Схема авр на 2 ввода с секционником – Схема местного устройства АВР двухстороннего действия на секционном выключателе 6 (10) кВ в формате dwg

Содержание

Схема АВР на два ввода с реле контроля фаз без контакторов

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В прошлой статье мы рассмотрели простенькую схему АВР (автоматический ввод резерва) на одном контакторе.

А сегодня я расскажу Вам об еще одной интересной и необычной схеме АВР.

Дело в том, что данная схема АВР выполнена без привычных нам силовых контакторов, т.к. в ней используются автоматы с электромагнитным приводом, имеющие возможность управляться дистанционно.

Итак, поехали.

На распределительной подстанции имеется две секции напряжением 400 (В).

На каждом вводе установлен вводной автомат ВА53-41 (QF1 и QF2) номинальным током 1000 (А) с электромагнитным приводом, т.е. ими можно управлять, как в ручную, так и дистанционно, например, с помощью ключа или кнопок управления.

Читайте подробную статью про автоматические выключатели ВА53-41 и настройку их полупроводникового расцепителя МРТ.

В моем примере для управления каждым автоматом используются кнопки управления РPВВ-30N от IEK, правда без использования в них подсветки.

Кнопки обозначаются на схеме, как SB1-SB6.

Электроприемники рассматриваемой подстанции относятся к 1 категории надежности электроснабжения, а значит подстанция имеет два независимых ввода. Каждый ввод является рабочим и в нормальном состоянии всегда находится в работе, т.е. каждая секция получает питание от своего непосредственного ввода (QF1 и QF2).

Между двумя секциями 400 (В) установлен межсекционный автомат (QF3) с номинальным током 1000 (А) аналогичного исполнения.

Помимо автоматов, в схеме имеются вводные (QS1 и QS2) и секционные рубильники-разъединители (QS3 и QS4) типа РЕ-19 с номинальным током 1000 (А) для вывода оборудования в ремонт и обеспечения видимого разрыва.

На каждом вводе для контроля тока в цепи в каждой фазе установлены трансформаторы тока с коэффициентом 1000/5, к которым подключены, соответственно, амперметры РА1 (РА4), РА2 (РА5) и РА3 (РА6).

Также на каждом вводе установлен вольтметровый переключатель для контроля линейных и фазных напряжений сети.

Со стороны питающего кабеля Ввода-1 и Ввода-2 подключены трехфазные реле контроля напряжения РНПП-311М от Новатек Электро. По схеме они обозначаются, как KV1 и KV2.

Для защиты самих реле контроля напряжения установлены трехполюсные автоматы ВА47-29 (SF2 и SF3) с номинальным током 2 (А), т.е. на каждый ввод свой автомат и свое реле напряжения.

Цепи управления имеют напряжение 220 (В). Для цепей управления установлен двухполюсный автомат ВА47-29 (SF1) с номинальным током 6 (А).

Вот схема АВР на два ввода с реле контроля фаз.

А теперь рассмотрим, как она работает.

Цепи управления имеют свой собственный АВР путем переключения контактов (1-3) и (2-3) реле К1, а это значит, что цепи управления могут получать питание, либо от фазы А Ввода-1, либо же от фазы А Ввода-2.

В нормальном режиме, когда каждая секция питается со своего ввода, цепи управления всегда запитаны через контакт К1.1 (1-3) реле К1 от фазы А Ввода-1. Но когда на Вводе-1 пропадает напряжение, то реле обесточивается (отключается) и замыкает свой контакт (2-3) через который и получают питание цепи управления, но уже от фазы А Ввода-2.

В схеме управления установлены промежуточные реле (К1-К9) модульного типа РЭК 77/4 от IEK.  Реле соединяются с розеточными модульными разъемами РРМ77, которые установлены на стандартной DIN-рейке. На разъемах имеются зажимы переключающих контактов реле и катушек. Необходимость каждого реле я расскажу чуть ниже по тексту.

Для включения схемы АВР используется переключатель SP1, имеющий 4 нормально-открытых (н.о.) и 1 нормально-закрытый (н.з.) контакты.

Данный переключатель имеет два фиксирующих положения, но к нему я еще вернусь непосредственно при описании работы схемы АВР.

Световая индикация положения автоматических выключателей выполнена на лампах AD-22DS от IEK.

На схеме лампы обозначаются, как HL3, HL4 и HL5. Лампа HL3 относится к автомату Ввода-1 (QF1), HL4 — к автомату Ввода-2 (QF2), а HL5 — к межсекционному автомату МС (QF3).

Ручной режим работы АВР

Схема АВР имеет два режима: ручной (Р) и автоматический (А). Избирание режима осуществляется с помощью переключателя SP1.

В ручном режиме схема АВР (автоматический ввод резерва) не работает. Управление вводными и секционным автоматами осуществляется с помощью соответствующих кнопок управления:

  • SB1 и SB2 — Ввод-1 (QF1)

  • SB3-SB4 — Ввод-2 (QF2)

  • SB5-SB6 — межсекционный автомат МС (QF3)

Рассмотрим принцип управления автомата ВА53-41 на примере Ввода-1 (QF1).

Для его включения необходимо кратковременно нажать кнопку включения SB1.

Включение автомата происходит по следующей цепи: фаза L1 c автомата цепей управления SF1 — н.о. контакт К1.1 (1-3) — н.з. контакт (3-21) переключателя SP1 (ключ установлен в положении ручного режима) — н.о. контакт кнопки включения SB1 (21-19) — н.з. контакт К9.1 (19-17) — н.з. контакт К7.1 (17-18) — разъем автомата (3 — Вкл.) — катушки электромагнитного привода автомата YА1 и YA2 — разъем автомата (4) — ноль N. Автомат включается.

Для отключения автомата необходимо кратковременно нажать кнопку отключения SB2.

Отключение происходит по цепи: фаза L1 c автомата цепей управления SF1 — н.о. контакт К1.1 (1-3) — н.з. контакт (3-21) переключателя SP1 (ключ установлен в положении ручного режима) — н.о. контакт кнопки отключения SB2 (21-16) — разъем автомата (2 — Откл.) — катушки электромагнитного привода автомата YА1 и YA2 — разъем автомата (4) — ноль N. Автомат отключается.

Даже если Вы будете долго удерживать кнопку включения или отключения, в любом случае сигнал на катушки привода будет разорван

н.з. контактом реле К7.1 и внутренним блокировочным контактом SQ2.

Чтобы Вы представляли себе о чем идет речь, приложу электрическую схему привода автомата ВА53-41.

Принцип управления автоматическими выключателями Ввода-2 (QF2) и МС (QF3) аналогичен.

В схеме АВР имеются следующие блокировки. Но прежде, чем рассказать о них, необходимо рассмотреть реле К7, К8 и К9.

Реле К7 относится к автомату Ввода-1 (QF1), К8 — к автомату Ввода-2 (QF2), а К9 — к межсекционному автомату МС (QF3).

Эти реле полностью повторяют положение автоматического выключателя, т.к. подключены к его н.о. контакту (Чр-Чр). Таким образом, если автомат включен, то реле тоже включено (подтянуто), если автомат отключен, то реле тоже отключено (отпавшее).

Кстати, к этому же н.о. контакту (Чр-Чр) помимо реле, подключена лампа, сигнализирующая о положении автомата.

Обратите внимание, что катушки всех промежуточных реле (К1-К9) и лампы должны быть рассчитаны для работы в сети напряжением 220 (В).

Рассмотрим блокировки.

Если включены оба ввода, то Вы не сможете включить МС. Эта блокировка осуществляется с помощью н.з. контактов К7.2 и К8.2, которые установлены в цепи включения МС.

И наоборот, предположим Ввод-1 отключен, а межсекционный автомат МС включен. При этом Вы не сможете включить Ввод-1 пока не отключите МС. Это блокируется н.з. контактом К9.1, установленного в цепи включения Ввода-1. Для Ввода-2 аналогично, только его включение блокируется н.з. контактом К9.2, установленного в цепи включения Ввода-2.

Это все, что касается ручного режима схемы. Теперь рассмотрим работу схемы АВР в автоматическом режиме.

Автоматический режим работы АВР

В автоматическом режиме заблокировано управление автоматами с помощью кнопок управления — их управление осуществляется только автоматически.

Схема АВР предусматривает включение межсекционного автомата МС в том случае, если на одном из вводов:

  • полностью пропало напряжение питания
  • изменился порядок чередования фаз (как проверить правильность чередования фаз с помощью советского прибора ФУ-2 и TKF-12 от Sonel)
  • появился перекос фаз (несимметричность напряжения питания)
  • нарушен полнофазный режим (обрыв фазы)
  • снизилось напряжение меньше уставки реле
  • повысилось напряжение выше уставки реле

Контроль осуществляется с помощью реле напряжения, перекоса и последовательности фаз РНПП-311М от Новатек Электро.

Принцип работы реле РНПП-311М аналогичен реле ЕЛ-11, о котором я уже рассказывал на страницах своего сайта. О реле РНПП-311М я сейчас подробно останавливаться не буду, а расскажу о нем как-нибудь в другой раз. Так что кому интересно, то подписывайтесь на рассылку сайта, чтобы не пропустить новые выпуски статей.

В нормальном режиме у реле РНПП-311М (KV1 и KV2) на лицевой панели горят все три зеленых светодиодных индикатора.

Выходной контакт (2-3) у реле в этом режиме замкнут.

Через контакт (2-3) получает питание катушка реле К2 у Ввода-1 и катушка реле К4 у Ввода-2. Таким образом, реле К2 и К4 в нормальном режиме всегда включены (подтянуты).

Предположим, что полностью исчезло напряжение на Вводе-1. На лицевой панели реле KV1 загорается красный аварийный светодиод «Ав. откл.» и оно разрывает свой контакт (2-3), а значит и катушка реле К2 обесточивается.

При этом собирается цепь на отключение автомата Ввода-1 по следующей цепи: фаза L1 c автомата цепей управления SF1 — н.з. контакт К1.1 (2-3) — н.о. контакт (3-6) переключателя SP1 (ключ установлен в положении автоматического режима) — н.з. контакт К2.1 (6-9) — н.о. контакт К4.3 (9-16) — разъем автомата (2 — Откл.) — катушки электромагнитного привода автомата YА1 и YA2 — разъем автомата (4) — ноль N. Автомат Ввода-1 отключается. При этом обесточивается (отпадывает) реле К7 и лампа HL3 гаснет.

Далее происходит включение межсекционного автомата по следующей цепи: фаза L1 c автомата цепей управления SF1 — н.з. контакт К1.1 (2-3) — н.о. контакт (3-15) переключателя SP1 (ключ установлен в положении автоматического режима) — н.з. контакт К2.2 (15-31) — н.з. контакт К9.3 (31-28) —  н.з. контакт К7.2 (28-30) — разъем автомата (3 — Вкл.) — катушки электромагнитного привода автомата YА1 и YA2 — разъем автомата (4) — ноль N. Межсекционный автомат включается. Реле К9 при этом срабатывает (включается) и лампа HL5 загорается.

При восстановлении питания на Вводе-1 у реле KV1 замыкается контакт (2-3), при этом катушка реле К2 получает питание и включается (подтягивается). При этом на лицевой панели реле РНПП-311 загораются 3 зеленых светодиода.

После этого происходит отключение межсекционного автомата по следующей цепи: фаза L1 c автомата цепей управления SF1 — н.о. контакт К1.1 (1-3) — н.о. контакт (3-15) переключателя SP1 (ключ установлен в положении автоматического режима) — н.о. контакт К4.2 (15-8) — н.о. контакт К2.2 (8-27) — разъем автомата (2 — Откл.) — катушки электромагнитного привода автомата YА1 и YA2 — разъем автомата (4) — ноль N. Межсекционный автомат отключается. Реле К9 при этом отключается, а лампа HL5 гаснет.

А далее происходит включение автомата Ввода-1 по следующей цепи: фаза L1 c автомата цепей управления SF1 — н.о. контакт К1.1 (1-3) — н.о. контакт (3-6) переключателя SP1 (положение ключа установлено в положении автоматического режима) — н.о. контакт К2.1 (6-19) — н.з. контакт К9.1 (19-17) —  н.з. контакт К7.1 (17-18) — разъем автомата (3 — Вкл.) — катушки электромагнитного привода автомата YА1 и YA2 — разъем автомата (4) — ноль N. Автомат Ввода-1 включается. Реле К7 при этом срабатывает (включается) и загорается лампа HL3.

Вот и вся автоматика.

Если сказать совсем кратко, то при исчезновении напряжения (или другие критерии, которые задаются с помощью реле контроля напряжения РНПП-311М) на одном из вводов отключается автоматический выключатель ввода и включается межсекционный автоматический выключатель.

При восстановлении напряжения на обесточенном вводе, отключается межсекционный автоматический выключатель и включается соответствующий автоматический выключатель ввода.

И уже по традиции, смотрите видео по материалу статьи:

P.S. На этом пожалуй, и все. Если есть вопросы по данной схеме АВР, то спрашивайте в комментариях. Всем спасибо за внимание, до новых встреч.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Шкафы АВР с секционным выключателем

Компания ПромЭлектроСервис НКУ — сертифицированный производитель электрощитового оборудования 10/6/0,4кВ. В нашем распоряжении — 3 производственных площадки в Санкт-Петербурге (более 1600м2), большой штат инженеров и монтажников. Мы предлагаем вам конкурентные цены, высокое качество электрощитов и оперативные сроки поставки.

Контакты для связи

Шкафы автоматического ввода резерва АВР с секционированием — один из ключевых элементов в системах электроснабжения 1й категории надежности. В качестве алгоритмов переключения в АВР с секционированием используются схемы 2 в 2; 3 в 2; 3 в 3, когда происходит одновременное запитывание двух или трех секций шин через автоматы QF1, QF2, QF3 и др. В качестве питающих вводов могут быть использованы электросети, дизельные электростанции, или источники бесперебойного питания. Системы АВР с секционированием часто используются при производстве главных распределительных щитов ГРЩ АВР, и шкафов РУНН 0,4кВ. Более подробно о шкафах ГРЩ.

Шкаф АВР с секционированием на базе реле Zelio Logic Schneider Electric  БУАВР на базе реле Siemens Logo  БУАВР для ГРЩ 400А с секционированием на базе реле Zelio и РНПП311М Новатек Электро

В качестве переключающего элемента в щитах АВР с секционированием используется секционные автоматические выключатели, к которому одновременно подключаются две секции сборных шин. В нормальном режиме работы каждый из подключенных к АВР потребителей получает питание от своей секции, при этом секционный выключатель находится в выключенном состоянии. При исчезновении напряжения на первой секции происходит срабатывание автоматики, взвод пружины секционного выключателя и перевод нагрузки с первого ввода на работающую вторую. При восстановлении напряжения на первом вводе секционный выключатель отключится,  автоматический выключатель первого ввода включится и восстановится нормальное рабочее состояние АВР. При пропадании напряжения на втором вводе, алгоритм повторится в том же порядке.

В отличие от стандартных щитов АВР на 2 ввода по схеме 2 в 1 или АВР на 3 ввода (3 в 1) с релейной логикой управления шкафы АВР с секционированием имеют более сложную логику работу, где должны соблюдаться следущие параметры защиты и блокировок:

  • Защита от ложного срабатывания секционного выключателя при кратковременной просадке напряжения
  • Защита от одновременного включения всех автоматических выключателей
  • Выбор приоритетных нагрузок
  • Блокировка БУАВР при авариях и неисправностях

Для этих целей обычно используют микропроцессорные блоки управления АВР с предустановленными настройками. К таким блокам можно отнести АВР ATS ABB, Siemens Logo. При производстве шкафов АВР с секционированием мы обычно используем более бюджетные и проверенные временем программируемые реле Zelio Logic от Schneieder Electric в комбинации с трехфазными реле напряжения/контроля фаз. 

Использование программируемого реле Zelio Logic в АВР обеспечивает:

  • Включение/отключение автоматических выключателей в АВР по заданному алгоритму
  • Контроль состояния автоматов
  • Регулировку временных уставок на переключение автоматов при авариях
  • Возможность интеграции в систему диспетчеризации по GSM, Bluetooth, Internet, Modbus связи
  • Возможность изменения схемы переключения БУАВР в процессе работы

Алгоритм работы блока управления АВР два ввода с секционированием на примере схемы 2 в 2, электросеть/электросеть

Схема авр два ввода 2 в 2 с секционированием

При нарушении стандартных параметров питания на вводе №1 изменится положение контактов реле контроля фаз/напряжения KV1. После выдержки времени подается команда на отключение автомата QF1 и на включение секционного автомата QF3 с выдержкой времени. Для этого должны дыть выполнены следующие условия:

  1. Отключен автомат QF1 (секция 1)
  2. Уровень напряжения на секции 1 меньше, чем заданная пользователем уставка
  3. На вводе соседней секции напряжение находится в рамках допустимых границ
  4. Отсутствие аварии блока БУАВР
  5. БУАВР работает в автоматическом режиме (переключатель SA1-Авт)

Происходит включение секционника, и запитывание обесточенной секции №1 от автомата QF3

При восстановлении питания на вводе №1, после выдержки времени произойдет отключение секционного выключателя QF3 и сформируется команда на запуск выключателя QF1. Нормальное электроснабжение объекта восстановлено.

По требованию Заказчика возможно применить схему АВР на контакторах с секционированием. Такие требования можно встретить в документации к ГРЩ.

 

Схема секционного авр на 2 ввода (+ дизель-генераторная установка)

Фото шкафов АВР с секционированием в сборе производства компании ПромЭлектроСервис НКУ

Щит АВР ЩАВР 400А 2 ввода с секционным выключателем на комплектующих Chint (+ реле Zelio Logic) для электроснабжения строящейся котельной в Ленинрадской области

 

Шкаф АВР 250А 2 ввода с секционным автоматом на базе комплектующих Schneider Electric (корпус Prisma P, реле Zelio Logic, автоматы Compact NSX с моторными приводами, реле контроля фаз RM17TG, модульные автоматы ic60n)

   

ГРЩ 400А с АВР и секционированием на базе оборудования IEK и DEKraft

 

  

Щит АВР 63А 2 ввода (сеть/сеть) с секционным выключателем, отходящими линиями и блоком управления насосом. Корпус Prisma P, ПЛК ZELIO Logic, автоматы Compact NSX, реле контроля фаз RM17TG

   

 

Схема местного устройства АВР двухстороннего действия на секционном выключателе 6 (10) кВ в формате dwg

В данной статье я буду рассматривать наиболее распространенную схему местного АВР двухстороннего действия на секционном выключателе 6(10) кВ. Отличительной особенностью этой схемы является сочетание двух устройств:

  • АВР двухстороннего действия, включавшего секционный выключатель Q3 при отключении либо Q1, либо Q2.
  • автоматического восстановления (возврата) нормальной схемы подстанции; последнее относится к устройствам автоматики послеаварийного режима, особенно важным для подстанций без постоянного дежурства.

При отсутствии необходимости в автоматическом восстановлении схемы подстанции может использоваться только устройство АВР двустороннего действия.

На представленной схеме вспомогательные контакты выключателей и контакты реле показаны в рабочем положении. Как видно из схемы, выключатели Q1 и Q2 включены, а Q3 отключен. Напряжение на I и II секциях имеется.

Схема местного устройства АВР двухстороннего действия на секционном выключателе 6 (10) кВ

Рис.1 — Схема местного устройства АВР двухстороннего действия на секционном выключателе 6 (10) кВ

Роль пускового органа напряжения устройства АВР выполняет реле времени КТ4 установленное в ячейке ТН1, которое обеспечивает заданную выдержку времени при возврате якоря реле вследствие снижения или исчезновения напряжения. На схеме рис.1 – реле КТ4 находится в положении, когда якорь реле втянут, конечные контакты 11-14 – разомкнуты, а мгновенные контакты 21-22 – замкнуты.

Пусковым органом устройства автоматического восстановления первичной схемы подстанции является реле времени КТ1 установленной в ячейке Ввода №1, срабатывающее при подаче напряжения. На схеме рис.1 реле КТ1 показано под напряжением в сработавшем состоянии, его конечный контакт 11-14 – разомкнут, а конечный контакт 21-22 – замкнут.

Реле положения «включено» KQC – также под напряжением и его контакты 21-24 – замкнуты, контакты 11-12 – разомкнуты.

Рассмотрим работу схемы в случае повреждения трансформатора Т-1. Дифференциальная и газовая защиты Т-1 действуют на отключение Q1. При отключении Q1 замыкается его вспомогательный контакт 5-6 и замыкается контакт 11-12 реле KQC в цепи включения Q3, происходит АВР секционного выключателя и восстановление напряжения на I секции. Контроль наличия напряжения на соседней секции осуществляется реле напряжения KV4, которое установлено в ячейке ТН2 . Однократность действия устройства АВР обеспечивается тем, что при отключении Q1 лишается питания реле KQC и замыкается его контакт 11-12 в цепи включения Q3. Таким образом, включение Q3 происходит только один раз.

Работы схемы в другом аварийном случае – при отключении Л1 со стороны питающего источника – происходит с помощью пускового органа минимального напряжения реле KV4. При глубоком снижении напряжения на I секции подстанции, срабатывает реле минимального напряжения KV4, контакты 15-18 замыкаются и срабатывает реле времени КТ4, часовые механизмы реле начинают отсчитывать заданное время, по истечении которого замыкаются контакты 11-14 в цепи отключения Q1, автомат SF1 в ячейке ТН1 должен быть включен. При наличии напряжения на II секции, о чем свидетельствуют замкнуты контакты 11-12 реле KV4 выключатель Q1 отключается. Далее схема на включение Q3 так же, как описано выше.

До тех пор пока со стороны Л1 отсутствует напряжение, якорь реле времени КТ4 не втянут и его мгновенный контакт 21-22 – разомкнут. Но как только линия Л1 будет взята под напряжение со стороны питающего источника, у реле КТ4 втягивается якорь и замыкается мгновенный контакт 21-22, после чего срабатывает реле времени КТ1 замыкается его контакт 11-14 и выключатель Q1 включается. Происходит кратковременное замыкание линий Л1 и Л2 через Q3. Но еще через несколько секунд замыкается упорный контакт 21-22 КТ1 и происходит отключение Q3. Как видно из схемы, цепь электромагнита YAT секционного выключателя Q3 собирается при условии, что включены одновременно Q1 и Q2, о чем свидетельствуют замкнутые контакты 21-22 KQC соответствующего реле положения «включено», а также замкнутые контакты 21-22 КТ1 в схемах управления Ввода №1 и Ввода №2.

Таким же образом схема АВР на рис.1 работает и при отключении Q1(Q2) от максимальной токовой защиты трансформатора или от специальной защиты шин 6(10) кВ соответствующей секции. Однако на многих подстанциях в этих случаях предпочитают вместо выполнения АВР секционного выключателя осуществлять АПВ отключившегося Q1(Q2). Это делается для того, чтобы не подвергать опасности потребителей соседней секции при включении СВ на устойчивое к.з.

Недостатком этой схемы является возможность ее неправильной работы при отключении сразу двух питающих линий и одновременной подаче напряжения по обеим питающим линиям. Но этот случай является достаточно редким.

Поделиться в социальных сетях

Ошибка 404. Страница не найдена!

Ошибка 404. Страница не найдена!

К сожалению, запрошенная вами страница не найдена на портале. Возможно, вы ошиблись при написании адреса в адресной строке браузера, либо страница была удалена или перемещена в другое место.

 

 

 

Схемы АВР для ДЭС, ДГУ, ДГА, на два ввода и ДЭС, на три ввода и ДЭС с секционированием и без него.

Варианты схем АВР применяемых при работе с автономным источником питания.

Ввод сетевой и ДЭС СХЕМА №10. Питание нагрузки осуществляется от сетевого или от автономного источника питания.
На схеме Ввод1 — сетевой, автономный источник — ввод с ДГУ. Нагрузка общая подключена через автоматический выключатель QF3. Между контакторами КМ1 и КМ2 устанавливается механическая блокировка.
РАБОТА СХЕМЫ: при наличии нормального сетевого напряжения на Вводе1 нагрузка запитывается от него по цепи — автомат QF1, контактор КМ1, автомат QF3. При отсутствии нормального напряжения на вводе подается команда на запуск ДГУ, он запускается, выходит на рабочий режим и через QF2,КМ2, QF3 подается питание на нагрузку.
Данная схема может работать в однофазной или трехфазной сети. Для этого необходимо предусмотреть соответствующие изменения.
В схеме не показано управление ДГУ от АВР, ДГУ может включаться самостоятельно (в схеме автоматики имеются решения запуска ДГУ при отсутвии напряжения на сетевом Вводе, или по команде с АВР, обычно типа «сухой контакт». Схема АВР ДЭССХЕМА №11. Питание нагрузки АВР с ДЭС осуществляется от одного из двух вводов Ввода1, Ввода2 или от автономного источника ДГУ. На схеме три ввода, первый и второй вводы это сетевые, третий ввод — с ДГУ.
Логика работы следующая: при пропадании напряжения на сетевом Вводе 1, переключается питание от Ввода2, или наоборот, если работает АВР от Ввода 2 при пропадании напряжения на этом вводе переключается на Ввод 1. В случае отсутствия напряжения (нормального напряжения) на Вводах 1 и 2, через время Т1 (выдержка времени после пропадания напряжения на основных вводах) подается команда на запуск ДЭС. Питание происходит от ДЭС через КМ4. Питание осуществляется с вводов 1,2 через КМ1 или КМ2 и далее через КМ3. КМ3 введен в схему для обеспечения предотвращения встречного напряжения между появлением напряжения на основном вводе и напряжением с ДГУ, между КМ3 и КМ4 установлена механическая блокировка. Рубильник QS отключает часть нагрузки. Схема АВР ДЭС СХЕМА №12.Питание нагрузки осуществляется от внешней сети и двух автономных источников. На схеме три ввода, первый ввод это сетевой, два других ввода от ДГУ одно установленное в контейнере, второе ДГУ в существующем здании. Логика работы следующая: при пропадании напряжения на сетевом вводе, через время Т1 подается команда на запуск ДЭС в контейнере и питании от ДЭС осуществляется пока не закончится топливо (или в случае неполадок, в других случаях). АВР №2 выдает команду на запуск ДГА, находящегося в помещении, после истечении времени Т2, которое устанавливается больше чем время Т1. Схема АВР ДЭС Схема №13. Питание нагрузок осуществляется от двух источников питания внешней сети Ввод №1 и Ввод №2 и одного автономного источника Ввод №3 ДГУ. При наличии напряжения на обоих сетевых вводах № 1,2 питание на нагрузки поступает через рубильники с моторизированным приводом.
При наличии нормального напряжения на обоих вводах АВР 1 и АВР2 подают команду на включение 4QS — 7QS в левом положении.
Питание с Ввода №1 на Нагрузку 1 поступает через рубильник 1QS, автоматический выключатель 1QF и далее последовательно через контакты реверсивного рубильника с моторным приводом 4QS, 6QS.
Питание с Ввода №2 на Нагрузку 2 поступает через рубильник 2QS, автоматический выключатель 2QF и далее последовательно через контакты реверсивного рубильника с моторным приводом 5QS, 7QS.
В этом случае питание нагрузки Выхода №2 происходит от рабочего Ввода №1. Первый АВР подает команду 5QS и он переводится в правое положение. Цепь прохождения питания Ввод №1 1QS, 1QF,5QS и далее как и при обычной работе 7QS, 5QF нагрузка Выхода №2.
Отсутствие напряжения на Вводе №1 работа подобная как и в предыдущем случае, за исключением 4QS переводится в другое положение.
Отсутствие напряжения на Вводах №1, №2.
При отсутствии напряжения на обоих рабочих вводах, через время задержки Т1 подается команда на запуск ДГУ. После появления нормального напряжения на Вводе №3 через время задержки Т2 срабатывает АВР №2 и переключает питание нагрузок Выходов №1 и№2 от ДГУ, подается команда на переключение 6QS, 7QS в правое положение. Работа от ДГУ продолжается до тех, пор пока на вводах 1,2 или вводе 1(2) не появится нормальное напряжение — переключение происходит в обратном порядке: подается команда «СТОП» ДГУ, переключаются 6QS, 7QS в левое положение, а 4QS и 5QS в зависимости от того, на каком вводе (вводах) нормальное напряжение.
Реверсивные рубильники с моторным приводом типа ОТМ производства АВВ или Socomec.
Преимущества схемы: наличие механической блокировки между всеми вводами.
  Схема АВР на три ввода СХЕМА №14.На рисунке АВР на 8 контакторах выше приведено решение похожее на схему №13, но вместо рубильников с моторным приводом применены контакторы. Схема АВР на 80А собрана на восьми контакторах, на три ввода, между парами контакторов установлена механическая блокировка.
Схема позволяет обеспечить защиту от встречного включения вводов во всех вариантах питания, управление контроллером Zelio, коммутирующие элементы — контакторы Шнайдер Электрик:
1. При работе от двух сетевых вводов.
2. Работа обеих нагрузок от одного сетевого ввода, а при восстановлении второго сетевого ввода переключение питания соответственно от своего ввода (в исходное каждая нагрузка подключается к своему вводу).
3. При работе нагрузки №1 и №2 от ДГУ, а с появлением сетевого ввода (вводов) происходит переключение питания от сети.
Схема, изображённая выше, аналогична предыдущей, за исключением автоматических выключателей на вводах. В данном случае используется распределение нагрузки между четырьмя автоматами (QF1,QF2,QF4,QF5), что позволит использовать аппараты с меньшими номиналами. Схема АВР управление от ДЭС СХЕМА №16. Данная схема предлагается АВР управление от ДЭС к применению производителями дизельных генераторных установок, подобные схемы можно увидеть в технической документации на станцию. Суть предназначения этой схемы в следующем:
Если установка ДГУ (ДГА) поставляется на объект который запитан с одного ввода, а в случае неполадок на вводе автоматически включается ДГУ (по желанию заказчика) и по команде с контроллера происходит включение питания от ДГУ, при восстановлении нормального напряжения на основном вводе, питание переключается обратно на основной ввод, ДГУ останавливается.
РАБОТА схемы: для проверки напряжение сетевого ввода поступает на контроллер ДГУ, в случае неполадок с сетевым трехфазным напряжением, с контроллера подается команда на отключение контактора КС и на запуск ДГУ, после выхода на нормальный режим дизельной станции, по команде с контроллера ДГУ включается контактор КГ, питание нагрузки осуществляется от автономного агрегата. Для защиты от перегрузок служат автоматические выключатели. К клеммам подключаются цепи автоматики ДГУ. Имеются схемы и с применением 4-х полюсных контакторов.
Существенным недостатком схемы можно считать то, что при неисправном ДГУ или находящемся на техническом обслуживании (и в других случаях) — АВР не работает, на нагрузку не поступает напряжение от сетевого ввода, что вызовет недовольство потребителя.
Решение: для исключения указанного недостатка схему необходимо доработать, дополнительно ввести ручной режим (установить переключатель и желательно еще РКН по Вводу №1).

Схема ВРУ с АВР и ДГУ

Схема АВР два ввода и ДЭС СХЕМА №17.Особенности схемы: маломощный ДГУ не в состоянии обеспечить полную нагрузку, а только часть.
В схеме имеется два основных равнозначных ввода, при пропадании обеих вводов запускается дизельная станция, её нагрузочная способность составляет 25 кВт.
Работа схемы управления:
Питание осуществляется от одного из основных вводов Ввод №1 или Ввод №2, через контакторы КМ1 (КМ2) и КМ3. В случае пропадания напряжение на Вводе №1 АВР переключает питание от Ввода №2, (включает контактор КМ2) и наоборот. При аварийном состоянии обеих вводов (контакторы КМ1, КМ2 и КМ3 обесточены и находятся в выключенном состоянии) через время задержки Т1 подается команда на запуск ДГУ. После выхода на рабочий режим дизельной установки, через время задержки Т2 включается контактор КМ4, контактор КМ3 остается в выключенном состоянии, питание подается на приоритетные нагрузки.
В схеме напряжение с вводов сначала подается через рубильники QS1, QS2 и далее через контакторы на общую нагрузку. С общего выхода напряжение поступает через автоматический выключатель к потребителям через свои автоматические выключатели. При такой схеме, необходимо, чтобы перед рубильниками QS 1-2 находились защитные автоматические выключатели (либо в вышестоящем щите).
Для учета электрической энергии предусмотрены электрические счетчики устанавливаемые на оба основных ввода. Контроль входного напряжения и потребляемого тока осуществляется вольтметрами и амперметрами, вольтметры с переключателем для измерения по фазно линейного и фазного напряжений. АВР с ВРУ АВР и ВРУ

На фото показан исполненный по вышеуказанной схеме электрический щит.
1. На левой фотографии общий вид ВРУ с АВР: на панели расположены контрольные приборы с переключателями, лапы сигнализации. На левой половине шкафа в верхнем ряду находятся амперметры для измерения контроля тока нагрузки от сетевых вводов 1 и 2, вольтметры для измерения напряжения 1 и 2 вводов.
В верхнем ряду вольтметр (под ним переключатель) для контроля напряжения от ДГУ, для измерения тока потребляемого от ДГУ амперметры в каждой фазе.
Ниже расположены лампы индикации состояния вводов АВР, переключатель режима работы и выбора ввода в ручном режиме, переключатель отключения цепи запуска ДГУ.

Секция ВРУ и АВР АВР

2. На втором и третьем снимке показан монтаж внутри шкафа, пластроны защиты от поражения электрическим током, слева вверху оставлено место для установки счетчика электроэнергии.

Схема АВР с ДЭС СХЕМА №18.Схема АВР с одним основным вводом (QS1) Ввод от ЩАВР1 и с питанием от автономного источника Ввод ДГУ (QS2). При этом должны быть вышестоящие защитные аппараты (автоматические выключатели, предохранители).
Через QS1 и защитный автоматический выключатель SF1 напряжение от сети (основной ввод) подается на KV1, если имеется напряжение и оно в норме, то срабатывает KV1, подает сигнал в схему ДГУ, что напряжение сетевое в норме, при отсутствии сигнала, цепь запуска ДГУ замкнута, тем самым самым запускается ДГУ и при достижении нормального напряжения поступает через включенный QS2, контакты КМ2 на нагрузку через автоматы QF1 и QF2.
В схеме автоматики (напряжение от сети отсутствует) напряжение от ДГУ через QS2, SF2 поступает на реле времени KT1, через время задержки Т замыкается контакт KT1.1 и включается контактор КМ2, тем самым напряжение поступает на нагрузку на автоматы QF1,QF2. Зажигается лампа HL2- Генератор. Схема АВР  на два ввода с ДЭС СХЕМА №19. В данной схеме два основных ввода и ввод от автономного источника питания.
Между вводом №1 и Вводом №2 устанавливается механическая блокировка.
В этом решении отсутствует механическая блокировка между основными вводами и ДГУ.
Работа схемы: При наличии нормального напряжения на Вводе №1 или Вводе №2 напряжение поступает через контакты КМ1 или КМ2 (зависит от АВР — имеется ли приоритет ввода, или где раньше появилось напряжение на каком вводе).
В случае пропадания напряжения на основных вводах, через время Т2, подается сигнал на запуск ДГУ, оно запускается и после выхода на режим (необходимо определенное время) и появления нормального напряжения через КМ3 подает напряжение на нагрузку. Схема АВР  на три ввода и  ДЭС СХЕМА №20. Схема рассчитана на четыре ввода: три основных ввода и ввод от ДЭС, механической блокировки между вводами нет. Для уменьшения размеров и стоимости устанавливаются автоматические выключатели с моторным приводом.
1. На структурной схеме показан пример АВР с общей нагрузкой, к выходу которого подключаются три отходящих фидера.
2. В данной схеме ДГУ должен обеспечивать полную мощностью потребляемой нагрузки, в примере потребляемый ток 160А, поэтому ток автоматических выключателей на каждом вводе одинаков.
3. При необходимости устанавливаются электрические счетчики нужного типа.
4. Управление работой моторных приводов осуществляется программируемым контроллером, при этом необходимо учитывать, что между включениями и отключениями делается некоторая задержка по времени, что позволит увеличить надежность работы данной схемы.
5. Команда на запуск и остановку ДГУ подается с контроллера, при пропадании напряжения на основных вводах, при восстановлении напряжения происходит переключение на основной ввод.
6. Для уменьшения количества электрических связей данные мониторинга могут передаваться по протоколу MODBUS через интерфейс RS-485 и выводиться на ПК, но при этом можно реализовать и по другому передачу информации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *