Полевой транзистор обозначение на схеме – ГОСТ 2.730-73 Единая система конструкторской документации (ЕСКД). Обозначения условные графические в схемах. Приборы полупроводниковые (с Изменениями N 1-4), ГОСТ от 16 августа 1973 года №2.730-73

Обозначение транзисторов на принципиальных схемах. Маркировка транзисторов. Классификация транзисторов.

Различают транзисторы биполярные и полевые. Биполярный транзистор — трёхэлектродный полупроводниковый прибор. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n и p-n-p транзисторы, n (negative) — электронный тип примесной проводимости, p (positive) — дырочный. В биполярном транзисторе основными носителями являются и электроны, и дырки. Схематическое устройство транзистора показано на рисунке 6.
Электрод, подключённый к центральному слою, называют базой, элек-троды, подключённые к внешним слоям, называют коллектором и эмитте-ром. На простейшей схеме различия между коллектором и эмиттером не видны. Главное отличие коллектора — большая площадь p-n перехода. Для работы транзистора абсолютно необходима малая толщина базы.

Рис. 6


Рис. 7
Протекание в полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы часто включают в более широкий класс униполярных электронных приборов (в отличие от биполярных).

Полевые транзисторы имеют большое входное сопротивление. Подразделяются на полевые транзисторы 1) с управляющим p-n переходом (рис. 7а) и 2) с изолированным затвором (рис. 7б).
Полевые транзисторы с изолированным затвором в свою очередь подразделяются на транзисторы 1) со встроенным каналом и 2) с индуцированным каналом.
Транзисторы, как правило, имеют три вывода. Вывод, от которого в канал приходят основные носители заряда, называется истоком. Вывод, к которому носители заряда приходят из канала, называется стоком. Вывод, на который подается управляющее напряжение относительно истока или стока, называется затвором. Полевыми транзисторы называют потому, что управление током в выходной цепи транзистора осуществляется электрическим полем во входной цепи. Канальными транзисторы называют потому, что ток в выходной цепи транзистора протекает через его канал. Униполярными транзисторы называют потому, что в работе транзистора принимают носители одной полярности. В условных обозначениях полевых транзисторов на принципиальных схемах стрелка направлена к каналу n-типа, или от канала p-типа. Индуцированный (наведенный электрическим полем) канал, обозначается пунктиром (рис. 7в).


Рис. 8 Цветовая маркировка транзисторов

Рис. 9. Условное графическое обозначение биполярного транзистора струк-туры n-p-n

Рис. 10.Условное графическое обозначение биполярного транзистора структуры p-n-p

Рис. 11. Условное графическое обозначение полевого транзистора с p-n-переходом и каналом n-типа

Рис.12. Условное графическое обозначение полевого транзистора с p-n-переходом и каналом p-типа

Рис.13. Условное графическое обозначение полевого транзистора со встро-енным p-каналом обедненного типа.

Рис. 14. Условное графическое обозначение полевого транзистора со встро-енным n-каналом обогащенного типа.

Рис. 15. Условное графическое обозначение полевого транзистора с индуцированным p-каналом обогащенного типа.

Рис. 16 — Условное графическое обозначение полевого транзистора с индуцированным n-каналом обогащенного типа.

Рис. 17. Обозначение транзистора с барьером Шотки (транзистор Шотки).

Рис. 18. Обозначение многоэмиттерного транзистора.
Транзистор с барьером Шотки и многоэмиттерный транзистор встречаются лишь в микроэлектронике.

Рис. 19. Условное графическое обозначение фототранзистора

8. Транзисторы — Условные графические обозначения на электрических схемах — Компоненты — Инструкции


Транзистор (от английских слов tran(sfer) — переносить и (re)sistor — сопротивление) — полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических колебаний. Наиболее распространены так называемые биполярные транзисторы. Электропроводность эмиттера и коллектора всегда одинаковая (р или n), базы — противоположная (n или р). Иными словами, биполярный транзистор содержит два р-n-перехода: один из них соединяет базу с эмиттером (эмиттерный переход), другой — с коллектором (коллекторный переход).

 

 Буквенный код транзисторов — латинские буквы VT. На схемах эти полупроводниковые приборы обозначают, как показано на рис. 8.1 [5]. Здесь короткая черточка с линией от середины символизирует базу, две наклонные линии, проведенные к ее краям под углом 60°, — эмиттер и коллектор. Об электропроводности базы судят по символу эмиттера: если его стрелка направлена к базе (см. рис. 8.1, VT1), то это означает, что эмиттер имеет электропроводность типа р, а база— типа n; если же стрелка направлена в противоположную сторону (VT2), электропроводность эмиттера и базы обратная.

 
 Знать электропроводность эмиттера базы и коллектора необходимо для того, чтобы правильно подключить транзистор к источнику питания. В справочниках эту информацию приводят в виде структурной формулы. Транзистор, база которого имеет электропроводимость типа n, обозначают формулой р-п-р, а транзистор с базой, имеющей электропроводность типа р, обозначают формулой n-р-n. В первом случае на базу и коллектор следует подавать отрицательное по отношению к эмиттеру напряжение, во втором — положительное.    

 
 Для наглядности условное графическое обозначение дискретного транзистора обычно помещают в кружок, символизирующий его корпус. Иногда металлический корпус соединяют с одним из выводов транзистора. На схемах это показывается точкой в месте пересечения соответствующего вывода с символом корпуса. Если же корпус снабжен отдельным выводом, линию-вывод допускается присоединять к кружку без точки (VT3 на рис. 8.1). В целях повышения информативности схем рядом с позиционным обозначением транзистора допускается указывать его тип.

 

 Линии электрической связи, идущие от эмиттера и коллектора проводят в одном из двух направлений: перпендикулярно или параллельно выводу базы (VT3—VT5). Излом вывода базы допускается лишь на некотором расстоянии от символа корпуса (VT4).

 
 Транзистор может иметь несколько эмиттерных областей (эмиттеров). В этом случае символы эмиттеров обычно изображают с одной стороны символа базы, а окружность обозначения корпуса заменяют овалом (рис. 8.1, VT6).

 
 Стандарт допускает изображать транзисторы и без символа корпуса, например, при изображении бескорпусных транзисторов или когда на схеме необходимо показать транзисторы, входящие в состав сборки транзисторов или интегральной схемы.

 

 Поскольку буквенный код VT предусмотрен для обозначения транзисторов, выполненных в виде самостоятельного прибора, транзисторы сборок обозначают одним из следующих способов: либо используют код VT и присваивают им порядковые номера наряду с другими транзисторами (В этом случае на поле схемы помещают такую, например, запись: VT1-VT4 К159НТ1), либо используют код аналоговых микросхем (DA) и указывают принадлежность транзисторов в сборке в позиционном обозначении (рис. 8.2, DA1.1, DA1.2). У выводов таких транзисторов, как правило, приводят условную нумерацию, присвоенную выводам корпуса, в котором выполнена матрица.

 
 Без символа корпуса изображают на схемах и транзисторы аналоговых и цифровых микросхем (для примера на рис. 8.2 показаны транзисторы структуры п-р-п с тремя и четырьмя эмиттерами).

 

 Условные графические обозначения некоторых разновидностей биполярных транзисторов получают введением в основной символ специальных знаков. Так, чтобы изобразить лавинный транзистор, между символами эмиттера и коллектора помещают знак эффекта лавинного пробоя (см. рис. 8.3, VT1, VT2). При повороте УГО положение этого знака должно оставаться неизменным.

 
 Иначе построено УГО однопереходного транзистора: у него один р-п-переход, но два вывода базы. Символ эмиттера в УГО этого транзистора проводят к середине символа базы (рис. 8.3, VT3, VT4). Об электропроводности последней судят по символу эмиттера (направлению стрелки).

 
 На символ однопереходного транзистора похоже УГО большой группы транзисторов с p-n-переходом, получивших название полевых. Основа такого транзистора — созданный в полупроводнике и снабженный двумя выводами (исток и сток) канал с электропроводностью п или р-типа. Сопротивлением канала управляет третий электрод — затвор. Канал изображают так же, как и базу биполярного транзистора, но помещает в середине кружка-корпуса (рис. 8.4, VT1), символы истока и стока присоединяют к нему с одной стороны, затвора — с другой стороны на продолжении линии истока. Электропроводность канала указывают стрелкой на символе затвора (на рис. 8.4 условное графическое обозначение VT1 символизирует транзистор с каналом п-типа, VT1 — с каналом p-типа).

 

 В условном графическом обозначении полевых транзисторов с изолированным затвором (его изображают черточкой, параллельной символу канала с выводом на продолжении линии истока) электропроводность канала показывают стрелкой, помещенной между символами истока и стока. Если стрелка направлена к каналу, то это значит, что изображен транзистор с каналом n-типа, а если в противоположную сторону (см. рис. 8.4, VT3) —  с каналом p-типа. Аналогично поступают при наличии вывода от подложки (VT4), а также при изображении полевого транзистора с так называемым индуцированным каналом, символ которого — три коротких штриха (см. рис. 8.4, VT5, VT6). Если подложка соединена с одним из электродов (обычно с истоком), это показывают внутри УГО без точки (VT1, VT8).

 
 В полевом транзисторе может быть несколько затворов. Изображают их более короткими черточками, причем линию-вывод первого затвора обязательно помещают на продолжении линии истока (VT9).

 
 Линии-выводы полевого транзистора допускается изг[цензура] лишь на некотором расстоянии от символа корпуса (см. рис. 8.4, VT2). В некоторых типах полевых транзисторов корпус может быть соединен с одним из электродов или иметь самостоятельный вывод (например, транзисторы типа КПЗ03).

 
 Из транзисторов, управляемых внешними факторами, широкое применение находят фототранзисторы. В качестве примера на рис. 8.5 показаны условные графические обозначения фототранзисторов с выводом базы (FT1, VT2) и без него (К73). Наряду с другими полупроводниковыми приборами, действие которых основано на фотоэлектрическом эффекте, фототранзисторы могут входить в состав оптронов. УГО фототранзистора в этом случае вместе с УГО излучателя (обычно светодиода) заключают в объединяющий их символ корпуса, а знак фотоэффекта — две наклонные стрелки заменяют стрелками, перпендикулярными символу базы.

 

 

 

 Для примера на рис. 8.5 изображена одна из оптопар сдвоенного оптрона (об этом говорит позиционное обозначение U1.1), Аналогично строится У ГО оптрона с составным транзистором (U2).

 

Виды полевых транзисторов: МДП, схемы, характеристики ВАХ

рис. 1.97Полевые транзисторы с изолированным затвором.

В транзисторах этого типа затвор отделен от полупроводника слоем диэлектрика, в качестве которого в кремниевых приборах обычно используется двуокись кремния. Эти транзисторы обозначают аббревиатурой МОП (металл-окисел-полупроводник) и МДП (металл-диэлектрик-полупроводник). В англоязычной литературе их обычно обозначают аббревиатурой MOSFET или MISFET (Metal-Oxide (Insulator) —Semiconductor FET).

В свою очередь МДП-транзисторы делят на два типа.

В так называемых транзисторах со встроенным (собственным) каналом (транзистор обедненного типа) и до подачи напряжения на затвор имеется канал, соединяющий исток и сток.

В так называемых транзисторах с индуцированным каналом (транзистор обогащенного типа) указанный выше канал отсутствует.

МДП-транзисторы характеризуются очень большим входным сопротивлением. При работе с такими транзисторами надо предпринимать особые меры защиты от статического электричества. Например, при пайке все выводы необходимо закоротить.

МДП-транзистор со встроенным каналом.

Канал может иметь проводимость как p-типа, так и n-типа. Для определенности обратимся к транзистору с каналом p -типа. Дадим схематическое изображение структуры транзистора (рис. 1.97), условное графическое обозначение транзистора с каналом p-типа (рис. 1.98, а) и с каналом n-типа (рис. 1.98, б). Стрелка, как обычно, указывает направление от слоя p к слою n.

рис. 1.98

Рассматриваемый транзистор (см. рис. 1.97) может работать в двух режимах: обеднения и обогащения.

Режиму обеднения соответствует положительное напряжение uзи. При увеличении этого напряжения концентрация дырок в канале уменьшается (так как потенциал затвора больше потенциала истока), что приводит к уменьшению тока стока.

Если напряжение uзи больше напряжения отсечки, т. е. если u зи>uзиотс, то канал не существует и ток между истоком и стоком равен нулю. 

Режиму обогащения соответствует отрицательное напряжение uзи. При этом, чем больше модуль указанного напряжения, тем больше проводимость канала и тем больше ток стока.

Приведем схему включения транзистора (рис. 1.99). рис. 1.99

На ток стока влияет не только напряжение uзи, но и напряжение между подложкой и истоком uпи. Однако управление по затвору всегда предпочтительнее, так как при этом входные токи намного меньше. Кроме того, наличие напряжения на подложке уменьшает крутизну.

Подложка образует с истоком, стоком и каналом p-n-переход. При использовании транзистора необходимо следить за тем, чтобы напряжение на этом переходе не смещало его в прямом направлении. На практике подложку подключают к истоку (как показано на схеме) или к точке схемы, имеющей потенциал, больший потенциала истока (потенциал стока в приведенной выше схеме меньше потенциала истока).

Изобразим выходные характеристики МДП-транзистора (встроенный p-канал) типа КП201Л (рис. 1.100) и его стокозатворную характеристику (рис. 1.101). рис. 1.100 рис. 1.101

МДП-транзистор с индуцированным (наведенным) каналом.

Канал может иметь проводимость как p-типа, так и n-типа. Для определенности обратимся к транзистору с каналом p-типа. Дадим схематическое изображение структуры транзистора (рис. 1.102), условное графическое обозначение транзистора с индуцированным каналом p -типа (рис. 1.103, а) и каналом n-типа (рис. 1.103, б). рис. 1.102 рис. 1.103

При нулевом напряжении uзи канал отсутствует (рис. 1.102) и ток стока равен нулю. Транзистор может работать только в режиме обогащения, которому соответствует отрицательное напряжение uзи. При этом uиз > 0.Если выполняется неравенство uиз>u из порог, где u из порог — так называемое пороговое напряжение, то между истоком и стоком возникает канал p-типа, по которому может протекать ток.

Канал p-типа возникает из-за того, что концентрация дырок под затвором увеличивается, а концентрация электронов уменьшается, в результате чего концентрация дырок оказывается больше концентрации электронов.

Описанное явление изменения типа проводимости называют инверсией типа проводимости, а слой полупроводника, в котором оно имеет место (и который является каналом), — инверсным (инверсионным). Непосредственно под инверсным слоем образуется слой, обедненный подвижными носителями заряда. Инверсный слой значительно тоньше обедненного (толщина инверсного слоя 1 · 10 – 9…5 · 10– 9 м, а толщина обедненного слоя больше в 10 и более раз).

Изобразим схему включения транзистора (рис. 1.104), выходные характеристики (рис. 1.105) и стокозатворную характеристику (рис. 1.106) для МДП-транзистора с индуцированным p-каналом КП301Б. рис. 1.104 рис. 1.105

рис. 1.106Полезно отметить, что в пакете программ Micro-Cap II для моделирования полевых транзисторов всех типов используется одна и та же математическая модель (но, естественно, с различными параметрами).

Транзисторы.


Трафарет Visio Транзисторы.
Трафарет Visio Транзисторы.

Каждой фигурой трафарета Транзисторы, представлены несколько условных обозначений схожих по функциональным особенностям транзисторов. Изменить условное обозначение, можно в контекстном меню фигуры:

Контекстное меню фигуры условного обозначения транзистора.
Контекстное меню фигуры условного обозначения транзистора.

 

Некоторые примеры условных обозначений транзисторов, полученных изменение комбинаций команд в контекстном меню фигур:
1. Транзистор биполярный.

Трафарет Visio (скриншот)
Транзистор биполярный PNP.
Трафарет Visio (скриншот)Транзистор биполярный NPN.
Трафарет Visio (скриншот)Транзистор биполярный NPN, коллектор соединен с корпусом.
Трафарет Visio (скриншот)
Транзистор лавинный типа NPN.

 2. Транзистор однопереходный.

Трафарет Visio (скриншот)Транзистор однопереходный с P-базой.
Трафарет Visio (скриншот)
Транзистор однопереходный с N-базой.

 3. Транзистор двухбазовый.

Трафарет Visio (скриншот)Транзистор двухбазовый типа PNP.
Трафарет Visio (скриншот)Транзистор двухбазовый типа NPN.
Трафарет Visio (скриншот)Транзистор двухбазовый типа PNIP с выводом от i-области.
Трафарет Visio (скриншот)Транзистор двухразовый типа PNIN с выводом от i-области.

 4. Транзистор полевой.

Трафарет Visio (скриншот)
Транзистор полевой с каналом типа N.
Трафарет Visio (скриншот)Транзистор полевой с каналом типа P.

5. Транзистор полевой с изолированным затвором.

Трафарет Visio (скриншот)
Транзистор полевой с изолированным затвором обедненного типа с N-каналом, с внутренним соединением истока и подложки.
Трафарет Visio (скриншот)Транзистор полевой с изолированным затвором обедненного типа с Р-каналом, с внутренним соединением истока и подложки.
Трафарет Visio (скриншот)Транзистор полевой с изолированным затвором обогащенного типа с Р-каналом, с внутренним соединением истока и подложки.
Трафарет Visio (скриншот)Транзистор полевой с изолированным затвором обедненного типа с N-каналом.
Трафарет Visio (скриншот)Транзистор полевой с изолированным затвором обедненного типа с Р-каналом.
Трафарет Visio (скриншот)
Транзистор полевой с изолированным затвором обогащенного типа с Р-каналом.

6. Транзистор полевой с двумя изолированными затворами.

Трафарет Visio (скриншот)Транзистор полевой с двумя изолированными затворами обедненного типа с Р-каналом с выводом от подложки.
Трафарет Visio (скриншот)Транзистор полевой с двумя изолированными затворами обедненного типа с N-каналом с выводом от подложки.
Трафарет Visio (скриншот)Транзистор полевой с двумя изолированными затворами обогащенного типа с Р-каналом с выводом от подложки.

7. Транзистор биполярный с изолированным затвором.

Трафарет Visio (скриншот)Транзистор биполярный с изолированным затвором обедненного типа с N-каналом.
Трафарет Visio (скриншот)Транзистор биполярный с изолированным затвором обедненного типа с Р-каналом.
Трафарет Visio (скриншот)Транзистор биполярный с изолированным затвором обогащенного типа с Р-каналом.

 

Дополнительно, в контекстном меню фигуры условного обозначения транзистора, можно поменять местами вывода как вертикально так и горизонтально, скрыть или показать маркировку выводов, скрыть символ корпуса.

Пример изменения условного обозначения полевого транзистора, видео:

 


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *