Сетевой фильтр схема электрическая принципиальная – Сетевой фильтр для компьютера схема – Как сделать сетевой фильтр своими руками — Интернет-магазин инструмента. — yato-tools.ru. Электротовары и инструмент.

схема, видео, инструкция по сборке

Для подключения компьютера и периферии к электросети обычно потребуется большое количество розеток. При этом работа блока питания компьютера, монитора, аудиосистемы и других устройств имеет импульсный характер. Такие потребители могут портить качество питающей электросети, насыщая её ненужными гармониками, которые могут мешать работе других устройств, подключенных к ней. Особо чувствительными к качеству питающей сети являются телевизоры, мониторы, зарядки для телефонов и вычислительная техника. Кроме помех в сети могут присутствовать всплески напряжения и тока, которые также могут повредить дорогостоящую аппаратуру. Для решения всех этих проблем рекомендуется подключать устройства через сетевой фильтр. Однако его стоимость может серьезно ударить по карману, особенно если необходимо приобрести несколько приборов в разные места, поэтому домашних умельцев интересует вопрос, можно ли собрать его самостоятельно. В этой статье мы как раз и расскажем читателям сайта https://samelectrik.ru, как сделать сетевой фильтр своими руками и какие материалы для этого понадобятся.

Конструкция

Прибор напоминает по своему виду удлинитель с кнопкой выключения, отчасти это так, но кроме колодки с розетками дополнительно расположены и фильтрующие элементы. Они как раз и нужны для защиты от скачков напряжения, фильтрации помех и паразитных гармоник.

В самом простом сетевом фильтре внутри стоит только варистор. Это полупроводниковый прибор, который при превышении определенного напряжения превращается в резистор, уходит в короткое замыкание. Вследствие этого, может сработать автоматический выключатель, установленный у вас дома, или, если импульс короткий, то его энергия рассеется варистором в виде тепла. Этот элемент применяют в сетевых фильтрах и блоках питания для защиты от всплесков высокого напряжения. В зависимости от типа варистора он может погасить импульсы разной величины.

Варисторы

Такой вариант исполнения на варисторе самый дешевый, однако кроме всплесков напряжения, он ни от чего не защищает и не фильтрует. Помехи продолжают сочиться в сеть и мешать окружающей и запитанной аппаратуре.

Для фильтрации высокочастотных гармоник широко применяются L, LC и RLC- фильтры, которые также могут быть установлены в сетевом фильтре.

Кроме таких вариантов встречаются еще и модели, где сетевой шнур проходит через ферритовое кольцо, или делает вокруг него пару витков. По сути — это еще один L (индуктивный) элемент, который нужен для фильтрации высокочастотной составляющей помехи.

Сетевой фильтр своими руками

Схема простейшего фильтра состоит из выключателя и варистора, вот как она выглядит:

Схема простейшего сетевого фильтра

V1 – это и есть варистор, его маркировка «471», значит, что его напряжение срабатывания 470В, при этом чем больше его диаметр, тем большую энергию он сможет погасить не взорвавшись при этом. Таким образом, чем больших размеров варистор вы поставите, тем лучше, лишь бы он влез по габаритам. Вот пример сетевого фильтра, собранного по этой схеме, но в заводском исполнении. Это дешевый прибор, который гасит лишь импульсы высокого напряжения. При этом он может безвозвратно выйти из строя при особо сильном всплеске.

Заводской фильтр

Чтобы ваш сетевой фильтр еще и действительно был фильтром помех, необходимо добавить еще один фильтрующий элемент – дроссель.

Схема с дросселем

Схемы – это, конечно, хорошо, но как сделать сетевой фильтр из подручных средств? Достаточно просто! Почти всегда у любителя что-нибудь мастерить, можно найти старый ненужный или нерабочий блок питания, в нём есть такой фильтр на входе. Осталось только его выпаять. На фото он стоит в ближнем к нам углу платы. Эта деталь представляет собой ферритовый сердечник и медную лакированную проволоку, намотанную вокруг него.

Блок питания

Это дроссель с двумя обмотками, через одну из них проходит фаза, а через другую ноль, таким образом индуктивность входит в состав сетевого фильтра и снижает уровень помех.

Сетевой фильтр на плате

Кстати блок питания может работать и без него, многие китайцы так и делают свои товары, часто это встречается в дешевых БП для компьютера и не только. Из-за этого в сети и возникает такое большое количество нежелательных помех.

Если вы не нашли такого элемента в своих запасах – можно поискать ферритовое колечко с магнитной проницаемостью 400-2000 НМ и обмотать медной лакированной проволокой ПЭВ-2 (можно использовать первичную обмотку с 50 Гц сетевого трансформатора) диметром от 0,5 мм, это зависит от мощности нагрузки, которую вы хотите подключать. Намотать на колечко так, как показано на картинке, предварительно обмотав его несколькими слоями диэлектрика, например: изолентой, лакотканью, каптоновым скотчем.

Ферритовое кольцо

Используйте провод с качественным, не поврежденным лаковым покрытием. А после намотки для надежности покройте деталь несколькими слоями лака. Петельку на конце нужно разрезать, в идеале – сразу мотать двумя параллельными проводами.

Хорошая схема, которую легко сделать своими руками выглядит следующим образом:

Схема фильтра

А вот конкретный вариант его реализации «в железе». За основы взята пара фильтров от БП.

Самодельный сетевой фильтр

Конденсаторы лучше применять керамические или пленочные. Их можно также достать из блока питания, они часто там встречаются возле сетевого разъема в прямоугольном корпусе в виде параллелепипеда.

Конденсатор

Если есть ненужный БП можно просто отрезать часть платы с фильтром и использовать её. Вот пример на фото с указанием, что нужно отпилить для получения сетевого фильтра за пару минут. Только будьте осторожны и не перемкните металлическими опилками слои платы, это может привести к короткому замыканию. А готовое устройство обязательно поместите в токонепроводящий корпус для безопасности.

Нужная часть платы

И вот еще один вариант схемы для повторения. Именно она и используется во множестве блоков питания стандарта ATX:

Схема сборки сетевого фильтра

Сетевой фильтр – полезное и простое устройство, которое не сложно сделать самому в домашних условиях. А если учесть, что у многих есть несколько ненужных, неработоспособных приборов, то выходит, что запчасти буквально валяются у нас под ногами. Поэтому изготовление устройства, которое может продлить или даже спасти жизнь дорогостоящей аппаратуре, является очень выгодным занятием. Напоследок рекомендуем просмотреть несколько интересных видео-инструкций по сборке самодельного сетевого фильтра:

Материалы по теме:

Сетевой фильтр с индикацией подключения фазы | РадиоГазета

Сетевой фильтрАвтор: главный редактор «РадиоГазеты».

Идея написать небольшую статью родилась у меня после прочтения январского номера за 2014 год журнала «AV-салон». В нём есть публикация о шведской фирме

PRIMARE. Её продукция(в основном аудио-направленности: усилители, ресиверы, CD-проигрыватели и т.п.) отличается продуманным дизайном, высоким качеством и, разумеется, ценой.

Я не пользовался продукцией этой фирмы, поэтому ничего плохого о ней сказать не могу…

Немного удивил один момент. Позволю небольшую цитату из столь авторитетного издания:

«Внимание к мелочам — конёк Primare. Много ли производителей техники уделяют внимание такому вопросу, как правильное включение сетевых вилок? При подключении силового кабеля к усилителям рекомендуется ориентироваться на метку, которой обозначен фазовый контакт. В этом случае, говорится в описании, уменьшается вероятность возникновения помех и фона. от себя могу добавить, что фазировка влияет на звуковое разрешение, и на построение звуковой сцены.»

И приводится фотография (извиняюсь за качество):

Фазировка сетевой вилки

Ну, то что правильная фазировка сетевой вилки действительно важна, спорить, наверное, никто не будет? Но зачем создавать пользователям столько неудобств? Сомневаюсь, что у каждого аудиофила есть под рукой пробник-индикатор, чтобы проверить, где в розетке фаза. Можно, конечно, и методом прослушивания определить наиболее оптимальное подключение. Но на дворе 21 век и существенно упростить пользователям жизнь большого труда не составляет.

Предлагаю вам, уважаемые читатели, снабдить ваши усилители, ЦАПы и другие устройства простым блоком, который расширит сервисные функции и существенно облегчит правильную фазировку аппаратов. Схема совмещает в себе фильтр от ВЧ-помех и индикатор подключения фазы. Наверное, не стоит объяснять о необходимости фильтрации сетевого напряжения от ВЧ-помех, когда практически любой аппарат включаемый в розетку имеет блок питания с высокочастотным преобразователем, начиная от телевизоров и мониторов и кончая тривиальной зарядкой для мобильника.

Напомню, что современные фильтры проектируются с расчётом на подавление двух составляющих помех: синфазной и дифференциальной составляющей. Синфазное напряжение помехи измеряется относительно корпуса устройства с каждым из полюсов шин питания. Дифференциальная составляющая измеряется между полюсами шин питания (фазой и нейтралью) или как разность синфазных составляющих помехи между шинами питания.

Кроме подавления помех входной фильтр выполняет также защитную функцию в аварийных режимах эксплуатации: защита по току и защита от перенапряжения. Для этого в них устанавливают предохранители и варисторы (последние сейчас как-то редко стали встречаться).

Обязательным условием эффективной работы фильтра является наличие на его входе и выходе конденсаторов. Тем самым обеспечивается ёмкостной характер входного и выходного сопротивления, что способствует ослаблению влияния подводящих линий или нагрузки на  уровень действующих помех.

Схема фильтра заимствована из компьютерного блока питания. Причём чаще всего встречаются простые фильтры:

сетевой фильтр

Такие же фильтры, только выполненные на менее мощных деталях, используются и в маломощных устройствах: мониторах, DVD-плеерах, зарядных устройствах и т.п. Такой фильтр подавляет как синфазные так и дифференциальные составляющие помехи. Резистор R1 нужен для разряда конденсаторов фильтра при отключении от сети, во избежание поражения электрическим током.

В своих конструкциях вы можете использовать детали от неисправных компьютерных блоков питания. На фото эти детали обведены красным цветом:

Сетевой фильтр от помех

Для маломощных устройств (предварительные усилители, эквалайзеры, ЦАПы и т.п.) можно использовать детали от неисправных блоков питания мониторов:

Сетевой фильтр от помех

или от неисправного DVD-плеера или других маломощных устройств:

Сетевой фильтр от помех

В некоторых китайских поделках из экономии фильтрующие конденсаторы не устанавливают, а помехоподавляющие дросселя заменяют перемычками:

Сетевой фильтр от помех

Понятно, что для нас от таких устройств нет никакой пользы.

В фирменных, качественных блоках питания иногда применяют более сложные фильтры для повышения качества подавления дифференциальной составляющей помехи:

сетевой фильтр вч-помех

Конструктивно такой фильтр легко определить по двум фильтрующим дросселям:

фильтр компьютерного БП

Обращаю внимание, что очень часто входные элементы фильтра, такие как конденсатор С1 и резистор R1, а также дополнительные конденсаторы С2 и С3, устанавливаются не на общей печатной плате, а монтируются непосредственно на выводах сетевого разъёма и предохранителе.

Выглядит это примерно так:

Фильтр вч-помех

Эти детали, смонтированные навесом, лучше тоже перенести в свою конструкцию.

Теперь добавим в сетевой фильтр индикацию подключения фазы. На примере простого фильтра:

индикатор включения фазы

Увеличение по клику

HL1 — это двухцветный светодиод (трёхвыводной) с общим общим катодом. Можно использовать например L-53SRSGW или аналогичные.

 

Расшифровка индикации
Цвет свеченияСостояние
Зелёныйфаза подключена правильно
Красныйпоменяйте включение вилки в розетки
Оранжевыйотсутствует заземление или нет контакта с заземлением.

Если светодиод использовать как индикатор включения питания, то получится очень информативно.

НО! Обращаю ваше особое внимание на необходимость надежной изоляции светодиодов в виду того, что они имеют гальваническую связь с электросетью.

Пожалуй, наиболее удобным и безопасным будет монтаж всей конструкции на печатной плате. Чертеж не приводится, так как детали из «донорских» блоков питания могут быть весьма различными.

Максимальная мощность нагрузки такого фильтра определяется мощностью дросселя L1 (и L2, если вы используете сложный фильтр). Поэтому ищите подходящего по мощности донора или мотайте дроссель сами проводом соответствующего диаметра.

При размещении конструкции в корпусе усилителя следует обратить особое внимание на её надежную изоляцию. С целью уменьшения помех и повышения эффективности фильтра следует  минимизировать длину подводящих и выходных проводников.

Определить правильное подключение фазы можно :

1. На слух. Из двух положений сетевой вилки выбираем то, которому соответствует минимальный уровень шумов и фона усилителя. Светодиод распаиваем так, чтобы светился зелёным.

2. Конструктивно. Как показывает практика, правильное включение, это когда фаза подается на начало обмотки силового трансформатора. У трансформаторов со стержневыми сердечниками начало обмотки — это вывод расположенный ближе к центральному стержню сердечника, у тороидальных аналогично — вывод, который ближе к сердечнику, выходящий из «глубин» намотки. Если есть сомнения или трансформатор залит компаундом, и определить начало обмотки проблематично — тогда только на слух.

Удачного творчества!

Главный редактор «РадиоГазеты».

Похожие статьи:


Схемы сетевых фильтров Pilot


Схемы сетевых фильтров Pilot

  Фильтры предназначены для защиты цепей электропитания компьютеров, перифери и другой электронной аппаратуры от следующих неблагоприятных факторов: импульсных перенапряжений и выбросов тока, возникающих в результате коммутации и работы промышленного оборудования, высокочастотных помех, распространяющихся по сетям электропитания, импульсных перенапряжений, возникающих в результате грозовых разрядов.

Pilot L

Технические данные: Номинальное напряжение/частота 220 В/50-60 Гц Суммарная мощность нагрузки 2,2 кВт Номинальный ток нагрузки 10А Ослабление импульсных помех: Импульсы 4 кВ, 5/50 нс, не менее 10 раз Импульсы 4 кВ, 1/50 мкс, не менее 4 раз Ток помехи, выдерживаемый ограничителем, не менее 2,5 кА Макс. поглощаемая энергия 80 Дж Уровень ограничения напряжения при токе помехи 100 А 700 В Потребляемая мощность(не более) 2 ВА Ослабление высокочастотных помех 0,1 МГц 5 дБ 1 МГц 10 дБ 10 МГц 30 дБ

Pilot Pro

Технические данные: Номинальное напряжение/частота 220 В/50-60 Гц Суммарная мощность нагрузки 2,2 кВт Номинальный ток нагрузки 10А Ослабление импульсных помех: Импульсы 4 кВ, 5/50 нс, не менее 30 раз Импульсы 4 кВ, 1/50 мкс, не менее 6 раз Ток помехи, выдерживаемый ограничителем, не менее 8 кА Макс. поглощаемая энергия 300 Дж Уровень ограничения напряжения при токе помехи 100 А 600 В Потребляемая мощность(не более) 15 ВА Ослабление высокочастотных помех 0,1 МГц 20 дБ 1 МГц 40 дБ 10 МГц 20 дБ


Источник: shems.h2.ru

Сетевые фильтры Pilot и APC. Схемы

материалы в категории

Схемы сетевых фильтров Pilot и APC

Сетевой фильтр предназначен для защиты цепей электропитания компьютеров, перифери и другой электронной аппаратуры от импульсных перенапряжений и выбросов тока, возникающих в результате коммутации и работы промышленного оборудования высокочастотных помех, распространяющихся по сетям электропитания импульсных перенапряжений, возникающих в результате грозовых разрядов.

Схема сетевого фильтра Pilot L

 

Технические данные сетевого фильтра Pilot L


Номинальное напряжение/частота………………………220 В/50-60 Гц
Суммарная мощность нагрузки…………………………2,2 кВт
Номинальный ток нагрузки……………………………10А
Ослабление импульсных помех
Импульсы 4 кВ, 5/50 нс……………………………..не менее 10 раз
Импульсы 4 кВ, 1/50 мкс…………………………….не менее 4 раз
Ток помехи, выдерживаемый ограничителем………………не менее 2.5 кА
Макс. поглощаемая энергия…………………………..80 Дж
Уровень ограничения напряжения при токе помехи 100 А…..700 В
Ослабление высокочастотных помех
0,1 МГц…………………………………………..5 дБ
1 МГц…………………………………………….10 дБ
10 МГц …………………………………………..30 дБ
Потребляемая мощность(не более)……………………..2 ВА

Схема сетевого фильтра Pilot Pro


 Технические данные сетевого фильтра Piliot Pro


Номинальное напряжение/частота………………………220 В/50-60 Гц
Суммарная мощность нагрузки…………………………2,2 кВт
Номинальный ток нагрузки……………………………10А
Ослабление импульсных помех
Импульсы 4 кВ, 5/50 нс……………………………..не менее 30 раз
Импульсы 4 кВ, 1/50 мкс…………………………….не менее 6 раз
Ток помехи, выдерживаемый ограничителем………………не менее 8 кА
Макс. поглощаемая энергия…………………………..300 Дж
Уровень ограничения напряжения при токе помехи 100 А…..600 В
Ослабление высокочастотных помех
0,1 МГц…………………………………………..20 дБ
1 МГц…………………………………………….40 дБ
10 МГц …………………………………………..20 дБ
Потребляемая мощность(не более)……………………..15 ВА

фильтр сетевой APC E25-GR схема

Основное отличие фильтра: вместо конденсатора [1мкФ 250В] установлен конденсатор [0,33мкФ 275В].
В качестве сердечника у катушек вместо воздуха используется ферритовый стержень, у каждой катушки свой. Оси катушек взаиморасположены под углом 90 градусов. Уменьшение емкости — в 3 (три !) раза меньше потребляемая мощность в сравнении с Pilot Pro. Ещё добавили схему детектора защитного заземления.

Основные технические данные сетевого фильтра APC E25-GR


Номинальное напряжение/частота………………………220-240V ,50-60 Гц
Суммарная мощность нагрузки…………………………2,2 кВт
Номинальный ток нагрузки……………………………10А
Пропускаемое напряжение 
(режим “фаза – ноль” при напряжении 6 кВ – 
категория А, тест кольцевой волны)………………….<15%
Ток помехи, выдерживаемый ограничителем………………не менее 40кА
Макс. поглощаемая энерги ( один 10х 100мкс импульс)……1400Дж
Уровень ограничения напряжения при токе помехи 100 А…..600 В
Фильтрация радиочастотных и электромагнитных помех
(режим “фаза – ноль”, 100 кГц-10 МГц)………………..20-70 дБ
Потребляемая мощность(не более)……………………..6 ВА

Схема сетевого фильтра | Микросхема

Сетевые фильтры стали неотъемлемым обязательным аксессуаром оргтехники и некоторой бытовой техники и приборов. Вообще сетевой фильтр, прежде всего, должен представлять собой устройство, которое призвано защищать цепи питания компьютеров, периферии и другой электронной аппаратуры от ВЧ и импульсных помех, скачков напряжения, возникающих в результате коммутации и работы промышленного оборудования. Это основные задачи устройств, носящих название сетевой фильтр. Как бы он ни выглядел, в какой бы корпус его ни запихал производитель, какой бы прочей эргономичности не придумали, главное, чтобы все это внешнее изящество не затмило основных задач. А сегодня можно наблюдать, к сожалению, совершенно иную картину. Производители подобных устройств не задумываются об их функциях, берут простейшую электрическую схему сетевого фильтра, состоящую из двух дросселей и двух конденсаторов, суммарная стоимость которых копейки и камуфлирует это под красивый дизайн. Для примера:

Или:

Причем стоимость такого аксессуара под названием сетевой фильтр немаленькая. В итоге, мы покупаем обычный сетевой удлинитель в красивой обертке. При всем этом показатель цены, что якобы, чем дороже, тем лучше и качественней, в данной ситуации значения не имеет. Этим введением мы хотим показать и раскрыть суть вопроса о сетевых фильтрах. Отчасти это ещё и ответ на комментарий уважаемого радиолюбителя в публикации простейшей схемы сетевого фильтра. Конечно, мы согласны, что начинка очень даже влияет на стоимость. Но всё дело в нерадивых производителях сетевых фильтров, которые не хотят «заморачиваться» над их содержимым, не пытаются разрабатывать принципиально новые электрические схемы для улучшения эффективности. Поэтому многие опытные радиолюбители для ежедневных нужд проектируют схемы сетевых фильтров сами. И качество получается на высоте, и надёжность, и собираются в основном из подручных радиокомпонентов, что сводит затраты к минимуму, и приобретается дополнительный радиотехнический опыт. Также стоит заметить, что в большинстве случаев схемы сетевых фильтров входят в состав более сложных схем сетевых стабилизаторов напряжения, о которых мы неоднократно упоминали на страницах радиолюбительского сайта.

Сегодня мы опубликуем несколько электрических схем и их описаний, по которым вам не составит особого труда изготовить сетевой фильтр своими руками, по функциональности и характеристикам превосходящий покупной. На рисунке ниже приведена электрическая схема сетевого фильтра, предназначенного для защиты питаемого устройства от внешних помех (за это отвечает цепочка C3C4C5C7L1) и импульсных выбросов сети (варистор R5 с характеристическим напряжением 275 вольт). Приведенная схема также защищает сеть от помех, создаваемых питаемым устройством.

Дроссель L1 имеет индуктивность магнитосвязанных встречно включенных электрически изолированных половинок 5,6 мГн. Светодиод D4 светится в рабочем состоянии, а D2 – только при перегорании плавкого предохранителя F1. По сути, схема этого сетевого фильтра является модернизированным вариантом простейшей электрической схемы устройства.

Собранный по следующей схеме универсальный фильтр не пропускает высокочастотные сетевые помехи как в питающий прибор, так и обратно в электрическую сеть.

В фильтре используются конденсаторы С1…С4, С9…С12 — КПБ — 0,022 мкФ — 500 вольт, С5…С8, С13, С14 — КТП-3 — 0,015 мкФ — 500 вольт (керамические, красного цвета, с резьбой М8 — 0,75). Неоновая лампочка VL1 служит обычным индикатором работы. Дроссели Др1 и Др1′ намотаны обычным двойным сетевым проводом в изоляции на семи, сложенных вместе плоских ферритовых стержнях для магнитной антенны. Общее сечение магнитопровода 4,2 см2. Стержни плотно уложены друг на друга и обмотаны тремя слоями лакоткани. Поверх нее намотана обмотка, содержащая 7 витков провода. Получившийся элемент больше похож на проходной трансформатор, чем на дроссель. Дроссели Др2, Др2′ (на керамических стержнях диаметром 12 мм и длиной 115 мм до полного заполнения), Др3 и Др3′ (бескаркасные, содержат по 9 витков, намотаны с шагом для уменьшения межвитковой емкости и лучшей защиты от самых высокочастотных наводок на оправке диаметром 10 мм и длиной 41 мм) намотаны проводом ПЭВ-2 диаметром 1,5 мм. Максимальный ток для дросселей равен: Imax=d2 * плотность тока(4…6) / 1,28 = 1,52*4,5/1,28=7,91 ампер. Отсюда мощность равна P=220*7,91=1740 ватт. Конструктивно, что показано ниже на рисунке, сетевой фильтр собран в трех экранированных секциях, которые помещаются в металлический корпус 190х190х70 мм. Дроссели, находящиеся в соседних секциях, соединяются через проходные конденсаторы, установленные на вертикальных перегородках. Крепятся дроссели с помощью стоек из оргстекла толщиной 10 мм, в которых просверливают отверстия нужного диаметра.

Итак, с этим универсальным фильтром все, надеемся, понятно. Защита включает в себя и НЧ, и СЧ, и, наконец, ВЧ фильтрацию.

Далее рассмотрим знакомые большинству потребителей схемы сетевых фильтров Pilot. Они приведены ниже на рисунках.

Первая примитивная схема – Pilot L с максимальным током до 10 ампер.

Вторая схема более эффективная, от этого и соответствующее название сетевого фильтра производителем – Pilot Pro, максимальный ток которого также 10 ампер; но по существу тоже примитивная.

На последнем рисунке изображена электрическая схема фильтра APC E25-GR. Она идентична схеме Pilot Pro. Главное отличие в том, что вместо конденсатора 1 мкФ x 250 В установлен конденсатор 0,33 мкФ x 275 В и в качестве сердечника у катушек вместо воздуха используется ферритовый стержень. У каждой катушки свой. Оси катушек расположены под углом 90 градусов.

Также стоит сказать, что непосредственно в схемах самих блоков питания компьютера есть, хоть и примитивные, но все-таки сетевые фильтры, схемы которых как раз и копируют большинство нерадивых производителей.

Итак, кроме рассмотренной нами ранее универсальной (а пока только она, как вы, наверно, поняли, заслуживала внимания) мы вплотную подошли к эксклюзивной схеме сетевого фильтра. Функциональную схему работы устройства можно отразить на следующих диаграммах. Т.е. на них показано прохождение переменного тока через функциональные узлы и блоки фильтра, сглаживание посторонних разнородных помех и выделение на выход «чистого» напряжения.

Более детально это можно представить так:

Для реализации поставленных задач отлично справляются сетевые фильтры, собранные по схемам ниже:

Последний рассчитан для питания не только аналоговых приборов, но и цифровой техники.

В схемах можно применять варисторы типа CNR14D221 (S14K140) 220В, 60 Дж или JVR-14N221K (S14K140) 220В или FNR-14K221 220В, 40 Дж. В качестве катушек-дросселей можно применить вот такие уже готовые – скачать. В качестве конденсаторов подавления электромагнитных помех подойдут так называемые Y конденсаторы, которые подключаются между фазой и нейтралью, эффективны при подавлении асимметричной (дифференциальной) помехи.

Подытожим, что две последние, а также универсальная схема сетевого фильтра наиболее предпочтительны. В заключение для интереса приведу стандарты сети электропитания стран мира. Приведены значения напряжения и частоты бытовой электросети различных государств, а также показан внешний вид сетевых разъемов, применяемых для подключения электроприборов.

А вообще, если вы приобрели или собрали сетевой фильтр своими руками, проверить его эффективность можно, подключив к одной розетке, например, системный блок и радиоприёмник. Но до этого стоит проверить их «совместимость» без фильтра. Если при применении сетевого фильтра уровень помех, доносящихся из динамика радиоприемника, становится заметно меньше или вообще пропадает, то устройство выполняет свои непосредственные задачи. И напоследок. Если вы все-таки покупаете готовый сетевой фильтр, то обращайте внимание на устройства, прошедшие испытания по ГОСТ Р 53362-2009, который заменяет предыдущий ГОСТ Р 50745-99.

Обсуждайте в социальных сетях и микроблогах

Метки: полезно собрать

Радиолюбителей интересуют электрические схемы:

Стабилизатор сетевого напряжения
УНЧ на микросхеме TDA7293

Схема сетевого фильтра | Микросхема

Сетевые фильтры стали неотъемлемым обязательным аксессуаром оргтехники и некоторой бытовой техники и приборов. Вообще сетевой фильтр, прежде всего, должен представлять собой устройство, которое призвано защищать цепи питания компьютеров, периферии и другой электронной аппаратуры от ВЧ и импульсных помех, скачков напряжения, возникающих в результате коммутации и работы промышленного оборудования. Это основные задачи устройств, носящих название сетевой фильтр. Как бы он ни выглядел, в какой бы корпус его ни запихал производитель, какой бы прочей эргономичности не придумали, главное, чтобы все это внешнее изящество не затмило основных задач. А сегодня можно наблюдать, к сожалению, совершенно иную картину. Производители подобных устройств не задумываются об их функциях, берут простейшую электрическую схему сетевого фильтра, состоящую из двух дросселей и двух конденсаторов, суммарная стоимость которых копейки и камуфлирует это под красивый дизайн. Для примера:

Или:

Причем стоимость такого аксессуара под названием сетевой фильтр немаленькая. В итоге, мы покупаем обычный сетевой удлинитель в красивой обертке. При всем этом показатель цены, что якобы, чем дороже, тем лучше и качественней, в данной ситуации значения не имеет. Этим введением мы хотим показать и раскрыть суть вопроса о сетевых фильтрах. Отчасти это ещё и ответ на комментарий уважаемого радиолюбителя в публикации простейшей схемы сетевого фильтра. Конечно, мы согласны, что начинка очень даже влияет на стоимость. Но всё дело в нерадивых производителях сетевых фильтров, которые не хотят «заморачиваться» над их содержимым, не пытаются разрабатывать принципиально новые электрические схемы для улучшения эффективности. Поэтому многие опытные радиолюбители для ежедневных нужд проектируют схемы сетевых фильтров сами. И качество получается на высоте, и надёжность, и собираются в основном из подручных радиокомпонентов, что сводит затраты к минимуму, и приобретается дополнительный радиотехнический опыт. Также стоит заметить, что в большинстве случаев схемы сетевых фильтров входят в состав более сложных схем сетевых стабилизаторов напряжения, о которых мы неоднократно упоминали на страницах радиолюбительского сайта.

Сегодня мы опубликуем несколько электрических схем и их описаний, по которым вам не составит особого труда изготовить сетевой фильтр своими руками, по функциональности и характеристикам превосходящий покупной. На рисунке ниже приведена электрическая схема сетевого фильтра, предназначенного для защиты питаемого устройства от внешних помех (за это отвечает цепочка C3C4C5C7L1) и импульсных выбросов сети (варистор R5 с характеристическим напряжением 275 вольт). Приведенная схема также защищает сеть от помех, создаваемых питаемым устройством.

Дроссель L1 имеет индуктивность магнитосвязанных встречно включенных электрически изолированных половинок 5,6 мГн. Светодиод D4 светится в рабочем состоянии, а D2 – только при перегорании плавкого предохранителя F1. По сути, схема этого сетевого фильтра является модернизированным вариантом простейшей электрической схемы устройства.

Собранный по следующей схеме универсальный фильтр не пропускает высокочастотные сетевые помехи как в питающий прибор, так и обратно в электрическую сеть.

В фильтре используются конденсаторы С1…С4, С9…С12 — КПБ — 0,022 мкФ — 500 вольт, С5…С8, С13, С14 — КТП-3 — 0,015 мкФ — 500 вольт (керамические, красного цвета, с резьбой М8 — 0,75). Неоновая лампочка VL1 служит обычным индикатором работы. Дроссели Др1 и Др1′ намотаны обычным двойным сетевым проводом в изоляции на семи, сложенных вместе плоских ферритовых стержнях для магнитной антенны. Общее сечение магнитопровода 4,2 см2. Стержни плотно уложены друг на друга и обмотаны тремя слоями лакоткани. Поверх нее намотана обмотка, содержащая 7 витков провода. Получившийся элемент больше похож на проходной трансформатор, чем на дроссель. Дроссели Др2, Др2′ (на керамических стержнях диаметром 12 мм и длиной 115 мм до полного заполнения), Др3 и Др3′ (бескаркасные, содержат по 9 витков, намотаны с шагом для уменьшения межвитковой емкости и лучшей защиты от самых высокочастотных наводок на оправке диаметром 10 мм и длиной 41 мм) намотаны проводом ПЭВ-2 диаметром 1,5 мм. Максимальный ток для дросселей равен: Imax=d2 * плотность тока(4…6) / 1,28 = 1,52*4,5/1,28=7,91 ампер. Отсюда мощность равна P=220*7,91=1740 ватт. Конструктивно, что показано ниже на рисунке, сетевой фильтр собран в трех экранированных секциях, которые помещаются в металлический корпус 190х190х70 мм. Дроссели, находящиеся в соседних секциях, соединяются через проходные конденсаторы, установленные на вертикальных перегородках. Крепятся дроссели с помощью стоек из оргстекла толщиной 10 мм, в которых просверливают отверстия нужного диаметра.

Итак, с этим универсальным фильтром все, надеемся, понятно. Защита включает в себя и НЧ, и СЧ, и, наконец, ВЧ фильтрацию.

Далее рассмотрим знакомые большинству потребителей схемы сетевых фильтров Pilot. Они приведены ниже на рисунках.

Первая примитивная схема – Pilot L с максимальным током до 10 ампер.

Вторая схема более эффективная, от этого и соответствующее название сетевого фильтра производителем – Pilot Pro, максимальный ток которого также 10 ампер; но по существу тоже примитивная.

На последнем рисунке изображена электрическая схема фильтра APC E25-GR. Она идентична схеме Pilot Pro. Главное отличие в том, что вместо конденсатора 1 мкФ x 250 В установлен конденсатор 0,33 мкФ x 275 В и в качестве сердечника у катушек вместо воздуха используется ферритовый стержень. У каждой катушки свой. Оси катушек расположены под углом 90 градусов.

Также стоит сказать, что непосредственно в схемах самих блоков питания компьютера есть, хоть и примитивные, но все-таки сетевые фильтры, схемы которых как раз и копируют большинство нерадивых производителей.

Итак, кроме рассмотренной нами ранее универсальной (а пока только она, как вы, наверно, поняли, заслуживала внимания) мы вплотную подошли к эксклюзивной схеме сетевого фильтра. Функциональную схему работы устройства можно отразить на следующих диаграммах. Т.е. на них показано прохождение переменного тока через функциональные узлы и блоки фильтра, сглаживание посторонних разнородных помех и выделение на выход «чистого» напряжения.

Более детально это можно представить так:

Для реализации поставленных задач отлично справляются сетевые фильтры, собранные по схемам ниже:

Последний рассчитан для питания не только аналоговых приборов, но и цифровой техники.

В схемах можно применять варисторы типа CNR14D221 (S14K140) 220В, 60 Дж или JVR-14N221K (S14K140) 220В или FNR-14K221 220В, 40 Дж. В качестве катушек-дросселей можно применить вот такие уже готовые – скачать. В качестве конденсаторов подавления электромагнитных помех подойдут так называемые Y конденсаторы, которые подключаются между фазой и нейтралью, эффективны при подавлении асимметричной (дифференциальной) помехи.

Подытожим, что две последние, а также универсальная схема сетевого фильтра наиболее предпочтительны. В заключение для интереса приведу стандарты сети электропитания стран мира. Приведены значения напряжения и частоты бытовой электросети различных государств, а также показан внешний вид сетевых разъемов, применяемых для подключения электроприборов.

А вообще, если вы приобрели или собрали сетевой фильтр своими руками, проверить его эффективность можно, подключив к одной розетке, например, системный блок и радиоприёмник. Но до этого стоит проверить их «совместимость» без фильтра. Если при применении сетевого фильтра уровень помех, доносящихся из динамика радиоприемника, становится заметно меньше или вообще пропадает, то устройство выполняет свои непосредственные задачи. И напоследок. Если вы все-таки покупаете готовый сетевой фильтр, то обращайте внимание на устройства, прошедшие испытания по ГОСТ Р 53362-2009, который заменяет предыдущий ГОСТ Р 50745-99.

Обсуждайте в социальных сетях и микроблогах

Метки: полезно собрать

Радиолюбителей интересуют электрические схемы:

Стабилизатор сетевого напряжения
УНЧ на микросхеме TDA7293

Схема простого сетевого фильтра для бытовой техники

Что-то не так?
Пожалуйста, отключите Adblock.

Портал QRZ.RU существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Мы стараемся размещать только релевантную рекламу, которая будет интересна не только рекламодателям, но и нашим читателям. Отключив Adblock, вы поможете не только нам, но и себе. Спасибо.

Как добавить наш сайт в исключения AdBlock

Сетевые фильтры стали неотъемлемым обязательным аксессуаром оргтехники и некоторой бытовой техники и приборов. Вообще сетевой фильтр, прежде всего, должен представлять собой устройство, которое призвано защищать цепи питания компьютеров, периферии и другой электронной аппаратуры от ВЧ и импульсных помех, скачков напряжения, возникающих в результате коммутации и работы промышленного оборудования.

 

Все источники питания, как для компьютера, так и для телевизоров защищены фильтром от резких бросков тока в сети. В быту обычно броски токов сети возникают от бытовых приборов: холодильника, СВЧ печи, пылесоса и т. д. Хоть источники имеют хорошую защиту, а всё равно выходят из строя. Особенно телевизоры и реже ПК. Причиной является, как ни странно, потеря ёмкости входного конденсатора фильтра номиналом 0.1мкФ. Эта проблема существует и в других устройствах.

 

Приведу несколько примеров из практики. Так работая электриком, выполнил монтаж двух десятков датчиков движения HR-S5 (схема на сайте www.cxem.info) и полсотни датчиков HR-S1. Ток вот датчики HR-S5 за год все вышли из строя по причине потери ёмкости конденсатора, выполняющий роль ограничителя тока. А датчики HR-S1 без единой поломки работают более пяти лет. Для ремонта датчиков нужно было снять конденсаторы с фильтров демонтированных телевизоров. Оказалось зря – они были или полупустые или полностью непригодны. Единичный случай был с очень крутым источником питания ПК. Источник был полностью залит массой. О каком- то ремонте и речи не могло быть. Владелец купил новый, а плохой дал мне для анализа. После нудного демонтажа источника – причина опять конденсатор фильтра.

 

Вывод однозначный – во всех случаях виною были конденсаторы, как в фильтрах, так и в ограничителях тока питания датчиков.

 

Как уберечь источник питания

 

Просто нужно проверить С1 фильтра без демонтажа, если имеется индикатор контроля конденсаторов (Радио No9, 1990г.), прямо на вилке сети. При необходимости добавить плёночный конденсатор 0.5мк х630В с тыльной стороны гнезда подключения сети. И последний вариант – приобрести или самому изготовить фильтр. Для этой цели можно применить розетку с выключателем. Выключатель убрать и на его место смонтировать фильтр. Готовый кольцо с намоткой лучше использовать от старых телевизоров или источника ПК. Можно самому изготовить дроссель на ферритовом кольце нужного диаметра марки 2000НМ или 3000НМ, намотав проводом диаметром не менее 0.5мм. Входной конденсатор 0.1мк ~275В или на 630В. С2 можно не ставить, если фильтр назначен для ПК или телевизора.

 


Комментарии

Отзывы читателей — Скажите свое мнение!

Оставьте свое мнение


Отзывы читателей — Скажите свое мнение!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *