Типовые схемы управления электроприводами с асинхронными двигателями
Типовые схемы релейно-контакторного управления асинхронными двигателями (АД) строятся по тем же принципам, что и схемы управления двигателями постоянного тока.
Типовые схемы управления ад с короткозамкнутым ротором
Двигатели этого типа малой и средней мощности обычно пускаются прямым подключением к сети без ограничения пусковых токов. В этих случаях они управляются с помощью магнитных пускателей, которые одновременно обеспечивают и некоторые виды их защиты.
Схема управления асинхронным двигателем с использованием магнитного пускателя (рис. 2.1) включает в себя магнитный пускатель, состоящий из контактора КМ и трех встроенных в него тепловых реле защиты КК. Схема обеспечивает прямой (без ограничения тока и момента) пуск двигателя, отключение его от сети, а также защиту от коротких замыканий (предохранители
Рис. 2.1. Схема управления АД с использованием
нереверсивного магнитного пускателя
Для пуска двигателя замыкают выключатель QF и нажимают кнопку пуска SВ1. Получает питание катушка контактора КМ, который, включившись, своими главными силовыми контактами в цепи статора двигателя подключает его к источнику питания, а вспомогательным контактом шунтирует кнопку SВ1. Происходит разбег двигателя по его естественной характеристике. Для отключения двигателя нажимается кнопка остановки
Реверсивная схема управления ад.
Основным элементом этой схемы является реверсивный магнитный пускатель, который включает в себя два линейных контактора КМ1 и КМ2 и два тепловых реле защиты КК (рис. 2.2). Схема обеспечивает прямой пуск и реверс двигателя, а также торможение противовключением при ручном (неавтоматическом) управлении.
Рис. 2.2. Схема управления АД с использованием реверсивного магнитного пускателя
В схеме предусмотрена защита от перегрузок двигателя (реле КК) и коротких замыканий в цепи статора (автоматический выключатель QF) и управления (предохранители FА). Кроме того, схема управления обеспечивает и нулевую защиту от исчезновения (снижения) напряжения сети (контакторы КМ1 и КМ2).
Пуск двигателя при включенном QF в условных направлениях «Вперед» или «Назад» осуществляется нажатием соответственно кнопок S
Для реверса или торможения двигателя вначале нажимается кнопка SВЗ, что приводит к отключению включенного до сих пор контактора (например, КМ1), после чего нажимается кнопка SВ2.
Это приводит к включению контактора КМ2 и подаче на АД напряжения источника питания с другим порядком чередования фаз. Магнитное поле двигателя изменяет свое направление вращения на противоположное, что приводит к началу процесса реверса. Этот процесс состоит из двух этапов: торможения противовключением и разбега в противоположную сторону.
В случае необходимости только торможения двигателя при достижении им нулевой частоты вращения должна быть вновь нажата кнопка SВЗ, что приведет к отключению двигателя от сети и возвращению схемы в исходное положение. Если кнопка SВЗ нажата не будет, то это приведет к разбегу двигателя в другую сторону, т.е. к его реверсу.
Во избежание короткого замыкания в цепи статора, которое может возникнуть в результате одновременного ошибочного нажатия кнопок SВ1 и SВ2, в реверсивных магнитных пускателях иногда предусматривается специальная механическая блокировка. Она представляет собой рычажную систему, которая предотвращает втягивание одного контактора, если включен другой. В дополнение к механической блокировке в схеме используется типовая электрическая блокировка, применяемая в реверсивных схемах управления. Она предусматривает перекрестное включение размыкающих контактов аппарата
Следует отметить, что повышению надежности и удобства в эксплуатации способствует использование в схеме воздушного автоматического выключателя QF. Его наличие исключает возможность работы привода при обрыве одной фазы, при однофазном коротком замыкании.
Схема управления многоскоростным АД.
Эта схема (рис. 2.3) обеспечивает получение двух скоростей двигателя путем соединения секций (полуобмоток) обмотки статора в треугольник или двойную звезду, а также его реверсирование. Защита электропривода осуществляется тепловыми реле КК1 и КК2 и предохранителями FА.
Рис. 2.3. Схема управления двухскоростным АД
Для пуска двигателя на низкую частоту вращения нажимается кнопка SВ4, после чего срабатывает контактор КМ2 и
После разбега двигателя до низкой частоты вращения может быть осуществлен его разгон до высокой частоты вращения. Для этого нажимается кнопка SВ5, что приведет к отключению контактора КМ2 и включению контактора
Остановка двигателя производится нажатием кнопки SВ3, что вызовет отключение всех контакторов от сети и торможение двигателя выбегом.
Применение в схеме двухцепных кнопок управления не допускает одновременного включения контакторов КМ1 и КМ2, КМ3 и КМ4. Этой же цели служит перекрестное включение размыкающих блок-контактов контакторов КМ1 и КМ2, КМ3 и КМ4 в цепи их катушек.
Схема управления АД, обеспечивающая прямой пуск и динамическое торможение в функции времени
Пуск двигателя осуществляется нажатием кнопки SВ1 (рис. 2.4), после чего срабатывает линейный контактор КМ, подключающий двигатель к источнику питания. Одновременно с этим замыкание контакта КМ в цепи реле времени КТ вызовет его срабатывание и замыкание его контакта в цепи контактора торможения КМ1. Однако последний не срабатывает, так как перед этим разомкнулся в этой цепи размыкающий контакт КМ.
Рис. 2.4. Схема управления пуском и динамическим торможением АД с короткозамкнутым ротором
Для остановки двигателя нажимается кнопка SВ2, Контактор КМ отключается, размыкая свои контакты в цепи статора двигателя и отключая тем самым его от сети переменного тока. Одновременно с этим замыкается контакт КМ в цепи аппарата КМ1 и размыкается контакт КМ в цепи реле КТ. Это приводит к включению контактора торможения КМ1, подаче в обмотки статора постоянного тока от выпрямителя V через резистор Rт и переводу двигателя в режим динамического торможения.
Реле времени КТ, потеряв питание, начинает отсчет выдержки времени. Через интервал времени, соответствующий времени останова двигателя, реле
Интенсивность динамического торможения регулируется резистором Rт, с помощью которого устанавливается необходимый постоянный ток в статоре двигателя.
Для исключения возможности одновременного подключения статора к источникам переменного и постоянного тока в схеме использована типовая блокировка с помощью размыкающих контактов КМ и КМ1, включенных перекрестно в цепи катушек этих аппаратов.
Типовые схемы управления АДс фазным ротором. Схемы управления двигателя с фазным ротором, которые рассчитаны в основном на среднюю и большую мощность, должны предусматривать ограничение токов при их пуске, реверсе и торможении с помощью добавочных резисторов в цепи ротора. За счет включения резисторов в цепь ротора можно также увеличить момент при пуске вплоть до уровня критического (максимального) момента.
Схема одноступенчатого пуска АД в функции времени и торможения противовключением в функции ЭДС
После подачи напряжения включается реле времени КТ (рис. 2.5), которое своим размыкающим контактом разрывает цепь питания контактора КМ3, предотвращая тем самым его включение и преждевременное закорачивание пусковых резисторов в цепи ротора.
Рис.2.5. Схема управления пуском и торможением противовключением АД с фазным ротором
Включение двигателя производится нажатием кнопки SВ1, после чего включается контактор КМ1. Статор двигателя подсоединяется к сети, электромагнитный тормоз YВ растормаживается, и начинается разбег двигателя. Включение КМ1 одновременно приводит к срабатыванию контактора КМ4, который своим контактом шунтирует ненужный при пуске резистор противовключения Rд2, а также разрывает цепь катушки реле времени КТ. Последнее, потеряв питание, начинает отсчет выдержки времени, после чего замыкает свой контакт в цепи катушки контактора КМ3, который срабатывает и шунтирует пусковой резистор Rд1, в цепи ротора, и двигатель выходит на свою естественную характеристику.
Управление торможением обеспечивает реле торможения KV, контролирующее уровень ЭДС (частоты вращения) ротора. С помощью резистора Rp, оно отрегулировано таким образом, что при пуске, когда скольжение двигателя 0 < s < 1, наводимая в роторе ЭДС будет недостаточна для включения, а в режиме противовключения, когда 1 < s < 2, уровень ЭДС достаточен для его включения.
Для осуществления торможения двигателя нажимается сдвоенная кнопка SВ2, размыкающий контакт которой разрывает цепь питания катушки контактора КМ1. После этого двигатель отключается от сети и разрывается цепь питания контактора КМ4 и замыкается цепь питания реле КТ. В результате этого контакторы КМ3 и КМ4 отключаются и в цепь ротора двигателя вводится сопротивление Rд1 + Rд2.
Нажатие кнопки SВ2 приводит одновременно к замыканию цепи питания катушки контактора КМ2, который, включившись, вновь подключает двигатель к сети, но уже с другим чередованием фаз сетевого напряжения на статоре. Двигатель переходит в режим торможения противовключением. Реле КV срабатывает и после отпускания, кнопки SВ2 будет обеспечивать питание контактора КМ2 через свой контакт и замыкающий контакт этого аппарата.
В конце торможения, когда частота вращения будет близка к нулю и ЭДС ротора уменьшится, реле КV отключится и своим размыкающим контактом разомкнет цепь катушки контактора КМ2. Последний, потеряв питание, отключит двигатель от сети, и схема придет в исходное состояние. После отключения КМ2 тормоз YВ, потеряв питание, обеспечит фиксацию (торможение) вала двигателя.
Схема одноступенчатого пуска АД в функции тока и динамического торможения в функции частоты вращения
Схема (рис. 2.6) включает в себя контакторы КМ1, КМ2 и КМ3; реле тока КА; реле контроля частоты вращения SR, промежуточное реле KV; понижающий трансформатор для динамического торможения Т; выпрямитель VD. Максимальная токовая защита осуществляется предохранителями FA1 и FA2, защита от перегрузки двигателя – тепловыми реле КК1 и КК2.
Рис. 2.6. Схема управления пуском и динамическим торможением АД с фазным ротором
Схема работает следующим образом. После подачи с помощью автоматического выключателя QFнапряжения для пуска двигателя нажимается кнопка SВ1, включается контактор КМ1, силовыми контактами которого статор двигателя подключается к сети. Бросок тока в цепи ротора вызовет включение реле тока КА и размыкание цепи контактора ускорения КМ2. Тем самым разбег двигателя начнется с пусковым резистором Rд2 в цепи ротора.
Включение контактора КМ1 приводит также к шунтированию кнопки SВ1, размыканию цепи катушки контактора торможения КМ3 и включению промежуточного реле напряжения КV, что, тем не менее, не приведет к включению контактора КМ2, так как до этого в этой цепи разомкнулся контакт реле КА.
По мере увеличения частоты вращения двигателя уменьшаются ЭДС и ток в роторе. При некотором значении тока в роторе, равном току отпускания реле КА, оно отключится и своим размыкающим контактом замкнет цепь питания контактора КМ2. Тот включится, зашунтирует пусковой резистор Rд2, и двигатель выйдет на свою естественную характеристику.
Следует отметить, что вращение двигателя вызовет замыкание контакта реле частоты вращения SR в цепи контактора КМ3, однако он не сработает, так как до этого разомкнулся контакт контактора КМ1.
Для перевода двигателя в тормозной режим нажимается кнопка SВ2. Контактор КМ1 теряет питание и отключает АД от сети переменного тока. Благодаря замыканию контактов КМ1 включится контактор торможения КМ3, контакты которого замкнут цепь питания обмотки статора от выпрямителя VD), подключенного к трансформатору Т, и тем самым двигатель переводится в режим динамического торможения. Одновременно с этим потеряют питание аппараты КV и КМ2, что приведет к вводу в цепь ротора резистора Rд2. Двигатель начинает тормозиться.
При частоте вращения двигателя, близкой к нулю, реле контроля частоты вращения SR разомкнет свой контакт в цепи катушки контактора КМ3. Он отключится и прекратит торможение двигателя. Схема придет в исходное положение и будет готова к последующей работе.
Принцип действия схемы не изменится, если катушку реле тока КА включить в фазу статора, а не ротора.
Схема Подключения Реверсивного Двигателя — tokzamer.ru
Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой — вместо нулевого фазный.
Переключение системы при противоположном вращении Задействовав клавишу SB2, направляем напряжение первой фазы в катушку, что относится к пускателю КМ1.
Требуемые компоненты Самостоятельное подключение двигателя для реверсивного вращения не вызовет особых сложностей, если руководствоваться приведенной схемой.
Реверсивная схема пускателя
На автомат приходит три разноименные фазы. Как отличить реверсивный пускатель от прямого Реверсивный пускатель — более сложное устройство.
Подобным способом система считается целиком готовой к работе.
Через установленное время срабатывает реле времени РТ.
В работе остаётся только рабочая обмотка. Схема реверса трехфазного двигателя в однофазной сети Так как трехфазному асинхронному двигателю будет недоставать двух фаз, их нужно компенсировать конденсаторами — пусковым и рабочим, на которые коммутируют обе обмотки.
Если напряжение катушки В, а двигателя при соединении в звезду В, то данную схему употреблять нельзя, а можно применить с нейтральным проводником, а если в обмотки двигателя соединены треугольником В , то данная система вполне жизнеспособна.
Как подключить реверс двигателя от стиральной машины к 220 легко
Схема реверса с описанием подключения
Практически любой электродвигатель можно заставить вращаться как в одну, так и в другую сторону. Это часто необходимо, особенно при конструировании различных механизмов, например, систем закрывания и открывания ворот. Обычно на корпусе двигателя указывается заводское направление движения вала, которое считается прямым. Кручение в другую сторону в этом случае будет реверсивным.
Что такое реверс
Проще говоря, реверс – это изменение направления движения какого-либо механизма в противоположную сторону от выбранного основного. Схему реверса можно получить несколькими способами:
- Механическим
- Электрическим.
В первом случае при помощи переключения шестеренчатых связей, соединяющих ведущий вал с ведомым, добиваются вращения последнего в обратную сторону. По такому принципу работают все коробки передач.
Электрический способ подразумевает непосредственное воздействие на сам двигатель, где в изменении движения ротора принимают участие электромагнитные силы. Этот метод выигрывает тем, что не требует применения сложных механических преобразований.
Для того, чтобы получить реверс электродвигателя, необходимо собрать специальную электрическую схему, которая так и называется – схема реверса двигателя. Она будет отличаться для разных типов электрических машин и питающего напряжения.
Где применяется реверс
Легче перечислить случаи, когда реверс не используется. Практически вся механика построена на передаче крутящего момента по часовой стрелке и наоборот. Сюда можно отнести:
- Бытовую технику: стиральные машины, аудиопроигрыватели.
- Электроинструмент: реверсивные дрели, шуруповерты, гайковерты.
- Станки: расточные, токарные, фрезерные.
- Транспортные средства.
- Спецтехнику: крановое оборудование, лебедки.
- Элементы автоматики.
- Робототехнику.
Ситуация, с которой чаще всего сталкивается обычный человек на практике, это необходимость собрать схему подключения реверса электродвигателя асинхронного переменного тока либо коллекторного мотора постоянного тока.
Подключение асинхронного мотора 380 В к трехфазной сети в реверс
Схема подключения асинхронника в прямом направлении имеет определенную последовательность подачи фаз A, B, C на контакты двигателя. Ее возможно доработать, например, добавив переключатель, который бы менял местами любые две фазы. Таким способом можно получить схему реверса электродвигателя. В практических схемах такими фазами принято считать B и A.
Дополнительное оборудование:
- Пускатели магнитного типа (КМ1 и КМ2).
- Станция на три кнопки, где два контакта имеют нормально разомкнутое положение (в исходном состоянии контакт не проводит ток, при нажатии на кнопку происходит замыкание цепи), один нормально замкнутый.
Схема работает следующим образом:
- Включением автоматических предохранителей АВ1 (силовая линия), АВ2 (цепь управления) ток поступает на трехкнопочный переключатель и клеммы магнитных контакторов, которые в исходном состоянии разомкнуты.
- Нажатием кнопки «Вперед» ток проходит на катушку электромагнита контактора 1, который притягивает якорь с силовыми контактами. Одновременно при этом происходит обрыв цепи управления контактора 2, его теперь невозможно включить кнопкой «Реверс».
- Вал двигателя начинает вращаться в основном направлении.
- Нажатием кнопки «Стоп» ток в цепи обмотки управления прерывается, электромагнит отпускает якорь, силовые контакты размыкаются, замыкается блокировочный контакт кнопки «Реверс», и ее теперь можно нажать.
- При нажатии кнопки «Реверс» происходят аналогичные процессы только в цепи контактора 2. Вал двигателя будет вращаться в обратную сторону от основного направления.
Подключение мотора 220В к однофазной сети в реверс
Добиться реверса движения вала двигателя в этом случае возможно, если есть доступ к выводам его пусковой и рабочей обмоток. Эти моторы имеют 4 вывода: два на пусковую обмотку, подключенную с конденсатором, два на рабочую.
Если нет информации о назначении обмоток, ее можно получить методом прозвонки. Сопротивление пусковой обмотки всегда будет больше, чем рабочей за счет меньшего сечения провода, которым она намотана.
В упрощенном варианте схемы подключения мотора 220 В подают на рабочую обмотку, один конец пусковой обмотки на фазу или ноль сети (без разницы). Двигатель начнет вращаться в определенную сторону. Чтобы получить схему реверса, нужно отсоединить конец пусковой обмотки от контакта и туда подключить другой конец той же обмотки.
Чтобы получить полную рабочую схему включения, необходимо оборудование:
- Защитный автомат.
- Пост кнопочный.
- Электромагнитные контакторы.
Схема реверса и прямого хода в этом случае очень похожа на схему подключения трехфазного мотора, но коммутация здесь происходит не фаз, а пусковой обмотки в одном либо другом направлении.
Схема реверса трехфазного двигателя в однофазной сети
Так как трехфазному асинхронному двигателю будет недоставать двух фаз, их нужно компенсировать конденсаторами – пусковым и рабочим, на которые коммутируют обе обмотки. От того, куда присоединить третью, зависит кручение вала в ту или иную сторону.
На схеме ниже видно, что обмотка под номером 3 через рабочий конденсатор подсоединяется к трехпозиционному тумблеру, который и отвечает за режимы работы двигателя вперед/назад. Два других его контакта объединены с обмотками 2 и 1.
При включении двигателя нужно придерживаться следующего алгоритма действий:
- Подать питание на схему через вилку либо рубильник.
- Тумблер для переключения режимов работы перевести в положение вперед или назад (реверс).
- Тумблер питания поставить в положение ON (вкл).
- Нажать кнопку «Пуск» на время, не превышающее трех секунд, чтобы произвести запуск двигателя.
Схема подключения двигателя с реверсом от постоянного тока
Моторы, работающие от постоянного тока, несколько сложнее подключить, нежели электрические машины переменной сети. Затруднение состоит в том, что конструкции таких устройств могут быть разными, а точнее разным является способ возбуждения обмотки. По этому признаку различают двигатели:
- Независимого способа возбуждения.
- Возбуждения самостоятельного (бывают последовательного, параллельного и смешанного подключения).
Касаемо первого типа устройств, то здесь якорь не связан с обмоткой статора, они питаются каждый от своего источника. Этим добиваются огромных мощностей двигателей, используемых на производстве.
В станочном оборудовании и вентиляторах применяют моторы параллельного возбуждения, где энергия источника одна для всех обмоток. Электрические транспортные средства построены на основе последовательного возбуждения обмоток. Реже встречается смешанное возбуждение.
Во всех описанных типах конструкций двигателей возможно запустить ротор в противоположном направлении от основного хода, то есть реверсом:
- При последовательной схеме возбуждения роли не играет, где менять направление тока в якоре или статоре – в обоих случаях двигатель будет стабильно работать.
- В других вариантах возбуждения машин рекомендовано задействовать только обмотку якоря в целях реверсирования. Это связано с опасностью обрыва в статоре, скачка электродвижущей силы (ЭДС) и, как следствие, повреждения изоляции.
Запуск мотора схемой звезда-треугольник
При прямом запуске мощных трехфазных электродвигателей, применяя схему управления реверсом, происходят просадки напряжения в сети. Это связано с большими пусковыми токами, протекающими в этот момент. Чтобы снизить значение тока, применяют постепенный запуск мотора по схеме звезда-треугольник.
Суть заключается в том, что начало и конец каждой обмотки статора выводят в коробку с клеммами. Управляется схема тремя контакторами. Они поэтапно включают обмотки в звезду, а далее при разгоне двигателя выводят систему на рабочее состояние при подключении треугольником.
Как отличить реверсивный пускатель от прямого
Реверсивный пускатель — более сложное устройство. На самом деле, он состоит из двух обычных прямых пускателей, последние объединены в одном корпусе. Внутренняя схемотехника реверсивного устройства характерна тем, что невозможно запустить одновременно два режима – прямой и реверс. За этот процесс отвечает схема блокировки, которая может быть электрической или механической.
В заключение
Необходимо помнить, что подключать двигатели трехфазного напряжения к сети на 380В дозволено только квалифицированным специалистам, имеющим допуск к работе с высоковольтным оборудованием. Кустарные электрические схемы могут быть причиной возникновения электрических травм!
Реверсивная схема подключения электродвигателя
В домашнем хозяйстве приходится использовать различные приборы, которые помогают облегчить выполнение какой-то задачи. В некоторых случаях под потребности приходится собирать какой-то конкретный инструмент, который стоит довольно дорого или под него просто есть все необходимые компоненты. Часто для этого важно знать, как сделать схему подключения электродвигателя. Заставить его вращаться не так сложно, а изменить направление движения уже сложнее. В статье будет рассказано о том, как выполнить схему реверсивного подключения двигателя.
Принцип работы
Электрический двигатель представляет собой механизм, в котором вращение осуществляется под воздействием электромагнитных волн. В основу положено всего два компонента:
Вращается только первый элемента, а импульс на него подается со второго элемента. Чем выше мощность двигателя, тем больше его габариты. Из всего разнообразия различают:
- коллекторные;
- асинхронные.
В двигателях коллекторного типа питание на ротор подается через угольные щетки, которые касаются ламелей коллектора. Такие двигатели еще называют короткозамкнутыми. В асинхронных двигателях схема действия несколько отличается. В этом случае вращение происходит под воздействием двух сил:
- магнитного поля;
- индукции.
Напряжение от источника питания подается на фиксированные обмотки статора. При этом в нем возникают электромагнитные волны. Если напряжение переменное, тогда магнитное поле нестабильно и имеет определенные колебания. Благодаря этим колебаниям и происходит смещение ротора. Между ротором и статором есть небольшой воздушный зазор, благодаря которому и возможно беспрепятственное смещение. Магнитные волны из обмоток статора воздействуют на обмотки ротора, создавая напряжение. Благодаря такому воздействию возникает электродвижущая сила или ЭДС. Она заставляет магнитные волны взаимодействовать в обратном направлении тем, что есть в статоре, поэтому двигатель и называется асинхронным.
Обратите внимание! Чаще всего асинхронные двигатели имеют трехфазное подключение. Благодаря использованию дополнительных компонентов его можно переделать на работу от сети 220 вольт.
Требуемые компоненты
Самостоятельное подключение двигателя для реверсивного вращения не вызовет особых сложностей, если руководствоваться приведенной схемой. Одним из важных компонентов, который облегчит такую задачу является магнитный пускатель или контактор. На самом деле магнитный пускатель и контактор не являются тождественными понятиями. Если говорить просто, то контактор входит в состав магнитного пускателя, но для упрощения в статье оба понятия используются как равнозначные. Магнитные пускатели как раз и применяются для запуска, реверсивного движения и остановки асинхронных двигателей.
Возможно, возникает вопрос о том, почему нельзя использовать обычный рубильник или силовой автомат. В принципе, это допустимо, но не всегда пусковые токи, которые необходимы двигателю для нормального начала функционирования являются безопасными для человека. При включении может возникнуть пробой, который выведет из строя как выключатель, так и навредит оператору. Чтобы свести риски к минимуму, потребуется пускатель. В нем контактная часть отделена от той, с которой взаимодействует оператор. В нем есть отдельный модуль с катушкой, которая создает электромагнитное поле. Для работы катушки может потребоваться напряжение в 12 или больше вольт. При подаче этого напряжения происходит взаимодействие с металлическим сердечником, который втягивается внутрь катушки. К сердечнику закреплена пластина, которая уходит к контактной группе. Они замыкаются и происходит запуск двигателя. Остановка происходит в обратном порядке.
Кроме контактора, потребуется трехкнопочная станция. Одна клавиша выполняет функцию остановки, а две других функции запуска с разницей в направлении вращения. В трехкнопочной станции должно быть два нормально разомкнутых контакта и один нормально замкнутый. Если говорить просто, то нормальным положением контактора называется его нерабочее положение. То есть при воздействии на контакт он либо замыкается, либо размыкается. Если в рабочем состоянии он замкнут, то обозначается как НО, а если разомкнут, то обозначается как НЗ. Контакт НЗ применяется для кнопки остановки.
Принципиальная схема
На иллюстрации выше можно видеть принципиальную схему реверсивного подключения двигателя. Она отличается от обычной только наличием дополнительного модуля. Если говорить точнее, то в схеме задействуется два модуля управления. Один из них заставляет вращаться двигатель вправо, а другой влево. Взаимодействие оператора с модулями происходит посредством кнопок SB2 и SB3. Латинскими буквами A, B, C на схеме обозначены подводящие линии трехфазной сети. Они подходят к общему выключателю, который обозначен QF1. Далее идут два контактора КМ и цифровым обозначением. От контакторов цепь уходит к обмоткам двигателя. Каждый из этих контакторов вынесен отдельно и находится справа, где дополнительно можно рассмотреть их составные компоненты.
Процесс включения
Процесс включения двигателя довольно просто описать, используя все ту же схему. Первым делом происходит задействование общего рубильника QF1. Как только он включается, происходит подача напряжения по трем фазам. Но это напряжение не подается непосредственно на сам двигатель, т. к. еще нет четких указаний, в каком направлении он должен вращаться. Далее проводники проходят через автомат SF1 он выполняет защитную функцию, обесточивая всю систему в случае короткого замыкания. Далее следует кнопка выключения, которая также способна быстро разомкнуть цепь питания. Только после этого напряжение следует к клавишам SB2 и SB3, после воздействия на который, питание проходит к двигателю.
Обратите внимание! На схеме хорошо видно, что два контактора не могут быть задействованы одновременно, поэтому сбоя произойти не может.
Чтобы двигатель получил достаточное усилие для обратного вращения, необходимо переключить силовые фазы, для чего и предназначен пускатель КМ2. Если еще раз обратить внимание на схему, то можно заметить, что пускатель КМ1 имеет прямое подключение фаз к двигателю, а КМ2 обеспечивает некоторое смещение. Все происходит за чет первой фазы, она в этой схеме является ждущей. Как только она размыкается, прекращается подача напряжения на двигатель.
Обратите внимание! В реверсивной схеме подключения двигателя должен присутствовать дополнительный защитный модуль, который будет следить за тем, чтобы двигатель был остановлен перед началом нового цикла.
После полной остановки может быть задействована кнопка SB3. Она активирует второй пускатель. Последний меняет положение фаз, как показано на схеме. При этом дежурная фаза остается неизменной, питание от нее все так же подается на первый контакт двигателя. Изменения происходят во второй и третьей фазе. Благодаря этому обеспечивается реверсивное движение.
Этапы подключения
Подключение двигателя для реверсивного движения отличается в зависимости от того, какая сеть будет выступать питающей 220 или 380. Поэтому есть смысл рассмотреть их отдельно.
К трехфазной сети
Руководствуясь представленной схемой легко составить последовательность, в которой должно производиться подключение электродвигателя. Первым делом устанавливается основной силовой автомат. Его номинальное напряжение и сила тока должны быть рассчитаны на те, которые будет потреблять двигатель. Только в этом случае можно быть уверенным в бесперебойной работе. Перед монтажом автомата для двигателя потребуется обесточить сеть. Следующим устанавливается предохранительный выключатель. После него фазный кабель уходит на разрыв, на кнопку стоп, а уже от нее делается подключение к контакторам. На каждом элементе контактора и кнопочного поста обычно делаются соответствующие обозначения, которые упрощают процесс подключения. Видео о сборке тестовой схемы можно посмотреть ниже.
К однофазной сети
В домашних условиях часто приходится задействовать асинхронный двигатель, но не в каждом хозяйстве есть трехфазная сеть, поэтому важно знать, как подключить двигатель к однофазной сети. Для запуска от одной фазы требуется дополнительный импульс, чтобы его обеспечить подбирается конденсатор требуемой емкости. Если говорить проще, то конденсаторов должно быть два. Один из них является пусковым и подключается параллельно первому. Соединение обмоток двигателя выполняется по схеме «звезда». Если обмотки соединены другим способом и нет возможности его изменить, тогда не получиться выполнить требуемую схему.
Чтобы реверсивная схема функционировала потребуется переключение питания, которое поступает от конденсаторов между полюсами. Понадобится два выключателя и одна не фиксируемая кнопка. Одни из выключателей будет отвечать за подачу напряжения в цепь питания двигателя. Второй выключатель должен иметь три положения. В одном из них он будет выключенным, а в двух других изменять подачу питания от конденсаторов на обмотки. Не фиксируемая кнопка будет дополнительно подключать второй конденсатор на момент запуска двигателя.
Два вывода конденсатора подключаются между собой. К двум другим происходит подключение пусковой кнопки. Средний вывод трехпозиционного переключателя подключается к конденсаторам в том месте, где они объединены между собой. Два других вывода подключаются к клеммам двигателя, на которые приходит питание. Конденсаторы подключаются к выходу обмотки, которая применяется для запуска. Кнопка включения ставится в разрыв фазного провода.
Чтобы привести весь механизм в действие, необходимо подать питание на цепь двигателя основным выключателем. После этого задается направление вращения двигателя трехпозиционным выключателем. Далее нажимается кнопка пуска до момента выхода двигателя на рабочие обороты. Если возникает необходимость изменить направление вращения, тогда потребуется обесточить двигатель и дождаться его полной остановки, переключить трехпозиционный тумблер в противоположное крайнее положение и повторить процесс.
Резюме
Как видно реверсивное подключение требует определенных навыков, но может быть осуществлено без особых сложностей при соблюдении всех рекомендаций. Теперь не будет препятствий в использовании трехфазных агрегатов от однофазной сети, при этом следует понимать, что максимальная мощность будет ограничена, т. к. невозможен выход на полное потребление. На компонентах для подключения лучше не экономить, т. к. это скажется на сроке службы всей схемы. Во время сборки и запуска необходимо придерживаться всех правил безопасности работы с электрическим током.
Отправить комментарий
§13.4. Релейно-контакторное управление электродвигателями
Назначение релейно-контакторного управления.
Релейно-контакторное управление позволяет осуществить автоматический, дистанционный пуск, изменение частоты вращения, останов, реверсирование, торможение и защиту двигателя. Этот вид управления относится к разомкнутым системам в том смысле, что он не охвачен обратными связями. В результате этого возмущающее воздействие (например, изменение нагрузки на валу двигателя) изменяет заданный режим, т. е. приводит к изменению частоты вращения вала двигателя. Для сложных приводов применяют замкнутые системы, т. е. системы автоматического регулирования, охваченные обратными связями. В таких системах поддерживается заданный режим работы при наличии возмущающих воздействий (изменение нагрузки, напряжения питания и т. д.).
Изображение схем релейно-контакторного управления.
Схемы релейно-контакторного управления вычерчивают как совмещенные или как элементные (развернутые). В совмещенных схемах все элементы аппарата размещают на чертеже так, как они расположены в натуре. Монтажные схемы вычерчивают как совмещенные. Совмещенные схемы громоздки и сложны для чтения. При проектировании электропривода используют развернутые схемы, облегчающие понимание работы установки. На развернутой схеме элементы силовой цепи и управления показаны разнесенными, так же как контакты и обмотки реле. При этом контакты аппаратов изображают в положении, которое соответствует обесточенному состоянию обмоток. В соответствии с этим все контакты делят на нормально открытые, или замыкающие (3), и нормально закрытые, или размыкающие (Р). Когда катушка обесточена, цепь замыкающих контактов разомкнута, а цепь размыкающих контактов замкнута.
Схема управления и защиты асинхронного двигателя с помощью реверсивного магнитного пускателя.
Магнитный пускатель состоит из одного или двух контакторов, смонтированных на общем основании и помещенных в металлический корпус. Пускатели, как правило, снабжают встроенным тепловым реле. Магнитный пускатель с одним контактором называют нереверсивным. С его помощью осуществляют пуск, останов, защиту электродвигателя от самопроизвольных включений и перегрузок. Магнитный пускатель с двумя контакторами называют реверсивным; он помимо перечисленных функций обеспечивает реверсирование двигателя.
Рис 13.8. Схема реверсивного магнитного пускателя
Рассмотрим работу реверсивного магнитного пускателя (рис. 13.8). Пускатель содержит два контактора: один для пуска «вперед» (Вп), другой — для пуска «назад» (Нз). Защита двигателя от токов короткого замыкания осуществляется тремя плавкими предохранителями, а от перегрузок
— двумя тепловыми реле: 1РТ и 2РТ. Обмотки статора двигателя подключают к сети через плавкие предохранители, рабочие контакты Вп или Нз контакторов и нагревательные элементы тепловых реле 1РТ и 2РТ (для двух фаз). Работа схемы при пуске «вперед» происходит так. При нажатии кнопки Вп замыкаются контакты 3, 4 и к обмотке контактора Вп подводится напряжение от зажимов сети Л1—Л3. Контактор Вп срабатывает и замыкающие контакты Вп силовой цепи
замыкаются, подключая обмотку статора к сети. Одновременно замыкающий блок-контакт контактора Вп замыкается и цепь кнопки Вп шунтируется. Таким образом, кнопку Вп можно отпустить. Для останова двигателя необходимо нажать кнопку «Стоп». При этом снимается напряжение с обмотки контактора Вп, в результате чего размыкаются его главные контакты и со статорных обмоток двигателя снимается напряжение. Одновременно размыкаются блок-контакты Вп, шунтирующие кнопку Вп. Так же работает схема и при пуске двигателя «назад» после нажатия кнопки Нз, с той лишь разницей, что срабатывает контактор Нз и последовательность подключения фаз статора становится обратной. Это приводит к изменению направления вращения ротора двигателя. Размыкающие контакты кнопки Вп 1, 2 и кнопки Нз 5, 6 размыкаются раньше, чем соответствующие замыкающие контакты 3, 4 и 7, 8. Это обеспечивает их взаимную блокировку и не позволяет подавать напряжение на обмотки контакторов Вп и Нз одновременно.
Карточка №13.4 (254)
Схема управления и защиты асинхронного двигателя с помощью реверсивного магнитного пускателя
Какая последовательность фаз обеспечивается | нажатием | Л3—Л2—Л1 |
| 33 | |
кнопки Нз в схеме рис. 13.8? |
|
|
|
|
|
| Л1—Л2—Л3 |
| 50 | ||
|
|
| |||
|
| Л2—Л3—Л1 |
| 40 | |
Что произошло бы при одновременном нажатии кнопок Вп и | Выход из строя двигателя | 11 | |||
Нз при отсутствии взаимной блокировки? |
| Срабатывание тепловых реле | 21 | ||
|
|
|
| ||
|
| Перегорание плавких вставок | 60 | ||
|
| предохранителей |
|
| |
Как включены обмотки контакторов Вп и Нз? |
| Последовательно |
| 5 | |
|
|
|
|
| |
|
| Параллельно |
| 58 | |
|
|
|
| ||
К какой категории контакторов относятся блок-контакты Вп и | Замыкающих |
| 32 | ||
Нз? |
|
|
|
| |
| Размыкающих |
| 30 | ||
|
|
|
|
| |
В каком случае реверсирование двигателя | произойдет | В случае а) |
| 16 | |
быстрее: а) сначала нажимается кнопка «Стоп», а затем Нз; б) |
|
|
| ||
В случае б) |
| 71 | |||
сразу нажимается кнопка Нз? |
|
|
|
|
|
| Время | реверсирования в | 20 | ||
|
| ||||
|
| обоих | случаях | будет |
|
|
| одинаковым |
|
| |
|
|
|
|
|
|
Схема автоматического пуска асинхронного двигателя с контактными кольцами.
Рассмотрим работу схемы рис. 13.9. Обмотки статора двигателя присоединены к сети через замыкающие контакты линейного контактора ЛК. К обмоткам ротора подключены три одинаковых резистора, соединенных звездой. Схема управления пуском состоит из реле ускорения 1У и 2У, токовых реле ускорения 1РТ и 2РТ и реле времени РВ.
Рис. 13.9. Схема автоматического пуска асинхронного
двигателя с контактными кольцами
При нажатии на кнопку «Пуск» к контактору ЛК подводится напряжение сети, контактор срабатывает, его главные контакты ЛК и блок-контакты БК замыкаются. В результате к обмоткам статора подводится напряжение, а кнопка «Пуск» оказывает заблокированной. В фазных обмотках ротора двигателя возникают ЭДС и ток, а ротор начинает вращаться. Под действием тока ротора, проходящего через сопротивление R1+R2 и обмотки реле 1РТ и 1РТ, эти реле срабатывают и размыкают свои контакты 1РТ и 1РТ. Одновременно с подачей напряжения на статор двигателя подается питание на обмотку реле времени РВ, которое замыкает свои контакты спустя некоторое время после размыкания контакторов 1РТ и 2РТ, готовя цепь для подключения обмоток реле ускорения 1У и 2У. По мере увеличения частоты вращения ротора его фазный ток уменьшается и достигает тока отпускания реле 1PT, которое замыкает свои контакты, и к обмотке реле 1У подводится напряжение. Реле 1У срабатывает и замыкает свои главные контакты 1У, шунтирующие сопротивления. В результате ток в роторе увеличивается скачком и реле 2РТ продолжает удерживать свои контакты в разомкнутом состоянии. Блок-контакты 1У блокируют цепь контактов реле 1РТ. Частота вращения ротора продолжает нарастать и ток в роторе уменьшается, достигая тока отпускания реле 2РТ. Контакты реле 2РТ замыкаются и на обмотку реле 2У подается напряжение. Последнее срабатывает, замыкая свои контакты 2У, которые шунтируют резисторы R2. Блок-контакты 2У замыкаются, блокируя контакты реле 2РТ.
Рассмотренная последовательность работы схемы обеспечивает плавный разгон двигателя.
Карточка № 13.5 (211).
Схема автоматического пуска асинхронного двигателя с контактными кольцами
Какая из приведенных кривых | соответствует | Кривая 2 |
|
|
| 37 | |
пуску двигателя с пусковыми сопротивлениями? |
|
|
|
|
| ||
Кривая 1 |
|
|
| 13 | |||
|
|
|
|
|
| ||
Какое соотношение должно быть между временем | tPB>t1PB |
|
|
| 10 | ||
срабатывания реле РВ tPB | и | временем |
|
|
|
|
|
tPB<t1PB |
|
|
| 36 | |||
срабатывания реле 1РТ t1PB? |
|
|
|
|
|
|
|
|
| tPB=t1PB |
|
|
| 8 | |
|
|
|
|
|
| ||
|
|
|
|
| |||
Что произойдет, если реле времени | сработает | Двигатель выйдет из строя |
| 2 | |||
раньше, чем разомкнутся контакты реле 1РТ? |
|
| |||||
Сгорят плавкие вставки предохранителя | 35 | ||||||
|
|
|
|
|
|
|
|
|
|
| Произойдет | пуск | двигателя | без | 66 |
|
|
| подключения пусковых резисторов |
|
| ||
|
|
|
|
|
| ||
Каким должно быть соотношение между токами | Iотп1> Iотп2 |
|
|
| 55 | ||
отпускания реле 1РТ и 2РТ? |
|
|
|
|
|
|
|
|
| Iотп1<Iотп2 |
|
|
| 46 | |
|
|
| Iотп1=Iотп2 |
|
|
| 28 |
|
|
|
|
|
| ||
Что произойдет, если соотношение между токами | Произойдет | пуск | двигателя | без | 48 | ||
отпускания реле 1РТ и 2РТ будет неправильным? | подключения пусковых резисторов |
|
| ||||
|
|
|
|
|
| ||
|
|
| Двигатель выйдет из строя |
| 17 | ||
|
|
| Пуск двигателя будет не двух-, | а | 43 | ||
|
|
| одноступенчатым |
|
|
|
ЭЛЕКТРОНИКА ГЛАВА 14 ЭЛЕКТРОННЫЕ ЛАМПЫ
§14.1. Общие сведения
Электронные лампы входят в группу приборов, которые называются электровакуумными. Электровакуумные приборы — это электронные приборы, в которых проводимость
осуществляется посредством электронов или ионов, движущихся между электродами через вакуум или газ.
Электровакуумные приборы подразделяют на электронные и ионные. В электронных приборах, к которым относятся электронные лампы, прохождение электрического тока осуществляется только за счет свободных электронов, в ионных — как за счет свободных электронов, так и за счет ионов.
Электронные лампы применяют в выпрямительных, усилительных и генераторных устройствах, а также в автоматике, вычислительной и измерительной технике. В настоящее время
масштабы применения электронных ламп ограничены в связи с бурным развитием полупроводниковой техники и особенно микроэлектроники. Однако при больших частотах и мощностях электронные лампы еще находят широкое применение.
Во всех электронных лампах источником свободных электронов является специальный электрод, называемый катодом. Катод испускает электроны за счет явления электронной эмиссии.
§ 14.2. Электронная эмиссия
Металлы характеризуются наличием большого количества свободных электронов, которые беспорядочно перемещаются в междуатомном пространстве. При обычных условиях только отдельные электроны выходят из металла, преодолевая притягивающее действие его положительно заряженных ионов. В результате на поверхности металла формируется двойной электрический слой (рис. 14.1). Этот слой образует электрическое поле, препятствующее дальнейшему выходу электронов из металла. Разность потенциалов в этом поле между электрическими слоями называют потенциальным барьером.
Рис. 14.1. Двойной электрический слой на поверхности
металла
Для преодоления этого барьера электроны металла должны получить извне определенную энергию, равную работе, которую надо совершить, чтобы преодолеть потенциальный барьер. Эта работа называется работой выхода и обозначается Wa. Отношение работы выхода к заряду электрона называется потенциалом выхода ϕa=Wa/q0.
Существуют различные способы сообщения дополнительной энергии электронам металла и в зависимости от этого различные виды электронной эмиссии. Остановимся на двух: термоэлектронной и вторичной.
Термоэлектронной эмиссией называют явление испускания электронов нагретым металлом (катодом). При нагревании катода скорости хаотического движения электронов увеличиваются, что приводит к возрастанию их кинетической энергии. В результате число электронов, выходящих из металла, увеличивается. Эти электроны скапливаются около катода за счет притягивающего действия положительных ионов металла. Таким образом, вокруг катода образуется электронное облако, внутри которого электроны перемещаются в различных направлениях. При этом определенная часть их возвращается обратно на катод. С увеличением числа вышедших электронов плотность облака растет и дальнейший выход их затрудняется, а число возвращающихся на катод электронов увеличивается до тех пор, пока не наступит динамическое равновесие: число вышедших электронов окажется равным числу возвратившихся. Плотность электронного облака (объемного заряда) зависит от температуры катода. Если на электронное
Реверс двигателя постоянного и переменного тока: схемы подключения
Реверс двигателя — это изменение вращения ротора на противоположное. Изменить направление вращения можно у электродвигателя постоянного тока, асинхронного и коллекторного двигателя переменного тока. Сложно представить себе устройство, в котором не применяется реверсивное вращение электродвигателя. Без изменения вращения невозможно представить работу тельфера, кран-балки, лебедок, грузоподъемных механизмов, лифтов, задвижек и т.п. Исключение составляют такие устройства, как заточные станки, вытяжки и т.д. В этой статье мы расскажем читателям сайта Сам Электрик, как осуществить реверс электродвигателей разных типов.Реверсивное включение двигателей постоянного тока
Наиболее просто осуществить реверс двигателя постоянного тока, у которого статор с постоянными магнитами. Достаточно изменить полярность питания, чтобы ротор начал вращаться в обратную сторону.
Сложнее осуществить реверсирование мотора с электромагнитным возбуждением (последовательным, параллельным). Если просто поменять полярность питающего напряжения, то направление вращения ротора не изменится. Чтобы изменить направление вращения, достаточно поменять полярность только в обмотке возбуждения или только на щетках ротора.
Для осуществления реверса двигателей большой мощности полярность следует менять на якоре. Разрыв обмотки возбуждения на работающем моторе может привести к неисправности, т.к. возникающая ЭДС имеет повышенное напряжение, которое способно повредить изоляцию обмоток. Что приведет к выходу электродвигателя из строя.
Для осуществления обратного направления вращения ротора применяют мостовые схемы на реле, контакторах или транзисторах. В последнем случае можно и регулировать скорость вращения.
На рисунке представлена схема на транзисторах. В качестве иллюстрации работы транзисторы заменены контактами переключателя. Аналогично выполняются мостовые схемы не на биполярных, а на полевых транзисторах.
КПД такой схемы значительно выше, чем на транзисторах. Управление осуществляется микроконтроллером или простыми логическими схемами, предотвращающими одновременную подачу сигналов.
Изменение направления вращения ротора асинхронного двигателя
Наибольшее распространение в промышленности получили асинхронные двигатели, запитанные от трехфазного напряжения 380 вольт. Для того чтобы осуществить реверс, достаточно поменять две любые фазы.
Получила распространение схема подключения, выполненная на двух магнитных пускателях. Собственно для двигателей постоянного тока она аналогична, но используются двухполюсные контакторы или пускатели. Эту схему так и называют «схема реверсивного пускателя» или «реверсивная схема пуска асинхронного трёхфазного электродвигателя».
При включении пускателя КМ1 кнопкой «Пуск 1», происходит прямая подача напряжения на обмотки и блокируется кнопка «Пуск 2» от случайного включения, посредством размыкания нормально-замкнутых контактов КМ-1. Двигатель вращается в одну сторону.
После отключения пускателя КМ1 кнопкой «Стоп» или полным снятием напряжения, можно включить КМ2 кнопкой «Пуск 2». В результате через контакты линия L2 подается напрямую, а L1 и L3 меняются местами. Кнопка «Пуск 1» заблокирована, так как нормально-замкнутые контакты пускателя КМ2 приводятся в движение и размыкаются. Двигатель начинает вращаться в другую сторону.
Схема применяется повсеместно и по сей день для подключения трехфазного двигателя в трехфазной сети. Простота схемного решения и доступность комплектующих — её весомые преимущества.
Наибольшее распространение находят электронные системы управления. Коммутационные схемы, которых собранные на тиристорах без пускателей. Хотя пускатели могут быть и установлены для дистанционного включения или выключения в этой цепи.
Они сложнее, но и надежнее устройств на контакторах. Для управления используется системы импульсно-фазного управления (СИФУ), системы частотного управления. Это многофункциональные устройства, с их помощью можно не только осуществлять реверс асинхронного электродвигателя, но и регулировать частоту вращения.
В домашних условиях возникает необходимость подключения двигателя 380В на 220 с реверсом. Для этого необходимо произвести переключение обмоток звезда треугольник. Подробнее мы рассматривали различия этих схем в статье размещенной на сайте ранее: https://samelectrik.ru/chto-takoe-zvezda-i-treugolnik-v-elektrodvigatele.html.
Однако, если предполагается подключение трехфазного электродвигателя к однофазной сети, то для этого применяется конденсатор, который подключается по нижеприведенной схеме.
При этом чтобы осуществить реверс, достаточно переключить провод сети с В на клемму А, а конденсатор отсоединить от А и подсоединить к клемме В. Удобно это сделать с помощью 6-контактного тумблера. Это типовое включение асинхронного электродвигателя к сети 220В с конденсатором.
Схема подключения коллекторного двигателя с реверсом
Чтобы осуществить реверс коллекторного двигателя, необходимо знать:
- Не на каждом коллекторном моторе можно осуществить реверс. Если на корпусе указана стрелка вращения, то его нельзя применять в реверсивных устройствах.
- Все двигатели, имеющие высокие обороты предназначены для вращения в одну сторону. Например, у электродвигателя, устанавливаемого в болгарках.
- У двигателя, который имеет небольшие обороты, вращение может осуществляться в разные стороны. Такие моторы смонтированы в электроинструментах, например, электродрелях, шуруповертах, стиральных машинах и т.п.
На рисунке представлена схема универсального коллекторного двигателя, который может работать как от постоянного, так и переменного тока.
Чтобы изменилось вращение ротора, достаточно поменять полярность напряжения на обмотке ротора или статора, как и в двигателях постоянного тока, от которых универсальные машины практически не отличаются.
Если просто изменить полярность подводящего напряжения на коллекторном двигателе, направление вращения ротора не изменится. Это необходимо учитывать при подключении электродвигателя к сети.
Также следует знать, что в моторах большой мощности коммутируют обмотку якоря. При переключении обмоток статора возникает напряжение самоиндукции, которое достигает величин, способных вывести двигатель из строя.
Конструктора-любители в своих поделках применяют различные типы двигателей. Зачастую они используют щеточный электродвигатель от стиральной машинки автомат. Это удобные моторчики, которые можно подключать непосредственно к сети 220 вольт. Они не требуют дополнительных конденсаторов, а регулировку оборотов можно легко производить с помощью стандартного диммера. На клеммную колодку выводятся шесть или семь выводов.
Зависит от типа двигателя:
- Два идут на щетки коллектора.
- От таходатчика на колодку приходит пара проводов.
- Обмотки возбуждения могут иметь два или три провода. Третий служит для изменения скорости вращения.
Чтобы выполнить реверс двигателя от стиральной машины, следует поменять местами выводы обмотки возбуждения. Если имеется третий вывод, то его не используют.
Схема реверса электродвигателя на ардуино
В конструировании моделей или робототехнике часто применяются небольшие щеточные электродвигатели постоянного тока, для управления которыми используется программируемый микроконтроллер ардуино.
Если вращение двигателя предполагается только в одну сторону, и мощность электродвигателя небольшая, а напряжение питания от 3,3 до 5 вольт, то схему можно упростить и запитать непосредственно от ардуино, но так делают редко.
В моделях с дистанционным управлением, где необходимо использовать реверс моторов с напряжением более 5В, применяют ключи, собранные по мостовой схеме. В этом случае схема подключения двигателя с реверсом на ардуино будет выглядеть подобно тому что изображено ниже. Такое включение применяется чаще всего.
В мостовой схеме могут применяться полевые транзисторы или специальное согласующее устройство — драйвер, с помощью которого подключаются мощные моторчики.
В заключение отметим, что собирать схему реверса электродвигателя должен подготовленный специалист. Однако, при самостоятельном подключении необходимо соблюдать условия техники безопасности, выбрать подходящую схему соединения и подобрать необходимые комплектующие, строго следуя инструкции по монтажу. В этом случае у конструктора не возникнет трудностей в подключении и эксплуатации электродвигателя.
Теперь вы знаете, что такое реверс электродвигателя и какие схемы подключения для этого используют. Надеемся, предоставленная информация была для вас полезной и интересной!
Материалы по теме:
Схема подключения реверсивного магнитного пускателя
Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем и сегодня мы рассмотрим еще одну классическую схему подключения магнитного пускателя, которая обеспечивает реверс вращения эл. двигателя.
Такая схема используется в основном, где нужно обеспечить вращение эл. двигателя в обе стороны, например, сверлильный станок, подъемный кран, лифт и т.д.
На первый взгляд может показаться, что эта схема намного сложнее, чем схема с одним пускателем, но это только на первый взгляд.
В схему добавилась еще одна цепь управления, состоящая из кнопки SB3, магнитного пускателя КМ2, и немного видоизменилась силовая часть подачи питания на эл. двигатель. Названия кнопок SB2 и SB3 даны условно.
Для защиты от короткого замыкания в силовой цепи, перед катушками пускателей добавились два нормально-замкнутых контакта КМ1.2 и КМ2.2, взятые от контактных приставок, установленных на магнитных пускателях КМ1 и КМ2.
Для удобства понимания схемы, цепи управления и силовые контакты пускателей раскрашены в разные цвета. А чтобы визуально не усложнять схему, цифробуквенные обозначения пар силовых контактов пускателей не указываются. Ну а если возникнут вопросы или сомнения, прочитайте еще раз предыдущую часть статьи о подключении магнитного пускателя.
1. Исходное состояние схемы.
При включении автоматического выключателя QF1 фазы «А», «В», «С» поступают на верхние силовые контакты магнитных пускателей КМ1 и КМ2 и там остаются дежурить.
Фаза «А», питающая цепи управления, через автомат защиты цепей управления SF1 и кнопку SB1 «Стоп» поступает на контакт №3 кнопок SB2 и SB3, вспомогательный контакт 13НО пускателей КМ1 и КМ2, и остается дежурить на этих контактах. Схема готова к работе.
На рисунке ниже показана часть реверсивной схемы, а именно, монтажная схема цепей управления с реальными элементами.
2. Работа цепей управления при вращении двигателя влево.
При нажатии на кнопку SB2 фаза «А» через нормально-замкнутый контакт КМ2.2 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.
При замыкании контакта КМ1.1 пускатель встает на самоподхват, а при замыкании силовых контактов КМ1 фазы «А», «В», «С» поступают на соответствующие контакты обмоток эл. двигателя и двигатель начинает вращение, например, в левую сторону.
Здесь же, нормально-замкнутый контакт КМ1.2, расположенный в цепи питания катушки пускателя КМ2, размыкается и не дает включиться магнитному пускателю КМ2 пока в работе пускатель КМ1. Это так называемая «защита от дурака», и о ней чуть ниже.
На следующем рисунке показана часть схемы управления, отвечающая за команду «Влево». Схема показана с использованием реальных элементов.
3. Работа цепей управления при вращении двигателя вправо.
Чтобы задать двигателю вращение в противоположную сторону достаточно поменять местами любые две питающие фазы, например, «В» и «С». Вот этим, как раз, и занимается пускатель КМ2.
Но прежде чем нажать кнопку «Вправо» и задать двигателю вращение в обратную сторону, нужно кнопкой «Стоп» остановить прежнее вращение.
При этом разорвется цепь и управляющая фаза «А» перестанет поступать на катушку пускателя КМ1, возвратная пружина вернет сердечник с контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель М от трехфазного питающего напряжения. Схема вернется в начальное состояние или ждущий режим:
Нажимаем кнопку SB3 и фаза «А» через нормально-замкнутый контакт КМ1.2 поступает на катушку магнитного пускателя КМ2, пускатель срабатывает и через свой контакт КМ2.1 встает на самоподхват.
Своими силовыми контактами КМ2 пускатель перебросит фазы «В» и «С» местами и двигатель М станет вращаться в другую сторону. При этом контакт КМ2.2, расположенный в цепи питания пускателя КМ1, разомкнется и не даст пускателю КМ1 включиться пока в работе пускатель КМ2.
4. Силовые цепи.
А теперь посмотрим на работу силовой части схемы, которая и отвечает за переброс питающих фаз для осуществления реверса вращения эл. двигателя.
Обвязка силовых контактов пускателя КМ1 выполнена так, что при их срабатывании фаза «А» поступает на обмотку №1, фаза «В» на обмотку №2, и фаза «С» на обмотку №3. Двигатель, как мы определились, получает вращение влево. Здесь переброс фаз не осуществляется.
Обвязка силовых контактов пускателя КМ2 выполнена таким-образом, что при его срабатывании фазы «В» и «С» меняются местами: фаза «В» через средний контакт подается на обмотку №3, а фаза «С» через крайний левый подается на обмотку №2. Фаза «А» остается без изменений.
А теперь рассмотрим нижний рисунок, где показан монтаж всей силовой части на реальных элементах.
Фаза «А» белым проводом заходит на вход левого контакта пускателя КМ1 и перемычкой заводится на вход левого контакта пускателя КМ2. Выхода обоих контактов пускателей также соединены перемычкой, и уже от пускателя КМ1 фаза «А» поступает на обмотку №1 двигателя М — здесь переброса фазы нет.
Фаза «В» красным проводом заходит на вход среднего контакта пускателя КМ1 и перемычкой заводится на правый вход пускателя КМ2. С правого выхода КМ2 фаза перемычкой заводится на правый выход КМ1, и тем самым, встает на место фазы «С». И теперь на обмотку №3, при включении пускателя КМ2 будет подаваться фаза «В».
Фаза «С» синим проводом заходит на вход правого контакта пускателя КМ1 и перемычкой заводится на средний вход пускателя КМ2. С выхода среднего контакта КМ2 фаза перемычкой заводится на средний выход КМ1, и тем самым, встает на место фазы «В». Теперь на обмотку №2, при включении пускателя КМ2 будет подаваться фаза «С». Двигатель будет вращаться в правую сторону.
5. Защита силовых цепей от короткого замыкания или «защита от дурака».
Как мы уже знаем, что прежде чем изменить вращение двигателя, его нужно остановить. Но не всегда так получается, так как никто не застрахован от ошибок.
И вот представьте ситуацию, когда нет защиты.
Двигатель вращается в левую сторону, пускатель КМ1 в работе и с его выхода все три фазы поступают на обмотки, каждая на свою. Теперь не отключая пускатель КМ1 мы включаем пускатель КМ2. Фазы «В» и «С», которые мы поменяли местами для реверса, встретятся на выходе пускателя КМ1. Произойдет межфазное замыкание между фазами «В» и «С».
А чтобы этого не случилось, в схеме используют нормально-замкнутые контакты пускателей, которые устанавливают перед катушками этих же пускателей, и таким-образом исключается возможность включения одного магнитного пускателя пока не обесточится другой.
6. Заключение.
Конечно, все это с первого раза понять трудно, я и сам, когда начинал осваивать работу эл. приводов, не с первого раза понял принцип реверса. Одно дело прочитать и запомнить схему на бумаге, а другое дело, когда все это видишь в живую. Но если собрать макет и несколько дней посвятить изучению схемы, то успех будет гарантирован.
И уже по традиции посмотрите видеоролик о подключении реверсивного магнитного пускателя.
А у нас еще осталось разобраться с электротепловой защитой эл. двигателя и тема о магнитных пускателях может быть смело закрыта.
Продолжение следует.
Удачи!