорах
Несимметричный мультивибратор и его применение
Простейшая светомузыка на светодиодах

Простая мигалка на микросхеме LM3909
Простейший светодиодный индикатор уровня
Светодиодная мигалка с изменяемой частотой
Простейшая пищалка
простой металлодетектор 
Металлоискатель на специализированной микросхеме TDA0161
Простой металлоискатель
Металлоискатель- приставка к радиоприемнику
Звучащий брелок
Игровой автомат для проверки реакции
Индикатор температуры
Электронный термометр

Электронный метроном
Самодельный домофон
Простое переговорное устройство
Акустический выключатель освещения
Акустический выключатель с триггером
Самоблокирующаяся звуковая сигнализация
Простой стабилизированный блок питания
Регулируемые блоки питания
Фотореле- устройство автоматического включения освещения при наступлении темноты
Автомат периодического включения нагрузки
Бестрансформаторный блок питания
Усилитель на лампах от старого телевизора

Простой индикатор мощности
Мигающее сердце на светодиодах
Автомат световых эффектов «блуждающий огонек»
Имитатор звука мотора для игрушек
Имитатор звука дизельного двигателя
Мигающее сердце на таймере 555
Полицейский стробоскоп

Мигалка Солнышко на микросхеме К561ЛА7
Лазерный фототир
Фототир из лазерной указки
Световой телефон из лазерной указки
Простой тестер для диодов и транзисторов
Светодиодная мигалка на 1,5 Вольта
Простой усилитель для наушников
Простой регулятор мощности
Простейший осциллограф своими руками
Простой усилитель с низковольтным питанием
Сенсорный выключатель
Простейший электронный термометр
Простые регуляторы напряжения
Электронная канарейка
Электронный звонок «канарейка»
Электронная кукушка
Имитатор шума прибоя

Имитатор шума дождя
Имитатор птичьего пения
Имитатор кряканья утки
Имитатор полицейской сирены
Имитатор звука выстрела
Имитатор мяуканья кошки
Электронный соловей
Звуковой пробник для проверки транзисторов
Таймер с большим временем выдержки
Простейший кодовый замок
Регулятор яркости для настольного светильника
Реле времени
Таймер на 30 минут
Самодельный сетевой фильтр
Простой радиоприемник 
Автоматическая мормышка
Миниатюрный металлоискатель
Конструкции на двух транзисторах
Микрометр
Акустический телескоп
Простой преобразователь 12- 220 Вольт своими руками
Простейший электромузыкальный инструмент
Переключатель светодиодов
низковольтная мигалка
Пробник «генератор- усилитель»
Простой радиоприемник на двух транзисторах
Лампа дневного света от батареи 12 Вольт
Электронная рулетка
Микросхема КР142ЕН19А- регулируемый стабилизатор напряжения
Простейший искатель скрытой проводки
Игра «кто первый»
Кодовый замок со звуковой сигнализацией неправильного набора
Мультивибратор на полевых транзисторах
Сигнализатор поклевки из китайского будильника
Музыкальный светофон
Бесперебойник для радиоприемника
Сигнализатор отключения напряжения в сети
Индикатор перегрева
Узконаправленный микрофон
Конструкции с сенсорным управлением
Звук от телевизора по радиоканалу
Простой генератор-пробник
Простой светодиодный пробник
Реле времени для электромеханических игрушек
Сенсорное реле времени
Простой автоматический выключатель освещения
Простые конструкции на логической микросхеме К561ЛА7 (К176ЛА7)
Мигающий фонарь
Простой сигнализатор влажности
Реле времени для светильника
Светотелефон- лазер передает звук
Бестрансформаторный источник питания 10 V 0,1 A
Простой электронный замок
Светодиодный пробник для проверки P-N переходов
Светодиодный «ночник»
Простой лабораторный регулируемый источник питания 3- 33 V
Пробник для транзисторов
Сигнализатор «Открыт холодильник»
Мигалка для новогодней гирлянды
Простое акустическое реле для будильника
Самодельный радиобудильник
Простая «поливалка» для комнатных цветов
Простой детектор лжи
Светодиод- индикатор сетевого напряжения

Как читать электрические схемы — простой фото и видео курс для начинающих

Пример электрической схемы

Что такое электрическая схема

Это графическое изображение, где указаны все электронные элементы, связанные между собой проводниками. Поэтому знание электрических цепочек – это залог правильно собранного электронного прибора. А, значит, основная задача сборщика – это знать, как на схеме обозначаются электронные компоненты, какими графическими значками и дополнительными буквенными или цифровыми значениями.

