На схеме тиристор обозначение: Тиристор — Википедия – обозначение тиристора на схемах | Электрознайка. Домашний Электромастер.

обозначение тиристора на схемах | Электрознайка. Домашний Электромастер.

Что такое динистор и тиристор?  


  ♦     Тиристор – полупроводниковый прибор на основе монокристалла полупроводника с многослойной структурой типа p –n –p – n обладает свойствами управляемого электрического вентиля. В качестве полупроводника обычно применяют кремний.

   Обычно тиристор имеет три вывода: два из них (катод и анод) контактируют с крайними областями монокристалла, а третий вывод – управляющий. Такой управляемый тиристор называется иногда триодным, или тринистором.

   Неуправляемый тиристор, имеющий всего два вывода (анод — катод), называется диодным тиристором или динистором.

   Четырехслойная структура тиристора изображена на рис 1.

     На рисунке 2 — его транзисторный аналог.

   ♦      Вольт-амперная характеристика, ВАХ динистора, имеет вид на рисунке 3.

 

  Устойчивое состояние (точка D на ВАХ) достигается в результате перехода транзисторов тиристора в режим насыщения. Падение напряжения на открытом динисторе — тиристоре составляет около

1,5 – 2,0 вольта.

    Если на анод подать положительное напряжение относительно катода, то крайние электронно-дырочные переходы П1 и П3 оказываются смещенными в прямом направлении, а центральный переход П2 в обратном.

    С увеличением анодного напряжения , ток через динистор сначала растет медленно (участок А — В на ВАХ). Сопротивление перехода П2 , в этом режиме еще велико, это соответствует запертому состоянию динистора.

   При некотором значении напряжения (участок В — С на ВАХ). называемым напряжением переключения

Uпер (напряжение лавинного пробоя перехода П2), динистор переходит в проводящее состояние.   
В цепи устанавливается ток (участок D – E на ВАХ), определяемый сопротивлением внешней цепи Rн и величиной приложенного напряжения U (рис 2).
Напряжение пробоя динистора, в зависимости от экземпляра, изменяется в широких пределах и имеет значения порядка десятков и сотен вольт.  
На вольт – амперной характеристике, ВАХ (рис 3.), обозначены участки: 
 — А – В участок в прямом включении, здесь динистор заперт и приложенное к его выводам напряжение меньше, чем необходимо для возникновения лавинного пробоя;
 — В – С участок пробоя коллекторного перехода;
 — C — D участок отрицательного сопротивления;
— D — E участок открытого состояния динистора (динистор включен).

    Динистор имеет два устойчивых состояния:
— заперт (А – В)
— открыт (D — E)

 В участке A – D – E явно просматривается кривая ВАХ диода.

♦     Тиристор имеющий три электрода – анод, катод и управляющий электрод – называется тринистором или просто тиристором.   Четырех слойная структура типа p – n – p – n является единой для тиристора – динистора. Просто, у динистора отсутствует дополнительный вывод управляющего электрода.   

При подаче тока в цепь управляющего электрода, тиристор переключается в открытое состояние при меньших значениях напряжения переключения Uпер.   
Если каким-то образом уменьшать ток, проходящий через динистор — тиристор, то при некотором его значении (точка D на ВАХ) тиристор закроется.Минимальный ток, при котором тиристор — динистор переходит из открытого в закрытое состояние (при токе управляющего электрода Iу =0) называется током удержания Iуд.   
Если через управляющий электрод тиристора пропустить отпирающий ток, то тиристор перейдёт в открытое состояние.   Включение транзисторного аналога тиристора (рис 2) можно осуществить по двум входам: между электродами
(Э1 –Б1)
, либо между электродами (Э2 – Б2).

 ♦    Вольтамперная характеристика тиристора (Рис 4), похожа на вольтамперную характеристику динистора.    
Однако отпирание тиристора обычно происходит при существенно более низком  напряжении, чем необходимо динистору. К раннему открыванию тиристора приводит протекание тока через управляющий электрод. Чем больше ток управляющего электрода от Iy1 до Iy4, тем при более низком  напряжении Ua тринистор перейдёт в открытое состояние. Это отражено на вольтамперной характеристике тиристора.

 ♦    Тиристоры изготавливают на разные мощности: маломощные (ток 50 мА. – 100 мА), средней мощности (ток до 20 ампер) и большой мощности (токи 20 – 10000 ампер) и величины напряжения от нескольких вольт до 10 тысяч вольт.

 ♦    По назначению и принципу действия тиристоры делятся на: запираемые, быстродействующие, импульсные, симметричные и фототиристоры.   Тиристор и динистор пропускают ток только в одном направлении – от анода к катоду.

 ♦     В настоящее время появились двунаправленные динисторы (пропускают ток в обоих направлениях) и двунаправленные тиристоры (симисторы).

 

    Симистор имеет в своем составе как бы два тиристора, включенных встречно, с управлением от одного управляющего электрода.ВАХ (вольт — амперная характеристика) симистора представлена на рис 5.
Она имеет две одинаковые ветви. При положительном полупериоде сетевого напряжения действует правая ветвь, при отрицательном полупериоде – левая.
На управляющий электрод, относительно катода, также подается соответственно то положительное, то отрицательное управляющее напряжение. В схемах управления, симистор может заменить два тиристора.

   ♦     Динисторы применяют в регуляторах и переключателях, чувствительных к изменениям напряжений.   
Наличие двух устойчивых состояний (включен — выключен), а также низкая мощность рассеяния тиристора, обусловили широкое использование их в различных устройствах.    

Тиристоры применяются в регулируемых источниках питания, генераторах мощных импульсов, в линиях передачи энергии постоянного тока, в системах автоматического управления и т.д.

    Внешний вид тиристора и его обозначение на схемах:

  

    Симисторы нашли широкое применение в устройствах регулирования скорости вращения электродвигателей, в системах регулирования освещения, в электронагревателях, в преобразовательных установках.

    Внешний вид симистора такой же как и у обычного тиристора.

7. Диоды, тиристоры, оптоэлектронные приборы — Условные графические обозначения на электрических схемах — Компоненты — Инструкции


Диоды — простейшие полупроводниковые приборы, основой которых является электронно-дырочный переход (р-п-переход). Как известно, основное свойство р-n-перехода — односторонняя проводимость: от области р (анод) к области п (катод). Это наглядно передает и условное графическое обрзначение полупроводникового диода [5]: треугольник (символ анода) вместе с пересекающей его линией электрической связи образуют подобие стрелки, указывающей направление проводимости. Перпендикулярная этой стрелке черточка символизирует катод (рис. 7.1).

 

 Буквенный код диодов — VD. Этим кодом обозначают не только отдельные диоды, но и целые группы, например, выпрямительные столбы. Исключение составляет однофазный выпрямительный мост, изображаемый в виде квадрата с соответствующим числом выводов и символом диода внутри (рис. 7.2, VD1). Полярность выпрямленного мостом напряжения на схемах не указывают, так как ее однозначно определяет символ диода. Однофазные мосты, конструктивно объединенные в одном корпусе, изображают отдельно, показывая принадлежность к одному изделию в позиционном обозначении (см. рис. 7.2, VD2.1, VD2.2). Рядом с позиционным обозначением диода можно указывать и его тип.

 

 

 На основе базового символа построены и условные графические обозначения полупроводниковых диодов с особыми свойствами. Чтобы показать на схеме стабилитрон, катод дополняют коротким штрихом, направленным в сторону символа анода (рис. 7.3, VD1). Следует отметить, что расположение штриха относительно символа анода должно быть неизменным независимо от положения УГО стабилитрона на схеме (VD2—VD4). Это относится и к символу двуханодного (двустороннего) стабилитрона (VD5).

 

 Аналогично построены условные графические обозначения туннельных диодов, обращенных и диодов Шотки — полупроводниковых приборов, используемых для обработки сигналов в области СВЧ. В символе туннельного диода (см. рис. 7.3, VD8) катод дополнен двумя штрихами, направленными в одну сторону (к аноду), в УГО диода Шотки (VD10) — в разные стороны; в УГО обращенного диода (VD9) — оба штриха касаются катода своей серединой.

 
 Свойство обратно смещенного р-n-перехода вести себя как электрическая ёмкость использовано в специальных диодах — варикапах (от слов vari(able) — переменный и cap(acitor) — конденсатор). Условное графическое обозначение этих приборов наглядно отражает их назначение (рис. 7.3, VD6): две параллельные линии воспринимаются как символ конденсатора. Как и конденсаторы переменной ёмкости, для удобства варикапы часто изготовляют в виде блоков (их называют матрицами) с общим катодом и раздельными анодами. Для примера на рис. 7.3 показано УГО матрицы из двух варикапов (VD7).

 
 Базовый символ диода использован и в УГО тиристоров (от греческого thyra — дверь и английского resistor — резистор) — полупроводниковых приборов с тремя р-л-переходами (структура p-n-p-n), используемых в качестве переключающих диодов. Буквенный код этих приборов — VS.

 

 Тиристоры с выводами только от крайних слоев структуры называют динисторами и обозначают символом диода, перечеркнутым отрезком линии, параллельным катоду (рис. 7.4, VS1). Такой же прием использован и при построении УГО симметричного динистора (VS2), проводящего ток (после его включения) в обоих направлениях. Тиристоры с дополнительным, третьим выводом (от одного из внутренних слоев структуры) называют тринисторами. Управление по катоду в УГО этих приборов показывают ломаной линией, присоединенной к символу катода (VS3), по аноду — линией, продолжающей одну из сторон треугольника, символизирующего анод (VS4), Условное графическое обозначение симметричного (двунаправленного) тринистора получают из символа симметричного динистора добавлением третьего вывода (см. рис.7.4, VS5).

 

 Из диодов, изменяющих свои параметры под действием внешних факторов, наиболее широко применяют фотодиоды. Чтобы показать такой полупроводниковый прибор на схеме, базовый символ диода помещают в кружок, а рядом с ним {слева вверху, независимо от положения УГО) помещают знак фотоэлектрического эффекта — две наклонные параллельные стрелки, направленные в сторону символа (рис. 7.5, VD1—VD3). Подобным образом строятся УГО любого другого полупроводникового диода, управляемого оптическим излучением. На рис. 7.5 в качестве примера показано условное графическое обозначение фотодинистора VD4.

 

 Аналогично строятся условные графические обозначения светоизлучающих диодов, но стрелки, обозначающие оптическое излучение, помещают справа вверху, независимо от положения УГО и направляют в противоположную сторону (рис. 7.6). Поскольку светодиоды, излучающие видимый свет, применяют обычно в качестве индикаторов, на схемах их обозначают латинскими буквами HL. Стандартный буквенный код D используют только для инфракрасных (ИК) светодиодов.
Для отображения цифр, букв и других знаков часто применяют светодиодные знаковые индикаторы. Условные графические обозначения подобных устройств в ГОСТе формально не предусмотрены, но на практике широко используются символы, подобные HL3, показанному на рис. 7.6, где изображено УГО семисегментного индикатора для отображения цифр и запятой. Сегменты подобных индикаторов обозначаются строчными буквами латинского алфавита по часовой стрелке, начиная с верхнего. Этот символ наглядно отражает практически реальное расположение светоизлучающих элементов (сегментов) в индикаторе, хотя и не лишен недостатка; он не несет информации о полярности включения в электрическую цепь (поскольку подобные индикаторы выпускают как с общим анодом, так и с общим катодом, то схемы включения будут различаться). Однако особых затруднений это не вызывает, поскольку подключение общего вывода индикаторов обычно указывают на схеме. Буквенный код знаковых индикаторов — HG.

 
 Светоизлучающие кристаллы широко используют в оптронах — специальных приборах, применяемых для связи отдельных частей электронных устройств в тех случаях, если необходима их гальваническая развязка. На схемах оптроны обозначают буквой U и изображают, как показано на рис. 7.7.

 

 Оптическую связь излучателя (светодиода) и фотоприемника показывают в этом случае двумя стрелками, перпендикулярными к линиям электрической связи — выводам оптрона. Фотоприемником в оптроне могут быть фотодиод (см. рис. 7.7, U1), фототиристор U2, фоторезистор U3 и т. д. Взаимная ориентация символов излучателя и фотоприемника не регламентируется. При необходимости составные части оптрона можно изображать раздельно, но в этом случае знак оптической связи следует заменять знаками оптического излучения и фотоэффекта, а принадлежность частей к одному изделию показывать в позиционном обозначении (см. рис. 7.7, U4.1, U4.2).

 

 

Буквенные обозначения параметров тиристоров — DataSheet

Буквенное обозначениеПараметр
ОтечественноеМеждународное
UзсUDПостоянное напряжение в закрытом состоянии — наибольшее прямое напряжение, которое может быть приложено к прибору и при котором он находится в закрытом состоянии.
Uзс, нпUDSM Импульсное неповторяющееся напряжение в закрытом состоянии Uзс, нп — наибольшее мгновенное значение любого неповторяющегося напряжения на аноде, не вызывающее его переключение из закрытого состояния в открытое.
UобрU
R
 Постоянное обратное напряжение  — наибольшее напряжение, которое может быть приложено к прибору в обратном направлении.
UпробU(BR) Обратное напряжение пробоя — обратное напряжение прибора, при котором обратный ток достигает заданного значения.
UпркU(BO)Напряжение переключения — прямое напряжение, соответствующее точке переключения (перегиба вольт-амперной характеристики).
UосUTНапряжение в открытом состоянии — падение напряжения на тиристоре в открытом состоянии.
Uoc, иUTMИмпульсное напряжение в открытом состоянии — наибольшее мгновенное значение напряжения в открытом состоянии, обусловленное импульсным током в открытом состоянии заданного значения.
 Uот, иИмпульсное отпирающее напряжение — наименьшая амплитуда импульса прямого напряжения, обеспечивающая переключение (динистора, тиристора) из закрытого состояния в открытое.
 Uy, отUПостоянное отпирающее напряжение управления — напряжение между управляющим электродом и катодом тринистора, соответствующее отпирающему постоянному току управления.
 Uy, от, иUGTMИмпульсное отпирающее напряжение управления — импульсное напряжение на управляющем электроде, соответствующее импульсному отпирающему току управления.
Uу, нотUGDНеотпирающее постоянное напряжение управления — наибольшее постоянное напряжение на управляющем электроде, вызывающее переключение тринистора из закрытого состояния в открытое.
Uзс,пUDRMПовторяющиеся импульсное напряжение в закрытом состоянии — наибольшее мгновенное значение напряжения в закрытом состоянии, прикладываемого к тиристору, включая только повторяющиеся переходные напряжения.
Uобр,пURRMПовторяющееся импульсное напряжение — наибольшее мгновенное значение обратного напряжения, прикладываемого к тиристору, включая только повторяющиеся переходные напряжения.
 Uy, зUGQЗапирающее постоянное напряжение управления — постоянное напряжение управления тиристора, соответствующее запирающему постоянному току управления.
Uy, з, иUGQMЗапирающее импульсное напряжение управления — импульсное напряжение управления тиристора, соответствующее запирающему току управления.
 Uy, нз UGHНезапирающее постоянное напряжение — наибольшее постоянное напряжение управления, не вызывающее выключение тиристора.
 Uпop UT(TO)Пороговое напряжение — значение напряжения тиристора, определяемое точкой пересечения линии прямолинейной аппроксимации характеристики открытого состояния с осью напряжения.
IзсIDПостоянный ток в закрытом состоянии — ток в закрытом состоянии при определенном прямом напряжении.
Iос, срITAVCредний ток в открытом состоянии — среднее за период значение тока в открытом состоянии.
IобрIRПостоянный обратный ток — обратный анодный ток при определенном значении обратного напряжения.
IпркI(BO)Ток переключения — ток через тиристор в момент переключения (Uпрк и Iпрк указываются только для динисторов).
Iос, пITRMПовторяющийся импульсный ток в открытом состоянии — наибольшее мгновенное значение тока в открытом состоянии, включая все повторяющиеся переходные токи.
Iос, удрITSMУдарный ток в открытом состоянии — наибольший импульсный ток в открытом состоянии, протекание которого вызывает превышение допустимой температуры перехода, но воздействие которого за время срока службы тиристора предполагается с ограниченным числом
повторений.
IосITПостоянный ток в открытом состоянии — наибольшее значение тока в открытом состоянии.
  Iзс, пIDRMПовторяющийся импульсный ток в закрытом состоянии — импульсный ток в закрытом состоянии, обусловленный повторяющимся импульсным напряжением в закрытом состоянии.
  Iобр, пIRRMПовторяющийся импульсный обратный ток — обратный ток, обусловленный повторяющимся импульсным обратным напряжением.
Iу, отIGTОтпирающий постоянный ток управления — наименьший постоянный ток управления, необходимый для включения тиристора (из закрытого состояния в открытое).
Iу, от, иIGDОтпирающий ток управления — наименьший импульсный ток управления, необходимый для включения тиристора.
Iу, з, иIGQMЗапирающий импульсный ток управления — наибольший импульсный ток управления, не вызывающий включение тиристор.
IудIHТок удержания — наименьший прямой ток тиристора, необходимый для поддержания тиристора в открытом состоянии.
IвклILТок включения тиристора — наименьший основной ток, необходимый для поддержания тиристора в открытом состоянии после окончания импульса тока управления после переключения тиристора из закрытого состояния в открытое.
IзITQЗапираемый ток тиристора — наибольшее значение основного тока, при котором обеспечивается запирание тиристора по управляющему электроду.
PсрPT(AV)Cредняя рассеиваемая мощность — сумма всех средних мощностей, рассеиваемых тиристором.
ty, вкл, t3, вкл tt, tgtВремя включения тиристора — интервал времени, в течение которого тиристор включается отпирающим током управления или переключается из закрытого состояния в открытое импульсным отпирающим током.
 ty,пнp, tнptr, tgrВремя нарастания — интервал времени между моментом, когда основное напряжение понижается до заданного значения, и моментом, когда оно достигает заданного низкого значения при включении тиристора отпирающим током управления или переключении импульсным отпирающим напряжением.
tвыклtgВремя выключения  — наименьший интервал времени между моментом, когда основной ток тиристора после внешнего переключения основных цепей понизится до нуля, и моментом, в который определенное основное напряжение проходит через нулевое значение без переключения тиристора.
(dUзc/dt)кр(dUD/dt)critКритическая скорость нарастания напряжения в закрытом состоянии  — наибольшее значение скорости нарастания напряжения в закрытом состоянии, которое не вызывает переключение тиристора из закрытого состояния в открытое.
(dUзс/dt)ком(dUD/dt)comКритическая скорость нарастания коммутационного напряжения  — наибольшее значение скорости нарастания основного напряжения, которое после нагрузки током в открытом состоянии или обратном проводящем состоянии в противоположном направлении не
вызывает переключение тиристора из закрытого состояния в открытое.

устройство тиристора | Электрознайка. Домашний Электромастер.

Что такое динистор и тиристор?  


  ♦     Тиристор – полупроводниковый прибор на основе монокристалла полупроводника с многослойной структурой типа p –n –p – n обладает свойствами управляемого электрического вентиля. В качестве полупроводника обычно применяют кремний.

   Обычно тиристор имеет три вывода: два из них (катод и анод) контактируют с крайними областями монокристалла, а третий вывод – управляющий. Такой управляемый тиристор называется иногда триодным, или тринистором.

   Неуправляемый тиристор, имеющий всего два вывода (анод — катод), называется диодным тиристором или динистором.

   Четырехслойная структура тиристора изображена на рис 1.

     На рисунке 2 — его транзисторный аналог.

   ♦      Вольт-амперная характеристика, ВАХ динистора, имеет вид на рисунке 3.

 

  Устойчивое состояние (точка D на ВАХ) достигается в результате перехода транзисторов тиристора в режим насыщения. Падение напряжения на открытом динисторе — тиристоре составляет около 1,5 – 2,0 вольта.

    Если на анод подать положительное напряжение относительно катода, то крайние электронно-дырочные переходы П1 и П3 оказываются смещенными в прямом направлении, а центральный переход П2 в обратном.

    С увеличением анодного напряжения , ток через динистор сначала растет медленно (участок А — В на ВАХ). Сопротивление перехода П2 , в этом режиме еще велико, это соответствует запертому состоянию динистора.

   При некотором значении напряжения (участок В — С на ВАХ). называемым напряжением переключения Uпер (напряжение лавинного пробоя перехода П2), динистор переходит в проводящее состояние.   
В цепи устанавливается ток (участок D – E на ВАХ), определяемый сопротивлением внешней цепи Rн и величиной приложенного напряжения U (рис 2).
Напряжение пробоя динистора, в зависимости от экземпляра, изменяется в широких пределах и имеет значения порядка десятков и сотен вольт.  
На вольт – амперной характеристике, ВАХ (рис 3.), обозначены участки: 
 — А – В участок в прямом включении, здесь динистор заперт и приложенное к его выводам напряжение меньше, чем необходимо для возникновения лавинного пробоя;
 — В – С участок пробоя коллекторного перехода;
 — C — D участок отрицательного сопротивления;
— D — E участок открытого состояния динистора (динистор включен).

    Динистор имеет два устойчивых состояния:
— заперт (А – В)
— открыт (D — E)

 В участке A – D – E явно просматривается кривая ВАХ диода.

♦     Тиристор имеющий три электрода – анод, катод и управляющий электрод – называется тринистором или просто тиристором.   Четырех слойная структура типа p – n – p – n является единой для тиристора – динистора. Просто, у динистора отсутствует дополнительный вывод управляющего электрода.   
При подаче тока в цепь управляющего электрода, тиристор переключается в открытое состояние при меньших значениях напряжения переключения Uпер.   
Если каким-то образом уменьшать ток, проходящий через динистор — тиристор, то при некотором его значении (точка D на ВАХ) тиристор закроется.Минимальный ток, при котором тиристор — динистор переходит из открытого в закрытое состояние (при токе управляющего электрода Iу =0) называется током удержания Iуд.   
Если через управляющий электрод тиристора пропустить отпирающий ток, то тиристор перейдёт в открытое состояние.   Включение транзисторного аналога тиристора (рис 2) можно осуществить по двум входам: между электродами (Э1 –Б1), либо между электродами (Э2 – Б2).

 ♦    Вольтамперная характеристика тиристора (Рис 4), похожа на вольтамперную характеристику динистора.    
Однако отпирание тиристора обычно происходит при существенно более низком  напряжении, чем необходимо динистору. К раннему открыванию тиристора приводит протекание тока через управляющий электрод. Чем больше ток управляющего электрода от Iy1 до Iy4, тем при более низком  напряжении Ua тринистор перейдёт в открытое состояние. Это отражено на вольтамперной характеристике тиристора.

 ♦    Тиристоры изготавливают на разные мощности: маломощные (ток 50 мА. – 100 мА), средней мощности (ток до 20 ампер) и большой мощности (токи 20 – 10000 ампер) и величины напряжения от нескольких вольт до 10 тысяч вольт.

 ♦    По назначению и принципу действия тиристоры делятся на: запираемые, быстродействующие, импульсные, симметричные и фототиристоры.   Тиристор и динистор пропускают ток только в одном направлении – от анода к катоду.

 ♦     В настоящее время появились двунаправленные динисторы (пропускают ток в обоих направлениях) и двунаправленные тиристоры (симисторы).

 

    Симистор имеет в своем составе как бы два тиристора, включенных встречно, с управлением от одного управляющего электрода.ВАХ (вольт — амперная характеристика) симистора представлена на рис 5.
Она имеет две одинаковые ветви. При положительном полупериоде сетевого напряжения действует правая ветвь, при отрицательном полупериоде – левая.
На управляющий электрод, относительно катода, также подается соответственно то положительное, то отрицательное управляющее напряжение. В схемах управления, симистор может заменить два тиристора.

   ♦     Динисторы применяют в регуляторах и переключателях, чувствительных к изменениям напряжений.   
Наличие двух устойчивых состояний (включен — выключен), а также низкая мощность рассеяния тиристора, обусловили широкое использование их в различных устройствах.    
Тиристоры применяются в регулируемых источниках питания, генераторах мощных импульсов, в линиях передачи энергии постоянного тока, в системах автоматического управления и т.д.

    Внешний вид тиристора и его обозначение на схемах:

  

    Симисторы нашли широкое применение в устройствах регулирования скорости вращения электродвигателей, в системах регулирования освещения, в электронагревателях, в преобразовательных установках.

    Внешний вид симистора такой же как и у обычного тиристора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *