Электронный переключатель сигнала и светодиодных ламп.
Схема переключения автомобильных сигналов и/или ламп
Для звукового и светового эффекта можно собрать простенькую схему на трёх транзисторах.
Её можно применить где угодно: и на автомобиле, и на мотоцикле, и на скутере…. а также на игрушечных машинах или, например для отпугивания не прошенных гостей (воров) на даче!
Схема простая и не требует дефицитных деталей. Её может собрать начинающий радиолюбитель. Транзисторы любые низкочастотные соответствующей проводимости. Реле тоже любое переключающее на напряжение срабатывания 12В. Можно использовать автомобильное реле с переключающей группой контактов.
Время переключения можно менять конденсаторами С1 и С2, сопротивлениями R2 и R4. R3 — общий регулятор «Частота».
Сам генератор собран на транзисторах Т1 и Т2. На транзисторе Т3 — ключ для включения реле Rel1. R6,7 и С3,4 собрана искрогасящая цепочка для избежания подгорания контактов реле.
На схеме показаны и звуковые сигналы, и лампы. Можно подключить только сигналы или только светодиодные или обычные лампы накаливания. Можно через переключатель подключить к схеме противотуманки, можно подключить один сигнал к одному контакту реле, а к другому фару. Вариантов много: кому и для каких нужд выбирайте сами.
Удачи!
Анатолий З.
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
П О П У Л Я Р Н О Е:
- Доработка цифрового мультиметра М-830 (М-838)
- Вторая жизнь старого электросчётчика
- Как сделать гирлянду «С Днем рождения»?
Недорогой и простой цифровой мультиметр из серии М-83Х благодаря его широким функциональным возможностям стал одним из популярных измерительных приборов у радиолюбителей.
И при желании его можно ещё доработать. Для этого нужно добавить несложное электронное устройство на одной простой и недорогой микросхеме. Этим самым мы еще больше расширим его возможности: он теперь сможет измерять ёмкости конденсаторов, добавится звуковая сигнализация при прозвонке цепей (если такая отсутствует в этой модели), а также добавить таймер для выключения питания мультиметра, который позволит продлить срок службы батарейке.
Подробнее…
Старые индукционные бытовые электросчётчики счётчики больше не нужны – они уже не обеспечивают точность учёта и заменяются электронными. Их судьба – помойка или полка в гараже, «на всякий случай». Мы попробуем дать вторую жизнь трудяге.
Я предлагаю сделать в прочном и лёгком корпусе счётчика переносную лампу.
Подробнее…
«С Днем Рождения!» (HAPPY BIRTHDAY) — эта гирлянда, сделанная своими руками будет прекрасным украшением для вечеринки по случаю дня рождения.
Подробнее…
Популярность: 3 408 просм.
Вы можете следить за комментариями к этой записи через RSS 2.0. Вы можете оставить свой комментарий, пинг пока закрыт.Выключатели на транзисторах — Меандр — занимательная электроника
Основное назначение транзисторных выключателей, схемы которых предлагаются вниманию читателей, — включение и выключение нагрузки постоянного тока. Кроме этого, он может выполнять ещё дополнительные функции, например, индицировать своё состояние, автоматически отключать нагрузку при разрядке аккумуляторной батареи до предельно допустимого значения или по сигналу датчиков температуры, освещённости и др. На базе нескольких выключателей можно сделать переключатель. Коммутация тока осуществляется транзистором, а управление осуществляется одной простой кнопкой с контактом на замыкание. Каждое нажатие на кнопку изменяет состояние выключателя на противоположное.
Описание аналогичного выключателя было приведено в [1], нотам для управления применены две кнопки. К достоинствам предлагаемых выключателей можно отнести бесконтактное подключение нагрузки, практически отсутствие потребляемого тока в выключенном состоянии, доступные элементы и возможность применения малогабаритной кнопки, занимающей мало места на панели прибора. Недостатки — собственный потребляемый ток (несколько миллиампер) во включённом состоянии, падение напряжения на транзисторе (доли вольта), необходимость принятия мер для защиты от импульсных помех надёжного контакта во входной цепи (может самопроизвольно выключаться при кратковременном нарушении контакта).
Схема выключателя показана на рис. 1. Принцип его работы основан на том, что у открытого кремниевого транзистора напряжение на переходе база- эмиттер транзистора — 0,5…0,7 В, а напряжение насыщения коллектор-эмиттер может быть 0,2…0,3 В. По сути, это устройство представляет собой триггер на транзисторах с разной структурой, управляемый одной кнопкой. После подачи питающего напряжения оба транзистора закрыты, а конденсатор С1 разряжен. При нажатии на кнопку SB1 ток зарядки конденсатора С1 открывает транзистор VT1, и следом за ним откроется транзистор VT2. При отпускании кнопки транзисторы остаются во включённом состоянии, питающее напряжение (за вычетом падения напряжения на транзисторе ѴТ1) поступает на нагрузку и продолжится зарядка конденсатора С1. Он зарядится до напряжения, немногим большем, чем напряжение на базе этого транзистора, поскольку напряжение насыщения коллектор—эмиттер меньше напряжения база-эмиттер.
Рис. 1
Поэтому при следующем нажатии на кнопку напряжение база-эмиттер на транзисторе ѴТ1 будет недостаточным для поддержания его в открытом состоянии и он закроется. Следом закроется транзистор VT2, и нагрузка обесточится. Конденсатор С1 разрядится через нагрузку и резисторы R3—R5, и выключатель вернётся в исходное состояние. Максимальный коллекторный ток транзистора ѴТ1 Iк зависит от коэффициента передачи тока h21э и базового тока Іб: Iк = lб h2lэ. Для указанных на схеме номиналов и типов элементов этот ток — 100…150 мА. Чтобы выключатель работал нормально, ток, потребляемый нагрузкой, должен быть меньше этого значения.
У этого выключателя есть две особенности. Если на выходе выключателя будет короткое замыкание, после кратковременного нажатия на кнопку SB1 транзисторы на короткое время откроются и затем, после зарядки конденсатора С1, закроются. При уменьшении выходного напряжения примерно до 1 В (зависит от сопротивлений резисторов R3 и R4) транзисторы также закроются, т. е. нагрузка будет обесточена.
Второе свойство выключателя можно использовать для построения разрядного устройства для отдельных Ni-Cd или Ni-Mh аккумуляторов до 1 В перед составлением их в батарею и дальнейшей общей зарядке. Схема устройства показана на рис. 2. Выключатель на транзисторах ѴТ1, ѴТ2 подключает к аккумулятору разрядный резистор R6, параллельно которому подключён преобразователь напряжения [2], собранный на транзисторах ѴТЗ, ѴТ4, питающий светодиод HL1. Светодиод индицирует состояние процесса разрядки и является дополнительной нагрузкой аккумулятора. Резистором R8 можно изменять яркость свечения светодиода, вследствие этого изменяется потребляемый им ток. Так можно производить корректировку разрядного тока. По мере разрядки аккумулятора снижается напряжение на входе выключателя, а также на базе транзистора ѴТ2. Резисторы делителя в цепи базы этого транзистора подобраны так, что при напряжении на входе 1 В напряжение на базе уменьшится настолько, что транзистор ѴТ2 закроется, а вслед за ним и транзистор ѴТ1 — разрядка прекратится. При указанных на схеме номиналах элементов интервал регулировки тока разрядки — 40…90 мА. Если резистор R6 исключить, разрядный ток можно менять в интервале от 10 до 50 мА. При использовании сверхъяркого светодиода это устройство можно применить для построения карманного фонаря с защитой аккумулятора от глубокой разрядки.
Рис. 2
На рис. 3 показано ещё одно применение выключателя — таймер. Он был использован мною в портативном приборе — испытателе оксидных конденсаторов. В схему дополнительно введён светодиод HL1, который индицирует состояние устройства. После включения загорается светодиод и конденсатор С2 начинает заряжаться обратным током диода VD1. При определённом напряжении на нём откроется транзистор ѴТ3, который закоротит эмиттерный переход транзистора ѴТ2, что приведёт к выключению устройства (светодиод погаснет). Конденсатор С2 быстро разрядится через диод VD1, резисторы R3, R4 и выключатель вернётся в исходное состояние. Время выдержки зависит от ёмкости конденсатора С2 и обратного тока диода. При указанных на схеме элементах оно составляет около 2 мин. Если взамен конденсатора С2 установить фоторезистор, терморезистор (или другие датчики), а взамен диода — резистор, получим устройство, которое будет выключаться при изменении освещённости, температуры и т. п.
Рис. 3
Если в нагрузке есть конденсаторы большой ёмкости, выключатель может не включиться (это зависит от их ёмкости). Схема устройства, лишённого этого недостатка, показана на
Рис. 4
На рис. 5 представлена схема трёхканального зависимого переключателя. В ней объединены три выключателя, но при необходимости их число может быть увеличено. Кратковременное нажатие на любую из кнопок вызовет включение соответствующего выключателя и подключение соответствующей нагрузки к источнику питания. Если нажать на какую-либо другую кнопку, включится соответствующий выключатель, а предыдущий выключится. Нажатие на следующую кнопку включит следующий выключатель, а предыдущий опять отключится. При повторном же нажатии на ту же кнопку последний работающий выключатель выключится, и устройство возвратится в исходное состояние — все нагрузки будут обесточены. Режим переключения обеспечивает резистор R5. При включении какого-либо выключателя напряжение на этом резисторе возрастает, что приводит к закрыванию включённого ранее выключателя. Сопротивление этого резистора зависит от тока, потребляемого самими выключателями, в данном случае его значение — около 3 мА. Элементы VD1, R3 и С2 обеспечивают прохождение разрядного тока конденсаторов СЗ, С5 и С7. Через резистор R3 конденсатор С2 разряжает в паузах между нажатиями на кнопку. Если эту цепь исключить, останутся только режимы включения и переключения. Заменив резистор R5 проволочной перемычкой, получим три независимо работающих устройства.
Рис. 5
Переключатель предполагалось применить в коммутаторе телевизионных антенн с усилителями, но с появлением кабельного телевидения необходимость в нём отпала, и проект не был реализован на практике.
В выключателях могут быть применены транзисторы самых разных типов, но они должны соответствовать определённым требованиям. Во-первых, все они должны быть кремниевыми. Во-вторых, транзисторы, коммутирующие ток нагрузки, должны иметь напряжение насыщения Uк-э нас не более 0,2…0,3 В, максимальный допустимый ток коллектора Iкмакс должен быть в несколько раз больше коммутируемого тока, а коэффициент передачи тока h21э достаточный, чтобы при заданном токе базы транзистор находился в режиме насыщения. Из имеющихся у меня в наличии транзисторов хорошо зарекомендовали себя транзисторы серий КТ209 и КТ502, несколько хуже — серий КТ3107 и КТ361.