Все принципиальные электрические схемы состоят из электронных элементов, которые имеют условное графическое обозначение, короче УЗО. Для примера дадим несколько самых простых элементов, которые в графическом исполнении очень похожи на оригинал. Вот так обозначается резистор:

РезисторРезистор

Как видите, очень похоже на оригинал. А вот так обозначается динамик:

ДинамикДинамик

То же большое сходство. То есть, существуют некоторые позиции, которые сразу же можно опознать. И это очень удобно. Но есть и совершенно непохожие позиции, которые или надо запомнить, или надо знать их конструкции, чтобы легко определять на принципиальной схеме. К примеру, конденсатор на рисунке снизу.

КонденсаторКонденсатор

Тот, кто давно разбирается в электротехнике, то знает, что конденсатор – это две пластинки, между которыми размещен диэлектрик. Поэтому в графическом изображении был и выбран этот значок, он в точности повторяет конструкцию самого элемента.

Самые сложные значки у полупроводниковых элементов. Давайте рассмотрим транзистор. Необходимо отметить, что у этого прибора три выхода: эмиттер, база и коллектор. Но и это еще не все. У биполярных транзисторов встречаются две структуры: «n – p – n» и «p – n – p». Поэтому и на схеме они обозначаются по-разному:

ТранзисторТранзистор

Как видите, транзистор по своему изображению на него-то и не похож. Хотя, если знать структуру самого элемента, то можно сообразить, что это именно он и есть.

Простые схемы для начинающих, зная несколько значков, можно читать без проблем. Но практика показывает, что простыми электросхемами в современных электронных приборах практически не обходятся. Так что придется учить все, что касается принципиальных схем. А, значит, необходимо разобраться не только со значками, но и с буквенными и цифровыми обозначениями.

Что обозначают буквы и цифры

Все цифры и буквы на схемах являются дополнительной информацией, это опять-таки к вопросу, как правильно читать электросхемы? Начнем с букв. Рядом с каждым УЗО всегда проставляется латинская буква. По сути, это буквенное обозначение элемента.

Это сделано специально, чтобы при описании схемы или устройства электронного прибора, можно было бы обозначать его детали. То есть, не писать, что это резистор или конденсатор, а ставить условное обозначение. Это и проще, и удобнее.

Теперь цифровое обозначение. Понятно, что в любой электронной схеме всегда найдутся элементы одного значения, то есть, однотипных. Поэтому каждую такую деталь пронумеровывают. И вся эта цифровая нумерация идет от верхнего левого угла схемы, затем вниз, далее вверх и опять вниз.

Внимание! Специалисты называют такую нумерацию правилом «И». Если обратите внимание, то движение по схеме так и происходит.

Условные обозначения

И последнее. Все электронные элементы имеют определенные свои параметры. Их обычно также прописывают рядом со значком или выносят в отдельную таблицу. К примеру, рядом с конденсатором может быть указана его номинальная емкость в микро- или пикофарадах, а также номинальное его напряжение (если такая необходимость возникает).

Вообще, все, что связано с полупроводниковыми деталями должно обязательно дополняться информацией. Это не только упрощает чтение схемы, но и позволяет не ошибиться при выборе самого элемента в процессе сборки.

Иногда цифровые обозначения на электросхемах отсутствуют. Что это значит? К примеру, взять резистор. Это говорит о том, что в данной электрической схеме показатель его мощности не имеет значения. То есть, можно установить даже самый маломощный вариант, который выдержит нагрузки схемы, потому что в ней течет ток малой силы.

И еще несколько обозначений. Проводники графически обозначаются прямой непрерывной линией, места пайки точкой. Но учтите, что точка ставиться только в том месте, где соединяются три или более проводников.

Электрическая цепь

Заключение по теме

Итак, вопрос, как научится читать схемы электрические, не самый простой. Вам потребуется не только знание УЗО, но и знание, касающиеся параметров каждого элемента, его структуры и конструкции, а также принципа работы, и для чего он необходим. То есть, придется учить все азы радио- и электротехники. Сложно? Не без этого. Но если вы поймете, как все работает, то для вас откроются горизонты, о которых вы и не мечтали.

Как читать электрические схемы: как работает, как составлять

Многие люди, только начиная свое знакомство с электрикой, задаются вопросом, как читать электрические схемы, какие существуют правила чтения, какие есть условные обозначения и как работает электрическая схема? Об этом и другом далее.

Как научиться читать электрическую схему

Любая радиоаппаратура включает в себя отдельные радиодетали, которые спаяны между собой при помощи определенного способа. Все эти элементы отражаются на электрической схеме условными графическими значениями. Чтобы научиться читать документ, необходимо понимать условное обозначение всех проводниковых элементов электроцепи. Каждая деталь имеет свое графическое обозначение и включает в себя условную конструкцию с характерными особенностями.

Простейшая электрическая схема

Проще всего работать с таким элементом как электронный конденсатор с резисторами, динамиками и другим электрооборудованием с автоматизацией. Как правило, их легко узнать без всякой таблицы с условными обозначениями. Учиться на них проще. Сложнее осуществлять работу с полупроводниками, а именно транзисторами, симисторами и микросхемами. К примеру, каждый биполярный транзистор имеет в себе три вывода, а именно, базу, коллектор и эмиттер. По этой причине необходимы условные изображения и уточняющая информация в виде латинских букв. Изучение их может занять много дней, как и обучение их опознания.

Обратите внимание! Кроме букв на каждой схеме есть цифры. Они говорят о нумерации и технических характеристиках. Стоит указать, что самостоятельно научиться читать документ невозможно, и поэтому нужны уроки и обучающие пособия.

Условные графические значения электросхемы

Основные правила

В ответ на вопрос, как читать электросхемы, стоит уточнить, что это нужно делать слева направо, от начала до самого конца. В этом заключается основное правило. Следующее правило заключается в расчленении единого чертежа на небольшие картинки или простые цепи. Она состоит из источника электротока, приемника тока, прямого привода, обратного провода и одного контакта аппарата. Поэтому, начиная изучать документ, нужно разбить его на части. Далее обязательно нужно принимать во внимание все детали, с замечаниями, экспликациями, пояснениями и спецификациями. Если в чертеже находятся ссылки, то нужно изучить и их.

Обратите внимание! Чертежи, которые отражают момент работу электропитания, электрозащиты, управления и сигнализации, должны быть изучены на количество источников питания, взаимодействие, согласованность совместной работы, оценку последствий вероятных неисправностей, нарушение проводной изоляции, проверку схемы с отсутствием ложных цепей, оценку надежности электрического питания, режим работы оборудования и проверку выполнения мер, которые обеспечивают безопасное проведение работ.

Разбивка чертежа на несколько частей как основное правило

Условные обозначения

Согласно нормативным документам, есть стандартные графические условные обозначения в однолинейных и двухлинейных схемах. Далее представлена таблица с подобными символами под названием электрические схемы для начинающих условные обозначения. Стоит указать, что в чертежах используются также цифры и буквы. Подобная маркировка регулируется с помощью нормативных документов, а именно гостов.

Условное значение букв на документе

Как составлять схему

Составление электрической схемы должно производиться опытным электриком с учетом существующих гостов, поясняющих и уточняющих работу тех или иных проводников. Бывают согласно госту электрические схемы структурными, функциональными, принципиальными, монтажными, общими и объединенными. Сделать любую из приведенного перечня можно, выстраивая простейшие элементы друг с другом.

Составление документа по госту

Описание работы

Если электросхема построена правильно, то и работать она будет исправно. Работает все так. От источника питания идет заряд, который попадает под клеммник в проводник и электромагнитную катушку реле. Через катушку электроток устремляется к контактам. Как только ток попадает в контакты, начинает работать вся сеть, включается диод. Благодаря электродвижущей силе поддерживается первоначальный электроток, и он достигает наибольших значений.

Обратите внимание! Стоит указать, что без электродвижущей самоиндукции поддержание тока в контуре невозможно, поскольку при большом значении амплитуды, радиоэлементы начинают плохо работать. Благодаря этому импульсу, пробиваются полупроводниковые переходы, и выводится аппарат из функционирования. Сегодня диоды уже встраиваются в реле. Это позволяет работать электросхеме правильно.

В целом, в дополнение к теме, как научиться читать электрические принципиальные схемы, стоит отметить, что читать их необходимо с опорой на обучающий материал, в котором указывается информация о том, что значат те или иные условные обозначения. Только после получения полной информации, можно приступать к работе, если производятся соответствующие действия в электропроводке.

