Использование драйвера ключей нижнего и верхнего уровней IR2110 — объяснение и примеры схем
Быть может, после прочтения этой статьи вам не придётся ставить такие же по размерам радиаторы на транзисторы.
Перевод этой статьи.
И вот по этим двум пунктам прошу пинать меня в комментариях как можно сильнее.
Теперь поговорим уже больше о теме статьи — при всём многообразии статей о построении различных транспортных средств наземного вида (машинок) на МК, на Arduino, на <вставить название>, само проектирование схемы, а тем более схемы подключения двигателя не описывается достаточно подробно. Обычно это выглядит так:
— берём компоненты
— подсоединяем компоненты и двигатель
— …
— PROFIT!1!
Но для построения более сложных схем, чем для простого кручения моторчика с ШИМ в одну сторону через L239x, обычно требуется знание о полных мостах (или H-мостах), о полевых транзисторах (или MOSFET), ну и о драйверах для них. Если ничто не ограничивает, то можно использовать для полного моста p-канальные и n-канальные транзисторы, но если двигатель достаточно мощный, то p-канальные транзисторы придётся сначала обвешивать большим количеством радиаторов, потом добавлять кулеры, ну а если совсем их жалко выкидывать, то можно попробовать и другие виды охлаждения, либо просто использовать в схеме лишь n-канальные транзисторы. Но с n-канальными транзисторами есть небольшая проблема — открыть их «по-хорошему» подчас бывает довольно сложно.
Поэтому я искал что-нибудь, что мне поможет с составлением правильной схемы, и я нашёл статью в блоге одного молодого человека, которого зовут Syed Tahmid Mahbub. Этой статьёй я и решил поделится.
Во многих ситуациях мы должны использовать полевые транзисторы как ключи верхнего уровня. Также во многих ситуациях мы должны использовать полевые транзисторы как ключи как и верхнего, так и нижнего уровней. Например, в мостовых схемах. В неполных мостовых схемах у нас есть 1 MOSFET верхнего уровня и 1 MOSFET нижнего уровня. В полных мостовых схемах мы имеем 2 MOSFETа верхнего уровня и 2 MOSFETа нижнего уровня. В таких ситуациях нам понадобится использовать драйвера как высокого, так и низкого уровней вместе. Наиболее распространённым способом управления полевыми транзисторами в таких случаях является использование драйвера ключей нижнего и верхнего уровней для MOSFET. Несомненно, самым популярным микросхемой-драйвером является IR2110. И в этой статье/учебнике я буду говорить о именно о нём.
Давайте для начала взглянем на блок-схему, а также описание и расположение контактов:
Рисунок 1 — Функциональная блок-схема IR2110
Рисунок 2 — Распиновка IR2110
Рисунок 3 — Описание пинов IR2110
Также стоит упомянуть, что IR2110 выпускается в двух корпусах — в виде 14-контактного PDIP для выводного монтажа и 16-контактного SOIC для поверхностного монтажа.
Теперь поговорим о различных контактах.
VCC — это питание нижнего уровня, должно быть между 10В и 20В. VDD — это логическое питание для IR2110, оно должно быть между +3В и +20В (по отношению к VSS). Фактическое напряжение, которое вы выберете для использования, зависит от уровня напряжения входных сигналов. Вот график:
Рисунок 4 — Зависимость логической 1 от питания
Обычно используется VDD равное +5В. При VDD = +5В, входной порог логической 1 немного выше, чем 3В. Таким образом, когда напряжение VDD = +5В, IR2110 может быть использован для управления нагрузкой, когда вход «1» выше, чем 3 (сколько-то) вольт. Это означает, что IR2110 может быть использован почти для всех схем, так как большинство схем, как правило, имеют питание примерно 5В. Когда вы используете микроконтроллеры, выходное напряжение будет выше, чем 4В (ведь микроконтроллер довольно часто имеет VDD = +5В). Когда используется SG3525 или TL494 или другой ШИМ-контроллер, то, вероятно, придётся их запитывать напряжением большим, чем 10В, значит на выходах будет больше, чем 8В, при логической единице. Таким образом, IR2110 может быть использован практически везде.
Вы также можете снизить VDD примерно до +4В, если используете микроконтроллер или любой чип, который даёт на выходе 3.3В (например, dsPIC33). При проектировании схем с IR2110, я заметил, что иногда схема не работает должным образом, когда VDD у IR2110 был выбран менее + 4В. Поэтому я не рекомендую использовать VDD ниже +4В. В большинстве моих схем уровни сигнала не имеют напряжение меньше, чем 4В как «1», и поэтому я использую VDD = +5V.
Если по каким-либо причинам в схеме уровень сигнала логической «1» имеет напряжение меньшее, чем 3В, то вам нужно использовать преобразователь уровней/транслятор уровней, он будет поднимать напряжение до приемлемых пределов. В таких ситуациях я рекомендую повышение до 4В или 5В и использование у IR2110 VDD = +5В.
Теперь давайте поговорим о VSS и COM. VSS это земля для логики. COM это «возврат низкого уровня» — в основном, заземление низкого уровня драйвера. Это может выглядеть так, что они являются независимыми, и можно подумать что, пожалуй, было бы возможно изолировать выходы драйвера и сигнальную логику драйвера. Тем не менее, это было бы неправильно. Несмотря на то что внутренне они не связаны, IR2110 является неизолированным драйвером, и это означает, что VSS и COM должны быть оба подключены к земле.
HIN и LIN это логические входы. Высокий сигнал на HIN означает, что мы хотим управлять верхним ключом, то есть на HO осуществляется вывод высокого уровня. Низкий сигнал на HIN означает, что мы хотим отключить MOSFET верхнего уровня, то есть на HO осуществляется вывод низкого уровня. Выход в HO, высокий или низкий, считается не по отношению к земле, а по отношению к VS. Мы скоро увидим, как усилительные схемы (диод + конденсатор), используя VCC, VB и VS, обеспечивают плавающее питания для управления MOSFETом. VS это плавающий возврат питания. При высоком уровне, уровень на HO равен уровню на VB, по отношению к VS. При низком уровне, уровень на HO равнен VS, по отношению к VS, фактически нулю.
Высокий сигнал LIN означает, что мы хотим управлять нижним ключом, то есть на LO осуществляется вывод высокого уровня. Низкий сигнал LIN означает, что мы хотим отключить MOSFET нижнего уровня, то есть на LO осуществляется вывод низкого уровня. Выход в LO считается относительно земли. Когда сигнал высокий, уровень в LO такой же как и в VCC, относительно VSS, фактически земля. Когда сигнал низкий, уровень в LO такой же как и в VSS, относительно VSS, фактически нуль.
SD используется в качестве контроля останова. Когда уровень низкий, IR2110 включен — функция останова отключена. Когда этот вывод является высоким, выходы выключены, отключая управление IR2110.
Теперь давайте взглянем на частые конфигурации с IR2110 для управления MOSFETами как верхних и нижних ключей — на полумостовые схемы.
Рисунок 5 — Базовая схема на IR2110 для управления полумостом
D1, C1 и C2 совместно с IR2110 формируют усилительную цепь. Когда LIN = 1 и Q2 включен, то C1 и С2 заряжаются до уровня VB, так как один диод расположен ниже +VCC. Когда LIN = 0 и HIN = 1, заряд на C1 и С2 используется для добавления дополнительного напряжения, VB в данном случае, выше уровня источника Q1 для управления Q1 в конфигурации верхнего ключа. Достаточно большая ёмкость должна быть выбрана у C1 для того чтобы её хватило для обеспечения необходимого заряда для Q1, чтобы Q1 был включён всё это время. C1 также не должен иметь слишком большую ёмкость, так как процесс заряда будет проходить долго и уровень напряжения не будет увеличиваться в достаточной степени чтобы сохранить MOSFET включённым. Чем большее время требуется во включённом состоянии, тем большая требуется ёмкость. Таким образом меньшая частота требует большую ёмкость C1. Больший коэффициент заполнения требует большую ёмкость C1. Конечно есть формулы для расчёта ёмкости, но для этого нужно знать множество параметров, а некоторые из них мы может не знать, например ток утечки конденсатора. Поэтому я просто оценил примерную ёмкость. Для низких частот, таких как 50Гц, я использую ёмкость от 47мкФ до 68мкФ. Для высоких частот, таких как 30-50кГц, я использую ёмкость от 4.7мкФ до 22мкФ. Так как мы используем электролитический конденсатор, то керамический конденсатор должен быть использован параллельно с этим конденсатором. Керамический конденсатор не обязателен, если усилительный конденсатор — танталовый.
D2 и D3 разряжают затвор MOSFETов быстро, минуя затворные резисторы и уменьшая время отключения. R1 и R2 это токоограничивающие затворные резисторы.
+MOSV может быть максимум 500В.
+VCC должен идти с источника без помех. Вы должны установить фильтрующие и развязочные конденсаторы от +VCC к земле для фильтрации.
Давайте теперь рассмотрим несколько примеров схем с IR2110.
Рисунок 6 — Схема с IR2110 для высоковольтного полумоста
Рисунок 7 — Схема с IR2110 для высоковольтного полного моста с независимым управлением ключами (кликабельно)
На рисунке 7 мы видим IR2110, использованный для управления полным мостом. В ней нет ничего сложного и, я думаю, уже сейчас вы это понимаете. Также тут можно применить достаточно популярное упрощение: HIN1 мы соединяем с LIN2, а HIN2 мы соединяем с LIN1, тем самым мы получаем управление всеми 4 ключами используя всего 2 входных сигнала, вместо 4, это показано на рисунке 8.
Рисунок 8 — Схема с IR2110 для высоковольтного полного моста с управлением ключами двумя входами (кликабельно)
Рисунок 9 — Схема с IR2110 как высоковольтного драйвера верхнего уровня
На рисунке 9 мы видим IR2110 использованный как драйвер верхнего уровня. Схема достаточно проста и имеет такую же функциональность как было описано выше. Есть вещь которую нужно учесть — так как мы больше не имеем ключа нижнего уровня, то должна быть нагрузка подключённая с OUT на землю. Иначе усилительный конденсатор не сможет зарядится.
Рисунок 10 — Схема с IR2110 как драйвера нижнего уровня
Рисунок 11 — Схема с IR2110 как двойного драйвера нижнего уровня
Если у вас проблемы с IR2110 и всё постоянно выходит из строя, горит или взрывается, то я уверен, что это из-за того, что вы не используете резисторы на затвор-исток, при условии, конечно, что вы всё спроектировали тщательно. НИКОГДА НЕ ЗАБЫВАЙТЕ О РЕЗИСТОРАХ НА ЗАТВОР-ИСТОК. Если вам интересно, вы можете прочитать о моем опыте с ними здесь (я также объясняю причину, по которой резисторы предотвращают повреждения): http://tahmidmc.blogspot.com/2012/10/magic-of-knowledge.html
Для дальнейшего чтения я рекомендую это: http://www.irf.com/technical-info/appnotes/an-978.pdf
Я видел как на многих форумах, люди бьются с проектированием схем на IR2110. У меня тоже было много трудностей прежде чем я cмог уверенно и последовательно строить успешные схемы драйвера на IR2110. Я попытался объяснить применение и использование IR2110 довольно тщательно, попутно всё объясняя и используя большое количество примеров, и я надеюсь, что это поможет вам в ваших начинаниях с IR2110.
Импульсный блок питания на IR2153
Приветствую, Самоделкины!В данной статье мы вместе с Романом (автором YouTube канала «Open Frime TV») соберем универсальный блок питания на микросхеме IR2153. Это некий «франкенштейн», который содержит в себе лучшие качества из разных схем.
В интернете полно схем блоков питания на микросхеме IR2153. Каждая из них имеет некие положительные особенности, но вот универсальной схемы автор еще не встречал. Поэтому было принято решение создать такую схему и показать ее вам. Думаю, можно сразу к ней перейти. Итак, давайте разбираться.
Первое, что бросается в глаза, это использование двух высоковольтных конденсаторов вместо одного на 400В. Таким образом мы убиваем двух зайцев. Эти конденсаторы можно достать из старых блоков питания от компьютера, не тратя на них деньги. Автор специально сделал несколько отверстий в плате под разные размеры конденсаторов.
Если же блока нету в наличии, то цены на пару таких конденсаторов ниже чем на один высоковольтный. Емкость конденсаторов одинакова и должна быть из расчета 1 мкФ на 1 Вт выходной мощности. Это означает, что для 300 Вт выходной мощности вам потребуется пара конденсаторов по 330 мкФ каждый.
Также, если использовать такую топологию, отпадает потребность во втором конденсаторе развязки, что экономит нам место. И это еще не все. Напряжение конденсатора развязки уже должно быть не 600 В, а всего лишь 250В. Сейчас вы можете видеть размеры конденсаторов на 250В и на 600В.
Следующая особенность схемы, это запитка для IR2153. Все кто строил блоки на ней сталкивались нереальным нагревом питающих резисторов.
Даже если их ставить от переменки, количество тепла выделяется очень много. Тут же применено гениальное решение, использование вместо резистора конденсатор, а это нам дает то, что нагрев элемента по питанию отсутствует.
Такое решение автор данной самоделки увидел у Юрия, автора YouTube канала «Red Shade». Также плата оснащена защитой, но в первоначальном варианте схемы ее не было.
Но после тестов на макете выяснилось, что для установки трансформатора слишком мало места и поэтому схему пришлось увеличить на 1 см, это дало лишнее пространство, на которое автор установил защиту. Если она не нужна, то можно просто поставить перемычки вместо шунта и не устанавливать компоненты, отмеченные красным цветом.
Ток защиты регулируется с помощью вот этого подстроечного резистора:
Номиналы резисторов шунта изменяетюся в зависимости от максимальной выходной мощности. Чем больше мощность, тем меньше нужно сопротивление. Вот к примеру, для мощности ниже 150 Вт нужны резисторы на 0,3 Ом. Если мощность 300 Вт, то нужны резисторы на 0,2 Ом, ну и при 500 Вт и выше ставим резисторы с сопротивлением 0,1 Ом.
Данный блок не стоит собирать мощностью выше 600 Вт, а также нужно сказать пару слов про работу защиты. Она тут икающая. Частота запусков составляет 50 Гц, это происходит потому, что питание взято от переменки, следовательно, сброс защелки происходит с частотой сети.
Если вам нужен защелкивающийся вариант, то в таком случае питание микросхемы IR2153 нужно брать постоянное, а точнее от высоковольтных конденсаторов. Выходное напряжение данной схемы будет сниматься с двухполупериодного выпрямителя.
Основным диодом будет диод Шоттки в корпусе ТО-247, ток выбираете под ваш трансформатор.
Если же нет желания брать большой корпус, то в программе Layout его легко поменять на ТО-220. По выходу стоит конденсатор на 1000 мкФ, его с головой хватает для любых токов, так как при больших частотах емкость можно ставить меньше чем для 50-ти герцового выпрямителя.
Также необходимо отметить и такие вспомогательные элементы как снабберы (Snubber) в обвязке трансформатора;
сглаживающие конденсаторы;
а также Y-конденсатор между землями высокой и низкой стороны, который гасит помехи на выходной обмотке блока питания.
Про данные конденсаторы есть отличный ролик на Ютубе (ссылку автор прикрепил в описании под своим видеороликом (ссылка ИСТОЧНИК в конце статьи)).
Нельзя пропускать и частотозадающую часть схемы.
Это конденсатор на 1 нФ, его номинал автор не советует менять, а вот резистор задающей части он поставил подстроечный, на это были свои причины. Первая из них, это точный подбор нужного резистора, а вторая — это небольшая корректировка выходного напряжения с помощью частоты. А сейчас небольшой пример, допустим, вы изготавливаете трансформатор и смотрите, что при частоте 50 кГц выходное напряжение составляет 26В, а вам нужно 24В. Меняя частоту можно найти такое значение, при котором на выходе будут требуемые 24В. При установке данного резистора пользуемся мультиметром. Зажимаем контакты в крокодилы и вращая ручку резистора, добиваемся нужного сопротивления.
Сейчас вы можете видеть 2-е макетные платы, на которых производились испытания. Они очень похожи, но плата с защитой немного больше.
Макетки автор делал для того, чтобы со спокойной душой заказать изготовление данной платы в Китае. В описании под оригинальным видеороликом автора, вы найдете архив с данной платой, схемой и печаткой. Там будет в двух платках и первый, и второй варианты, так что можете скачивать и повторять данный проект.
После заказа автор с нетерпением ждал платы, и вот они уже приехали. Раскрываем посылку, платы достаточно хорошо упакованы — не придерешься. Визуально осматриваем их, вроде все отлично, и сразу же приступаем к запайке платы.
И вот она уже готова. Выглядит все таким образом. Сейчас быстренько пройдемся по основным элементам ранее не упомянутым. В первую очередь это предохранители. Их тут 2, по высокой и низкой стороне. Автор применил вот такие круглые, потому что их размеры весьма скромные.
Далее видим конденсаторы фильтра.
Их можно достать из старого блока питания компьютера. Дроссель автор мотал на кольце т-9052, 10 витков проводом 0,8 мм 2 жилы, но можно применить дроссель из того же компьютерного блока питания.
Диодный мост – любой, с током не меньше 10 А.
Еще на плате имеются 2 резистора для разрядки емкости, один по высокой стороне, другой по низкой.
Ну и остается дроссель по низкой стороне, его мотаем 8-10 витков на таком же сердечнике, что и сетевой.
Как видим, данная плата рассчитана под тороидальные сердечники, так как они при одинаковых размерах с Ш-образными, имеют большую габаритную мощность.
Настало время протестировать устройство. Пока основным советом является производить первое включение через лампочку на 40 Вт.
Если все работает в штатном режиме лампу можно откинуть. Проверяем схему на работу. Как видим, выходное напряжение присутствует. Проверим как реагирует защита. Скрестив пальцы и закрыв глаза, коротим выводы вторички.
Как видим защита сработала, все хорошо, теперь можно сильнее нагрузить блок. Для этого воспользуемся нашей электронной нагрузкой. Подключим 2 мультиметра, чтоб мониторить ток и напряжение. Начинаем плавно поднимать ток.
Как видим при нагрузке в 2А, напряжение просело незначительно. Если поставить мощнее трансформатор, то просадка уменьшится, но все равно будет, так как этот блок не имеет обратной связи, поэтому его предпочтительнее использовать для менее капризных схем.
А на этом все. Благодарю за внимание. До новых встреч!
Видео:
Источник Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.IR2161 VS IR2153. Импульсный блок питания на IR 2161
РадиоКот >Схемы >Питание >Блоки питания >IR2161 VS IR2153. Импульсный блок питания на IR 2161
IR2161 VS IR2153. Импульсный блок питания на IR 2161
Эта статья будет интересна тем кто собирал ИИП на основе IR2153. На самом деле IR2153 плохо подходит для создания ИИП, из-за отсутствия штатной системы защиты от КЗ и перегрузок, невозможность при необходимости «димированния» и создания обратной связи по напряжению и току.
Более подходит для создания ИИП IR2161. Это полумостовой импульсный преобразователь для питания галогеновых ламп. Особенности 2161 – защита от перегрузок и КЗ с автоматическим сбросом, мягкий старт, возможность димирования (несколькими способами), возможность построения обратной связи. После построения входных и выходных каскадов получается импульный источник питания.
Вот схема ИИП на 2161.
Напряжение питания и ток у этих микросхем примерно одинаковые, значит можно использовать для 2161 схему питания как у 2153 на резисторах R2 и R3 по 2 Вт, можно использовать китайский «кирпичь» 5 Вт на 18-30 кОм.
На борту 2161 присутствует функция мягкого старта (софтстарт). Работает примерно так: сразу же после запуска, частота внутреннего тактового генератора микросхемы составляет около 125 кГц, что значительно выше рабочей частоты выходного контура С13С14Тr1 (около 36 кГц), в результате напряжение на вторичной обмотке Т1 будет мало. Внутренний генератор микросхемы управляется напряжением, его частота обратно пропорциональна напряжению на конденсаторе С7. Сразу же после включения, С7 начинает заряжаться от внутреннего источника тока микросхемы. Пропорционально росту напряжения на нем будет уменьшаться частота генератора микросхемы. При достижении 5В (около 1сек.) частота уменьшится до рабочего значения, около 36кГц, а напряжение на выходе схемы соответственно достигнет номинального значения. Таким образом и реализован мягкий старт, после его завершения IC1 переходит в рабочий режим.
Вывод CS (выв.4) IC1 является входом внутреннего усилителя ошибки и используется для контроля тока нагрузки и напряжения на выходе полумоста. В случае резкого увеличения тока нагрузки, например, при коротком замыкании, падение напряжения на токоизмерительном резисторе R7 превысит 0,56В, а следовательно и на выв.4 IC1, внутренний компаратор переключится и остановит тактовый генератор. . В апнот и даташит присутствуют расчеты резсистора-токового датчика R7. Вывод можно сделать сразу 0,33 Ом – 100Вт, 0,22 Ом – 200Вт 0,1 Ом-300Вт, не испытывал, но можно попробовать 2 резистора параллельно по 0,1 Ом – тогда максимальная нагрузка составит 400Вт. Испытание защиты от КЗ я показал а видео. Более подробно режимы работы микросхемы IR2161 рассмотрены в даташит.
Конденсатор C3 емкостью не менее 1мкФ на 1Вт выходной мощности. С таким конденсатором обязательно применение термистора NTC1, например от компьютерного блока питания.
Можно производить расчеты трансформатора, можно взять готовый, но я решил намотать на неизвестном ферритовом кольце 29 мм. Я отказался от расчетов, т.к. это полумост и другом конце моста стоят конденсаторы С13С14, — можно ошибиться на 200%. Первичку намотал проводом диаметр 0,5 мм. полностью заполнил кольцо примерно 80 витков, вторичка литц в 4 провода 0,5 мм на глазок, двуполярно на 24В, 2 по 12В. Примеры расчетов трансформатора присутствуют в апнот и даташит.
Видео состоит из 3х частей, в них рассмотрены теория, сборка и испытание ИИП на 2161.
Источники:
datasheets: https://www.irf.com/product-info/datasheets/data/ir2161.pdf
appnotes: https://www.irf.com/technical-info/appnotes/an-1069.pdf
irplhalo1e: https://www.irf.com/technical-info/refdesigns/irplhalo1e.pdf
Видео состоит из 3х частей, в них рассмотрены теория, сборка и испытание ИИП на 2161
Часть 1. Часть 2. Часть 3.
Файлы:
Фото схемы
Архив ZIP
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
Эти статьи вам тоже могут пригодиться:
Импульсный блок питания своими руками: принцип работы, схемы
В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.
Конструктивные особенности и принцип работы
Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:
- Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
- Импульсный принцип.
Рассмотрим, чем отличаются эти два варианта.
БП на основе силового трансформатора
Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.
Упрощенная структурная схема аналогового БПСледующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.
Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.
Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.
Понижающий трансформатор ОСО-0,25 220/12Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.
Импульсные устройства
Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.
Рисунок 3. Структурная схема импульсного блока питанияРассмотрим алгоритм работы такого источника:
- Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
- Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
- На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
- Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.
Пример миниатюрных импульсных БПВ отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.
- Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
- На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.
Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.
Как работает инвертор?
ВЧ модуляцию, можно сделать тремя способами:
- частотно-импульсным;
- фазо-импульсным;
- широтно-импульсным.
На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.
Структурная схема ШИМ-контролера и осциллограммы основных сигналовАлгоритм работы устройства следующий:
Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).
Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.
Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.
В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.
Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.
Сильные и слабые стороны импульсных источников
Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:
- Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
- Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
- Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
- Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
- Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.
К недостаткам импульсной технологии следует отнести:
Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.
Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.
Сфера применения
Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:
- различные виды зарядных устройств; Зарядки и внешние БП
- внешние блоки питания;
- электронный балласт для осветительных приборов;
- БП мониторов, телевизоров и другого электронного оборудования.
Собираем импульсный БП своими руками
Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.
Принципиальная схема импульсного БПОбозначения:
- Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
- Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
- Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
- Транзистор VT1 – KT872A.
- Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
- Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
- Предохранитель FU1 – 0.25А.
Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.
Схема импульсного блока питания — четыре версии на чипе IR2153
Схема импульсного блока питания — 4 рабочие схемы
Схема импульсного блока питания, но не одна, а сразу четыре. В этом материале будет представлено вам несколько схем импульсных источников питания, выполненных на популярной и надежной микросхеме IR2153. Все эти проекты были разработаны известным пользователем Nem0. Поэтому я здесь буду писать от его имени. Показанные здесь все схематические решения были пару лет назад лично автором собраны и протестированы.
Но вот сейчас, в середине 2018 года, автор решил вновь предложить их вам для повторения, схемы абсолютно рабочие. В данной статье к сожалению не каждая схема имеет для наглядности фото уже готового прибора, но это пока все, что есть.
В общем начнем пока с так называемого «высоковольтного» блока питания:
Схема традиционная, которую использует Nem0 в большинстве своих конструкций импульсников. Драйвер получает питание напрямую от электросети через сопротивление. Это в свою очередь способствует уменьшению рассеиваемой на этом сопротивлении мощности, сравнительно с подачей напряжения от цепи 310v. Схема импульсного блока питания располагает функцией плавного включения напряжения, что существенно ограничивает пусковой ток. Модуль плавного пуска запитывается через конденсатор С2 понижающий сетевое напряжение 230v.
В блоке питания предусмотрена эффективная защита предотвращения короткого замыкания и пиковой нагрузки во вторичном силовом тракте. Роль датчика тока выполняет постоянный резистор R11, а регулировку тока срабатывания защиты выполняется с помощью подстроечника R10. Во время отсечки тока защитой, начинает светится светодиод, сигнализирующий о том, что защита сработала. Выходное двух полярное выпрямленное напряжение составляет +/-70v.
Трансформатор выполнен с одной первичной обмоткой, состоящей из пятидесяти витков, а 4 вторичные обмотки, содержат по двадцать три витка. Диаметр медной жилы и магнитопровод трансформатора расчитываются в зависимости от заданной мощности определенного блока питания.
Теперь рассмотрим следующий блок питания:
Эта версия блока питания во много схожа с описанной выше схемой, хотя в ней имеется существенное отличие. Дело в том, что здесь напряжение питания на драйвер поступает от специальной обмотки трансформатора, через балластный резистор. Все остальные компоненты в конструкции практически одинаковы.
Мощность на выходе этого источника питания обусловлено как характеристикой трансформатора и параметрами микросхемы IR2153, но и ресурсом диодов в выпрямителе. В данной схеме были задействованы диоды КД213А, у которых обратное максимальное напряжение 200v и прямой максимальный ток 10А. Для обеспечения корректной работы диодов при больших токах, их нужно устанавливать на радиатор.
Отдельного внимания заслуживает дроссель Т2. Наматывают его на совместном кольцевом магнитопроводе, в случае необходимости можно использовать другой сердечник. Намотка делается эмаль-проводом с сечением рассчитанным согласно току в нагрузке. Также и мощность импульсного трансформатора определяется в зависимости от того, какую выходную мощность вы хотите получить. Очень удобно делать расчеты трансформаторов с помощью специальных компьютерных калькуляторов.
Теперь третья схема импульсного блока питания на мощных полевых транзисторах IRFP460:
Этот вариант схемы уже имеет конкретную разницу относительно предыдущих моделей. Главные отличия, это система защиты от КЗ и перегруза здесь собрана с использованием трансформатора по току. И есть еще одна разница, это наличие в схеме пары предвыходных транзисторов BD140. Именно эти транзисторы дают возможность отрезать большую входную емкость мощных полевых ключей, относительно выхода драйвера.
Есть еще маленькое отличие, это гасящий напряжение резистор, относящейся к модулю плавного включения, установлен он в цепи 230v. В предыдущей схеме он расположен в силовом тракте +310v. Кроме этого в схеме имеется ограничитель перенапряжения, служащий для гашения остаточного импульса трансформатора. Во всем остальном никаких различий между приведенными выше схемами у этой больше нет.
Четвертая схема импульсника:
В этой схеме все упрощено до придела, здесь нет защиты от короткого замыкания, но собственно она не особо и нужна. В этом варианте блока питания, ток на выходе вторичной цепи 260v уменьшается на сопротивлении R6. Резистор R1 обрезает пиковый ток при пуске, а также сглаживает сетевые искажения.
Скачать: Дополнительные файлы
Импульсный блок питания мощностью 200 Вт для УМЗЧ
РадиоКот >Схемы >Питание >Блоки питания >Импульсный блок питания мощностью 200 Вт для УМЗЧ
Здравствуй уважаемый Кот! С днем рождения тебя и всех благ, так сказать! А в качестве подарка прими такую очень полезную вещь, как источник питания для усилка.
ВНИМАНИЕ!
Часть элементов данного устройства находится под опасным для жизни напряжением сети! Некоторые элементы сохраняют опасный электрический заряд после отключения устройства от сети! Поэтому при монтаже, наладке и работе с устройством необходимо соблюдать требования электробезопасности. Повторяя устройство, вы действуете на свой страх и риск. Я, автор, НЕ несу никакой ответственности за любой моральный и материальный ущерб, вред имуществу, здоровью и жизни, причиненный в результате повторения, использования или невозможности использования данной конструкции.
Итак, начнем.
Споры о том, благо ли или зло импульсный источник питания для УМЗЧ (далее ИИП), выходят за рамки данной статьи. Лично я считаю, что правильно спроектированный, спаянный и налаженный ИИП ничуть не хуже (а по некоторым показателям даже лучше), чем классический БП с сетевым трансформатором.
В моем случае применение ИИП было необходимо потому, что я хотел засунуть свой усилок в плоский корпус.
Прежде чем разрабатывать данный ИИП, мной было изучено много готовых схем, имеющихся в сети и в литературе. Так, среди радиолюбителей очень популярны разные варианты схемы нестабилизированного ИИП на микросхеме IR2153. Преимущество этих схем только одно – простота. Что же касается надежности, то она никакая – сама ИМС не имеет функции защиты от перегрузки и мягкого старта для зарядки выходных электролитов, а добавление этих функций лишает ИИП его преимущества – простоты. Кроме того, реализация мягкого старта на данной ИМС крайне сомнительна – ширину импульсов она менять не позволяет, а методы, основанные на изменении частоты работы ИМС малоэффективны в «обычном» полумостовом ИИП и применимы в резонансных преобразователях. Долбать же электролиты и ключи огромными токами при включении блока мне как-то не очень хотелось.
Также рассматривалась возможность использования всем известной ИМС TL494. Однако при более глубоком ее изучении выяснилось, что для надежной работы вокруг этой ИМС придется повесить кучу всяких транзисторов, резисторов, конденсаторов и диодов. А это уже «не наш метод» 🙂
В результате выбор пал на более современную и быструю микросхему под названием UC3825 (русский аналог К1156ЕУ2). Подробное описание данной ИМС можно найти в ее русском даташите [1] и в журнале «Радио» [2].
Для тех, кто поленился прочитать эти источники, скажу, что это быстродействующий ШИМ-контроллер, обладающий следующими возможностями:
- Управление мощными МОП-транзисторами.
- Работа в устройствах с обратной связью по напряжению и току.
- Функционирование на частотах до 1МГц.
- Задержка прохождения сигнала через схему 50нс.
- Полумостовые выходы на ток до 1.5А.
- Широкополосный усилитель ошибки.
- Наличие ШИМ-защелки.
- Ограничение тока в каждом периоде.
- Плавный запуск. Ограничение величины максимальной длительности выходного импульса.
- Защита от пониженного напряжения питания с гистерезисом.
- Выключение схемы по внешнему сигналу.
- Точный источник опорного напряжения (5.1В +/- 1%).
- Корпус “DIP-16”
Ну прям то что надо! Рассмотрим теперь сам ИИП.
Входное напряжение, В…………………………………………….. 176…265;
Номинальная суммарная мощность нагрузки, Вт………………. 217,5;
Уровень сигнала управления, при котором БП включен……… Лог. 1 КМОП;
Уровень сигнала, при котором БП выключен…………………… <0,6 В или NC;
КПД при максимальной нагрузке, %……………………………… 80;
Габариты (ДхШхВ), мм………………………………………………..212х97х45
Выходные напряжения
Выходное напряжение, В |
Минимальный ток нагрузки, А |
Максимальный ток нагрузки, А |
± 25 |
0,24 |
4 |
± 15 |
0 |
0,5 |
+ 5 (дежурное) |
0 |
0,5 |
Принципиальная схема
Принципиальная схема ИИП показана на рисунке.
По архитектуре данный БП напоминает ИИП компьютеров формата ATX. Напряжение сети через предохранители FU1 и FU2 подается на сетевой фильтр и трансформатор дежурного питания. Использование двух предохранителей необходимо по соображениям безопасности – с одним общим предохранителем в случае КЗ в обмотке Т1 ток в ее цепи будет недостаточен для пережигания этого предохранителя, а мощность, выделяющаяся на вышедшем из строя трансформаторе достаточна для его возгорания.
Сетевой фильтр содержит двухобмоточный дроссель L1, X-конденсаторы С1, С2 и Y-конденсаторы С3, С4 и особенностей не имеет. Варистор RV1 защищает ИИП от высоковольтных выбросов в сети и при превышении напряжением сети максимально допустимого значения.
NTC-терморезистор RK1 ограничивает ток зарядки конденсатора С5 при включении ИИП в сеть.
Напряжение, выпрямленное мостом VD1 и сглаженное конденсатором С5, поступает на полумостовой инвертор, образованный МОП-транзисторами VT1, VT2 и конденсаторами емкостного делителя С6, С7. Раздельное построение входного фильтра и емкостного делителя позволяет облегчить режим работы оксидного конденсатора фильтра, имеющего сравнительно большое значение ЭПС. Резисторы R5, R6 выравнивают напряжение на конденсаторах делителя.
В диагональ полумоста включен силовой импульсный трансформатор Т4.
Выходные цепи ИИП содержат выпрямители на диодах VD5 – VD8, VD9 – VD12, дроссель групповой стабилизации (ДГС) L3 и П-образные фильтры С11 – C16, L4, L5 и C17 – С22, L6, L7. Керамические конденсаторы С13, С14, С17, С18 облегчают режим работы соответствующих электролитов. Резисторы R11 – R14 создают начальную нагрузку, необходимую для нормальной работы ИИП на холостом ходу.
Цепочки C8, R7; C9, R9; C10, R10 – демпфирующие. Они ограничивают выбросы ЭДС самоиндукции индуктивности рассеяния и снижают создаваемые ИИП помехи.
Схема управления на основной плате не помещалась, поэтому собрана в виде модуля А1 на дополнительной плате.
Как вы наверно уже догадались, ее основой является микросхема DA2 UC3825AN. Питается она от интегрального стабилизатора на КРЕНке DA1. Конденсаторы С1 и С7 – фильтр питания. Они, как гласит ДШ, должны быть расположены максимально близко к соответствующим выводам DA2. Конденсатор С5 и резистор R8 – частотозадающие. При указанных на схеме номиналах частота преобразования БП примерно равна 56 кГц (частота работы ИМС при этом в 2 раза выше – у нас ведь двухтактный ИИП). Конденсатор С4 задает длительность плавного старта, в данном случае – 78 мс. Конденсатор С2 фильтрует помехи на выходе источника опорного напряжения. Элементы С6, R9, R10 – цепь компенсации усилителя ошибки, а R4, R6 – делитель выходного напряжения БП, с которого снимается сигнал обратной связи.
Защита от перегрузки по току реализована на трансформаторе тока Т3. Сигнал с его вторичной обмотки выпрямляется выпрямителем на диодах VD3, VD4 (основной платы). Резистор R8 (на основной плате) является нагрузкой трансформатора тока. Сигнал с R8 через фильтрующую цепочку R7, C3 (в модуле А1) подается на вход ограничения тока DA2. В этом БП реализовано потактовое ограничение тока, т. е. микросхема не дает току через ключи нарасти до опасных значений. При достижении напряжения 1 В на выводе 9 микросхема ограничивает ширину импульсов. Если же в нагрузке произошло КЗ и ток ключей увеличился быстрее, чем DA2 успела среагировать на это, напряжение на выводе 9 превысит 1,4 В. Микросхема разряжает С4 и вырубается. Ток в цепи первичной обмотки пропадает и микросхема перезапускается. Таким образом, при КЗ в нагрузке ИИП переходит в «икающий» режим.
Управление затворами полевых транзисторов реализовано с помощью трансформатора Т2. В настоящее время получило распространение использование всяких бутстрепных высоковольтных драйверов типа IR2110 и т. п. Однако недостатком таких микросхем является то, что при выходе из строя какого-либо элемента выгорает ВСЯ высоковольтная часть БП и гальванически связанные с ней узлы (с чем мне и пришлось столкнуться в процессе экспериментов с данными микросхемами). Кроме того, данные ИМС не обеспечивают гальванической развязки схемы управления от высоковольтной части, что при выбранной архитектуре недопустимо. Про особенности управления затворами можно прочитать в [3], а в [4] можно скачать программу для расчета трансформатора управления.
Диоды Шотки VD1 – VD4 в модуле А1 защищают выходы драйвера микросхемы управления. Этому также способствует резистор R11.
На элементах VT1, VT2, R1 – R5 собрана схема выключения ИИП. Смысл всего этого – коротить С4, переводя тем самым микросхему управления в ждущий режим. Такие навороты нужны для гарантированного выключения ИИП даже если вход выключения вдруг повис в воздухе (сгорел проц в блоке управления, оборвался провод) или же вышел из строя источник дежурного питания. Иными словами, работа DA2 будет заблокирована до тех пор, пока на нее подано питание и при этом на вход управления ИИП не подан уровень лог. 1.
В ИИП имеется дежурный источник питания, который может использоваться для питания блока управления усилителем с функцией дистанционного включения.
Основа дежурного источника питания – трансформатор Т1. Применение «обычного», 50-герцового трансформатора повышает надежность устройства по сравнению с получившими широкое распространение в компьютерных БП импульсными обратноходовыми преобразователями, которые очень часто дохнут, создавая различные пиротехнические эффекты. Все-таки дежурка предполагает круглосуточную работу. Выпрямленное мостом VD2 и сглаженное конденсатором С23 напряжение (около 15 В) поступает модуль А1 и на Step-Down (понижающий) импульсный преобразователь на всем известной МС34063 (русский аналог К1156ЕУ5АР). Про эту микруху можно почитать в ДШ [5]. Кто-то скажет, а зачем такие сложности? Чем не угодила КРЕНка? Дело в том, что для нормальной работы UC3825 нужно минимум 12 В во всем допустимом диапазоне напряжений сети. При максимальном же напряжении в сети (мы ведь должны учесть всё) на выходе моста VD2 может быть аж 18-20 В. При этом если ваш микропроцессорный блок потребляет больше 50 мА, КРЕНка превратится в большую печку.
Супрессор VD14 защищает нагрузку дежурки (ваш мегасложный и супернавороченный микроконтроллерный блок управления) в случае выхода из строя источника дежурного питания (например, при пробое ключа МС34063 на ее выходе могут оказаться все 15 В).
Поскольку я не люблю «соплей», а данное устройство любит правильную разводку, ИИП собран на односторонней печатной плате, рисунок которой приведен ниже:
На основной плате установлены две перемычки из провода МГТФ — J1 со стороны деталей и J2 — со стороны дорожек.
Как уже отмечалось выше, схема управления не поместилась на основной плате и поэтому собрана на вспомогательной плате:
Применение SMD-элементов здесь вызвано не столько желанием сделать ультрамаленький модуль и усложнить задачу покупки элементов радиолюбителям из отдаленных от г. Москва регионов, сколько требованиями по разводке высокочастотных цепей вокруг UC3825. Благодаря использованию SMD-элементов удалось сделать все печатные проводники минимальной длины. Кто хочет, может попробовать красиво нарисовать платку под обычные детальки – у меня не получилось =))
Замечу также, что сильно отклоняться от приведенной разводки платы я настоятельно не рекомендую, т. к. БП может либо начать «гадить» в эфир, либо вообще не будет работать.
Теперь о деталях. Многие из них можно вытащить из неисправных или устаревших компьютерных БП. Основная плата рассчитана на установку резисторов С2-23 (МЛТ, ОМЛТ и т. п.), резисторы R10, R13 и R14 импортные (они тоньше МЛТ). Керамические конденсаторы – К10-17Б или аналогичные импортные, С25 должен быть обязательно из диэлектрика NPO или аналогичного, С6, С7 – пленочные К73-17.
Помехоподавляющие конденсаторы С1, С2 должны быть категории Х2, а С3 и С4 – Y2. К последним это требование обязательно, т. к. от них зависит электробезопасность ИИП. Конденсаторы С8 – С10 – керамические дисковые высоковольтные импортные. Можно поставить К15-5, но они больше, придется подправить плату.
Все оксидные конденсаторы должны быть с низким эквивалентным последовательным сопротивлением (Low ESR). Подойдут конденсаторы Jamicon серии WL. В качестве С5 подойдет Jamicon HS.
Дроссель L1 – от компового БП, выдранный из аналогичного места. На моем было написано “YX EE-25-02”. Дроссели L2, L4, L5 – стандартные на гантельках диаметром 9 мм, например, серии RLB0914. Дроссель L2 должен быть рассчитан на ток не менее 0,8А, L4, L5 – не менее 0,5 А. Дроссели L6 и L7 намотаны на кольцах T72 (К18,3х7,11х6,60) из распыленного железа марки -26 (желто-белого цвета). Я использовал уже готовые, поэтому сколько там витков не знаю, но при желании число витков можно рассчитать в программе «DrosselRing» [6]. Измеренная индуктивность моих дросселей 287 мкГн.
Транзисторы VT1, VT2 – n-канальные MOSFET с напряжением сток-исток не менее 500 В и током стока не менее 8 А. Следует выбирать транзисторы с минимальным сопротивлением открытого канала (Rds_on) и минимальным зарядом затвора.
Мост VD1 – любой на 800-1000 В, 6А, VD2 – любой >50В, 1А. В качестве VD3, VD4 подойдут КД522. Диоды VD5 – VD8 – Шоттки на напряжение не менее 80 В и ток не менее 1 А, VD9 – VD12 – быстродействующие (ultrafast) на напряжение не менее 200 В, ток 10…15 А и временем обратного восстановления не более 35 нс (в крайнем случае 75…50 нс). Будет совсем шикарно, если найдете Шоттки на такое напряжение. Диод VD13 – любой Шоттки 40 В, 1А.
В модуле А1 применены SMD-резисторы и конденсаторы типоразмера 0805. На позиции J1 устанавливается перемычка 0805. С5 должен быть обязательно из диэлектрика NPO или аналогичного, С6 – не хуже X7R. С1 – танталовый типа С или D – площадки на плате рассчитаны на любой из них. Транзисторы VT1, VT2 – любые n-p-n в корпусе SOT23. Диоды VD1 – VD4 – любые Шоттки на ток 3А в корпусе SMC. DA1 можно заменить на 7812.
XP3 – разъем с ATX-материнки.
Трансформатор Т1 типа ТП121-8, ТП131-8 . Подойдет любой с выходным напряжением под нагрузкой 15 В и мощностью 4,5 ВА. Намоточные данные других индуктивных элементов приведены ниже.
Обмотка |
№ контакта (Н-К) |
Число витков |
Провод |
I |
4-2 |
16 |
МГТФ-0,08 |
II |
10-9 |
16 |
МГТФ-0,08 |
III |
6-7 |
16 |
МГТФ-0,08 |
Магнитопровод |
Ферритовое кольцо Т90 (К22,9х14,0х9,53) зеленого цвета, u=4600 |
Каждая из обмоток занимает 1 слой и равномерно распределена по кольцу. Сначала мотают обмотку I и покрывают ее слоем изоляции, например, фторопластовой ленты или лакоткани. Изоляция на этой обмотке определяет безопасность ИИП. Далее мотают обмотки II и III. Кольцо вертикально приклеивают к пластмассовой панельке с контактами, которую потом впаивают в плату. Следует отметить, что для нормальной работы этот трансформатор должен иметь минимальную индуктивность рассеяния, поэтому сердечник для него должен быть тороидальный и с максимальной магнитной проницаемостью. Я пробовал мотать этот транс на сердечнике Е20/10/6 из N67 – импульсы на затворах имели выбросы, которые приоткрывали второй транзистор полумоста:
Голубой график – импульсы на затворе VT2, желтый – напряжение на стоке VT2.
С тороидальным трансформатором, намотанным как написано выше, осциллограмма имеет такой вид:
При монтаже трансформатора управления необходимо соблюдать фазировку обмоток! При неправильной фазировке при включении сгорят транзисторы полумоста!
Обмотка |
№ контакта (Н-К) |
Число витков |
Провод |
I |
— |
1 |
МГТФ-0,35 |
II |
1-2-3 |
2х75 |
ПЭВ-2 0,23 |
Магнитопровод |
2 кольца К12х8х6 из феррита М3000НМ |
Обмотку II мотают в 2 провода, после намотки конец одной полуобмотки соединяют с началом другой и контактом 2. Обмотка I представляет собой отрезок провода, пропущенный через кольцо в виде буквы «П». Для повышения электрической и механической прочности изоляции на провод надета фторопластовая трубка.
Обмотка |
№ контакта (Н-К) |
Число витков |
Провод |
I |
4 – 2 |
18+18 |
3хПЭВ-2 0,41 |
II |
9 – 7 – 8 |
6+6 |
ПЭВ-2 0,41 |
III |
10 – 11 – 12 |
9+9 |
5хПЭВ-2 0,41 |
Магнитопровод |
EI 33,0/24,0/12,7/9,7 из феррита PC40 TDK |
Трансформатор рассчитан в программе ExcellentIT(5000) [7]. Сердечник извлечен из компового БП. Сначала мотается первая половина обмотки I. Поверх нее укладывается слой изоляции (я использую лавсановую пленку от фоторезиста) и экран – незамкнутый виток медной ленты, обернутой скотчем. Экран соединен с выводом 2 трансформатора. Далее кладется несколько слоев пленки или лакоткани и мотается обмотка III жгутом из 10 проводов. Мотать надо виток к витку сжав жгут пальцами так, чтобы все 10 проводов расположились в один ряд – иначе не влезет. Конец одной полуобмотки (5 проводов) соединяется с началом другой и выводом 11 каркаса. Обмотка III покрывается одним слоем лавсановой пленки, поверх которой укладывается обмотка II аналогично III. После этого укладывается еще несколько слоев пленки или лакоткани, незамкнутый виток изолированной медной фольги, соединенный с выводом 2, слой пленки, и мотается вторая половина первичной обмотки.
Такая намотка трансформатора позволяет уменьшить индуктивность рассеяния в четыре раза.
На все выводы первичной обмотки надевают фторопластовые трубки.
Обмотка |
Число витков |
Провод |
|
L3.1 |
24 |
ПЭВ-2 0,457 |
|
L3.2 |
24 |
ПЭВ-2 0,457 |
|
L3.3 |
40 |
ПЭВ-2 0,8 |
|
L3.4 |
40 |
ПЭВ-2 0,8 |
|
Магнитопровод |
Кольцо T106 (К26,9х14,5х11,1) из распыленного железа -26 (желто-белое) |
ДГС рассчитан в программе «CalcGRI» [8].
Сначала мотаются обмотки L3.3 и L3.4 одновременно в 2 провода. Они займут 2 слоя. Поверх них аналогично мотаются обмотки L3.1 и L3.2 в один слой. При монтаже ДГС на плату необходимо соблюдать фазировку обмоток!
Все моточные изделия рекомендуется пропитать лаком PLASTIK-71.
Транзисторы VT1, VT2 установлены на алюминиевом ребристом радиаторе размерами 60х15х40 мм и площадью поверхности 124 см2. Диоды VD9 – VD12 установлены на аналогичном радиаторе размерами 83х15х40 мм и площадью 191 см2. С указанной площадью теплоотводов блок питания способен работать длительное время под постоянной нагрузкой не более 100 Вт! Если ИИП предполагается использовать не для усилителя, а для питания нагрузки с постоянной потребляемой мощностью до 200 Вт, площадь радиаторов необходимо увеличить или применить принудительное охлаждение!
Выглядит собранный ИИП так:
Сначала на плату устанавливают все элементы, кроме VD1, VT1, VT2, T4, R7, C8, FU1. Включают ИИП в сеть и проверяют наличие напряжения +5 В на контакте 11 разъема XP3. После этого соединяют 1 и 11 контакты разъема XP3 и подключают двухлучевой осциллограф параллельно резисторам R3 и R4 (землю осцила на нижние концы резисторов, сигнальные щупы – на верхние. С установленными транзисторами и поданным силовым питанием так делать нельзя!!!). Осциллограмма должна иметь такой вид:
Если вдруг импульсы оказались у вас синфазными, значит вы накосячили при распайке обмоток трансформатора Т2. Поменяйте местами начало и конец нижней или верхней обмотки. Если этого не сделать, то при включении ИИП с ключами будет большой и красочный салют 🙂
Если у вас нет двухлучевого осциллографа, можно по очереди проверить форму и наличие импульсов однолучевым, но при этом остается полагаться только на собственную внимательность при распайке трансформатора Т4.
Если у вас до сих пор ничего не взорвалось, не нагрелось, импульсы есть и правильно сфазированы, можно впаять все недостающие элементы и произвести первое включение. На всякий случай рекомендую это сделать через лампочку Ильича ватт на 150 (если сможете купить :D). По-хорошему, чтобы ничего не сжечь, ее конечно надо включать в разрыв цепи между плюсом С5 и полумостом. Но так как у нас печатная плата, это сделать затруднительно. При включении в разрыв сетевого провода от нее толку мало, но все-таки как-то спокойнее)). Включаем ИИП на холостом ходу и замеряем выходные напряжения. Они должны быть приблизительно равны номинальным.
Подключаем между выходами «+25 В» и «-25 В» нагрузку 100 Вт. Для этих целей удобно использовать обычный чайник 220 В 2,2 кВт, предварительно наполнив его водой. Один чайник нагружает ИИП примерно на 90 – 100 Вт. Снова замеряем выходные напряжения. Если они значительно отличаются от номинальных, вгоняем их в допустимые пределы подборкой резисторов R4 и R6 в модуле А1.
Если ИИП работает неустойчиво – выходное напряжение колеблется с некоторой частотой, необходимо подобрать элементы компенсации обратной связи C6, R9, R10. Увеличение емкости С10 увеличивает инерционность ИИП и повышает стабильность, однако чрезмерное увеличение его емкости приведет к замедлению ОС и возрастанию пульсаций выходного напряжения. Теперь можно проверить ИИП на максимальной нагрузке. Если ИИП под нагрузкой запускается неустойчиво, либо переходит в «икающий» режим, можно попробовать увеличить емкость конденсатора С3, однако слишком увлекаться этим не рекомендую – это приведет к снижению быстродействия защиты по току и возрастанию ударных перегрузок элементов ИИП при КЗ. Также можно попробовать уменьшить номинал R8. При указанном на схеме значении защита срабатывает при амплитуде тока первичной обмотки Т4 около 5 А. К слову скажу, что максимально допустимый ток стока примененных транзисторов – 8 А.
Если и теперь ничего не взорвалось, все транзисторы и конденсаторы остались на своих местах, блок питания удовлетворяет приведенным в начале статьи характеристикам, а чайник согрелся, подключаем к БП усилок и наслаждаемся музыкой, попивая свежеприготовленный чаек 🙂
PS: Я испытал свой ИИП совместно с усилителем на LM3886. Никакого фона в колонках я не заметил (что не скажешь о комповых колонках с «классическим» трансформатором). Звук очень понравился.
Удачной сборки!
- Схемы ШИМ-контроллеров К1156ЕУ2, К1156ЕУ3 https://www.sitsemi.ru/kat/1156eu23.pdf
- Широтно-импульсные контроллеры серий КР1156ЕУ2 и КР1156ЕУ3. – Радио, 2003, №6, с. 47 – 50.
- Разработка и применение высокоскоростных схем управления силовыми полевыми транзисторами https://valvolodin.narod.ru/articles/FETsCntr.pdf
- Расчет и применение GDT https://bsvi.ru/raschet-i-primenenie-gdt/
- DC-DC конвертер К1156ЕУ5 https://www.sitsemi.ru/kat/1156eu5c.pdf
- Программа «DrosselRing» https://radiokot.ru/forum/download/file.php?id=106660
- Программа «ExcellentIT(5000)» https://radiokot.ru/forum/download/file.php?id=106659
- Программа «CalcGRI» https://radiokot.ru/forum/download/file.php?id=106664
Файлы:
Фотография
Плата в формате Sprint Layout 5.0
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |