Простейшие схемы для начинающих радиолюбителей – Начинающему радиолюбителю простые схемы,простейшие схемы,литература для начинающего радиолюбителя

Начинающим радиолюбителям





     Самая простейшая схема источника ВВ — умножитель по схеме генератора Маркса. Фото и видео работы устройства.

23.10.2013 Прочитали: 31226

     Усилитель на TDA7294 — отличное начало для тех, кто недоволен дешёвыми колоночками, а знания позволяют сделать УМЗЧ самому.

17.10.2013 Прочитали: 42846

     Краткое пособие начинающему жукоделу — основы работы, сборки и настройки схем маломощных радиопередатчиков.

14.10.2013 Прочитали: 30615

     Drawdio или музыкальный карандаш — схема и видео работы необычного электромузыкального инструмента.

26.09.2013 Прочитали: 21321

     Схема и видео работы светодиодной мигалки, которую можно собрать для велосипеда или скутера.

13.08.2013 Прочитали: 63621

     Делаем простейшую светодиодную мигалку всего на одном биполярном транзисторе. Схема и видео.

28.06.2013 Прочитали: 101990

     Элетрическая схема простого индикатор уровня воды или другой токопроводящей жидкости.

18.06.2013 Прочитали: 78729

     Принципиальная схема с подробным описанием работы мультивибратора и демонстрационное видео.

14.06.2013 Прочитали: 114352

     Эта простая схема позволит вам превратить любой адаптер постоянного напряжения, превратить в универсальный регулируемый, что позволит подключать к нему различные устройства.

10.05.2013 Прочитали: 178759






Начинающим радиолюбителям





      Самой первой конструкцией новичков является мигалка на двух светодиодах, и основа такой мигалки — мультивибратор.

09.12.2012 Прочитали: 42303

     Простейшая схема радиожучка на одном транзисторе, для работы в паре с ФМ приёмником.

19.09.2012 Прочитали: 105102

     Схема и фотографии самодельного стробоскопа на тиристоре, с питанием от сети 220В.

03.09.2012 Прочитали: 49443

ЖУЧОК ДЛЯ ПРОСЛУШИВАНИЯ 2     Простой в сборке и настройке радиомикрофон — жучок для прослушивания помещения.

19.07.2012 Прочитали: 70730

ЖУЧОК ДЛЯ ПРОСЛУШИВАНИЯ 2
     Принципиальная схема, испытание и доработка качера Бровина.

12.06.2012 Прочитали: 66699

ЖУЧОК ДЛЯ ПРОСЛУШИВАНИЯ 2     Новая версия подслушивающего радиомикрофона-жучка — «Немезис-3». Ещё больше чувствительности, ещё больше дальности…

02.05.2012 Прочитали: 57994






Памятка начинающим радиолюбителям! | Мастер Винтик. Всё своими руками!

Начинающим радиолюбителям, не очень хорошо разбирающимся в электронике, будет сложно воплотить в жизнь описанные на сайте схемы и различные устройства. Они не возьмутся за их изготовление из за множества простых вопросов и препятствий, возникающих на их пути.

Поэтому, ниже приведены основные сведения,  которые помогут сделать первый шаг в загадочный мир радиоэлектроники.

Плата электронного устройства

Простейшая плата электронного устройства представляет собой пластину из изоляционного материала (стеклотекстолит, гетинакс…), на одной стороне которой располагаются активные и пассивные компоненты, а на другой — полоски медной фольги с контактными площадками (дорожки), играющие роль соединительных проводников.

Выводы компонентов пропущены через отверстия в плате и припаяны оловянно-свинцовым припоем к контактным площадкам. Теперь перейдем к детальному рассмотре­нию различных компонентов, перечень которых для каждого конкретного устройства дается после его описания.

ПЕЧАТНАЯ ПЛАТА

Топология печатной платы, как правило, приводится в масштабе 1:1. На ней воспроизводится рисунок всех соединений между различны­ми компонентами или внешними элементами устройства. На рисунках она показана со стороны металлизации печати. В качестве материала платы рекомендуется использовать фольгированный стеклотекстолит. Он обладает высокой прочностью, с ним удобно работать. Подойдет и гетинакс, хотя он часто крошится, особенно при сверлении недоста­точно острым сверлом.

Существует несколько методов создания рисунка (или, как его ча­сто называют, «печати») на металлизированной стороне платы.

Са­мую качественную печать можно изготовить методом фотолитогра­фии. Для этого на плату со стороны медной фольги предварительно наносят слой специального фоточувствительного материала, называ­емого фоторезистом. Затем через маску с изображением рисунка печа­ти производят облучение ультрафиолетовым (УФ) излучением. После обработки в специальных реактивах на поверхности платы остаются только те участки фоторезиста, которые не попали под действие УФ излучения. После закрепления фоторезиста — специальной термооб­работки — он приобретает требуемую механическую и химическую устойчивость. Если затем обработать плату в растворе хлорного же­леза, то не покрытая фоторезистом часть медной фольги будет страв­лена. Заключительная операция состоит в удалении закрепленного фоторезиста с помощью органического растворителя.

Даже краткое описание этого процесса дает представление, насколь­ко он сложен, не говоря уже о том, что требует специального оборудо­вания (УФ излучатель, центрифуга для нанесения фоторезиста, печь с регулятором температуры) и различных химикатов. Безусловно, в домашних условиях такой метод абсолютно неприемлем.

К счастью, радиолюбители придумали множество вполне доступных способов изготовления печатных плат. Так, для того чтобы защитить дорожки фольги, можно использовать химически стойкий лак, нанесенный с помощью стеклянного рейсфедера или стержня пишущей ручки, из которого удален шарик, полоски скотча или изоляционной ленты. На одной и той же плате можно комбинировать эти способы в зависимости от требуемой точности воспроизведения отдельных ее участков.

Одна­ко, прежде чем вы приступите к созданию рисунка соединительных дорожек, настоятельно рекомендуем просверлить все предусмотрен­ные конструкцией отверстия под выводы компонентов и штырьковые соединения. Если отодвинуть эту операцию на следующий этап, вероятность повредить дорожки металлизации увеличится.

СВЕРЛЕНИЕ ОТВЕРСТИЙ

Сначала следует произвести разметку отверстий точно по чертежу. Опытные радиолюбители используют для этого миллиметровую бума­гу, на которой помечают центры будущих отверстий. Приклеив лист на плату с помощью силикатного или казеинового клея, вы получаете простой, но достаточно точный шаблон. Сверла для стеклотекстоли­та должны быть хорошо заточены, в противном случае возможен уход сверла от центра разметки при сверлении.

Удобней всего производить эту операцию на сверлильном станке. Однако не следует огорчаться, если у вас нет такой возможности. С помощью ручной или электри­ческой дрели, работающей от сети или от аккумуляторной батареи, можно добиться нужной точности сверления. Целесообразно сначала просверлить все отверстия тонким сверлом диаметром 0,8-1,3 мм, а затем рассверлить те из них, диаметр которых должен быть больше (например, крепежные отверстия).

ТРАВЛЕНИЕ ПЛАТЫ

Методы защиты соединительных дорожек на плате могут быть совершенно различными. Для стравливания лишних участков медной фольги обычно используют медный купорос, хлорное железо и другие реактивы. Трав­ление платы удобно производить в пластмассовой ванночке (например, для проявления фотографий). Можно также использовать старое фарфо­ровое блюдце или стеклянную банку.

Раствор хлорного железа

Раствор хлорного железа рабочей концентрации обладает доволь­но высокой вязкостью, поэтому рекомендуется покачивать емкость, чтобы обеспечить постоянное обновление активного вещества у по­верхности платы. Необходимо контролировать процесс травления. Если во втором случае вы можете испортить лист фотобумаги, то в первом — рискуете анну­лировать результаты собственного труда, вложенного в изготовление защитного рисунка на плате. Дело в том, что в результате подтравливания боковых поверхностей дорожек толщина их постепенно умень­шается и, если оставить плату в растворе на длительное время, самые тонкие из них могут полностью исчезнуть.

Внимание! Пятна на одежде от хлорного железа вывести практи­чески невозможно.

Операция травления заканчивается тщательной промывкой платы в водопроводной воде. Пленка, защищавшая дорожки при травлении, легко удаляется с помощью растворителя или наждачной бумаги. Мед­ные дорожки будут меньше окисляться в процессе эксплуатации, а припайка выводов компонентов будет происходить быстрее и каче­ственней, если их предварительно обезжирить ацетоном или чистым бензином и затем облудить припоем.

ПАССИВНЫЕ КОМПОНЕНТЫ

К этой категории относятся обычные резисторы всех номиналов и размеров, а также переменные и подстроечные резисторы, сопротив­ление на выводах которых можно регулировать. Сюда попадают также конденсаторы, трансформаторы и катушки индуктивности.

Резисторы (сопротивления)

На принципиальных схемах, то есть схемах, изображающих структу­ру соединения компонентов, резисторы принято обозначать латинс­кой буквой «R». Справа от нее пишется порядковый номер резисто­ра, позволяющий найти его на принципиальной и монтажной схемах, а также в таблице, где указаны его параметры — номинальное значе­ние сопротивления, мощность и др.

Единицей измерения сопротив­ления в международной системе СИ является ом, а его условным обозначением — Q (омега). Производные от ома единицы получаются добавлением букв, обозначающих принятые в этой системе множите­ли.

Так, 1 МОм = 1 ООО кОм = 1 ООО ООО Ом. Маркировка резисторов может быть цветовая, а также символьная, то есть такая, когда номинал, мощность и группа допус­ка обозначены с помощью буквенно-цифрового кода. Справочная таб­лица по расшифровке цветовых кодов.

Так, например, резистор R с четырьмя цветными полосками имеет номинал 390 кОм. Первое оранжевое кольцо на его корпусе соответствует цифре 3, второе белое — цифре 9, а третье желтое обозначает множитель — 10 000. Следовательно, но­минал сопротивления R5 равен 39 X 10 000 = 390 000 Ом = 390 кОм. Четвертое кольцо определяет группу допуска (например, бронзовая маркировка соответствует отклонению от номинала в пределах ±5%).

Полярность установки резисторов на плате не имеет значения. Суще­ствует стандартный ряд номиналов резисторов. Например, в группе допуска ±10% между номиналами 10 и 100 Ом можно встретить толь­ко следующие значения: 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 и 82 Ом.

Конденсаторы

Конденсаторы часто называют емкостями, что довольно удачно ха­рактеризует их как «резервуары» для накопления электрических за­рядов. Единицей измерения емкости в системе СИ является фарада (Ф). На практике такие значения емкости встречаются очень редко.

К примеру, рассчитанная электрическая емкость Земного шара не до­стигает одной фарады. Поэтому в электронике используют произ­водные от фарады единицы: микрофарады (мкФ), нанофарады (нФ) и пикофарады (пФ): 1 Ф = 1000 мФ = 1 000 000 мкФ =10^9 нФ = 10^12 пФ.

В зависимости от назначения применяют различные типы конден­саторов, названия которых произошли от вида диэлектрического мате­риала, разделяющего положительные и отрицательные заряды. Кон­денсаторы бывают керамическими, бумажными, пленочными и т.д.

Керамические конденсаторы имеют номинальные значения элект­рической емкости в диапазоне от нескольких пикофарад до нескольких нанофарад. Емкость пленочных конденсаторов обычно находится в пределах 1-1000 нФ. Номинал конденсатора в основном приводится в буквенно-цифровом обозначении, например 102 — это 1000 пф, 103 — 10 000 пф или 10 нф и т.п.

Если для вышеперечисленных конденсаторов полярность включе­ния значения не имеет, то для так называемых «электролитических» конденсаторов правильное направление напряжения является непре­менным условием их работы, а в некоторых случаях и безопасности окружающих. Неправильное включение электролитического конден­сатора чревато его быстрым разогревом, ведущим к вскипанию содер­жащегося в нем электролита. Корпус конденсато­ра не выдерживает внутреннего давления и разрывается!

Полярность включения электролитических конденсаторов, как правило, обознача­ется на корпусе. При вполне приемлемых размерах электролитичес­кие конденсаторы обычно имеют номинал от 0,47 до 10 000 мкФ и выше, что определяется конкретной конструкцией.

Любое техническое решение — это компромисс, при котором высо­кие показатели по одному из параметров достигаются за счет сниже­ния других. В случае электрических конденсаторов, чтобы добиться высоких значений емкости, пришлось пожертвовать точностью и дол­говечностью. Срок таких конденсаторов в несколько раз меньше, чем у их керамических и пленочных собратьев.

Наконец, следует обратить внимание на то, что величина рабочего напряжения, указанная на корпусе любого типа конденсатора, должна быть не меньше приведенной в схеме.

Трансформаторы

Электронные устройства, работающие от другого напряжения сети переменного тока, требу­ют применения трансформаторов напряжения. Трансформатор пред­ставляет собой сердечник замкнутой конструкции, изготовленный из специальной стали, на котором смонтирована одна (или более) ка­тушка с изолированным медным (реже — алюминиевым) проводом, уложенным в виде нескольких обмоток, имеющих различное количе­ство витков.

Конструкция трансформаторов может быть совершенно различ­ной:

Мощность трансформа­тора, выраженная в вольт-амперах (ВА), определяет его нагрузочную способность, то есть ту номинальную мощность, которую он может от­давать в нагрузку, не перегреваясь. Расположение выводов первичной и вторичной обмоток исключает возможность неправильной установ­ки на плате.

АКТИВНЫЕ КОМПОНЕНТЫ

В данном случае речь идет о полупроводниковых приборах, без кото­рых существование современной электроники было бы немыслимо.

Для всех компонентов этого класса полярность подключения выво­дов к схеме имеет принципиальное значение.

Второе немаловажное условие — при пайке выводов активных компонентов перегрев абсо­лютно недопустим!

Полупроводниковые диоды

На принципиальной схеме устройства полупроводниковые диоды при­нято обозначать буквами «VD». Изображение диода на схеме напо­минает стрелку, направленную от его анода к катоду. Это направление, как правило, совпадает с направлением тока через диод в открытом со­стоянии.

Исключением является полупроводниковый диодный стаби­лизатор напряжения — стабилитрон. Он обычно включается в обрат­ной полярности по отношению к напряжению питания. Его функция состоит в ограничении напряжения на определенном уровне, называ­емом пороговым напряжением стабилитрона.

Особым типом полупроводникового прибора является светодиод. Он способен преобразовывать электрическую энергию в электромаг­нитное излучение в Видимом или инфракрасном (ИК) диапазоне. Цвет свечения зависит от используемого полупроводникового материала.

Встречаются самые разнообразные по форме и размерам светодиоды: диаметром 3, 5 и 10 мм, круглые, плоские, треугольные, двухцветные, мигающие, красные, зеленые, желтые, оранжевые и даже синие 🙂 . Пе­ред установкой светодиода необходимо проверить маркировку като­да и анода. Последовательно со светодиодом обязательно включают резистор, ограничивающий ток прибора. Для разных типов светодиодов рабочее значение тока может быть в пределах от 10 до 50 мА.

Биполярные транзисторы

Биполярный транзистор — «старожил» в семействе полупроводниковых приборов. Тем не менее он продолжает исправно служить людям наряду с интегральными микросхемами, изрядно потеснившими его за последние годы в современных электронных устройствах. Транзистор имеет три вывода: базу, эмиттер и коллектор. Биполярные транзисторы бывают двух типов проводимости: п-р-п (обратной) или p-n-р (прямой).

Пайка выводов транзи­стора производится строго поочередно, кратковременными касания­ми места контакта паяльником. При этом нужно делать паузы между касаниями, чтобы дать выводам остыть. Во избежание излишнего пе­регрева корпуса не рекомендуется укорачивать выводы транзистора.

Транзисторы различают также по номинальной мощности. Есть транзисторы в металлическом корпусе, соединенном с коллектором. Металличес­кий корпус служит для отвода тепла, выделяющегося на коллекторе при прохождении больших токов.

Существуют так называемые «составные» транзисторы. Такая схема соединения применяется, когда нужно получить большой ко­эффициент усиления по току.

Интегральные схемы

Интегральная микросхема — это миниатюрное электронное устрой­ство, содержащее множество полупроводниковых приборов и других компонентов, заключенных в единый корпус с выводами для внешне­го соединения. В зависимости от функционального назначения коли­чество выводов может быть любое.

В приложениях приводятся схемы расположения выводов интегральных схем, используемых в предлагаемых устройствах. Общая рекомендация по монтажу интег­ральных схем заключается в том, что желательно монтировать мик­росхемы на специальных панелях, предварительно припаянных к пла­те. В этом случае вы исключаете возможность перегрева достаточно дорогого и «капризного» компонента, каким является полупроводни­ковая микросхема.

Установка интегральных схем производится по окончании всех операций припаивания. Следите за тем, чтобы поло­жение ключа на панели совпадало с ключом печатной платы!

ПАЙКА ОЛОВЯННО-СВИНЦОВЫМ ПРИПОЕМ (ПОС)

Припаивание компонентов оловом обеспечивает их механическое крепление и электрический контакт. Для этого потребуется электрический паяльник мощностью 25-40 Вт, желательно оснащенный терморе­гулятором. Паяльник должен иметь длинное тонкое жало, которое следует периодически очищать при помощи влажной губки.

Оловянно-свинцовый припой (40% олова и 60% свинца) часто продается в виде тонкой проволоки с каналом, заполненным флюсом на бескислородной основе. Температура плавления припоя составляет 180-190 °С. При этом образуются пары, содержащие некоторое коли­чество свинца. Поэтому во время пайки старайтесь не вдыхать пары флюса. Работайте в хорошо проветриваемом помещении с постоянным притоком свежего воздуха.

Припаивание осуществляется путем плотного прижатия вывода или провода к соответствующей медной контактной площадке жалом паяльника. Находящиеся в тепловом контакте с паяльником металлические поверхности нагреваются и смачиваются расплавленным припоем. Не пытайтесь ускорить процесс схватывания припоя, дуя на место пайки или прикасаясь к нему холодными предметами. Это может привести к некачественному мон­тажу. Точка пайки хорошего качества должна иметь форму компактного конуса, быть блестящей, без излишков материала.

Избегайте продолжительного контакта жала горячего паяльника с тонкими медными дорожками. Это может привести к их отклеиванию от изолирующего основания. Немного попрактиковавшись, можно вполне неплохо преуспеть в выполнении этой наиважнейшей опера­ции. Выступающие над точкой пайки кончики выводов следует удалить острыми кусачками (соблюдайте осторожность, так как отрезанные кусочки выводов норовят отлетать прямо в глаза!).

Надеемся, что перечисленные советы помогут начинающему радиолюбителю со знанием дела взяться за изготовление приглянувшегося электронно­го устройства!

Г. Изабель



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Как выбрать мебель?
  • Какой стиль и в какую комнату подходит?

    Как правильно выбрать мебель? Цвет, стиль, материал… Предметы мебели должны гармонично сочетаться друг с другом и создавать единый ансамбль. Давайте подробнее рассмотрим мебель нескольких основных стилей и для каких помещений она больше всего подходит.

    Подробнее…

  • Вторая жизнь стиральной машины – автомата
  • Что делать со стеклянным люком стиральной машины?

    Примеры применения частей от старой стиральной машины-автомата давно есть в Сети: двигатель сгодится на привод самодельного станка, барабан – на креативный мангал. И даже корпус может быть полезным, например, стать основой для собачьей будки или клетки для кролика. А вот применение стеклу встречалось только одно – в качестве окна — иллюминатора для сарая. Подробнее…

  • Как сделать наливной пол?
  • Чтобы положить линолеум, ламинат или паркет необходимо подготовить для этого ровную и твёрдую поверхность. Для этого можно обустроить наливной пол. Как это сделать самостоятельно, а так же, как подготовить цементную стяжку под укладку , мы расскажем ниже с подробным описанием и фото.

    Подробнее…


Популярность: 3 361 просм.

С чего начать путь Радиолюбителя.

Здравствуйте, мои дорогие друзья! В этом блоге я хочу рассказать всем начинающим радиолюбителям о том, с чего-же всё-таки начать этот нелёгкий путь. Сподвигнули меня написать эту статью люди, которые появляются на форумах и создают там темы с такими громкими названиями, как «помогите отличить на схеме резистор от конденсатора» и «Дайте какие-нибудь схемы, я ничё ни знаю». При том, что люди ничего при этом не знают и не хотят ни что-либо изучать, ни шевелить своим мозгом… Возможно, вам это статья может показаться нудной, но не переживайте — здесь вы почерпнёте много нового smile

1. Нужно определиться — зачем оно вам?


Этот пункт очень важен — а зачем оно вам? Зачем нужна вам радиотехника?
Радитехника — сложная штука, и если вы будете относиться к ней «халявно», то она может вам этой халявы не простить!
Не думайте, что я вас просто и необоснованно пугаю — поверьте, были очень несчастные случаи. Говорить о них я здесь не буду — захотите, посмотрите в Сети.
Поэтому, перво-наперво, вы должны запомнить: техника безопаснсти и аккуратность должны стоять у вас на первом месте!

2. Начальные понятия и знания о физике.


Для того, чтобы начать путь, необходимо обзавестись начальным багажом знаний, а именно — школьный экскурс об электронике в курсе физики. Из него вы должны подчерпнуть один главный закон, регулирующий процессы в электротехники, так сказать «всея электросети»: Закон Ома — I=U/R. Это — основа основ!!! Зная его, вы начнёте понимать электронику! Вообще-то, кроме этого закона, вам от туда необходимо почерпнуть абсолютно всё, ведь физика — царица технических наук!

3. Теория.


Практика невозможна без теории!!! Взявшись паять без каких-либо знаний, вы обрекаете свой прибор на нерабочее состояние!
Я дам несколько книг, которые на мой взгляд прекрасно подходят для изучения радиотехники:
1. Борисов В.Г. Юный радиолюбитель — скачать с Padabum
Эта книга — начало начал. Возможно, вам покажется эта книга старой, но не переживайте — в этой книге вам необходимо изучить всю теоретическую часть. Она там дана в интересной форме, поэтому скучать вам не прийдётся smile
2. Ревич Ю.В. — Занимательная электроника — скачать с Яндекс.Диск
В этой книге изложен укороченный курс электроники — начиная от закона Ома и заканчивая микроконтроллерами. Очень интересная книга!!! Можно начать с неё.
Если вы хотите изучить электронику от начала и почти до конца, изучите великий классический труд — Хоровиц П., Хилл У. Искусство схемотехники в трёх томах — скачать с Padabum 1 том, 2 том, 3 том.
Это — величайшее пособие по электронике!!!
Кроме этих книг вы можете найти огромное количество информации на нашем сайте в разделе «Теория электроники».

4. Практика.


Как ни крути, но теория невозможна без практики. Разыскивайте схемы, изучайте их, и у вас всё получится!!!
Сайт «Радиосхемы», на котором вы сейчас находитесь, полон схем для повторения. А в разделе «Начинающим» полно очень лёгких схем. Обязательно запаситесь терпением, не бросайте дело на полпути — и всё будет хорошо!

Напоследок хочу сказать одну очень важную вещь — соблюдайте технику безопасности!!!
С вами был Antracen. Удачи!

Начинающим радиолюбителям





     Полезное устройство — логический пробник для состояния потенциалов выводов цифровых микросхем.

09.10.2014 Прочитали: 26754

     Полезная вещь для отцов-радиолюбителей — электронный светодиодно-кнопочный игрушечный стенд для развлечения малых детей.

03.08.2014 Прочитали: 18665

     Беспроводной экономичный радиопередатчик аудио сигнала на одном транзисторе, работающий в диапазоне TV2.

08.07.2014 Прочитали: 32041

     Дуплексное переговорное устройство с громкой связью — проверенная схема на недорогих транзисторах и других доступных радиодеталях.

24.06.2014 Прочитали: 30824

     Репетитор радиолюбителя — полезное устройство для расшифровки цветовых полосок на резисторах постоянного сопротивления.

06.06.2014 Прочитали: 25159

     Тема разных вариантов изготовления Качеров поднималась уже несколько раз, а теперь пришло время для 12-ти вольтовой схемы.

21.04.2014 Прочитали: 30503

     Необычные поделки для начинающих радиолюбителей или что можно сделать из ненужных радиодеталей.

20.04.2014 Прочитали: 24569

     Как сделать качер — высоковольтный генератор, собранный всего на одном полевом транзисторе и семи других деталях.

 

08.04.2014 Прочитали: 54196

     Делаем простой низковольтный радиопередатчик для трансляции музыки на небольшое расстояние — ФМ трансмиттер.
 

06.04.2014 Прочитали: 115509






Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *