Обозначение на схеме компрессора – ГОСТ 2.793-79 Единая система конструкторской документации (ЕСКД). Обозначения условные графические. Элементы и устройства машин и аппаратов химических производств. Общие обозначения (с Изменением N 1), ГОСТ от 30 октября 1979 года №2.793-79

Содержание

ГОСТ 2.782-96 — ЕСКД. Обозначения условные графические. Машины гидравлические и пневматические.

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ.

МАШИНЫ ГИДРАВЛИЧЕСКИЕ И ПНЕВМАТИЧЕСКИЕ

ГОСТ 2.782-96

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ,
МЕТРОЛОГИИ И СЕРТИФИКАЦИИ

Минск

ПРЕДИСЛОВИЕ.

1. РАЗРАБОТАН Научно-исследовательским и проектно-конструкторским институтом промышленных гидроприводов и гидроавтоматики (НИИГидропривод), Всероссийским научно-исследовательским институтом стандартизации и сертификации в машиностроении (ВНИИНМАШ).

ВНЕСЕН Госстандартом России.

2. ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 10 от 4 октября 1996 г.).

За принятие проголосовали:

Наименование государства

Наименование национального органа по стандартизации

Азербайджанская Республика

Азгосстандарт

Республика Армения

Армгосстандарт

Республика Белоруссия

Белстандарт

Республика Казахстан

Госстандарт Республики Казахстан

Киргизская Республика

Киргизстандарт

Республика Молдова

Молдовастандарт

Российская Федерация

Госстандарт России

Республика Таджикистан

Таджикский государственный центр по стандартизации, метрологии и сертификации

Туркменистан

Туркменглавгосинспекция

Украина

Госстандарт Украины

3. Настоящий стандарт соответствует ИСО 1219-91 «Гидропривод, пневмопривод и устройства. Условные графические обозначения и схемы. Часть 1. Условные графические обозначения» в части гидравлических и пневматических машин.

4. Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 7 апреля 1997 г. № 123 межгосударственный стандарт ГОСТ 2.782-96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1998 г.

5. ВЗАМЕН ГОСТ 2.782-68.

6. ПЕРЕИЗДАНИЕ. Январь 1998 г.

СОДЕРЖАНИЕ

1. Область применения. 2

2. Нормативные ссылки. 2

3. Определения. 2

4. Основные положения. 2

Приложение А Правила обозначения зависимости направления вращения от направления потока рабочей среды и позицией устройства управления для гидро- и пневмомашин. 8

Приложение В Примеры обозначения зависимости направления вращения от направления потока рабочей среды и позиций устройства управления для гидро- и пневмомашин. 8

ГОСТ 2.782-96

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система конструкторской документации.

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ.

МАШИНЫ ГИДРАВЛИЧЕСКИЕ И ПНЕВМАТИЧЕСКИЕ.

Unified system for design documentation.
Graphic designations. Hydraulic and pneumatic machines.

Дата введения 1998-01-01

Настоящий стандарт устанавливает условные графические обозначения гидравлических и пневматических машин (насосов, компрессоров, моторов, цилиндров, поворотных двигателей, преобразователей, вытеснителей) в схемах и чертежах всех отраслей промышленности.

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 17398-72 Насосы. Термины и определения.

ГОСТ 17752-81 Гидропривод объемный и пневмопривод. Термины и определения.

ГОСТ 28567-90 Компрессоры. Термины и определения.

В настоящем стандарте применены термины по ГОСТ 17752, ГОСТ 17398 и ГОСТ 28567.

4.1. Обозначения отражают назначение (действие), способ работы устройств и наружные соединения.

4.2. Обозначения не показывают фактическую конструкцию устройства.

4.3. Применяемые в обозначениях буквы представляют собой только буквенные обозначения и не дают представления о параметрах или значениях параметров.

4.4. Если не оговорено иначе, обозначения могут быть начерчены в любом расположении, если не искажается их смысл.

4.5. Размеры условных обозначений стандарт не устанавливает.

4.6. Обозначения, построенные по функциональным признакам, должны соответствовать приведенным в таблице 1.

Если необходимо отразить принцип действия, то применяют обозначения, приведенные в таблице 2.

4.7. Правила и примеры обозначений зависимости между направлением вращения, направлением потока рабочей среды и позицией устройства управления для насосов и моторов приведены в приложениях А и Б.

Таблица 1

Наименование

Обозначение

1. Насос нерегулируемый:

- с нереверсивным потоком

- с реверсивным потоком

2. Насос регулируемый:

- с нереверсивным потоком

- с реверсивным потоком

3. Насос регулируемый с ручным управлением и одним направлением вращения

4. Насос, регулируемый по давлению, с одним направлением вращения, регулируемой пружиной и дренажом (см. приложения А и Б)

5. Насос-дозатор

6. Насос многоотводный (например, трехотводный регулируемый насос с одним заглушенным отводом)

7. Гидромотор нерегулируемый:

— с нереверсивным потоком

- с реверсивным потоком

8. Гидромотор регулируемый:

- с нереверсивным потоком, с неопределенным механизмом управления, наружным дренажом, одним направлением вращения и двумя концами вала

9. Поворотный гидродвигатель

10. Компрессор

11. Пневмомотор нерегулируемый:

- с нереверсивным потоком

- с реверсивным потоком

12. Пневмомотор регулируемый:

- с нереверсивным потоком

- с реверсивным потоком

13. Поворотный пневмодвигатель

14. Насос-мотор нерегулируемый:

- с одним и тем же направлением потока

- с реверсивным направлением потока

- с любым направлением потока

15. Насос-мотор регулируемый:

- с одним и тем же направлением потока

- с реверсивным направлением потока

- с любым направлением потока, с ручным управлением, наружным дренажом и двумя направлениями вращения

16. Насос-мотор регулируемый, с двумя направлениями вращения, пружинным центрированием нуля рабочего объема, наружным управлением и дренажом (сигнал n вызывает перемещение в направлении N) (см. приложения А и Б)

17. Объемная гидропередача:

- с нерегулируемым насосом и мотором, с одним направлением потока и одним направлением вращения

- с регулируемым насосом, с реверсивным потоком, с двумя направлениями вращения с изменяемой скоростью

- с нерегулируемым насосом и одним направлением вращения

18. Цилиндр одностороннего действия:

- поршневой без указания способа возврата штока, пневматический

- поршневой с возвратом штока пружиной, пневматический

- поршневой с выдвижением штока пружиной, гидравлический

- плунжерный

- телескопический с односторонним выдвижением, пневматический

- телескопический с двухсторонним выдвижением

19. Цилиндр двухстороннего действия:

- с односторонним штоком, гидравлический

- с двухсторонним штоком, пневматический

- телескопический с односторонним выдвижением, гидравлический

- телескопический с двухсторонним выдвижением

20. Цилиндр дифференциальный (отношение площадей поршня со стороны штоковой и нештоковой полостей имеет первостепенное значение)

21. Цилиндр двухстороннего действия с подводом рабочей среды через шток:

- с односторонним штоком

- с двухсторонним штоком

22. Цилиндр двухстороннего действия с постоянным торможением в конце хода:

- со стороны поршня

- с двух сторон

23. Цилиндр двухстороннего действия с регулируемым торможением в конце хода:

- со стороны поршня

- с двух сторон и соотношением площадей 2:1

Примечание – При необходимости отношение кольцевой площади поршня к площади поршня (соотношение площадей) может быть дано над обозначением поршня

24. Цилиндр двухкамерный двухстороннего действия

25. Цилиндр мембранный:

- одностороннего действия

- двухстороннего действия

26. Пневмогидравлический вытеснитель с разделителем:

- поступательный

- вращательный

27. Поступательный преобразователь:

- с одним видом рабочей среды

- с двумя видами рабочей среды

28. Вращательный преобразователь:

- с одним видом рабочей среды

- с двумя видами рабочей среды

29. Цилиндр с встроенными механическими замками

 

 

Таблица 2

Наименование

Обозначение

1. Насос ручной

2. Насос шестеренный

3. Насос винтовой

4. Насос пластинчатый

5. Насос радиально-поршневой

6. Насос аксиально-поршневой

7. Насос кривошипный

8. Насос лопастной центробежный

9. Насос струйный:

— общее обозначение

— с жидкостным внешним потоком

— с газовым внешним потоком

10. Вентилятор:

— центробежный

— осевой

А.1. Направление вращения вала показывают концентрической стрелкой вокруг основного обозначения машины от элемента подвода мощности к элементу отвода мощности. Для устройств с двумя направлениями вращения показывают только одно произвольно выбранное направление. Для устройств с двойным валом направление показывают на одном конце вала.

А.2. Для насосов стрелка начинается на приводном валу и заканчивается острием на выходной линии потока.

А.3. Для моторов стрелка начинается на входной линии потока и заканчивается острием стрелки на выходном валу.

А.4. Для насосов-моторов по А.2 и А.3.

А.5. При необходимости соответствующее обозначение позиции устройства управления показывают возле острия концентрической стрелки.

А.6. Если характеристики управления различны для двух направлений вращения, информацию показывают для обоих направлений.

А.7. Линию, показывающую позиции устройства управления, и обозначения позиций (например, М — Æ — N) наносят перпендикулярно к стрелке управления. Знак Æ обозначает позицию нулевого рабочего объема, буквы М и N обозначают крайние позиции устройства управления для максимального рабочего объема. Предпочтительно использовать те же обозначения, которые нанесены на корпусе устройства.

Точка пересечения стрелки, показывающей регулирование и перпендикулярной к линии, показывает положение «на складе» (рисунок 1).

Рисунок 1.

Таблица Б.1

Наименование

Обозначение

1. Однофункциональное устройство (мотор).

Гидромотор нерегулируемый, с одним направлением вращения.

2. Однофункциональное устройство (машина).

Гидромашина нерегулируемая, с двумя направлениями вращения.

Показано одно направление вращения, связанное с направлением потока.

3. Однофункциональное устройство (насос).

Гидронасос регулируемый (с изменением рабочего объема в одну строку), с одним направлением вращения.

Обозначение позиции устройства управления может быть исключено, на рисунке оно указано только для ясности.

4. Однофункциональное устройство (мотор).

Гидромотор регулируемый (с изменением рабочего объема в одну сторону), с двумя направлениями вращения.

Показано одно направление вращения, связанное с направлением потока.

5. Однофункциональное устройство (машина).

Гидромашина регулируемая (с изменением рабочего объема в обе стороны), с одним направлением вращения.

Показано направление вращения и соответствующая позиция устройства управления, связанные с направлением потока.

6. Однофункциональное устройство (машина).

Гидромашина регулируемая (с изменением рабочего объема в обе стороны), с двумя направлениями вращения.

Показано одно направление вращения и соответствующая позиция устройства управления, связанные с направлением потока.

7. Насос-мотор.

Насос-мотор нерегулируемый с двумя направлениями вращения.

 

8. Насос-мотор.

Насос-мотор регулируемый (с изменением рабочего объема в одну сторону), с двумя направлениями вращения.

Показано одно направление вращения, связанное с направлением потока, при работе в режиме насоса.

9. Насос-мотор.

Насос-мотор регулируемый (с изменением рабочего объема в обе стороны), с одним направлением вращения.

Показано направление вращения и соответствующая позиция устройства управления, связанные с направлением потока, при работе в режиме насоса.

10. Насос-мотор.

Насос-мотор регулируемый (с применением рабочего объема в обе стороны, с двумя направлениями вращения.

Показано одно направление вращения и соответствующая позиция устройства управления, связанные с направлением потока, при работе в режиме насоса.

11. Мотор.

Мотор с двумя направлениями вращения: регулируемый (с изменением рабочего объема в одну строку) в одном направлении вращения, нерегулируемый в другом направлении вращения.

Показаны обе возможности.

Ключевые слова: обозначения условные графические, машины гидравлические и пневматические

Как обозначается компрессор на чертеже. Учимся читать гидравлические схемы

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ.

МАШИНЫ ГИДРАВЛИЧЕСКИЕ И ПНЕВМАТИЧЕСКИЕ

ГОСТ 2.782-96

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ,
МЕТРОЛОГИИ И СЕРТИФИКАЦИИ

ПРЕДИСЛОВИЕ.

1. РАЗРАБОТАН Научно-исследовательским и проектно-конструкторским институтом промышленных гидроприводов и гидроавтоматики (НИИГидропривод), Всероссийским научно-исследовательским институтом стандартизации и сертификации в машиностроении (ВНИИНМАШ).ВНЕСЕН Госстандартом России.2. ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 10 от 4 октября 1996 г.).За принятие проголосовали:

Наименование государства

Наименование национального органа по стандартизации

Азербайджанская Республика Азгосстандарт
Республика Армения Армгосстандарт
Республика Белоруссия Белстандарт
Республика Казахстан Госстандарт Республики Казахстан
Киргизская Республика Киргизстандарт
Республика Молдова Молдовастандарт
Российская Федерация Госстандарт России
Республика Таджикистан Таджикский государственный центр по стандартизации, метрологии и сертификации
Туркменистан Туркменглавгосинспекция
Украина Госстандарт Украины
3. Настоящий стандарт соответствует ИСО 1219-91 «Гидропривод, пневмопривод и устройства. Условные графические обозначения и схемы. Часть 1. Условные графические обозначения» в части гидравлических и пневматических машин.4. Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 7 апреля 1997 г. № 123 межгосударственный стандарт ГОСТ 2.782-96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1998 г. 5. ВЗАМЕН ГОСТ 2.782-68.6. ПЕРЕИЗДАНИЕ. Январь 1998 г.

1. Область применения. 2 2. Нормативные ссылки. 2 3. Определения. 2 4. Основные положения. 2 Приложение А Правила обозначения зависимости направления вращения от направления потока рабочей среды и позицией устройства управления для гидро- и пневмомашин. 8 Приложение В Примеры обозначения зависимости направления вращения от направления потока рабочей среды и позиций устройства управления для гидро- и пневмомашин. 8

ГОСТ 2.782-96

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система конструкторской документации.

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ.

МАШИНЫ ГИДРАВЛИЧЕСКИЕ И ПНЕВМАТИЧЕСКИЕ.

Unified system for design documentation.
Graphic designations. Hydraulic and pneumatic machines.

Дата введения 1998-01-01

Настоящий стандарт устанавливает условные графические обозначения гидравлических и пневматических машин (насосов, компрессоров, моторов, цилиндров, поворотных двигателей, преобразователей, вытеснителей) в схемах и чертежах всех отраслей промышленности. В настоящем стандарте использованы ссылки на следующие стандарты:ГОСТ 17398-72 Насосы. Термины и определения. ГОСТ 17752-81 Гидропривод объемный и пневмопривод. Термины и определения.ГОСТ 28567-90 Компрессоры. Термины и определения. В настоящем стандарте применены термины по ГОСТ 17752, ГОСТ 17398 и ГОСТ 28567. 4.1. Обозначения отражают назначение (действие), способ работы устройств и наружные соединения.4.2. Обозначения не показывают фактическую конструкцию устройства.4.3. Применяемые в обозначениях буквы представляют собой только буквенные обозначения и не дают представления о параметрах или значениях параметров.4.4. Если не оговорено иначе, обозначения могут быть начерчены в любом расположении, если не искажается их смысл.4.5. Размеры условных обозначений стандарт не устанавливает.4.6. Обозначения, построенные по функциональным признакам, должны соответствовать приведенным в таблице 1.Если необходимо отразить принцип действия, то применяют обозначения, приведенные в таблице 2.4.7. Правила и примеры обозначений зависимости между направлением вращения, направлением потока рабочей среды и позицией устройства управления для насосов и моторов приведены в приложениях А и Б.

Таблица 1

Наименование

Обозначение

1. Насос нерегулируемый: — с нереверсивным потоком
— с реверсивным потоком
2. Насос регулируемый: — с нереверсивным потоком
— с реверсивным потоком
3. Насос регулируемый с ручным управлением и одним направлением вращения

4. Насос, регулируемый по давлению, с одним направлением вращения, регулируемой пружиной и дренажом (см. приложения А и Б)

5. Насос-дозатор
6. Насос многоотводный (например, трехотводный регулируемый насос с одним заглушенным отводом)

7. Гидромотор нерегулируемый: — с нереверсивным потоком
— с реверсивным потоком
8. Гидромотор регулируемый: — с нереверсивным потоком, с неопределенным механизмом управления, наружным дренажом, одним направлением вращения и двумя концами вала

9. Поворотный гидродвигатель
10. Компрессор
11. Пневмомотор нерегулируемый: — с нереверсивным потоком
— с реверсивным потоком
12. Пневмомотор регулируемый: — с нереверсивным потоком
— с реверсивным потоком
13. Поворотный пневмодвигатель
14. Насос-мотор нерегулируемый: — с одним и тем же направлением потока
— с любым направлением потока
15. Насос-мотор регулируемый: — с одним и тем же направлением потока
— с реверсивным направлением потока
— с любым направлением потока, с ручным управлением, наружным дренажом и двумя направлениями вращения

16. Насос-мотор регулируемый, с двумя направлениями вращения, пружинным центрированием нуля рабочего объема, наружным управлением и дренажом (сигнал n вызывает перемещение в направлении N ) (см. приложения А и Б)

17. Объемная гидропередача: — с нерегулируемым насосом и мотором, с одним направлением потока и одним направлением вращения

— с регулируемым насосом, с реверсивным потоком, с двумя направлениями вращения с изменяемой скоростью

Компрессоры условные обозначения — Справочник химика 21

    Компрессоры. Условные обозначения. — Взамен РТМ 26— [c.40]

    Согласно ГОСТ 18985—79Е, компрессоры воздушные поршневые стационарные общего назначения, рассчитанные на конечное давление 0,88 МПа (абсолютное), изготовляются следующих типов ВУ — бескрейцкопфные V-образные ВП — крейцкопфные прямоугольные ВМ — крейцкопфные оппозитные. Компрессоры типа ВУ имеют водяное или воздушное охлаждение, а ВП и ВМ — водяное охлаждение цилиндров и промежуточных охладителей. Примеры условного обозначения Компрессор ВУ-3/8 ГОСТ 18985—79Е — V-образный, Vh = = 3 м /мии, Рк = 0,8 МПа (избыточное), с воздушным охлаждением. [c.228]


    Условное обозначение углового компрессора отражает основные характеристики и параметры машин  [c.17]

    Условное обозначение мембранного компрессора. Первые цифры соответствуют поршневому усилию (тс) буквы МК—мембранный компрессор (например, 1,6 МК) после тире дробью обозначены основные параметры компрессора в числителе—производительность (мVч), в знаменателе — давление нагнетания (кгс/см ), для дожимающих компрессоров в знаменателе указывают давления всасывания и нагнетания М1 или М2 — модификация компрессора (М1 — общепромышленное исполнение по уровню взрывозащиты для сжатия неагрессивных газов, М2 — для сжатия агрессивных газов во взрывобезопасных помещениях). [c.19]

    Для компрессоров на прямоугольных базах согласно ГОСТ 23680—79 принято условное обозначение, которое харак- [c.323]

    Унифицированные компрессоры сухого сжатия имеют следующее условное обозначение. Первая цифра показывает номер базы, следующая за ней буква В обозначает винтовой компрессор далее следует дробь, числитель которой соответствует производительности машины в м /мин, а знаменатель — давлению нагнетания в даН/см , если давление всасывания атмосферное. Например, одноступенчатый компрессор, выполненный на пятой базе, производительностью 40 м /мин с давлением нагнетания 0,3 МПа обозначается 5В-40/3. [c.19]

    Условное обозначение марки К — компрессор С — станция Э — электропривод 5 — производительность, м /мин-, М— компрессор модернизирован 2 — поставляется без электродвигателя  [c.12]

    Компрессоры. Расчетные параметры. Термины и условные обозначения [c.40]

    Каждому компрессору дается условное обозначение из букв и цифр. Первая буква означает холодильный агент (А — аммиак, Ф — фреон-12), вторая — тип компрессора (В — вертикальный, У—V-образный), цифры — холодопроизводительность в тысячах килокалорий в час при стандартном режиме. [c.40]

    В соответствии с действующими ГОСТами марки аммиачных и фреоновых компрессоров определяются следующими условными обозначениями  [c.204]

    Условные обозначения Ф — работающий на хладоне, У — У-об-разное расположение цилиндров в компрессоре, 200 — усреднен- [c.68]

    Условные обозначения АК — компрессорно-конденсаторный агрегат, цифры после букв — усредненная производительность компрессора (тыс. ккал/ч) в стандартном режиме, А — вариант модернизированного агрегата. [c.69]


    В компрессорах с коренными подшипниками качения применяются преимущественно роликовые подшипники двухрядные сферические (условное обозначение 3000) и однорядные радиальноупорные конические (условное обозначение 7000). [c.248]

    Компрессор имеет две первые ступени, условно обозначенные на схеме цифрами 1у и 2, и две вторые, обозначенные l и 2 . Вал двухколенный. Каждое из колен приводит в движение шатунно-кривошипные механизмы одной первой и одной второй ступеней. [c.410]

    Схема, составленная для облегчения монтажа и эксплуатации компрессорных установок, а также для облегчения обнаружения повреждений и устранений неполадок, называется монтажной схемой. В отличие от принципиальной схемы монтажная схема представляет собой чертеж, показывающий места соединений трубопроводов с компрессорами, вспомогательным оборудованием, приборами и арматурой соответственно действительному расположению оборудования и трубопроводов в компрессорной станции. На монтажных схемах, как и на принципиальных, элементы схемы (приборы, арматура и трубопроводы) изображаются условными обозначениями и обязательно нумеруются. Оборудование можно изображать в изометрии, в одной плоскости или условными обозначениями. Пояснения пронумерованных позиций даются в подробной спецификации оборудования, приборов, арматуры и трубопроводов. Рядом со схемой, на свободном месте листа, помещаются условные обозначения трубопроводов, арматуры, контрольно-измерительных приборов, а также часто повторяющихся аппаратов и оборудования. На монтажных схемах трубопроводов указываются размеры труб (наружный диаметр и толщина стенки), например Тр 57 X 3,5 или 0 2″. Иногда на трубопроводах указывают расходы воздуха в единицу времени. Трубопроводы разных давлений указываются различными условными обозначениями. [c.96]

    Фиг, 52. Принципиальная технологическая схема компрессорной станции высокого давления с двумя четырехступенчатыми компрессорами 2р-3/220 и одной установкой для осушки воздуха (условные обозначения см. в приложении III). [c.104]

    Каждому компрессору присваивается условное обозначение, состоящее из букв и цифр. Первая буква означает холодильный агент, для которого предназначен компрессор А — аммиачный, Ф — фреоновый. Вторая буква означает тип компрессора В — вертикальный, У — У-образный, Г — горизонтальный, П — угловой. Цифры означают холодопроизводительность в тысячах ктл/час. [c.18]

    В настоящее время в области компрессорных машин, в частности в области центробежных компрессоров, наблюдается большая пестрота в буквенных обозначениях и терминологии параметров. Это обстоятельство значительно усложняет техническую информацию, пользование технической литературой, подготовку инженерно-технических кадров и т. д. Дело практически дошло до того, что при знакомстве с тем или иным вопросом в новой книге, большая часть времени тратится на ознакомление с обозначениями и терминологией. Списки условных обозначений, к которым вынуждены часто прибегать многие авторы, несколько облегчают задачу, но не решают вопроса, ибо переход от одной системы обозначений (не говоря уже о терминологии) к другой значительно усложняет работу. Причем, чем менее квалифицирован читатель, тем большее значение приобретает вопрос унификации. В настоящее время, когда выпуск технической литературы и контингент авторов с каждым годом все возрастает, а следовательно, все более возрастает пестрота в обозначениях и терминологии параметров, этот вопрос приобретает особую остроту. [c.7]

    Герметичный компрессор укомплектован встроенным электродвигателем и установлен в герметичном стальном кожухе. Поскольку фреоновые компрессоры не изготавл

Гидравлические и пневматические схемы — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 ноября 2018; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 ноября 2018; проверки требует 1 правка. Простейшая принципиальная гидравлическая схема гидропривода (код Г3)

Гидравли́ческая (пневмати́ческая) схе́ма — это технический документ, содержащий в виде условных графических изображений или обозначений информацию о строении изделия, его составных частях и взаимосвязи между ними, действие которого основывается на использовании энергии сжатой жидкости (газа). Гидравлическая схема является одним из видов схем изделий и обозначаются в шифре основной надписи литерой «Г» (пневматическая — литерой «П»)[1].

Гидравлические и пневматические схемы в зависимости от их основного назначения подразделяются на следующие типы[2]:

Структурные гидравлические (пневматические) схемы[править | править код]

На структурной схеме элементы и устройства изображают в виде прямоугольников, внутри которых вписывают наименование соответствующей функциональной части. Все элементы связаны между собой линиями взаимосвязи (сплошные основные линии), на которых принято указывать направления потоков рабочей среды по ГОСТ 2.721-68[3] Графическое построение схемы должно давать как можно более наглядное представление о последовательности взаимодействия функциональных частей в изделии.

При большом количестве функциональных частей допускается вместо наименований, типов и обозначений проставлять порядковые номера справа от изображения или над ним, как правило, сверху вниз в направлении слева направо. В этом случае наименования, типы и обозначения указывают в таблице, которую располагают на полях схемы. Этот вид схем обозначаются в шифре основной надписи символами Г1 (или П1, для пневматических).

Принципиальные гидравлические (пневматические) схемы[править | править код]

На принципиальной схеме изображают все гидравлические (пневматические) элементы или устройства, необходимые для осуществления и контроля в изделии заданных гидравлических (пневматических) процессов, и все гидравлические (пневматические) связи между ними. При этом используются графические условные обозначения:

Каждый элемент должен иметь позиционное обозначение, которое состоит из литерного обозначения и порядкового номера. Литерное обозначение должно представлять собой укороченное наименование элемента, составленное из его начальных или характерных букв, например: клапан — К, дроссель — ДР. Порядковые номера элементов (устройств) следует присваивать, начиная с единицы, в границах группы элементов (устройств), которым на схеме присвоено одинаковое литерное позиционное обозначение, например, Р1, Р2, Р3 и т.д., К1, К2, К3 и т.д.

Литерные позиционные обозначения основных элементов[2]:

На принципиальной схеме должны быть однозначно обозначены все элементы, входящие в состав изделия и изображённые на схеме.

Данные об элементах должны быть занесены в перечень элементов. При этом связь перечня с условными графическими обозначениями элементов должна осуществляться через позиционные обозначения. Перечень элементов размещают на первом листе схемы или выполняют в виде самостоятельного документа.

Эти схемы обозначаются в шифре основной надписи символами Г3 (П3′).

На схемах соединений кроме всех гидравлических и пневматических элементов показывают также трубопроводы и элементы соединений трубопроводов. При этом соединения трубопроводов показывают в виде упрощённых внешних очертаний, а сами трубопроводы — сплошными основными линиями.

Расположение графических обозначений элементов и устройств на схеме должно приблизительно отвечать действительному размещению элементов и устройств в изделии. Допускается на схеме не показывать расположение элементов и устройств в изделии, если схему выполняют на нескольких листах или расположение элементов и устройств на месте эксплуатации неизвестно.

На схеме возле графических обозначений элементов и устройств указывают позиционные обозначения, присвоенные им на принципиальной схеме. Возле или внутри графического обозначения устройства и рядом с графическим обозначением элемента допускается указывать его наименование и тип и (или) обозначение документа, на основании которого устройство использовано, номинальные значения основных параметров (давление, подача, расход и т.п.).

Эти схемы обозначаются в шифре основной надписи символами Г4 (П4).

  1. ↑ ГОСТ 2.701-2008 Единая система конструкторской документации. Схемы. Виды и типы. Общие требования к выполнению.
  2. 1 2 ГОСТ 2.704-76 Единая система конструкторской документации. Правила выполнения гидравлических и пневматических схем.
  3. ↑ ГОСТ 2.721-68 Единая система конструкторской документации. Обозначения условные графические в схемах. Обозначения общего применения.
  4. ↑ ГОСТ 2.780-68 Единая система конструкторской документации. Обозначения условные графические. Кондиционеры рабочей среды, емкости гидравлические и пневматические
  5. ↑ ГОСТ 2.781-96 Единая система конструкторской документации. Обозначения условные графические. Аппараты гидравлические и пневматические, устройства управления и приборы контрольно-измерительные
  6. ↑ ГОСТ 2.782-96 Единая система конструкторской документации. Обозначения условные графические. Машины гидравлические и пневматические.
  • Гидравлика, гидромашины и гидроприводы: Учебник для машиностроительных вузов/ Т. М. Башта, С. С. Руднев, Б. Б. Некрасов и др. — 2-е изд., перераб. — М.: Машиностроение, 1982.

Технологическая схема и схема КИПиА, Схема трубопроводов и КИПиА, Схема трубной обвязки и КИПиА (Piping & Instrumentation Diagrams) символы и обозначения оборудования на технологических схемах.

Технологическая схема и схема КИПиА, Схема трубопроводов и КИПиА, Схема трубной обвязки и КИПиА (Piping & Instrumentation Diagrams) символы и обозначения оборудования на технологических схемах.

В РФ виды и типы технологических схем определяются Единой системой конструкторской документации (ЕСКД). «Схемы. Виды и типы. Общие требования к выполнению» Там их десятки комбинаций. Англосаксы и прочие немцы широко пользуются т.н. Piping and instrumentation diagram (P&ID) — «Схема трубопроводов, трубопроводной арматуры, насосов и КИПиА» — которую определяют как графическую иллюстрацию некоторого технологического процесса, включающую в себя трубы и их соединения, сосуды и аппараты, регулирующую и запорную арматуру, устройства КИПиА и прочее оборудование технологической системы (процесса). P&ID это схематический чертеж, который показывает принципиальное устройство системы управления технологическим процессом — т.е абсолютно критически важные данные для проектирования, строительства, монтажа и ремонта технологической системы..

Этапы где используется P&ID (Схема трубопроводов, трубопроводной арматуры, насосов и КИПиА):

  • Проектирование и компоновка технологического процесса (системы)
  • Спецификация оборудования
  • Разработка алгоритмов и схем управления
  • Анализ эксплуатационных опасностей и работоспособности технологического оборудования (HAZOP – hazard and operability study)
  • Монтаж и/или демонтаж системы
  • Схемы и регламенты запуска и остановки системы, а также производственные регламнты и процедуры
  • Обучение и переобучение операторов технологического процесса (системы)
  • Обслуживание и модификации системы (процесса)

Также эти схемы (P&ID) широко используются как основа графического интерфейса в компьютерных системах управления технологическими процессами HMI (human-machine interface = HMI-интерфейс = человеко-машинный интерфейс).

Символы оборудования в диаграммах и схемах P&ID

Существуют стандартные и вполне общепринятые знаки и символы для обозначения оборудования на этих схемах. Важно понимать, что у этих символов нет «правильного» масштаба и/или каких-то требований к размерам. Они используются только лишь для того, чтобы указывать тот или иной компонент схемы. Для более точного указания на тип представляемого оборудования вместе с этими символами используются подписи, буквы и цифры. Кроме того, такая диаграмма не отражает фактического месторасположения элементов схемы и/или близость одних элементов к другим. Идея использования этих схем — только лишь подробно проиллюстрировать технологический процесс.

Символы клапанов, кранов, задвижек, вентилей и другой трубопроводной арматуры для P&ID

Образующий символ для проходного = двухходового = 2-way клапана — это два треугольника, соприкасающиеся вершинами (см. рисунок ниже). Трубопроводы изображаются в виде прямых линий, соединенных с обеими сторонами символа клапана. Различные типы линий обозначают различные типы труб, шлангов, подводок и т.п. На примере ниже — сплошные линии — обозначают твердые (негибкие) трубопроводы. Обычно, для унификации, трубы на схемах изображают только горизонтальными и вертикальными линиями. Направление потока указывается в месте где труба переходит в другой символ и на каждом повороте трубопровода (как помним, повороты — это 90°
Прохо

Как читать пневматические схемы | Журнал-И

Для того, чтобы научиться правильно читать пневматические схемы необходимо знать обозначения отдельных элементов, понимать принцип работы и назначение этих элементов, а также уметь объединять отдельные составляющие в единую пневматическую систему. Это непростая задача, но если разобраться с обозначением элементов, то она станет гораздо легче.

Обозначение элементов на пневмосхемах

Пневматические линии — трубопроводы, рукава высокого давления, гибкие шланги, каналы изображают линиями. В месте соединения нескольких каналов ставят точку.

Источник сжатого воздуха — энергии для пневматический системы обозначается окружностью с точкой в центре. В данном случае не конкретизируется, что это за источник. Это может быть пневматическая магистраль или компрессорная станция.

Обозначение компрессора

Источником сжатого воздуха чаще всего является компрессор, который имеет свое обозначение. Компрессор на схемах обозначается окружностью в которой расположен треугольник — срелка, указывающий на направление движения воздуха.

Этот треугольник на пневматических схемах не закрашивается, в отличие от гидравлических схем, где закрашены треугольник на насосах указывает на направление движения жидкости.

Зачастую, читать пневматические схемы удобнее начиная от источника энергии — компрессора.

Пневмомотор

На обозначении пневматического мотора треугольная стрелка развернута в обратном направлении. Наличие дух стрелок указывает на реверсивность пневмомотора, то есть его способность работать в двух направлениях.

Если обозначение пневматического мотора перечеркнуто стрелкой, значит он регулируемый, то есть регулируется его рабочий объем.

Обозначение пневмоцилиндра

Пневматический двигатель, позволяющий преобразовать энергию сжатого воздуха в поступательное движение исполнительного механизма называется пневмоцилиндром.

Пневматический цилиндр обозначается на схемах следующим образом.

Обозначение пневматического распределителя на схемах

Важный элемент на пневматических схемах — распределитель. Он позволяет направить сжатый воздух в различные каналы, например в полости пневматического цилиндра.

На схемах пневмораспределитель изображается в исходном положении, то есть при отсутствии на него управляющего воздействия.

Пневматический распределитель изображается несколькими прямоугольниками, в каждом из которых изображены стрелки отображающие какой канал с каким будет соединен. Для того, чтобы понять какие каналы соединять при переключении распределителя нужно мысленно передвинуть прямоугольники и посмотреть какие линии соединят стрелки.

Количество прямоугольников указывает на число позиций распределителя. К периметру прямоугольника подводятся линии отводимые от распределителя.

На схеме изображен двух позиционный (два окна) пятилинейный распределитель, его часто обозначают распределитель 5/2.

Тип управления распределителем также указывается на схеме.

Обратный клапан

Изображается в виде схематичного седла и запорного элемента — шарика, подпертого пружиной. Если поток прижимает шарик к седлу — клапан поток не пропустит. В обратном направлении поток воздуха через клапан пройдет.

Пружина на обратном клапане может не изображаться.

Ресивер на пневматической схеме

Резервуар для накопления сжатого воздуха — ресивер, изображается на схемах следующим образом.

Дроссель на пневмосхемах

Пневматическое сопротивление обозначается на схеме следующим образом.

Если сопротивление регулируемое (дроссель), то на нем указывается стрелка.

Редукционный клапан

Схема обозначения редукционного клапана показана на рисунке.

Источник:http://www.hydro-pnevmo.ru/topic.php?ID=138

13.2. Условные обозначения по выполнению принципиальных схем по холодильным установкам согласно требованиям ескд.

13.3. Буквенное обозначение на схемах автоматизации.

Обозначение

Измеряемая величина

Функции выполняемые прибором автоматики

Основное значение первой буквы

Дополнительные значения первой буквы

Основная функция, выполняемая прибором

Дополнительные функции прибора

А

Сигнализация

С

Регулирование

D,Δ

Разность, перепад

Е

Дистанционная передача

F

Расход, проток

G

Размер, перемещение

H

Ручное воздействие

Верхний предел

J

Автоматическое обегание

К

Время, временная программа

Нижний предел

L

Уровень

М

Влажность

N

Автоматическое воздействие

P

Давление

R

Регистрация

S

Включение, выключение

T

Температура

U

Многофункциональность. Пульт, микропроцесор.

Qo

Холодопроизводительность

Z

Интегрирование, суммирование

13.4. Графические условные обозначение на схемах автоматизации.

Первичный измерительный преобразователь (чувствительный элемент или датчик). Прибор, устанавливаемый по месту на: технологическом трубопроводе, компрессоре, аппарате, сосуде, стене, полу, колонне, металлоконструкции.

Основные

Допустимые

10 мм

15мм

10

Прибор, устанавливаемый на контрольно-сигнальном щите (КСЩ), пульте управления, в шкафу приборов, на фасаде, и т.д.

Основные

Допустимые

Исполнительный механизм плавного действия.

Например: исполнительный механизм статического регулятора давления, терморегулирующего вентиля, водорегулирующего вентиля.

5

5

5 7

13.5. Пример построения условного обозначения.

Измеряемая величина

Давление

Уточнение измеряемой величины

Перепад давления

Функциональные признаки прибора

Показание

Регистрация

Автоматическое регулирование

Последовательность буквенных обозначений

P D I R C

Место для нанесения позиционного обозначения

13.6. Приборы, установленные по месту у машин и аппаратов.

ТЕ

РЕ

ТI

РI

LI

РС

РС

Чувствительный элемент или датчик контроля температуры.

Например: термобаллон, термометр сопротивления (металлический, полупроводниковый), пьезоэлектрический.

Чувствительный элемент или датчик контроля давления.

Например: бесконтактный датчик давления.

Чувствительный элемент или датчик контроля уровня.

Например: датчик уровнемера или реле уровня.

Прибор для измерения температуры показывающий.

Например: термометр жидкостной, термометр манометрический.

Прибор для измерения давления показывающий.

Например: манометр, мановакууметр.

Прибор для измерения уровня показывающий.

Например: визуальный указатель уровня.

Регулятор давления, работающий без использования постороннего источника энергии.

Например: статический регулятор плавного действия «После себя».

Регулятор давления, работающий без использования постороннего источника энергии.

Например: статический регулятор плавного действия «До себя».

PSHS

Прибор контроля давления с контактным устройством.

Например: реле давления.

TSHS

Прибор контроля температуры с контактным устройством.

Например: реле температуры.

LSHS

FSHS

Прибор контроля уровня с контактным устройством.

Например: реле уровня.

Прибор контроля протока воды с контактным устройством.

Например: реле протока воды.

PDSHS

Прибор контроля перепада давления с контактным устройством.

Например: реле разности давления.

TDCHS

Регулятор разности температуры, работающий без постороннего использования энергии.

Например: терморегулирующий вентиль.

UCIK

UCIK

Прибор для контроля нескольких параметров многофункциональный.

Например: микропроцессор, пульт управления, INT.

13.7. Приборы, установленные на щите.

TIHS

TRHS

LSHS

KSHS

Прибор для измерения температуры, показывающий.

Например: милливольтметр, логометр, потенциометр, мост автоматический.

Прибор для измерения температуры, регистрирующий.

Например: любой самопищущий измеритель температуры.

Прибор контроля уровня с контактным устройством.

Например: реле уровня.

Прибор для контроля нескольких параметров, многофункциональный (регулирующий, показывающий, с временной программой и т. д.).

Например: микропроцессор, контроллер, INT.

Прибор для управления процессом по временной программе.

Например: реле времени, программное реле времени.

HSHS

H

HSHS

Аппаратура ручного дистанционного управления.

Например: ключ режимов на пульте, КСЩ, шкафу.

Аппаратура ручного дистанционного управления.

Например: кнопочная станция на пульте, КСЩ, шкафу.

Аппаратура пусковая для автоматического управления ЭД (включения КМ, насоса, вентилятора)

Например: магнитный пускатель, контактор.

Выбор той или иной схемы автоматизации для конкретного холодильного оборудования определяется целым рядом факторов, главными из которых являются уровень температуры, поддержи­ваемый в охлаждаемом объеме, число и исполнение объектов ох­лаждения (открытые или закрытые), циркуляция воздуха в ох­лаждаемом объеме, среда для охлаждения конденсатора (вода или воздух), тип и размещение применяемого компрессора, исполне­ние встроенного в компрессор электродвигателя (одно- или трех­фазный).

Поскольку в эксплуатации до сих пор находится еще весьма значительное количество торгового холодильного оборудования, оснащенного традиционно применяемыми средствами автомати­зации, представляется целесообразным привести некоторые наи­более типичные схемы.

На рис. 6.22 показаны схемы автоматизации среднетемпературного шкафа со встроенным однофазным герметичным агрегатом и прилавка-витрины с трехфазным герметичным агрегатом. За­полнение испарителя хладагентом регулируется с помощью ТРВ. Поддержание необходимой температуры в охлаждаемом объеме и регулирование холодопроизводительности агрегата путем пуска и остановки осуществляются электромеханическим реле темпера­туры, термобаллон которого прижат к трубе испарителя. Оттаива­ние испарителя может быть организовано полуавтоматически (при выключении агрегата с помощью кнопки реле температуры) или вручную (при выключении машины тумблером). При открывании двери охлаждаемого оборудования дверной выключатель включа­ет лампу освещения.

Необходимо отметить, что в настоящее время в отличие от вышеприведенных схем в области малого торгового холодильного оборудования в большей степени используют схемы, где в качестве регулятора потока хладагента служит не ТРВ, а капиллярная трубка.

Малые холодильные машины с капиллярной трубкой имеют преимущества перед машинами с регулирующим вентилем:

большая надежность и долговечность — трубка в отличие от ТРВ не имеет изнашивающихся деталей; машины с капиллярной трубкой изготавливают без разъемных соединений, на пайке или сварке;

разгрузка компрессора при пуске, поскольку после остановки машины давления конденсации и кипения выравниваются;

снижение стоимости машины вследствие отсутствия ресивера и отказа от ТРВ.

Холодильный шкаф ШХ-0.8М (рис. 6.23) охлаждается встроен­ным герметичным агрегатом. Для питания испарителя вместо ТРВ используется капиллярная трубка диаметром 2 и длиной 4100 мм.

Для пуска машины включается автомат АВ и тумблер В1. Если температура в шкафу выше требуемой, реле температуры РТ (термобаллон которого прикрепляется к испарителю) замыкает цепь катушки магнитного пускателя П (цепь управления). Контакты пус­кателя П включают двигатели компрессора ДК и вентилятора ДВ (силовая цепь). Реле температуры РТ, включая и останавливая компрессор, поддерживает в шкафу заданную температуру (1… 3 °С). При открывании одной из дверок выключатели В2 или ВЗ вклю­чают в шкафу лампочку Л.

Для защиты компрессора от перегрева тепловое биметалличес­кое реле РТК, укрепленное на кожухе компрессора, при 85 …95 «С размыкает свои контакты и останавливает компрессор. При ох­лаждении кожуха до 40 °С компрессор снова включается. Автомат АВ отключает силовую цепь при коротком замыкании (если ток превышает номинальный в 12 раз) и при длительной токовой нагрузке электродвигателя (тепловая защита). Для повторного вклю­чения автомата необходимо через 10… 15 мин после срабатывания снова включить автомат. Для полуавтоматического оттаивания ис­парителя служит реле оттаивания, совмещенное с реле темпера­туры в одном блоке. Для кратковременной остановки агрегата мож­но пользоваться тумблером В1.

Основными элементами торговой холодильной установки фир­мы Danfoss (Дания) с двумя воздухоохладителями и конденсато­ром воздушного охлаждения являются испаритель морозильника (-20 °С), испаритель холодильной камеры (+5°С), герметичный компрессор, конденсатор и терморегулирующие вентили. Уста­новка имеет, кроме того, ресивер.

На выходе из ресивера хладагент проходит через фильтр-осу­шитель и через смотровое окно — индикатор влажности. Ручные запорные вентили (РВ), размещенные с каждой стороны фильт­ра, позволяют в случае необходимости его заменить.

Перед каждым из регулирующих вентилей находится электро­магнитный клапан EVR, управляемый с помощью реле темпе­ратуры. Последнее открывает или закрывает электромагнитный клапан в зависимости от температуры, регистрируемой датчиком.

Обратный клапан NRV расположен на всасывающем трубопро­воде, идущем от более холодного испарителя. Клапан предотвра­щает попадание хладагента обратно в испаритель во время оста­новки компрессора. Регулятор давления испарения KVP установ­лен на всасывающем трубопроводе, идущем от высокотемпера­турного испарителя. Его задача заключается в поддержании по­стоянного давления испарения, соответствующего температуре на 8… 10″С ниже температуры, требуемой для холодильной камеры.

На входе в компрессор находится пусковое реле KVL, которое обеспечивает защиту двигателя компрессора от перегрузок во время запуска.

Дифференциальное реле давления останавливает компрессор, если недостаточно давление масла.

Реле давления служит для одновременной регулировки высокого и (или) низкого давления в целях защиты установки от слишком низкого давления всасывания и слишком высокого давлении нагнетания в компрессоре.

Наконец, так как давление в жидкостном трубопроводе должно быть достаточным для всех условий работы, чтобы жидки и хладагент должным образом проходил через регулирующий вен тиль, то предусмотрен регулятор давления конденсации KVR и клапан перепуска NRD, управляющий перепадом давления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *