Устройство батарейки
Батарейки используют уже давно, чтобы электронные устройства продолжали функционировать и без подключения к розетке. Эти изделия называют источниками электричества для автономного питания устройств. Первые батарейки именовались гальваническими элементами.
Что такое батарейка
В батарейках электричество возникает благодаря взаимодействию разных химических веществ. И принцип работы этих изделий легко можно отыскать в учебниках по физике. Все элементы собраны из одних и тех же частей.
Устройство батарейки
Устройство батарейки простое. Различия между разными типами батарей минимальны. В основе каждой конструкции имеются:
- Полюс положительный — анод.
- Полюс отрицательный — катод.
- Электролит.
Принцип работы батарейки
Как работает батарейка
Положительно заряженные частицы двигаются к отрицательным. Средой, где происходит данное движение, является электролит. Заряженные частицы образуются в процессе взаимодействия разных веществ. Весь принцип работы батарейки сводится к химической реакции.
Для прибора необходима нагрузка в виде лампочки или диода, в противном случае при контакте «плюса» и «минуса» может произойти короткое замыкание.
При работе элемента аноды окисляются и разрушаются. Со временем изделие теряет заряд и требует замены. Попытки восстановить его ни к чему хорошему не приведут, т.к. изменения, происходящие в батарее, необратимы.
Если попытаться зарядить конструкцию, то это приведет к взрыву или течи. Но ученым путем проб и ошибок удалось создать восполняемую батарею — аккумулятор.
Какие бывают батарейки
Батарейки в зависимости от «начинки» разделяются на несколько видов. Солевые конструкции намного дешевле щелочных. Их выпуском занимаются такие фирмы, как «Дюрасел», «Сони», «Тошиба». Они являются потомками марганцево-цинковых конструкций. Их рекомендуют использовать в устройствах с низким уровнем потребления напряжения, таких как часы, электронные весы, пульты управления.
Наиболее известные производители батареек «Дюрасел», «Сони» и «Тошиба»
Существенным недостатком этих элементов является короткое время работы заряда. Они быстро расходуют свой ресурс. При длительном использовании элементы подобного типа начинают течь. При отрицательных температурах солевые конструкции не работают.
Щелочные устройства появились относительно недавно, в 60-х гг. прошлого века. Первыми их начала выпускать фирма «Дюрасел». Данный тип батарей более надежен и имеет большую мощность.При длительном хранении в отличие от солевых батарей они не теряют свой заряд. На таких элементах всегда присутствует надпись «alkaline». Но и у них есть недостатки. Такие элементы более массивны. Их устанавливают в детских игрушках, радио, ночниках, иными словами, в приборах, потребляющих большое количество энергии. Еще один недостаток — высокая стоимость.
Третий вид ртутных изделий менее популярен, т.к. не получил широкого распространения в силу ряда причин. В первую очередь от их применения пришлось отказаться из-за вещества, за счет которого осуществляется их работа. Ртуть может нанести вред здоровью человека.
У этих элементов есть 1 существенное преимущество перед другими видами. Существует возможность их повторной зарядки, но даже это не повлияло на их востребованность. Плюсами этих элементов являются стабильная работа при низких температурах и длительные сроки хранения без утраты заряда.
Домашнее зарядное устройство для батареек
Наименее популярны серебряные элементы. В состав их электродов входит серебро. За счет этого увеличивается срок службы, повышается энергетическая плотность и постоянное номинальное напряжение. Большим минусом является их высокая стоимость. Существенным плюсом — высокая емкость, которая во много раз превосходит подобный показатель у солевых и щелочных элементов питания.
Они одинаково хорошо работают и при высоких, и при низких температурах. Срок функционирования — достаточно велик по сравнению с другими типами элементов.
Литиевые конструкции были разработаны последними. Они объединили в себе самые лучшие свойства остальных типов батарей. Их можно эксплуатировать практически в любых условиях, имеется возможность их дальнейшей подзарядки.
Они являются самыми надежными элементами. Их рекомендуется использовать в приборах с большим энергопотреблением.
Различия устройства разных типов батареек
Элементы питания различаются не только по типу веществ, участвующих в образовании заряда. Разделяются батарейки на группы по своей форме и размерам.
По форме все элементы распределяются на 3 группы:
- Дисковые.
- Цилиндрические.
- Квадратные.
Дисковые батарейки являются наиболее востребованными.
Существуют 2 способа их маркировки: американская (менее распространена) и европейская (более привычна). Маркировка помогает точно подобрать необходимый для прибора элемент питания.
Цилиндрические батарейки
Цилиндрические батарейки
Самые маленькие изделия имеют маркировку — А23. Их называют мини-мизинчиковыми. Следующие, по списку — пальчиковые, их маркировка — АА. Потом следуют мизинчиковые — ААА. Редко для устройства могут понадобиться маленькие мизинчиковые — АААА.
Следующие 2 вида практически не используются: средняя — С и большая — D.
У цилиндрических устройств показатель напряжения доходит до 6V.
Квадратные батарейки
Квадратные батарейки
Самое большое напряжение выдают батарейки, имеющие квадратную форму, — до 9V. Но и этот тип почти не востребован.
На любом элементе питания обязательно указывается вид применяемого электролита. Размер каждого типа элемента питания может отличаться на 1-2 мм в зависимости от производителя.
Причина таких отличий кроется в толщине оболочки, которая используется для защиты от падения и неблагоприятных воздействий окружающей среды. Чаще всего на ней указывается название фирмы-производителя и маркировка.
Брендовые конструкции отличаются высоким качеством и имеют гарантию. На некоторых видах элементов питания есть особая маркировка — «rechargeable». Данная надпись означает, что элемент питания можно зарядить с помощью специального устройства.
Дисковые батарейки
Дисковые батарейки
Дисковые конструкции производят для совсем маленьких по размеру устройств. У них, как и у цилиндрических батареек, имеется своя система маркировки. Показатель напряжения у этого типа — до 3V.
Среди многообразия батареек, выбрать нужную достаточно сложно. В первую очередь необходимо ориентироваться на прибор, для которого приобретаются элементы питания.
Для мощных устройств нет смысла брать щелочные батареи, т.к. их заряд быстро закончится. В этом случае лучшее решение — литиевые. Их срок службы оправдывает высокую стоимость.
Кроме того, часто производители приборов в инструкции указывают, какой тип батареек подходит для их техники.
ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ: САМОДЕЛЬНАЯ БАТАРЕЯ
Каждому из нас знакомы химические источники тока различных типов и форм. Но как это часто случается, мы редко задумываемся о том, как устроен этот совершенно привычный и обыденный предмет. А между тем, появление первых химических источников тока, положило начало превращению электричества из лабораторной диковинки в нашего повседневного помощника.
В 1790 г. итальянский физиолог Луиджи Гальвани заметил, что лапка препарированной лягушки дергается, если к ней одновременно прикоснуться двумя инструментами из разных металлов. В то время уже было известно, что мышцы могут сокращаться под действием электрического тока, так, что Гальвани правильно приписал это явление действию электрического тока. Правда, он считал, что электрический ток появляется благодаря каким-то физиологическим процессам в лапке лягушки.
Правильное объяснение этому явлению смог дать другой итальянский ученый Алессандро Вольта. Он установил, что это явление связано с наличием двух разнородных металлов, соприкасающихся с электролитом, в роли которого выступала кровь лягушки, а сама лапка играла лишь роль чувствительного индикатора электрического тока [1]. Опираясь на свои исследования Вольта в 1799г. создал первый химический источник тока. В этом устройстве Вольта использовал медный и цинковый электроды, погруженные в раствор серной кислоты.
Цинк бурно реагирует с кислотами. В раствор переходят не атомы цинка, а положительные ионы, так что в электроде остается избыток электронов, следовательно, цинковая пластина заряжается отрицательно. Вообще, большинство металлов при погружении в электролит заряжается отрицательно, на поверхности медной пластинки протекает подобный процесс. Но избыток отрицательных зарядов на медном электроде гораздо меньше, а значит, относительно цинкового электрода его потенциал получается более высоким. Если соединить внешним проводником медную и цинковую пластины, то электроны начнут перемещаться с цинковой пластины на медную, т.е. в цепи потечет электрический ток [2].
Электрическое напряжение, возникающее между электродами, зависит от того, из каких металлов изготовлены электроды и от их взаимодействия с электролитом. Напряжение, даваемое элементом, никак не зависит от площади пластин.
Часто напряжения, даваемого одним гальваническим элементом, недостаточно. Тогда их можно соединять последовательно в батареи.
Вообще изготовить химический источник тока совсем нетрудно: надо поместить в электролит две пластинки из разных металлов [3]. Такие гальванические элементы возникают самопроизвольно. Например, намочил дождь крышу, покрытую оцинкованным железом, на железе наверняка имеются царапины, так, что и железо, и цинк вступили в контакт с водой, которая играет роль электролита. Цинк в такой паре начнёт активно разрушаться, а вот железо не пострадает, пока не разрушится весь цинк. Именно для этого и покрывают железо слоем цинка.
По той же самой причине скручивать вместе медные и алюминиевые провода, это, мягко говоря, не самая лучшая идея. В месте контакта начнется гальваническая коррозия, которая приведет к росту электрического сопротивления контакта, что в свою очередь приведет к большему выделению тепла и еще более быстрой коррозии. Все вместе это может стать причиной разрушения соединения и даже пожара.
Нагляднее всего можно пронаблюдать гальваническую коррозию на примере контактов железа с цинком и медью в растворе соли. Железные скрепки были надеты на цинковую и медную пластины и погружены в раствор соли.
Через сутки скрепка, соединенная с медной пластиной, покрылась ржавчиной. В то время, как скрепка, бывшая в контакте с цинком, совершенно не пострадала.
Ученые составили электрохимический ряд напряжений металлов. Чем дальше друг от друга отстоят металлы в этом ряду, тем более высокое напряжение дает гальванический элемент, составленный из этих металлов. Так пара золото – литий теоретически может дать электродвижущую силу (ЭДС) 4,72 В. Но такая пара в водной среде работать не сможет – литий это щелочной металл, легко реагирующий с водой, а золото стоит слишком дорого для подобного применения.
На практике элемент Вольта обладает рядом серьёзных недостатков.
- Во-первых, электролитом ему служит весьма едкая жидкость – раствор серной кислоты. Жидкий электролит всегда представляет собой неудобство или даже опасность. Он может расплескаться, разлиться при повреждении корпуса.
- Во-вторых, на медном электроде такого элемента будет выделяться водород. Это явление называется поляризацией. По многим свойствам водород весьма близок к металлам, так что его пузырьки создадут дополнительную ЭДС поляризации, стремящейся вызвать ток противоположного направления [2]. Кроме того, пузырьки газа не пропускают электрический ток, что тоже ведет к ослаблению тока. Поэтому приходится периодически встряхивать сосуд, удаляя пузырьки механически, или вводя в состав электролита специальные деполяризаторы.
- В третьих, в процессе работы гальванического элемента Вольта, цинковый электрод постепенно растворяется. Теоретически, когда гальванический элемент не используют, разрушение цинкового электрода должно прекратиться, но поскольку почти всегда в составе цинка есть примеси других металлов, они при соприкосновении с электролитом играют роль второго электрода, образуя короткозамкнутый элемент, что ведет к гальванической коррозии цинкового электрода [2]. Для того, чтобы устранить этот недостаток, приходится использовать сверхчистый цинк или конструктивно предусматривать возможность извлечения цинкового электрода из электролита. Так что когда батарея не используется, электролит из нее следует сливать.
Но для демонстрационных целей всеми этими недостатками можно пренебречь, если заменить серную кислоту более безопасным электролитом.
Изготовление батарейки
При изготовлении демонстрационной батареи гальванических элементов будем использовать стандартную пару – медь и цинк. Медную фольгу можно найти в некоторых трансформаторах. В крайнем случае, можно сделать медный электрод из свернутой в спираль голой медной проволоки [4]. Цинк можно добыть из разрядившихся солевых элементов питания, как правило, в них остается достаточно много металлического цинка даже, когда элемент непригоден к дальнейшему использованию. Вместо раствора кислоты, возьмем 10% раствор поваренной соли. В качестве емкости для электролита взяты пластиковые емкости от витаминов объемом примерно 50-100 мл.
В качестве контактов использованы винты, которые одновременно закрепляю электроды на крышке. При этом крайне желательно крепить медные электроды латунным винтом. Цинковую пластину можно без проблем крепить стальным винтом. Для герметизации под гайку подложена подходящая по размеру резиновая сантехническая прокладка.
Батарея из трех гальванических элементов позволяет питать светодиод.
Напряжение на одном элементе батареи составляет около 1 В.
Ток, отдаваемый в нагрузку, составляет около 0,23 мА
Такого тока достаточно для свечения светодиода. Однако на фотографии это свечение можно заметить, только если снимать при большой светочувствительности.
Такую батарею можно использовать в школе, например для выполнения лабораторной работы, по определению внутреннего сопротивления источника тока [5].
Литература
- Карцев В., Приключения знаменитых уравнений – М.: Просвещение, 2007 г.
- Элементарный учебник физики: учеб.пособие. в 3 т. под ред. Г.С.Ландсберга: т.2 Электричество и магнетизм – М.: Физматлит, 2006 г.
- Зверев И., Элемент? Элементарно!, «Юный техник» №6 2007 г.
- Юрьев П., ХИТ-парад, но отнюдь не музыкальный, «Юный техник» №2 1994 г.
- Лекомцев Д., Вокруг обычной батарейки, «Читаем, учимся, играем» №5 2014 г.
Автор материала Denev.
Форум
Обсудить статью ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ: САМОДЕЛЬНАЯ БАТАРЕЯ
Батарейки в электрических цепях
Полярность цилиндрической батарейки Условное графическое обозначение
и условное графическое обозначение. батарейки на схеме в соответствии с ГОСТ.
Обозначение батарейки на электрических схемах содержит короткую черту, обозначающую отрицательный полюс и длинную черту – положительный полюс. Одиночную батарейку, используемую для питания прибора, на схемах обозначают латинской буквой G, а батарею, состоящую из нескольких батареек буквами GB.
Примеры использования обозначения батареек в схемах.
Самое простое условное графическое обозначение батарейки или аккумулятора в соответствии с ГОСТ использовано в схеме 1. Более информативное обозначение батареи в соответствии с ГОСТ использовано в схеме 2, здесь отражено количество батареек в составе групповой батареи, указано напряжение батареи и положительный полюс. ГОСТ допускает использовать обозначение батареи, примененное в схеме 3.
Часто в бытовой технике встречается использование нескольких цилиндрических батареек. Включение различного количества последовательно соединенных батареек позволяет получать источники питания, обеспечивающие различное напряжение. Такой батарейный источник питания дает напряжение равное сумме напряжений всех входящих батареек.
Последовательное соединение трех батареек с напряжением 1,5 вольта обеспечивает напряжение питания прибора величиной 4,5 вольта.
При последовательном включении батареек, ток, отдаваемый в нагрузку, сокращается из-за возрастающего внутреннего сопротивления источника питания.
Подключение батареек к пульту дистанционного управления телевизором.
Например, мы сталкиваемся с последовательным включением батареек при их замене в пульте управления телевизором.
Параллельное включение батареек используется редко. Преимущество параллельного включения состоит в увеличении тока нагрузки, собранного таким образом источника питания. Напряжение включенных параллельно батареек остается прежним, равным номинальному напряжению одной батарейки, а ток разряда увеличивается пропорционально количеству объединенных батарей. Несколько слабых батареек можно заменить на одну более мощную, поэтому для маломощных батареек использовать параллельное включение бессмысленно. Параллельно включать есть смысл только мощные батарейки, из-за отсутствия или дороговизны батарейки с еще большим током разряда.Параллельное включение батареек.
Такое включение имеет недостаток. Батарейки не могут иметь точно совпадающее напряжение на контактах при отключенной нагрузке. У одной батарейки это напряжение может составлять 1,45 вольта, а у другой 1,5 вольта. Это вызовет протекание тока от батарейки с большим напряжением к батарейке с меньшим. Будет происходить разряд при установке батареек в отсеки прибора при отключенной нагрузке. В дальнейшем при такой схеме включения саморазряд происходит быстрее, чем при последовательном включении.
Комбинируя последовательное и параллельное соединение батареек можно получить различную мощность источника батарейного питания.Литература:
ГОСТ 2.768-90 Обозначения условные графические в схемах источники электрохимические, электротермические и тепловые.
Как устроена батарейка? Кто изобрел батарейку? Принципы работы батарейки — Даю справку!
Кто изобрел батарейку?
Если верить археологам, то первые батарейки появились еще 2000 лет назад. Во время раскопок в Ираке нашли глиняную вазу, залитую битумом, в который были вделаны медный и железный стержень. Действительно ли это использовалось в качестве источника электричества, трудно сказать — это всего лишь предположения.
Первой современной батарейкой по праву можно назвать «Вольтов столб» — устройство, созданное итальянским физиком Алессандро Вольта в 1800 году.
Алессандро Вольта
«Вольтов столб» представлял собой стопку из пластин разных металлов — цинковых и медных. Между ними клалась ткань, смоченная в кислоте. Химическая реакция между элементами «Вольтова столба» создавала электричество.
Вольтов столб
Его работа основывалась на предположениях Луиджи Гальвани, который проводил опыты с лягушкой, подводя к ее лапке металлические полоски.
Луиджи Гальвани
Однако, Л. Гальвани сделал неправильные выводы, решив, что само животное обладает электричеством, назвав это «животным электричеством». А. Вольта правильно понял, что разряд возникал из-за того, что лапка, находившаяся между двумя полосками металла, была влажной и служила в качестве проводника.
По имени Л. Гальвани «Вольтов столб» и другие источники электричества подобного типа получили название «Элемента Гальвани» или «Гальванического элемента». Это, на самом деле, более правильное название для таких устройств, так как батарейка — это батарея, т.е. серия гальванических элементов, соединенных между собой. А единицу напряжения, которую давал гальванический элемент, назвали «вольтом» в честь Алессандро Вольта.
Принцип работы батарейки
Во многом принцип работы батарейки тот же, что и в изобретении Вольта, несмотря на технологический прогресс в их изготовлении. Любая батарейка устроена схожим образом, в ней обязательны три элемента, между которыми происходит химическая реакция, в результате которой возникает электричество: электроды — анод, катод, и электролит.
Устройство батарейки
Все эти элементы присутствовали изначально и в «Вольтовом столбе». В качестве анода, который является источником электронов, выступает чаще всего цинк. Электролит — как правило, специальное вещество (соль, щелочь), через которое осуществляется взаимодействие электродов между собой. Анод обозначается как «-» (минус), а катод — как «+» (плюс).
Какие бывают батарейки?
Батарейки бывают, в основном, солевыми и щелочными. Жидкие электролиты в них не используются, их определенным образом сгущают, например, при помощи крахмала.
Солевые батарейки, изобретенные в 1865 году — наиболее дешевые в изготовлении, для их производства используют уголь, цинк и хлорид аммония (в качестве электролита). Помимо простоты изготовления и дешевизны, имеют такие недостатки, как окисление, засоливание цинковой оболочки, что приводит солевую батарейку в негодность.
Щелочные батарейки имеют маркировку Alkaline, хранятся они дольше и дают более стабильное напряжение.
Щелочные батарейки
В принципе, это те же солевые батарейки, однако, разница между солевыми и щелочными батарейками заключается в том, что элементы в них расположены в обратном порядке, а цинк находится в порошкообразном состоянии, что увеличивает контакт элементов батареи между собой, делает их более надежными. Щелочные батарейки имеют гораздо больший объем заряда, что позволяет их использовать в энергоемких приборах (цифровых фотоаппаратах, фонариках, электронные игрушки с электродвигателями и т.п.). Они долговечны, лучше справляются с работой при низких температурах.
Наиболее современны литиевые батарейки (литий входит в состав анода), которые долговечны и безопасны в работе однако, дороже в производстве.
Литиевые батарейки
К их преимуществам по сравнению с щелочными можно отнести возможность создавать максимально плоские батареи, изготавливать батареи с большим количеством вариантов напряжения, долговечность — в некоторых приборах они могут работать до 15 лет! Их используют в наручных часах, калькуляторах, памяти системной платы компьютера и других приборах.
Проблема всех батареек — необратимость химических реакций. При использовании или с течением времени анод разрушается, либо покрывается продуктами окисления и перестает работать. В таких случаях мы говорим, что батарейка села.
Но прогресс не стоит на месте — оказалось, что соединив определенным образом вещества, входящие в состав батареи, можно, пропустив ток через нее, вернуть в прежнее состояние. Такие батареи назвали аккумуляторами — работа батареи в них восстанавливается посредством пропускания электричества в обратном направлении, от катода к аноду. А сам процесс мы все знаем, как «зарядку», т.е. батарея «заряжается». Обычные батареи, рассмотренные выше, заряжать, конечно, нельзя, они для этого не приспособлены — это может привести к их течи или взрыву.
Принцип работы батарейки: Как образуется ток?
Принцип работы батарейки заключается в простой химической реакции, которая происходит обычно между тремя элементами. В результате, реагирования веществ между собой, получается электрический ток. Это если говорить кратко.
Три ключевых объекта:
- Анод “+”
- Катод “-“
- Электролит
Анод или положительный полюс служит источником электронов. Обычно его изготавливают из цинка. Два электрода заставляет взаимодействовать между собой электролит. В качестве электролита выступает обычно соль, хлорид аммония или щелочь. Он может быть в сухом и жидком виде. Чтобы сделать густым это вещество производители добавляют полимерные соединения. Некоторые используют крахмал.
Принцип действия батарейки
Ток поступает с положительного полюса на отрицательный. Это происходит если к батареи подключена нагрузка. Если просто соединить плюс и минус проводом произойдет замыкание. В результате этого может быстро сесть батарейка, а также произойти возгорание.
Катод играет роль восстановителя. Он приобретает электроны от анода. В электролитной среде ионы прекрасно передвигаются и способствуют хорошей выработке тока.
Что происходит с точки зрения химии?
К примеру, в стеклянную емкость нальем раствор серной кислоты и поместим туда стержень, выполненный из цинка. На поверхности данного стержня имеются положительно заряженные ионы. А вокруг этого цинкового объекта, в растворе, скапливаются отрицательные ионы вещества. У раствора имеются силы притяжения, которые с легкостью отрывают ионы цинка. В результате жидкость получает положительный заряд, а цинковая пластина или стержень отрицательный. Из физики известно, что разность потенциалов равна напряжению. Отсюда и возникает электрический ток.
В итоге, когда происходит контакт кислотного раствора и металла на границе образуется электрическое поле. В момент его появления химическая энергия превращается в электрическую. Таков принцип работы батареи.
Через некоторое время ресурс батареи будет истощен. Все зависит от того где и как используется источник питания. Например, если от него работает фонарик, то при умеренном использовании 2-х батарей на 1,5 вольта каждая, хватит на 1 месяц. Но если вставить эти же самые батарейки в электрическую машинку, она будет работать несколько часов.
В результате всего этого можно сделать вывод что чем больше нагрузка, тем быстрее разрядиться батарейка.
Читайте так же:
Устройство батарейки
Batareykaa.ru
Как делают батарейки: из чего делают батарейки
В быту нас окружает множество устройств, для работы которых необходим источник электричества. Некоторые из них в качестве элемента питания используют батарейки.
Между тем мало кто задумывается над вопросом, из чего состоит этот небольшой источник тока и как его изготавливают. А если такой вопрос и появился, то многие разбирают устройство и обнаруживают непонятные элементы.
Давайте вместе изучим строение элемента питания и узнаем, где и как его производят.
Из чего делают батарейки
Содержание статьи
Существует четыре типа элементов питания. Несмотря на то что принцип работы у них одинаковый, все источники тока имеют уникальную конструкцию и состоят из разных деталей.
«Пальчиковые» и «мизинчиковые» батарейки
«Пальчиковые» и «мизинчиковые» источники тока представляют собой цилиндр небольшого размера. Это одни из самых распространённых вариантов батареек. Они состоят из следующих элементов:
- отрицательного заряда — катода;
- вкладыша, выполняющего роль своеобразной прокладки;
- корпуса;
- мембраны;
- электролита, обеспечивающего нормальное протекание химической реакции;
- стержня, изготовленного из углеродистого соединения, например, угля или сажи;
- фиксирующей шайбы;
- положительного заряда — анода.
Это стандартная конструкция большинства цилиндрических батареек. Но есть устройства, состоящие из стержня, изготовленного из угля, металлических деталей и специального порошка.
Из чего состоит круглая батарейка
Элемент питания, имеющий необычную приплюснутую форму, ещё называют «таблетка». Чаще его используют в часах и различных сигнализациях. Он состоит из следующих элементов:
- анода — его роль выполняет одна из крышек;
- катода — отрицательным контактом служит вторая крышка;
- прокладки, дополнительно пропитанной электролитом;
- диоксида ртути;
- цинкового порошка;
- водонепроницаемого слоя;
- кольца, обеспечивающего надёжную герметизацию.
Справка. Если нагреть «таблетку», она попросту взорвётся.
Батарея сотового телефона
Конструкция элемента питания сотового телефона несколько сложнее, чем устройство обычных батареек. В неё входят:
- положительный и отрицательный контакт;
- анодный корпус;
- катодный стакан;
- уплотняющее вещество;
- сепаратор;
- изолирующий состав;
- защитная мембрана;
- диафрагма;
- корпус из алюминия или другого металла.
Из чего состоит «крона»
Источник питания прямоугольной формы конструктивно отличается от других батареек. Положительный и отрицательный контакт находятся друг над другом. Располагаются они в верхней части устройства. Снизу находится основа, выполненная из пластмассы. От минусового контакта отходит пластина, которая фиксируется на минусовом полюсе.
Корпус устройства выполнен из металла. Внутри него располагаются шесть небольших приплюснутых прямоугольников, каждый из которых — индивидуальная батарейка. Заряд такого «бочонка» составляет 1,5 В. Между пластинами находится ещё одна — специальная.
Строение источника питания достаточно простое:
- два контакта — положительный и отрицательный;
- корпус из алюминия или другого металла;
- две пластины из пластика;
- шесть соединённых между собой «бочонков» по 1,5 вольт каждый;
- стержень из углеродистого соединения;
- пластины для изоляции «бочонков»;
- плёнка;
- внешняя оболочка.
Из чего изготовлен корпус элементов питания
Корпус — один из важнейших элементов конструкции источника тока. Он выполняет защитную функцию, удерживая внутри содержимое батарейки и предотвращая её разрушение.
У каких источников питания корпус изготовлен из цинка
Многие неспроста задаются подобным вопросом, ведь Zn можно применять в разнообразных опытах. Или просто продать. Так, корпусом из цинка снабжены все солевые элементы питания. Обычно это непосредственно на нём и указывается.
В последнее время всё чаще можно встретить источники тока с корпусом, изготовленным из жести или железа. Материал изготовления зависит от внутренней конфигурации батареек. Железо и жесть способны обеспечить максимальную защиту и повышенную прочность.
Из чего изготавливают корпус цилиндрических батареек
Он имеет простую конструкцию, в которую входят:
- верхняя и нижняя части;
- боковая овальная часть;
- маркировка, указывающая вид источника тока.
Справка. Многие ошибочно под корпусом подразумевают отсек, в котором размещают батарейки.
Химический состав элементов питания
Химический состав зависит от конкретного вида источника тока. В состав большинства элементов питания входят следующие химические соединения:
- железо;
- свинец;
- марганец;
- алюминий;
- литий;
- кадмий;
- ртуть (в последнее время её стараются не использовать).
Справка. Стоит иметь в виду, что одна батарейка не может содержать все химические элементы сразу.
Как изготавливают батарейки
Производство элементов питания выглядит следующим образом:
- Из стали нарезают пластинки овальной формы.
- Подготовленные элементы сворачивают в трубочку, которая в дальнейшем будет выполнять роль корпуса устройства.
- В трубочку помещают все химические элементы: графитовый стержень, электролит, цинковый порошок, загуститель, катализатор и другие.
- Следующий шаг — изготовление катода. Для этого специальный пресс «скатывает» необходимые химические соединения.
- На капсулу будущей батарейки наносится бороздка. Она необходима, чтобы упростить процесс спайки.
- На минусовой полюс наносят герметик и клей, который высыхает, пока устройство перемещается по ленте конвейера.
- Внутрь корпуса вливается электролит, а в полость анода — гель, изготовленный из цинка. Он придаёт электролиту серебристо-серый оттенок.
- Чтобы зарядить устройство, к его нижней части «приваривают» гвоздь длиной 4 см.
- Далее запаивают отрицательный контакт.
- Чтобы устройство приняло окончательный вид, все края корпуса загибают.
- Последний этап — проверка работоспособности и нанесения необходимой маркировки.
Оборудование для производства батареек
Для производства элементов питания на заводах используют различные автоматизированные установки. Состав линии может меняться, но в большинстве случаев в неё входят:
- вибрационный станок;
- машина, изготавливающая корпус;
- станок, разделяющий линию;
- автомат для сборки;
- сборочная станция;
- специальная «тарелка».
На каких заводах собирают батарейки
На территории России располагаются пять заводов, занимающихся сборкой элементов питания:
- «Космос». Свою деятельность он начал в далёком 1933 году. В его структуру входит более 35 производств, расположенных по всей территории России и в некоторых других странах, например, есть несколько фабрик в Китае. Ежегодно фабрика выпускает более ста миллионов источников тока. За время своего существования производитель зарекомендовал себя с лучшей стороны, что подтверждают многочисленные награды.
- «Фотон». Несмотря на то что компания появилась лишь в 2011 году, она успела занять лидирующую позицию в сфере производства батареек. Это объясняется высоким качеством выпускаемой продукции. В ходе многочисленных тестов было подтверждён длительный срок эксплуатации батареек. При этом стоят они значительно дешевле импортных аналогов.
- «Лиотех». Завод считается совместным детищем российских и китайских корпораций. На его мощностях осуществляется сборка и выпуск литий-ионных источников тока, используемых для производства аккумуляторов.
- «Энергия». Предприятие, располагающееся на территории города Елец, тесно сотрудничает с Министерством обороны. Это подтверждает надёжность производителя и высокое качество продукции. В 2011 году была осуществлена модернизация линии и запущен конвейер для сборки литий-ионных источников питания. Основную часть продукции составляют «пальчиковые» и «мизинчиковые» батарейки.
- «ССК». Фабрика начала производство батареек в 1993 году. В основном с конвейера сходят элементы питания четвёртого и пятого поколения. Помимо этого, на заводе идут непрерывные работы, направленные на увеличение ёмкости батареек, а также изучаются новые материалы для изготовления.
Теперь вы знаете из чего состоят источники питания, и как их производят. Однако не стоит забывать, что каждый производитель использует свои наработки, поэтому устройство батареек и состав линии может существенно отличаться от стандартного варианта.
Батарейки различных типов давно и прочно вошли в повседневную жизнь. Они используются во всевозможных электрических устройствах со слабыми токами, в качестве источника питания. Несмотря на внешние существенные отличия, устройство батарейки любого типа имеет общие черты и принципы. Различия могут быть только в составе химических веществ, с помощью которых выделяется электрическая энергия. Типовое устройство батарейкиБатарейка, изготовленная в заводских условиях, включает в свой состав несколько специальных химических реагентов, которые, взаимодействуя между собой, выделяют энергию – тепловую и электрическую. Кроме того, в каждой батарейке имеются электроды – катод и анод, создающие соответствующие полюса – положительный и отрицательный. Все реагенты разделяются при помощи специальной прокладки, которая не позволяет их составным частям перемешиваться. Тем не менее, эта прокладка способна пропускать электролит, находящийся внутри батарейки в жидком виде. Между разными твердыми реагентами и жидким электролитом происходят химические реакции, в результате которых образуются положительный и отрицательный заряды. Полюсность заряда напрямую зависит от химического состава того или иного реагента. Прокладка, расположенная между ними, не позволяет нейтрализовать положительный и отрицательный заряд. Дополнительные элементы батарейкиДля снятия заряда и вывода его на контакты во внутрь анодного реагента помещается специальный токосниматель в виде штыря. Токосниматель катода расположен под внешней гильзой, являющейся ее оболочкой. И тот и другой токосниматели, оканчиваются электрическими контактами, соответственно анодом и катодом. Работа начинается с химической реакции, затем на реактивах происходит разделение зарядов и их последующий переход на токосниматели. Окончательно заряды поступают на раздельные электроды и, непосредственно, в электронное устройство. В устройстве щелочных (алкалиновых) батареек применяется цинк в порошкообразной форме. Для того, чтобы замедлить расход цинка, некоторое время назад производились добавки в порошок химических элементов – ртути и кадмия. Поскольку эти добавки оказались вредными, их перестали применять. В современных конструкциях батареек используются более дорогостоящие, но менее вредные вещества, такие как индий, свинец и прочие. В качестве анодного реактива применяется оксид марганца совместно с электролитом, которым в данном случае является щелочь. Щелочные батарейки могут иногда протекать. Это происходит, когда нарушена герметичность из-за возможных внешних повреждений гильзы, или, когда внутреннее давление становится выше нормы. Солевые батарейки имеют аналогичную конструкцию и более низкую стоимость. Их основное отличие в том, что катодная масса заменяется цинковым корпусом. Угольный токосниматель расположен по центру. Хлорид, используемый как электролит, не что иное, как соль соляной кислоты. Именно она и послужила названием для данного вида батареек. |