Электрическая цепь. Схема простой электрической цепи постоянного тока. _v_

 

 

 

 

 

Электрическая цепь. Схема простой электрической цепи постоянного тока.

 

На картинке нарисована простейшая электрическая цепь постоянного тока. Она состоит из таких элементов как источник питания в виде батарейки, выключатель питания, переменное сопротивление и лампочка (представляющая собой электрическую нагрузку). Неотъемлемыми частями любой электрической схемы являются сам источник питания (постоянного тока или же переменного, без которого любая электросхема всего лишь груда металла), непосредственно нагрузка (ради которой всё и замышлялось, это электродвигатели, лампочки, нагревательные элементы и т.д.), ну и коммутирующие устройства в виде различных выключателей и переключателей (надо же схемой управлять, хотя бы на уровне включить и выключить).

 

В нашем случае электрическая схема цепи именно постоянного тока. В чём её специфика и отличия от электроцепи переменного тока? Из самого названия должно быть ясно, что в постоянном токе есть какое-то постоянство! Оно заключается в том, что носители электрического тока (электроны, электрические отрицательно заряженные частицы) движуться строго в одном направлении от минуса к плюсу. Да, стоит ещё внести уточнение. В реальности электричество движется от минуса к плюсу (в твёрдых телах, движение электронов), и от плюса к минусу (в жидких и газообразных веществах, движение ионов).

 

Электрическая цепь постоянного тока питается от источника с постоянным током, у которого есть положительный вывод (он же плюс) и отрицательный вывод (он же минус). Внутри источника постоянного тока не может, при нормальных условиях, меняться полюса, исключено самим принципом его работы и устройством. В электротехнике и особенно в электронике существует множество функциональных элементов работающие именно на постоянном токе. При подаче на них переменного тока (если не предусмотрено самой схемой) элементы либо просто не работают, либо просто выходят из строя. Это происходит потому, что переменный ток периодически меняет свою полярность с плюса на минус и обратно (в обычной городской сети это происходит 50 раз за секунду).

 

 

 

 

Как уже было подмечено вначале, самая простая электрическая цепь (будь то переменная или постоянная) состоит из источника питания, нагрузки и устройства коммутации (переключатели). В такой схеме электрической цепи энергия вырабатывается источником, и подаётся на нагрузку, выполняющую конкретную полезную работу. Естественно, без выключателей проблематично будет управлять работой электросхемы. Любая электрическая схема подразумевает функцию включения и выключения. Нарисованный на схеме (наш рисунок схемы простой электрической цепи постоянного тока) дополнительное переменное сопротивление показывает, что имеется некий элемент, способный изменять свое электрическое сопротивление, тем самым влияя на величину тока в электрической цепи.

 

На рисунке схемы электрической цепи постоянного тока можно заметить, что движение тока направлено от плюса к минусу (обозначено стрелками), а выше было сказано, что в реальности ток движется от минуса к плюсу (в твёрдых телах). Что это за несоответствие? Просто было наукой принято, что в схема должно обозначаться именно такое движение электрического тока. Но это особо не на что не влияет. Просто зная условные обозначения на электрических схемах и физический принцип действия электрического тока мы работаем со схемой, сочиняя её, либо используя при ремонте или сборке. В электронике на схемах можно заметить стрелки, находящиеся на самих функциональных элементах. Они показывают направление движения тока, как было принято в условном обозначении.

 

В более сложных электрических цепях в схемах добавляются дополнительные устройства и элементы, которые расширяют общий функционал. Каждая деталь, элемент при подаче на него напряжения или прохождении электрического тока имеет свою специфическую особенность. Хотя в целом, что можно сделать с электроэнергией источника питания? Изменить всего лишь исходные характеристики, а именно, увеличить или понизить напряжение, ток, частоту (если это переменный или импульсный ток). Включить или выключить схему электрической цепи.

 

Видео по этой теме:

 

 

ps smail

P.S. Любую электрическую схему цепи можно представить как основные функциональные части, а именно, часть источника питания, часть управления и коммутации, часть непосредственной нагрузки (ради которой всё и организовывалось). Просто мысленно разбиваем схему на эти части и составляем основные функциональные блоки, модули, элементы. Далее уже всё начинает становиться на свои места. Даже достаточно сложная схема (с первого взгляда) после этого начинает становиться простой и понятной с точки зрения своей работы.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *