Регулятор мощности настольной лампы с подсветкой схема – схема для люстры, как работает регулятор яркости света, освещение для светильника, как подключить к лампочке

Содержание

Электрические схемы настольных светильников

 Каждый из нас отдает свое предпочтение в выборе той или иной модели настольной лампы.    Необходимо так же задумываться:  Каким образом мы  в последствии  будем заниматься ремонтом настольной лампы?  Отдавать в ремонт при ее неисправности  либо заниматься ремонтом самому?

Настольная лампа Mantra 1314

Чтобы проводить ремонт самому, — непременно необходимы  определенные знания  в  физике и электротехнике с дополнительными знаниями  основ электроники.

Тема на первый взгляд может показаться простой, — но не совсем.  Почему именно? — Потому что имеется в настоящее время разнообразие таких электрических схем  для различных моделей настольных ламп.

Электрические схемы настольных ламп

Наиболее простая электрическая схема \рис.1\  как для настольных ламп так и для различных моделей светильников  бра, — имеет  сравнение с данной электрической схемой:

 

рис.1

Данная электрическая схема больше подходит к электрической схеме светильников бра, но так же имеет место и для электрической схемы настольных ламп.

Возьмем к примеру электрическую схему справа, — такая схема  вполне подходит  как к настольной лампе так и к светильнику бра, состоящей из:

  • двух ламп;
  • ключа \выключателя\.

Соединения настольной лампы

Рассмотрим  контактные соединения для  настольных ламп:

рис.2

Каких либо полных объяснений \рис.2\  схематическое изображение \устройство\ настольной лампы, — не требует.   На рисунке наглядно показаны контактные соединения:

  • лампочки с электрическим патроном;
  • выключателя;
  • штепсельной вилки с сетевым кабелем.

Необходимые электроинструменты которые могут понадобиться, — следующие:

  • пассатижи;
  • две отвертки \крестовая и плоская\;
  • прибор «Мультиметр»;
  • кембрик;
  • паяльник;
  • паяльное олово;
  • паяльная кислота.

 

  Лампа настольная с регулировкой яркости

Рассмотрим следующую электрическую схему для настольных ламп.   Схема ступенчатого регулятора яркости освещения \рис.3\ состоит из:

  • ключа  \выключателя\ — S1;
  • предохранителя — F1  0,5 А;
  • двух конденсаторов — С1 и С2;
  • ступенчатого регулятора яркости освещения — S2,  S3,  S4;
  • двух резисторов — R1,  R2 \сопротивление 510 кОм, мощность 0,12 Вт \;
  • двух конденсаторов — С1,  С2;
  • электрической лампочки — HL1 мощность 60 Вт.

 

рис.3

Соединение в электрической цепи для:

  • предохранителя;
  • двух конденсаторов;
  • двух резисторов;
  • ключей \S1,  S2,  S3,  S4\,

— последовательное.    Соединение с контактами электрического патрона лампочки — параллельное.   Электрическая цепь замыкается на спирали лампочки HL1.

Принцип работы ступенчатого регулятора яркости освещения будем прослеживать при подключении данного прибора \электрической схемы\ к внешнему источнику переменного напряжения.

При замыкании контактов ключа S2, для участка электрической цепи:  F1-C1-R1, — яркость освещения лампочки будет средней.

При замыкании контактов ключей S2 и   S4, для двух участков электрической цепи:

  1. F1 —  C1 —  R1;
  2. F1 — C2 — R2,

— яркость освещения лампочки будет самой низкой.

При замыкании контактов одного ключа S4, — напряжение подаваемое на лампочку будет соответствовать напряжению внешнего источника переменного напряжения, то есть яркость освещения будет наибольшей.

Электрическая  схема настольной лампы может состоять из следующих схем.    Данные две  схемы \рис.4\  настольного светильника  имеют как одну так и две люминесцентные лампы.

Соответственно,  схема для подобных настольных светильников будет выглядеть следующим образом:

рис.4

Схемы в своем исполнении простые.  Подобные схемы могут включать в свое содержание конденсатор, соединенный в электрической цепи — параллельно.

Участок электрической цепи для одного потенциала имеет последовательное соединение  для:

  • двух люминесцентных ламп;
  • двух стартеров;
  • одного дросселя,

для:

  • одной люминесцентной лампы;
  • одного стартера;
  • одного дросселя.

 

Дроссель, представляющий из себя катушку, — проверяется на наличие сопротивления прибором Омметр либо прибором Мультиметр — предварительно выставленным в позицию измерения сопротивления.

Диагностику для линейной люминесцентной лампы можно провести пробником, — для  двух  штырьков с одной и с другой стороны лампы \лампа имеет спираль с одной и с другой стороны\.

Стартер на наличие сопротивления — проверить невозможно, так как стартер состоит из двух электродов между которыми имеется разрыв.   Целесообразней его просто заменить.

Конденсатор предназначен в электрической цепи как сглаживающий фильтр \сглаживание пульсаций переменного или синусоидального напряжения\.  Настольная лампа к этим схемам может работать \светиться\ и без конденсатора.

 Выбор освещения и типы ламп для настольных светильников  показаны на рисунке 5

 

рис.5

Типы ламп для настольного светильника

 Типы ламп для контакта с электрическим патроном имеют следующие названия:

  • лампа светодиодная — LED;
  • энергосберегающая полуспиральная лампа — CFL;
  • обыкновенная лампа \со спиралью\ — GLS.

Данный рисунок также указывает, что замену лампы следует проводить при разъединении штепсельной вилки от электрической розетки.

светодиодная лампа LED

                                                 

                                                           энергосберегающая лампа CFL

                                                                                                                                                                                                                                                          

                                                                                                                                                                                                                                                                               лампа накаливания GLS

Рассмотрим электрические схемы регуляторов яркости \мощности\ для настольных ламп.

                                                         

                                                                                                рис.6

Электрическая схема \рис.6\ регулятора яркости,  состоит из следующих элементов электроники:

  • потенциометра;
  • пяти резисторов;
  • двух транзисторов;
  • диодного моста;
  • конденсатора;
  • одностороннего стабилитрона;
  • тиристора триодного \запираемого в обратном направлении с управлением по катоду\.

Транзистор VT1 имеет  p-n-p переход,  транзистор VT2  —   n-p-n  переход.   Одна диагональ диодного моста соединена с электрической схемой регулятора мощности, другая диагональ диодного моста соединена с нагрузкой \лампой\.

Электрическая схема \рис. 7\ регулятора яркости в общем то состоит из таких же элементов электроники, что и в  электрической  схеме рисунка 6.   В дополнение, здесь имеет параллельное соединение — триодный симметричный симистор.   Регулировка яркостью лампы  осуществляется поворотом ручки потенциометра.

 

рис.7

                                              

             настольная светодиодная лампа с регулятором яркости

Для остальных незначительных причин неисправности данных настольных ламп могут быть такие причины как:

  • разрыв провода сетевого кабеля в месте соединения со штепсельной вилкой;
  • разрыв провода сетевого кабеля по его длине;
  • перегорание   лампы.

Подробное описание проведения диагностики для  всех типов  светильников, — Вы сможете найти в этом блоге.

На этом пока все.

 

 

 

Тиристорный регулятор яркости настольной лампы |

 

Не смотря на то, что лампы накаливания вымирающий вид:) Пока лампочки Ильича ещё выпускают, их можно пускать в ход, и применять как в быту так и в радиолюбительской практике.  Какой бы мощности не была бы лампочка в настоль­ной лампе у радиолюбителя, её свечением можно управлять.

Для того что бы каждый раз не ввинчивать, вывинчивать разные лампочки если вам необходимо разная мощность 40 Вт, 60 Вт, 75 Вт, или все 100 Вт. Можно воспользоваться очень простым приспособлением — регулятором напряжения на тиристоре рисунок №1.

Рисунок №1 – Схема тиристорного регулятора

S1 – Выключатель
FU1 – Плавкий предохранитель рассчитанный на ток 1-2 А
C1 – Конденсатор электролитический 5 Микрофарад на 300 Вольт
VD1 – КД105Г
VD2 – КУ201В (КУ201Б) или аналоги подходящие по характеристикам
R1 – резистор (подбирается) 39 – 47 К на 1 Вт.
R2 – Переменный резистор 47 К на 1 Вт.

Два левых (входных) контакта предназначены для включения в сеть питания 220 В при помощи обычной вилки, к двум правым подключается непосредственно настольная лампа.
Не пренебрегайте требованиями к технике безопасности, потому что практически все элементы схемы прямо (гальванически) связаны с силовой сетью напряжением 220 В, и могут представлять прямую угрозу для жизни.

Рекомендую всё основное изделие спрятать в диэлектрический корпус исключающий прикосновение к токоведущим частям.

Подбор элементов для тиристорного регулятора яркости:

Начнем с регулятора яркости. Возможны два принципиально разных решения. Можно применить потенциометр с так назы¬ваемым выключателем сети, и тогда отпадает необходимость в отдельном вы-ключателе S1. Такими потенциометрами являются ТК и ТКД. Они должны быть с линейной зависимостью (кривая «А»). Особое внимание обратим на декоративную ручку, которая будет надета на ось потенциометра.

Если же мы решим оставить «штатный» выключатель на самой лампе, тогда можно применить практически любой другой тип потенциометра (но также обяза¬тельно с кривой «А»).

VD2 – незапираемый тиристор типа КУ201 с напряжением включения 50 В, но впол¬не можно использовать, (нет никакого смысла применять тиристор, напряжение открывания которого 300, 600 или 1000 В. Такой тиристор просто не откроется при напряжении сети 220 В) на пример тиристор типа КУ101Б с таким же напряжением тоже подходит. Важно лишь, чтобы максимально допустимый ток через него был не меньше тока, протекающего через лампочку. А он легко определяется по величине мощ-ности лампочки. Например, для лампочки мощностью 100 Вт при напряжении сети 220 В номинальный ток составит 100/ 220= 0.45 А. На такой же ток должен быть рассчитан и диод VD1 при допустимом обратном напряжении не менее 250 В. Таким же во избежание случайностей лучше выбрать и рабочее напряжение для конденсатора С1. Номинальный ток предохранителя FU1 должен быть не меньше 1 А и не больше 2 А.
Главное при сборке не пренебрегайте правилами техники безопасности и грамотно подбирайте элементы схемы.

Недостаток схемы тиристорного регулятора яркости:

Не смотря на свою простоту, схема имеет существенный недостаток – это мерцание лампы, так что не торопитесь её делать, ещё есть масса полезных схем регулировки, которые я постараюсь выложить на страницах нашего сайта.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/

характеристики, принцип работы и схема диммера

Регулятор яркости 220 вСоздание комфорта невозможно без правильно подобранного освещения. Особенно это актуально для вечернего времени суток, когда яркий свет от светильника может даже раздражать. Поэтому и было специально разработано устройство, помогающее легко изменять степень освещённости. Этот прибор представляет собой регулятор яркости ламп накаливания 220 В, позволяющий плавно управлять их накалом. При этом такой светорегулятор помогает экономить электроэнергию.

Устройство и виды

Сегодня в продаже можно встретить большое количество светорегуляторов для различных осветительных приборов. Одним из самых недорогих и простых по принципу действия является приспособление, управляющее яркостью свечения ламп накаливания. Всё дело в том, что лампа представляет собой простейшее осветительное устройство.

В лампе накаливания используются свойства определённого типа материала излучать свет при нагреве. Для того чтобы это излучение было видно, температура тела должна превышать 570 °C (красный спектр). Нагрев вещества достигается путём пропускания через него тока. Поэтому в качестве источника излучения должен использоваться тугоплавкий проводник, сопротивление которого току позволит преобразовать электрическую энергию в световую. Всеми этими качествами обладает вольфрам, который и используется в качестве нити накала.

Диммер регулировка для ламп накаливания Рабочая температура вольфрама достигает 2000—2800 °C, из-за чего спектр свечения лампы сдвинут в жёлтый цвет. При таких температурах вольфрам окисляется, поэтому для избегания процесса окисления нить помещается в вакуумированную колбу, которая заполняется инертным газом. В качестве газа используется азот, аргон или криптон.

Принцип действия светорегулятора для ламп накаливания построен на изменении степени нагрева вольфрамовой нити в колбе. Достигается это путём регулирования силы тока, проходящей через прибор света. Такие регуляторы называются диммерами. Различные их виды можно встретить в специализированных торговых точках по продаже светового оборудования, но при желании можно изготовить диммер и своими руками. Его несложная конструкция позволяет собрать и подключить устройство самостоятельно даже людям, которые не имеют специальных технических знаний.

Принцип действия

Своим названием диммер обязан английскому слову dim, которое переводится как «затемнять». По своей сути он является регулятором электрической мощности. Простейшим его видом является реостат, но для изменения световой силы приборов его не используют из-за низкого коэффициента полезного действия (КПД). Другим его видом является автотрансформатор. Однако крупные его размеры и внушительный вес делают применение автотрансформатора неудобным.

Развитие полупроводниковых приборов позволило использовать для светорегулировки новые технологии, работающие на принципе преобразовании частоты. Таким образом, регуляторы освещения для лампы накаливания разделяют на два вида:

  • аналоговые;
  • цифровые.

Схема и устройство регулятора яркости лампы накаливания

В основе принципа аналогового устройства лежит отбор энергии от осветительного прибора путём изменения сопротивления линии. Например, в случае использования реостата, который представляет собой переменный резистор, происходит изменение сопротивления в цепи с подключённой лампочкой. Для этого последовательно в цепь нити накала включается переменный резистор. Увеличение его сопротивления ведёт к уменьшению силы тока, поступающего на лампу, а значит, нить меньше нагревается, и свечение становится тусклее. Но при таком подходе потребление мощности не уменьшается, её часть выделяется на реостате, приводя к его нагреву.

Неудобства использования аналоговых регуляторов почти полностью решены в цифровых устройствах. В их основе применяется принцип широтно-импульсной модуляции (ШИМ), позволяющий управлять подачей мощности к нагрузке. Это достигается путём изменения длительности импульсов при определённой частоте сигнала. Для этого используются коммутационные элементы, которые собираются на транзисторах, работающих в ключевом режиме, и генератор — ШИМ-контроллер. Задача последнего заключается в управлении электронными ключами.

В закрытом состоянии ток через ключ очень мал, а значит, мощность рассеивания ничтожна. В открытом состоянии, несмотря на большой ток, сопротивление также мало, а тепловые потери незначительны. Наибольшее количество тепла выделяется в момент переключения ключа. Изменение светосилы осветителя зависит от периода времени и скважности импульса сигнала, при этом значение тока остаётся постоянным.

Характеристики и возможности

Использование светорегуляторов имеет ряд преимуществ по сравнению с простым включением и выключение света. В первую очередь — это дополнительный комфорт, а во вторую — экономия электроэнергии. Современные приборы позволяют изменять освещение, даже не притрагиваясь к выключателям света из-за возможности использования пульта дистанционного управления. Можно выделить следующие основные преимущества:

  • повышение энергоэффективности освещения;
  • плавное включение и выключение света;
  • продление срока эксплуатации осветительных приборов;
  • работа ламп по запрограммированному алгоритму.

Регулировка яркости ламп накаливанияСегодня производители предлагают устройства, различающиеся по виду, стоимости и набору дополнительных функций. Но при этом отмечаются и недостатки. Прежде всего, это чувствительность к перегреву, поэтому в помещениях с высокой температурой их устанавливать не рекомендуется. Кроме этого, из-за особенностей работы прибора возникают радиоимпульсы, которые могут стать источником помех.

Следует знать, что у ламп накаливания отсутствует индуктивность и ёмкость. Они представляют собой инерционные устройства. А это значит, что при уменьшении потребляемой мощности изменяется цветовая температура света. Из жёлтого спектра она сдвигается в сторону красного излучения. Освещение на малой мощности может оказаться неприятным, потому некоторые производители встраивают в свои устройства порог отсечения. При достижении определённой величины лампа сразу отключается. К основным характеристикам прибора относят:

  1. Схема диммераМощность. Этот параметр показывает, какой наибольшей мощности осветитель можно подключить к светорегулятору. При покупке необходимо выбирать устройство с показателем на 15—20% больше, чем планируемая к подключению мощность нагрузки. Это позволит избежать перегрева устройства и выхода его из строя.
  2. Степень защиты. Электроприбор должен обладать классом защиты. Минимальный класс должен соответствовать стандарту IP20.
  3. Материал контактной группы. Лучше всего, если используются медные контакты, но часто применяется и сплав.
  4. Тип управления. Он может быть поворотным, кнопочным, сенсорным или дистанционным.
  5. Вид установки. Такие приборы могут быть встраиваемыми или выносными. Первого вида устройства предназначены для расположения вместо выключателя освещения. Приборы второго типа подключаются к розетке с напряжением 220 вольт и имеют собственную розетку, в которую уже включается непосредственно лампа.

Производители приборов

Покупая устройство, не в последнюю очередь нужно обращать внимание на его производителя. Приобретение некачественного товара может привести к возникновению пожара, поэтому лучше отдавать предпочтение известным производителям. Обычно они имеют обширную сеть сервисных центров, благодаря чему гарантийный ремонт осуществляется в кратчайшие сроки, но чаще всего изделие просто меняется на новое. К лидирующим компаниям, выпускающим диммеры для ламп накаливания, относят:

  1. Как установить диммер Legrand. Французская компания, специализирующаяся на электротехнической продукции. Она занимает одну из лидирующих позиций на рынке и считается надёжной и безопасной. Большим спросом пользуются ее серии Valena и Celiane.
  2. Schneider Electric. Их продукция отличается простотой установки и безопасностью в процессе эксплуатации. Популярные серии: Merten, Прима, Sedna.
  3. Ноотехника Агат. Российский производитель электрофурнитуры. Продукция отвечает высоким стандартам европейского качества. Чаще всего при покупке обращают внимание на дистанционный диммер Агат-Д-1000.
  4. ABB. Светорегуляторы шведско-швейцарского производителя выполнены в оригинальном дизайне и представлены на рынке в широком ассортименте. Их продукция Busch Duro считается классикой светоуправляющих приборов.
  5. Makel. Производитель из Турции зарекомендовал себя качественным и надёжным изготовителем, выпускающим продукцию в основном бюджетного класса. Серии Defne и Lilium Natural Kare смогут удовлетворить любого покупателя.
  6. LN-MINI. Базирующаяся в Гонконге фирма известна своими миниатюрными диммерами, предназначенными для установки в настольные лампы.
  7. Lezard. Дочерняя компания турецкой фирмы DERNEK GRUP. С каждым годом её продукция становится всё более популярной. Наиболее известная серия — Mira.

Схемотехника устройств

Существует довольно много технических решений изготовления светорегулирующих приборов. Но ключевые блоки их однотипные — это элементы управления и управляющий модуль. Самый простой вариант схемы диммера для лампы накаливания содержит не более пяти радиоэлементов и лёгок к повторению даже начинающему радиолюбителю, в то время как сложные многофункциональные приборы содержат микросхемы и программный код.

Простые схемы можно выполнять навесным монтажом, а вот для сложных устройств понадобится изготовить печатную плату. При самостоятельной сборке прибора любой сложности следует быть внимательным и соблюдать аккуратность, так как работы связаны с опасным для жизни напряжением 220 вольт.

Поворотный диммер

Такая схема не содержит дефицитных радиодеталей, а её ключевым элементом является симистор. Суть схемы сводится к тому, что ток появится на лампе лишь в том случае, если на управляющем электроде симистора возникнет отпирающий сигнал. Когда он откроется, нагрузка подключится.

Самодельные диммерыГенератор в схеме реализован на двух симисторах VS1 и VS2. При включении в сеть 220 вольт конденсаторы C1 и C2 через резисторы R1 и R2 начинают заряжаться. Как только уровень напряжения достигает значения, позволяющего открыться VS1, появляется ток, а конденсатор C1 разряжается. Чем больше сопротивление цепочки R1-R2, тем медленнее происходит заряд, а значит, и увеличивается скважность импульсов. При изменении сопротивления R2 регулируется длительность импульсов.

Таблица радиоэлементов:

ОбозначениеНаименование
VS1BT137 600E
VS2DB3
R11 МОм
R227 кОм
C122-100 нФ, 300 В
C222-100 нФ, 300 В

Светорегулятор на микроконтроллере

Такого типа схемы используются в диммерах с возможностью дистанционного управления. Главным элементом устройства является микроконтроллер DD1. Через делитель напряжения R8-R10 сетевое напряжение поступает на вход контроллера. Переход синусоидального сигнала через ноль характеризуется падающим фронтом напряжения, что вызывает прерывание программы микросхемы.

Элементы VD3-VD4 образуют стабилизированный однополупериодный выпрямитель. Конденсатор С6 и резистор R6 нужны для защиты параметрического стабилизатора. Для сборки такого прибора своими руками понадобится изготовить печатную плату, а уровень знаний по радиоэлектронике должен быть средним.