Сопротивления резисторов можно изменять в значительных пределах. Если требуется большая экономичность и не нужна индикация состояния выключателя, светодиод не устанавливают, а резистор в цепи коллектора ѴТЗ (см. рис. 4) можно увеличить до 100 кОм и более, но надо учесть, что при этом уменьшится базовый ток транзистора ѴТ2 и максимальный ток в нагрузке. Транзистор ѴТЗ (см. рис. 3) должен иметь коэффициент передачи тока h21э более 100. Сопротивление резистора R5 в зарядной цепи конденсатора С1 (см. рис. 1) и аналогичных ему в других схемах может быть в интервале 100.. 470 кОм. Конденсатор С1 (см. рис. 1) и аналогичные ему в других схемах должны быть с малым током утечки, желательно применить оксиднополупроводниковые серии К53, но можно применять и оксидные, при этом сопротивление резистора R5 должно быть не более 100 кОм. При увеличении ёмкости этого конденсатора уменьшится быстродействие (время, по истечении которого устройство можно выключить после включения), а если уменьшить — снизится чёткость в работе. Конденсатор С2 (см. рис. 3) — только оксидно-полупроводниковый. Кнопки — любые малогабаритные с самовозвратом. Катушка L1 преобразователя (см. рис. 2) применена от регулятора линейности строк чёрно-белого телевизора, хорошо работает преобразователь и с дросселем на Ш-образном магнитопроводе от КЛЛ. Можно также воспользоваться рекомендациями, приведёнными в [2]. Диод VD1 (см. рис. 5) может быть любым маломощным, как кремниевым, так и германиевым. Диод VD1 (см. рис. 3) должен быть обязательно германиевым.
Налаживания требуют устройства, схемы которых показаны на рис. 2 и рис. 5, остальные в налаживании не нуждаются, если нет особых требований и все детали исправны. Для налаживания разрядного устройства (см. рис. 2) потребуется источник питания с регулируемым напряжением на выходе. Прежде всего, взамен резистора R4 временно устанавливают переменный резистор сопротивлением 4,7 кОм (в максимум сопротивления). Подключают источник питания, предварительно установив на его выходе напряжение 1,25 В. Включают разрядное устройство нажатием на кнопку и устанавливают с помощью резистора R8 требуемый ток разрядки. После этого устанавливают на выходе источника питания напряжение 1 В, и с помощью добавочного переменного резистора добиваются выключения устройства. После этого надо несколько раз проверить напряжение выключения. Для этого необходимо увеличить напряжение на выходе источника питания до 1,25 В, включить устройство, затем необходимо плавно уменьшать напряжение до 1 В, наблюдая момент выключения. Затем измеряют введённую часть дополнительного переменного резистора и заменяют его постоянным с таким же сопротивлением.
Во всех других устройствах также можно реализовать аналогичную функцию выключения при снижении входного напряжения. Налаживание производится аналогично. При этом надо иметь в виду то обстоятельство, что вблизи точки выключения транзисторы начинают закрываться плавно и ток в нагрузке тоже будет плавно уменьшаться. Если в качестве нагрузки будет радиоприёмник, то это проявится как уменьшение громкости. Возможно, рекомендации, описанные в [1], помогут решить эту проблему.
Налаживание переключателя (см. рис. 5) сводится к временной замене постоянных резисторов R3 и R5 на переменные с сопротивлением в 2…3 раза больше. Последовательно нажимая на кнопки, с помощью резистора R5 добиваются надёжной работы. После этого повторными нажатиями на одну и ту же кнопку с помощью резистора R3 добиваются надёжного выключения. Затем переменные резисторы заменяют постоянными, как сказано выше. Для повышения помехоустойчивости параллельно резисторам R7, R13 и R19 надо установить керамические конденсаторы ёмкостью несколько нанофарад.
ЛИТЕРАТУРА
- Поляков В. Электронный выключатель защищает аккумуляторную батарею. — Радио, 2002, № 8, с. 60.
- Нечаев И. Электронная спичка. — Радио, 1992, N° 1, с. 19—21.
Автор: В. БУЛАТОВ, пгт Новый Свет, Донецкая обл., Украина
Источник: Радио №5/2016
Электронные схемы — диод как переключатель
Диод представляет собой двухполюсный PN-переход, который может использоваться в различных приложениях. Одним из таких приложений является электрический выключатель. PN-переход, когда прямое смещение действует как замкнутая цепь, а когда обратное смещение действует как разомкнутая цепь. Следовательно, изменение прямого и обратного смещенных состояний приводит к тому, что диод работает в качестве переключателя, когда прямое направление включено, а обратное состояние выключено .
Электрические выключатели над механическими выключателями
Электрические выключатели являются предпочтительным выбором по сравнению с механическими выключателями по следующим причинам:
- Механические переключатели подвержены окислению металлов, а электрические – нет.
- Механические выключатели имеют подвижные контакты.
- Они более подвержены нагрузкам и нагрузкам, чем электрические выключатели.
- Изношенные механические выключатели часто влияют на их работу.
Следовательно, электрический переключатель более полезен, чем механический переключатель.
Работа диода в качестве переключателя
При превышении указанного напряжения сопротивление диода увеличивается, что приводит к смещению диода в обратном направлении, и он действует как размыкающий переключатель. Всякий раз, когда напряжение, приложенное ниже опорного напряжения, сопротивление диода получает уменьшается, что делает диод смещен в прямом направлении, и он действует как замкнутый переключатель.
Следующая схема объясняет, как диод работает как переключатель.
Переключающий диод имеет PN-переход, в котором P-область слегка легирована, а N-область сильно легирована. Вышеприведенная схема символизирует, что диод включается, когда прямое положительное напряжение смещает диод, и выключается, когда отрицательное обратное напряжение смещает диод.
звонкий
Поскольку прямой ток течет до этого момента, при внезапном обратном напряжении обратный ток протекает в течение некоторого времени, а не немедленно отключается. Чем выше ток утечки, тем больше потери. Поток обратного тока при внезапном обратном смещении диода иногда может создавать несколько колебаний, называемых RINGING .
Это условие вызова является потерей и, следовательно, должно быть сведено к минимуму. Для этого следует понимать время переключения диода.
Время переключения диода
При изменении условий смещения диод испытывает переходные характеристики . Реакция системы на любое внезапное изменение из положения равновесия называется переходной реакцией.
Внезапное изменение от прямого к обратному и от обратного к прямому смещению влияет на цепь. Время, необходимое для реагирования на такие внезапные изменения, является важным критерием для определения эффективности электрического выключателя.
Время, необходимое для восстановления устойчивого состояния диода, называется временем восстановления .
Временной интервал, используемый диодом для переключения из состояния обратного смещения в состояние прямого смещения, называется временем прямого восстановления (tfr).
Временной интервал, используемый диодом для переключения из состояния прямого смещения в состояние с обратным смещением, называется временем обратного восстановления. (Tфр)
Время, необходимое для восстановления устойчивого состояния диода, называется временем восстановления .
Временной интервал, используемый диодом для переключения из состояния обратного смещения в состояние прямого смещения, называется временем прямого восстановления (tfr).
Временной интервал, используемый диодом для переключения из состояния прямого смещения в состояние с обратным смещением, называется временем обратного восстановления. (Tфр)
Чтобы понять это более четко, давайте попробуем проанализировать, что происходит, когда напряжение подается на переключающий диод PN.
Концентрация несущей
Концентрация миноритарных носителей заряда экспоненциально уменьшается, если смотреть в сторону от соединения. Когда напряжение приложено из-за прямого смещения, большинство несущих одной стороны движутся в направлении другой. Они становятся миноритариями другой стороны. Эта концентрация будет больше на стыке.
Например, если рассматривается N-тип, избыток дырок, которые входят в N-тип после применения прямого смещения, добавляет к уже существующим неосновным носителям материала N-типа.
Давайте рассмотрим несколько обозначений.
- Основные носители в P-типе (дырки) = Ppo
- Основные носители в N-типе (электроны) = Nno
- Миноритарные носители в P-типе (электроны) = Npo
- Основные носители в N-типе (дырки) = Pno
Во время прямого смещения – несущие меньшего размера находятся ближе к перекрестку и менее далеко от перекрестка. График ниже объясняет это.
Избыточный заряд миноритарного оператора в P-типе = Pn−Pno с pno (значение устойчивого состояния)
Избыточный заряд миноритарного оператора в N-типе = Np−Npo с Npo (установившееся значение)
Во время условия обратного смещения – Большинство несущих не проводит ток через соединение и, следовательно, не участвует в текущем состоянии. Переключающий диод ведет себя как короткое замыкание, например, в обратном направлении.
Миноритарные несущие будут пересекать перекресток и проводить ток, который называется обратным током насыщения . Следующий график представляет условие во время обратного смещения.
На приведенном выше рисунке пунктирная линия представляет равновесные значения, а сплошные линии представляют фактические значения. Поскольку ток из-за неосновных носителей заряда достаточно велик для проведения, цепь будет включена, пока этот избыточный заряд не будет удален.
Время, необходимое для перехода диода из прямого смещения в обратное смещение, называется временем обратного восстановления (trr) . Следующие графики подробно объясняют времена переключения диодов.
Из приведенного выше рисунка рассмотрим график тока диода.
При t1 диод внезапно переводится в состояние ВЫКЛ из состояния ВКЛ; это известно как Время хранения. Время хранения – это время, необходимое для снятия избыточного заряда меньшинства. Отрицательный ток, протекающий от материала типа N к P, имеет значительное количество в течение времени хранения. Этот отрицательный ток
−IR= frac−VRR
Следующий период времени – это время перехода »(от t2 до t3)
Время перехода – это время, необходимое для полного перехода диода в состояние разомкнутой цепи. После того, как t3 диод будет в устойчивом состоянии обратного смещения. До того, как диод t1 находится в установившемся режиме прямого смещения.
Таким образом, время, необходимое для полного разомкнутого контура
Reverserecoverytime left(trr right)=памятьtime left(Ts right)+переходвремя left(Tt right)
Принимая во внимание, что для перехода в состояние ВКЛ из ВЫКЛ, требуется меньше времени, называемого временем прямого восстановления . Время обратного восстановления больше, чем время прямого восстановления. Диод работает как лучший переключатель, если обратное время восстановления меньше.
Определения
Давайте просто пройдемся по определениям обсуждаемых периодов времени.
Время хранения. Период времени, в течение которого диод остается в состоянии проводимости даже в состоянии с обратным смещением, называется временем хранения .
Время перехода . Время, прошедшее с момента возврата обратно в состояние непроводимости, то есть обратное смещение в установившемся режиме, называется временем перехода .
Время обратного восстановления – Время, необходимое для перехода диода с прямого смещения на обратное смещение, называется временем обратного восстановления .
Время прямого восстановления – Время, необходимое для перехода диода из обратного смещения в прямое смещение, называется временем прямого восстановления .
Время хранения. Период времени, в течение которого диод остается в состоянии проводимости даже в состоянии с обратным смещением, называется временем хранения .
Время перехода . Время, прошедшее с момента возврата обратно в состояние непроводимости, то есть обратное смещение в установившемся режиме, называется временем перехода .
Время обратного восстановления – Время, необходимое для перехода диода с прямого смещения на обратное смещение, называется временем обратного восстановления .
Время прямого восстановления – Время, необходимое для перехода диода из обратного смещения в прямое смещение, называется временем прямого восстановления .
Факторы, влияющие на время переключения диодов
Есть несколько факторов, которые влияют на время переключения диодов, таких как
Диодная емкость – емкость PN перехода изменяется в зависимости от условий смещения.
Diode Resistance – сопротивление, предлагаемое диодом для изменения его состояния.
Концентрация легирования – Уровень легирования диода влияет на время переключения диода.
Ширина истощения – чем уже ширина слоя истощения, тем быстрее будет переключение. Стабилитрон имеет более узкую область истощения, чем лавинный, что делает его лучшим переключателем.
Диодная емкость – емкость PN перехода изменяется в зависимости от условий смещения.
Diode Resistance – сопротивление, предлагаемое диодом для изменения его состояния.
Концентрация легирования – Уровень легирования диода влияет на время переключения диода.
Ширина истощения – чем уже ширина слоя истощения, тем быстрее будет переключение. Стабилитрон имеет более узкую область истощения, чем лавинный, что делает его лучшим переключателем.
Приложения
Существует много применений, в которых используются схемы переключения диодов, например:
РадиоКот :: Селектор сигналов на TDA1029
РадиоКот >Схемы >Аудио >Разное >Селектор сигналов на TDA1029
Сейчас мы займемся рассматриванием микросхемы TDA1029 производства небольшой европейской компании Philips. У этой небольшой европейской компании есть небольшое отделение по производству небольших полупроводниковых приборов. Я сам очень удивился — оказалось, что Philips выпускает еще что то кроме мобильников и прочей бытовой дребедени. Как говорят некоторые наши коллеги, представительство в Интернете имеется — www.semiconductors.philips.com.
Так, к делу.
Вышеозначенная микросхемка представляет собой селектор сигналов для различных усилителей.
В 16-ногом корпусе поместились 4 стереовхода и 1 стереовыход.
Основные параметры следующие:
Напряжение питания | 6-23 В |
Потребляемый ток | 3,5 мА |
Коэфф. усиления | 1 |
Коэфф. гармоник | 0,01% |
Отношение сигнал/шум | 120 дБ |
В общем и целом очень даже неплохо, не правда ли? Так же в микросхему встроены следующие вкусности: бесшумное переключении входов, защита выхода от короткого замыкания.
Смотрим схему включения:
В принципе и комментировать то особо нечего.
Слева от нас входы справа — выход. Так же справа переключатели выходов.
Если не замкнут ни один из выключателей, то сигнал снимается с первого входа — самого верхнего по схеме.
Если же замыкается один из переключателей, то селектор переключается в соответствующее состояние.
Переключатели могут быть любого типа — через них не проходит звуковой сигнал, так что можно ставить все что придет в голову -
тем и хорош электронный переключатель — у него нет контактов, которые со временем окисляются или протачиваются.
Очень удобно во всех отношениях. Паяем и пользуемся.
А вот тут берем печатную плату. Вид со стороны деталей — под утюг.
Удачи.
Как вам эта статья? | Заработало ли это устройство у вас? |
СХЕМА ПЕРЕКЛЮЧАТЕЛЯ СВЕТОДИОДОВ
Перед вами простая схема переключателя светодиодов, именуемая в народе мультивибратор. Итак, решил собрать светодиодную мигалку, хочется положить её около приемника, чтоб глаза занимало, когда отдыхаю и слушаю музыку. Схему выбрал классическу, на транзисторах кт969. Это довольно хорошие добротные транзисторы, подходящие для данного устройства и по напряжению, и по току. Характеристики транзистора КТ969:
Макс. напр. к-б, В — 300,
Максимально допустимый ток коллектора, А — 0.1,
Коэффициент передачи тока h31э — 50,
Граничная частота h31э fгр, МГц — 60,
Максимальная рассеиваемая мощность, Вт — 1.
Как видим, ток 100 ма максимальный, вот поэтому и решил их тут использовать, так как у меня их валяется штук 50, а куда их еще девать пока не придумал. В плече переключателя использую по 3 светодиода, ток плеча примерно 75-80 ма. Практически с небольшим запасом. Электролитические конденсаторы емкостью по 100 мкф как раз подходят для четкого переключения транзисторов с нужной частотой.
Схему разместил в дне банки от какао. Она прозрачная и как раз по диаметру подходит. Платы приклеил к бокам — вот подсыхают. Питать можно от 9-12 вольт постоянного тока при нагрузке 150-170 ма.
Видео работы LED переключателя смотрите здесь. А вообще, с данным типом транзисторов можно подключить последовательно и 4 светодиода в плечо, но напряжение придется увеличить до 15 вольт.Транзисторы возможно заменить на более мощные и включить ещё больше светодиодов — как говорится, все зависит от Вашей фантазии:) С ув. тов. vanesex
Форум по радиосхемам для начинающихОбсудить статью СХЕМА ПЕРЕКЛЮЧАТЕЛЯ СВЕТОДИОДОВ