Схема сборки регулятора

Конденсаторы C1 и C2 играют роль фильтра и предназначены для сглаживания выпрямленного напряжения. Через диод VD1 в случае пропадания напряжения в сети 220 В происходит разряд C5. На транзисторе VT1 собран ключ, разряжающий C4 при взаимодействии пользователя с сенсорной пластиной. В качестве неё можно использовать даже самодельную металлическую пластину, приклеенную с обратной стороны клавиши любого выключателя.

Симистор должен быть рассчитан на максимальное рабочее напряжение не менее 600 вольт, а его ток обязан превышать требуемый нагрузкой в два раза. Если на четвёртом выводе микроконтроллера присутствует единица, тогда симистор закрыт. Для его открытия формируется импульс сигнала длительностью не менее 15 мкс.

Радиоэлемент устанавливается на радиатор. В качестве фотоприёмника используется любой фотоэлемент с несущей частотой инфракрасного сигнала 36 кГц.

Светодиодный светильник с регулировкой яркости


Светильник, который нам представил мастер-самодельщик, имеет 36 светодиодов. Питается светильника от двух 4В свинцово-кислотных аккумулятора. Заряжаются аккумуляторы от сети. Так же в светильнике имеется регулировка яркости света. Для изготовления светильника мастер использовал следующие

Материалы и инструменты:
-Белые светодиоды — 36 шт.;
-Резисторы 82 Ом — 36 шт.;
-АКБ 4В 1,5 Ач -2 шт.;
-Регулятор напряжения 7805 — 1шт.;
-Тумблер — 1 шт.;
-Красный или зеленый светодиод — 1 шт;
-3,5-миллиметровый разъем — 1 шт.;
— Потенциометр 50 кОм — 1 шт.;
-Ручка для потенциометра — 1 шт.;
-Микросхема 555 — 1 шт.;
-Диод 1N4001 — 2 шт;
-8-контактный разъем DIP IC
-Резисторы 1 кОм — 2 шт.;
-Резистор 330 Ом — 1 шт.;
-Керамические конденсаторы 0,1 мкФ — 2 шт.;
-Транзистор TIP31С — 1 шт.;
-Цветные провода;
-Паяльник;
-Припой;
-Кусачки;
-Ножницы;
-Картонная коробка;
-Металлическая 30-см линейка;
-Белая и черная бумага;
-Клей;
-Монтажная плата;
-Макетная плата;
-Двусторонний скотч;
-Игла;


Шаг первый: аккумуляторы
Для питания светильника мастер использует две свинцово-кислотных 4В аккумулятора. Соединяет батареи последовательно. К вторым выводам АКБ припаивает провода. Крепится АКБ будут на двусторонний скотч.

Шаг второй: стойка
Стойку мастер изготовил из линейки. Изгибает металлическую линейку дугой. Оклеивает её черной бумагой.

Шаг третий: светодиоды
Макетную плату оклеивает белой бумагой. Иглой протыкает в бумаге отверстия.


Монтирует светодиоды на плате. Совместно со светодиодами монтирует резисторы.

После монтажа шести дорожек светодиодов соединяет их параллельно.

Обрезает плату как на фото.

Шаг четвертый: потенциометр
Согласно схеме, припаивает диоды к крайним контактам потенциометра. Затем спаивает вторые концы диодов и припаивает к ним провод. К среднему контакту припаивает провод.

Шаг пятый: макетная плата
Прежде чем спаять блок управления, мастер проверяет работу электроники на макетной плате. Макетная плата позволяет собрать схему без пайки используя провода. Схема приведена ниже. На фото так же показана свечение лампы при 5% и 95% яркости.

Шаг шестой: диммер
Ди́ммер это— электронное устройство, предназначенное для изменения электрической мощности (регулятор мощности). В данном случае с помощью диммера будет регулироваться яркость света.
Согласно схеме собирает диммер.

Шаг седьмой: сборка лампы
Приклеивает к коробке стойку.

Приклеивает к стойке лампу.


На двусторонний скотч закрепляет внутри коробки аккумуляторы.


Добавляет тумблер.


Припаивает потенциометр.

Делает в коробке отверстие. Протягивает в отверстие провод от лампы. Припаивает провода согласно схеме.


Согласно схеме, монтирует гнездо зарядки. Светодиод будет гореть, когда идет зарядка аккумуляторов.



Закрепляет плату.


В коробке делает четыре отверстия. Устанавливает потенциометр, гнездо зарядки, светодиод и тумблер.

Закрывает коробку крышкой.


Вырезает прямоугольный кусок картона. Оклеивает его черной бумагой. Приклеивает картон к задней части лампы.

Делает окантовку на коробке.


Светильник готов. Осталось только зарядить аккумуляторы.

Светильник, который собрал мастер, получился недорогой по цене и простой в изготовлении. При желании можно сделать корпус покрасивее, но мастер хотел сделать светильник с минимом затрат. Уменьшив количество светодиодов, можно увеличить срок работы светильника без заряда, а увеличив их количество можно добавить яркость.

Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Универсальный регулятор мощности и яркости.

РадиоКот >Схемы >Аналоговые схемы >Бытовая техника >

Универсальный регулятор мощности и яркости.

Вашему вниманию предлагается универсальный регулятор мощности с новым видом регулирования угла с двух сторон синуса. В качестве нагрузки можно подключать любой потребитель (постоянного тока) — коллекторные двигатели, паяльники, лампы накаливания любого напряжения, энергосберегающие лампы. А питать регулятор на любое переменное напряжение.
Ну теперь по порядку:

В настоящее время широкое распространение получили энергосберегающие лампы. Чтобы пользоваться светильником как ночником, или дежурной подсветкой в темном коридоре надо снизить их яркость. Можно простыми средствами регулировать их яркость а соответственно и ресурс (который возрастает до десяти раз) . Простым тиристорным регулятором менять яркость этих ламп нежелательно. В схемах электронных балластов, которые применяются в энергосберегающих лампах, на выходе после моста стоит электролитический конденсатор, который плохо работает с тиристорными регуляторами (большой импульсный зарядный ток приводит к их нагреву). В предлагаемых Вашему вниманию схемах регуляторов яркости применён принцип регулирования угла с двух сторон синусоиды, вначале и в конце, что позволяет снизить нагрузку на электролитический конденсатор. Целью является простота регулятора, минимальное тепловыделение, повторяемость, дальнейшая возможность модернизации и малые габариты. На выход регулятора можно подключать в том числе обычные лампы накаливания до 25 ватт, напряжением даже на 12 вольт (базовая схема) и паяльники до 150 ватт 220 в. Рассмотрим три схемы под единым названием «Бесплатный ночник»,: да и дневник тоже.
Первый вариант схемы «базовый» на основе которого можно построить ряд других доработок. Принцип работы схемы предельно прост, на выходе TL431 получаем прямоугольные импульсы для управления полевым транзистором ( Может быть любой на 400в и ток от 2А и выше, например BUZ90)
«Базовый» вариант схемы:

Принцип регулирования угла с двух сторон синусоиды вначале и в конце:

Импульсный заряд электролитического конденсатора происходит в очень короткие моменты, и только через один импульс плавного дозаряда, что не вызывает его нагрева, а пульсации частотой уже 200 Гц практически не заметны на самой лампе.
Заряд конденсатора:

Настройка заключается в подборе резистора R5 по желаемому диапазону регулировки (от 0% до 100% или от 60% до 100% или от 0% до 40%) При работе лампы на 60% мощности её ресурс резко возрастает.
Если в данной схеме включить светодиод в прямом включении последовательно со стабилитроном, он будет являться индикатором мощности (Его применение желательно когда регулятор используется для паяльника. Яркость его свечения указывает на выходную мощность).

В процессе эксплуатации данной схемы было замечено неустойчивое включение некоторых типов энергосберегающих ламп, которым необходим был начальный прогрев. Далее они работали и регулировались нормально. В связи с этим появилась схема с предварительным разогревом.
Схема с предварительным разогревом:

В момент включения С2 разряжен и напряжение на затворе открывает Т2, который в свою очередь шунтирует вход TL431, на выходе которой устанавливается высокий уровень 12в. Т1 открывается и подает на лампу всё напряжение в течении времени определяемой цепью R6, C2. Лампа быстро разогревается и готова к работе на пониженном напряжении питания без морганий и погасания. D7 необходим для быстрого разряда C2 при выключении регулятора.

Выше приведенные схемы не могут работать на нагрузку более 2-х ламп без нагрева транзистора Т1, (он устанавливается без радиатора), так как управление им происходит без применения драйвера. Для подключения более 3-х ламп предлагается схема с несложным драйвером.
Схема с драйвером:

В «базовую» схему добавился формирователь импульсов на Т2 и драйвер на Т3 — Т5. Транзистор Т1 IRF740. Данная схема показала хорошие результаты не только при работе на энергосберегающую лампу но и на обычную лампу накаливания, на паяльник 150 ватт.

Все приведенные схемы могут работать на любом напряжении от ~10в до ~250в. Необходимо только подобрать R1 (его можно убрать со стабилитроном если напряжение до 20в) и R2. Данные схемы очень надежны и работают у меня уже 5 лет не выключаясь на подсветку ванной комнаты. И лампу за 5 лет ни разу еще не менял! Также у человека «базовая» схема работает на движок подачи проволоки в сварочном полуавтомате.

Вот Вы и спросите: «А почему название «Бесплатный ночник»?» А я Вам расскажу. Собираете, например «базовую» схему, выставляете яркость немного больше минимума устойчивой работы лампы. Затем отключив все потребители в доме (И холодильник тоже). Обычно это ночью. Идёте на площадку — засовываете лапы в распределительный щиток:, ой в смысле смотрите на счётчик. И что мы видим — диск медленно доходит до язычка компенсации самохода (внутри у него такая штука есть) и :. О С Т А Н А В Л И В А Е Т С Я !!!!! А свет то у Вас горит — целых три лампы подсветки — ванная, коридор и кухня. А тут и простор для дальнейшей модернизации. На кухне я сделал без переменного резистора, а подобрал по минимуму устойчивого свечения. А штатный выключатель в лампе просто закорачивает сток — исток выходного транзистора, включая лампу на максимум. Очень удобно.

Файлы:
Печатные платы в формате SL 5.0.

Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?

схема и устройство. Выключатели с регулятором яркости

Для настройки яркости ламп накаливания применяются специальные регуляторы. Данные устройства еще называются диммерами. Они существуют разных модификаций, и в случае необходимости в магазине всегда можно подобрать необходимую модель. В основном они заменяют собой выключатель в лампе накаливания. Простейшая модификация включает в себя один поворотный контроллер с ручкой. При настройке яркости изменяется дополнительно показатель потребления электроэнергии.

Если вспомнить старые времена, то регуляторы для настройки яркости не использовались. Вместо них устанавливались специальные реостаты. С их помощью также можно было регулировать люминесцентные лампы. В целом со своими обязанностями они справлялись хорошо, однако у них был один недостаток. Связан он с потреблением электроэнергии. Как говорилось ранее, современные регуляторы затрачивают меньше электричества, если их использовать не на полную мощность. В случае с реостатами это правило не действует. При минимальной мощности расходуется электричество так же, как и при максимуме. Излишки в данном случае преобразуются в тепло.

регулятор яркости освещения

Схема обычного регулятора

Простая схема регулятора яркости предполагает использование потенциометра линейного типа, а также пары транзисторов с небольшой мощностью. Для подавления высокой частоты в системе применяются конденсаторы. Сердечники в устройствах данного типа нужны только ферритового типа. Непосредственно перед клеммами устанавливается динистор с тиристором.

выключатели с регулятором яркости

Как установить поворотный регулятор в лампу?

Для того чтобы настольная лампа с регулятором яркости работала нормально, следует проверить напряжение на полупроводнике. Сделать это можно при помощи обычного тестера. Далее следует осмотреть плату лампы накаливания. Если она установлена однокального типа, то все сделать довольно просто. Выходные полупроводники важно присоединить к выходным отверстиям, на которых имеется отрицательная полярность. В данном случае сопротивление максимум должно составлять 3 Ома. Для проверки устройства необходимо провернуть котроллер и следить при этом за яркостью лампы накаливания.

Установка кнопочного регулятора в лампу

Чтобы регулятор яркости лампы накаливания работал исправно, важно внимательно ознакомиться с управленческой платой устройства. Далее необходимо подсоединить все контакты. Если схема используется многоканальная, то напряжение на ней проверяется тестером. Непосредственно соединение контактов осуществляется при помощи пайки. Важно при этом во время работы не задеть резисторы. Дополнительно необходимо позаботиться об изоляции проводки. Перед включением регулятора нужно проверить надежность всех соединений. После подачи электроэнергии необходимо попробовать изменить яркость, нажимая на кнопку.

схема регулятора яркости

Высоковольтные регуляторы яркости

Высоковольтный регулятор яркости освещения, как правило, можно встретить в театрах. Там лампы накаливания используются довольно мощные, и устройства должны быть способными выдерживать большие нагрузки. Симисторы для этой цели применяются высоковольтные (с маркировкой КУ202). Транзисторы используются биполярные, однако обычные их модификации также устанавливаются.

Диодные мосты припаиваются возле тиристоров и необходимы для быстрой передачи сигнала. Стабилитроны чаще всего можно встретить с маркировкой Д814. Стоят они в магазине довольно дорого, и это следует учитывать. Переменные резисторы в системе предельное напряжение способны выдерживать на уровне 60 Ом. В это время обычные аналоги сплавляются только с 5 Ом.

Модели с прецизионными резисторами

Регулятор яркости с резисторами данного типа рассчитан на лампы накаливания средней мощности. Стабилитроны в данном случае применяются на 12 В. Переменные резисторы в регуляторах встречаются довольно редко. Низкочастотные модификации использоваться могут. Повысить коэффициент проводимости в данном случае можно за счет увеличения количества конденсаторов. За симистором они обязаны располагаться попарно. В таком случае тепловые потери будут минимальными. Отрицательное сопротивление в сети порой представляет серьезную проблему. В конечном счете перегрузка приводит к поломке стабилитрона. Электролитические конденсаторы с низкочастотными помехами справляются довольно успешно. Главное при этом — не давать резко высокое напряжение на лампу.

регулятор яркости лампы накаливания

Схема регулятора с высокомегаомными резисторами

Регулятор яркости данного типа может использоваться для управления лампами разного типа. Схема его включает высокомегаомные резисторы переменного тока, а также обычный стабилитрон. Тиристор в данном случае устанавливается рядом с конденсатором. Для снижения предельной частоты специалисты часто используют предохранители плавкого типа. Они способны выдерживать нагрузку на уровне 4 А. При этом предельная частота на выходе будет составлять максимум 50 Гц. Симисторы общего назначения входное напряжение способны выдерживать на уровне 15 В.

Выключатели с регуляторами на полевом транзисторе

Выключатели с регулятором яркости на полевом транзисторе отличаются хорошей защитой. Короткие замыкания в системе происходят довольно редко, и это, несомненно, является преимуществом. Дополнительно следует учитывать, что стабилитроны для регуляторов могут применяться только с маркировкой КУ202. В данном случае они способны работать с резисторами малой частоты и хорошо справляться с помехами. Симисторы в схемах располагаются за резисторами. Предельное сопротивление в системе обязано поддерживаться на уровне 4 Ом. Напряжение на входе резисторы держат примерно 18 В. Предельная частота, в свою очередь, не должна превышать 14 Гц.

Регулятор с подстроечными конденсаторами

Регулятор яркости с подстроечными конденсаторами может успешно использоваться для настройки мощности люминесцентных ламп. Выключатели в данном случае должны располагаться за диодным мостом. Стабилитроны в схеме нужны для подавления помех. Резисторы переменного типа, как правило, предельное сопротивление выдерживают на уровне 6 Ом.

При этом тиристоры используются исключительно для поддержания напряжения на должном уровне. Симисторы через себя способны пропускать ток на уровне примерно 4 А. Предохранители плавкого типа в регуляторах встречаются довольно редко. Проблема с электропроводимостью в таких устройствах решается при помощи переменного резистора на выходе.

настольная лампа с регулятором яркости

Модель с простым тиристором

Регулятор яркости света с простыми тиристорами больше всего подходит для кнопочных моделей. Система защиты, как правило, в нем отсутствует. Все контакты в регуляторе изготавливаются из меди. Максимум сопротивление на входе обычный тиристор способен выдержать 10 В. Для поворотных контроллеров они подходят плохо. Прецизионные резисторы с такими регуляторами работать не способны. Связано это с большим уровнем отрицательного сопротивления в цепи.

Высокочастотные резисторы также устанавливаются довольно редко. В данном случае уровень помех будет значительным и приведет к перегрузке стабилитрона. Если говорить про обычные настольные лампы, то лучше всего использовать обычный тиристор на пару с проволочными резисторами. Проводимость тока у них находится на довольно высоком уровне. Они редко перегреваются, мощность рассеивания в среднем колеблется в районе 2 Вт.

регулятор яркости света

Использование переменных конденсаторов в схеме

Благодаря использованию переменных конденсаторов удалось добиться плавной смены яркости ламп накаливания. При этом электролитические модели работают совершенно иначе. Транзисторы для таких конденсаторов больше всего подходят на 12 Вт. Напряжение на входе должно поддерживаться на уровне 19 В. Также следует предусмотреть использование плавких предохранителей. Тиристоры, как правило, применяются с маркировкой КУ202. Для поворотных модификаций они подходят хорошо. Для повышения коэффициента проводимости потенциометры применяют с выключателями сети.

регулятор яркости

Устройство однопереходного регулятора

Однопереходный регулятор яркости света славится своей простотой. Резисторы в нем, как правило, применяются на 4 Вт. При этом напряжение максимум он способен держать на уровне 14 В. При его использовании важно учитывать, что во время работы лампочка может мерцать. Плавкие предохранители в устройствах используются довольно редко.

На входе номинальный ток максимум может оставлять 4 А. Тиристоры типа КУ202 способны в такой системе работать только на пару с диодным мостом. Симистор в устройстве необходимо подключать за резистором. Чтобы подсоединить регулятор яркости к лампе, нужно зачистить все контакты. Корпус для устройства важно применять диэлектрический. В таком случае безопасность работы будет гарантирована.

РЕГУЛЯТОРЫ МОЩНОСТИ

   Существует несколько несложных схем регуляторов, которые практически одинаковы, так как используют принцип фазоимпульсного управления. Про несколько их вариантов мы тут и поговорим. Первый регулятор не делал, а взял готовый от китайской настольной лампы вот с такой схемой:

РЕГУЛЯТОР МОЩНОСТИ - схема 1

   После успешной проверки поместил его в корпус от телефонной зарядки.

РЕГУЛЯТОР МОЩНОСТИ 1

   Всё получилось. Регулирует напряжение от 0 до 220V. Однако  хотелось нашей российской солидности и чтобы  предел максимально допустимой мощности нагрузки был в разы больше. Так, что второй добросовестно сделал полностью сам вот по этой схеме:

РЕГУЛЯТОР МОЩНОСТИ - схема электрическая 2

   В описании была обещана возможность регулировать устройства мощностью до 1000W включительно. В это время собирал нагреватель для разбора печатных плат на базе киловаттной лампы от прожектора, вот и применил его. Справился. Естественно, что и любой паяльник ему «по зубам».

РЕГУЛЯТОРЫ МОЩНОСТИ Самодельные

   Казалось бы чего ещё нужно? Проблема решена. Но чего-то всё равно недоставало. Третий вариант контроля над температурой жала паяльника был возложен на диод 1N4007 работающий в паре с кнопочным выключателем.

РЕГУЛЯТОР МОЩНОСТИ 50-100%

   Которые поместил в подходящей сетевой вилке. Это устройство, несмотря на свою незамысловатость, непосредственно в работе понравилось больше. Только проработало не долго – перегорел нагревательный элемент паяльника, на другой паяльник ставить не стал.

Простейший РЕГУЛЯТОР МОЩНОСТИ

   Вот он, увы, не у дел. Что заставило делать четвёртый по счёту регулятор мощности и сам не пойму. Только решил сделать по схеме, как говориться проверенной годами. Вот, что нашёл подкреплённое самыми лестными отзывами нескольких радиолюбителей.

Схема РЕГУЛЯТОРА МОЩНОСТИ 220

   Сделал.

РЕГУЛЯТОР МОЩНОСТИ 220 В своими руками

   Подключается к розетке напрямую, какие-либо соединительные провода отсутствуют(очень удобно), регулировка от 0 до 100% мощности. P max = 100W. При первом включении параллельно паяльнику подключил мультиметр и протестировал зависимость степени свечения неоновой лампочки от подаваемого на нагревательный элемент паяльника напряжения и теперь имею возможность визуального ориентирования при регулировке. Пока доволен. Если, что и добавлю к последнему варианту, так это индикатор вот с такой схемой:

индикатор регулятора - схема

   С пожеланием успеха, Babay. Россия, Барнаул.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *