Какой температурой паять микросхемы – Паяльник для микросхем — какой выбрать, термофен, флюс, микроскоп для пайки, как правильно паять микросхему паяльником и температура фена, цена и где купить оборудование в Москве и СПб

Содержание

Как паять SMD микросхемы | Практическая электроника

Каждый начинающий электронщик задавался вопросом: “А как паять микросхемы, ведь расстояние между их выводами  бывает очень маленькое?” Про различные типы корпусов микросхем можно прочитать в  этой  статье. Ну а в  этой статье  я покажу, как паяю SMD микросхемы, выводы которых находятся по периметру микросхемы. У каждого электронщика свой секрет пайки таких микросхем. В этой статье я покажу свой способ.

Демонтаж старой микросхемы

У каждой микросхемы имеется так называемый “ключ”. Я его выделил в красном кружочке.

ключ микросхемы

Это метка, с которой начинается нумерация выводов. В микросхемах выводы считаются против часовой стрелки. Иногда  на самой печатной плате  указано, как должна быть припаяна микросхема, а также показаны номера выводов. На фото мы видим, что краешек белого квадрата на самой печатной плате срезан, значит, микросхема должна стоять в эту сторону ключом. Но чаще все-таки не показывают. Поэтому, перед тем как отпаять микросхему, обязательно запомните как она стояла или сфотографируйте ее, благо мобильный телефон всегда под рукой.

Для начала все дорожки обильно смазываем гелевым флюсом Flux Plus.

   Готово!

Выставляем температуру фена на 330-350 градусов и начинаем “жарить” нашу микросхему спокойными круговыми движениями по периметру.

Хочу похвастаться одной штучкой. У меня она шла в комплекте сразу с паяльной станцией. Я ее называю экстрактор микросхем.

В настоящее время китайцы доработали этот инструмент, и сейчас он выглядит примерно вот так:

экстрактор микросхем

Вот так выглядят для него насадки

Как паять SMD микросхемы

Купить можно по этой ссылке.

Как только видим, что припой начинает плавиться, беремся за край микросхемы и начинаем ее приподнимать.

Усики экстрактора микросхемы обладают очень большим пружинящим эффектом. Если мы будем поднимать микросхему какой-нибудь железякой, например, пинцетом, то у нас есть все шансы вырвать вместе с микросхемой и контактные дорожки (пятачки). Благодаря пружинящим усикам, микросхема отпаяется от платы только в тот момент, когда припой будет полностью расплавлен.

Вот и наступил этот момент.

Монтаж новой микросхемы

С помощью паяльника и медной оплетки чистим пятачки от излишнего припоя. На мой взгляд самая лучшая медная оплетка – это Goot Wick.

Вот что у  нас получилось:

Как паять SMD микросхемы

Далее берем паяльник с припоем и начинаем лудить все пятачки, чтобы на них осел припой.

Должно получиться вот так

Как паять SMD микросхемы

Здесь главное не жалеть флюса и припоя. Получились своего рода холмики, на которые мы и посадим нашу новую микросхему.

Теперь нам нужно очистить все это дело от  разного рода нагара и мусора. Для этого используем ватную палочку, смоченную в Flux-Оff, либо в спирте. Подробнее про химию здесь. У нас должны быть чистенькие и красивые контактные дорожки, приготовленные под микросхему.

Напоследок все это чуточку смазываем флюсом

Ставим новую микросхему по ключу и начинаем  ее прожаривать, держа при этом фен как можно более вертикальнее, и  круговыми движениями водим его по периметру.

Напоследок  чуток еще смазываем флюсом и по периметру “приглаживаем” контакты микросхемы к  пятакам с помощью паяльника.

Думаю, это самый простой способ запайки SMD микросхем. Если же микросхема новая, то надо  будет залудить ее контакты флюсом ЛТИ-120 и припоем. Флюс ЛТИ-120 считается нейтральным флюсом, поэтому, он не будет причинять вред микросхеме.

Как паять SMD микросхемы

Думаю, теперь вы знаете, как паять микросхемы правильно.

Какой температурой паять микросхемы — steelfactoryrus.com

Как паять микросхемы?

Какой температурой паять микросхемы
Подробности Категория: Начинающим

О том как правильно паять было сказано ранее — «Как правильно паять паяльником». Но ранно или поздно наступает тот момент когда вы начинаете паять микросхем.

Каждый человек, мало понимающий в микросхемах, задавался вопросом: «А как спаять микросхемы, если между ними бывает ну очень маленькое расстояние?». Напомним вам, что микросхемы бывают двух видов. В этой статье я вам объясню, как паяются микросхемы, у которых все выводы находятся по периметру микрухи.

Каждый электронщик имеет свои секреты, как паять микросхемы. Некоторые используют паяльную пасту, другие запаивают каждую деталь в отдельности, а кто-то дорабатывает под «пайку волной» (а в жале паяльника делают маленькое углубление, обильно смазывают флюсом и проводят по всей микрухе).

Если честно, я не использовал такой метод, но можно будет попробовать. Но больше всего мне и остальным электронщикам нравится другой метод. Итак, приступим.

Запоминаем изначальное положение

Каждая микросхема имеет такой как бы «ключ». Это такая метка, с которой считываются выводы. В схемах выводы считаются не как обычно, а против часовой стрелки. Бывает, что даже на самой обычной плате показывается, как правильно должна стоять микруха. Прежде чем отпаять микруху, запомните, как она стояла изначально, а лучше зарисуйте.

Далее, смазываем все дорожки флюсом. К примеру, Flux Plus.

Демонтаж микросхему

Установим температура фена на 350-380 градусов, и начинаем паять нашу микруху по периметру круговыми движениями. Возможно, в комплекте у вас будет такая вещь, я называю ее «подниматель микросхем». Если у вас она есть, вам крупно повезло. Как только вы увидите, что припой потихоньку плавиться, возьмите микруху за край, и приподнимите. Если она поднимается частично то нужно ее еще погреть феном.

Если поднимать микруху пинцетом, то у нас много шансов вырвать контактные дорожки. Благодаря усикам, микросхемаотпаиваетсяот платы, когдаполностью расплавится припой. Главное в этой работе не жалеть флюса.

Удаляем остатки припоя

Удалять старый припой необходимо для того чтобы выровнять поверхность. Это упростит процесс установки микросхемы в дальнейшем. Для того чтобы удалить остатки припоя используется медная оплетка и паяльник. Во избежания спаивания дорожек нужно использовать все нами любимыйFlux Plus.

На это этапе главное не перегреть дорожки. Начинающие радиолюбители довольно часто совершают эту ошибку. Перегрев дорожек может привести к тому что они начнут отслаиваться от текстолита.

Устанавливаем микросхему

Появятся своеобразные холмики, на которые нужно посадить микруху. С помощью смоченной ватной палочки в Flux Off, очистим поверхность от нагара. В конце еще разок смажем флюсом.

Установим микруху по ключу, и держа фен максимально перпендикулярно водим его по периметру. Можем еще разок смазать флюсом, это не повредит. Это один из самых простых способов запайки. Удачи вам.

Источник: http://www.radio-magic.ru/beginners/87-payat-microshemu

Паяльник для пайки микросхем

Пайка является неотъемлемой частью ремонта оборудования с микросхемами и его создания. Это достаточно сложный процесс, которые требует наличия специального оборудования, так как здесь ведется работа с достаточно мелкими деталями.

Паяльник для микросхем заметно отличается от того, который нужен для спаивания проводов. Его размеры заметно меньше, чем крупные модели для обыкновенных операций, а также жало обладает тонкой заточкой.

Могут встречаться варианты со специальными видами заточек, которые рассчитаны преимущественно на выпаивание.

Паяльник электрический для микросхем является необходимым инструментом мастера по ремонту и любителя радиотехники. Модели могут быть в различном ценовом сегменте с отличающимися характеристиками. В любом случае, это будет ручной инструмент, который позволит наносить тонкий слой припоя и нагревать детали для спаивания и выпаивания их из схемы. Многие разновидности являются узкопрофильными и предназначаются для одного вида работ.

Пайка микросхем паяльником

Особенности паяльников для микросхем

Одной из главных особенностей таких моделей является форма жала. Именно наконечник является основным рабочим инструментом. В зависимости от его формы и прочих особенностей можно понять, как именно будет работать устройство и для каких целей оно предназначено. Форма не единственный параметр, выделяющий паяльник для электроники среди остальных.

Размер становится еще одним фактором, выделяющим этот тип устройств на фоне остальных. Маленький паяльник для микросхем позволяет проводить основные операции для работы с ними, тогда как большие стандартные модели оказываются достаточно грубыми для такой работы. Это же сказывается на мощности изделия.

Для каждого вида работ мощность должна быть соответствующей, чтобы ее хватало для расплавления контактов, но чтобы паяльник ничего не пережигал.

Виды паяльников для электроники

Основным различием, которое помогает разделить паяльники для электроники на разновидности, является вид нагревательного элемента, который в них используется. В последнее время технология производства позволяет выпускать множество разновидностей, которые отличаются друг от друга по характеристикам.

Нихромовые

Основным нагревательным элементом в таких паяльниках становится нихромовая проволока. Материал хорошо проводит электрические импульсы, что позволяет нагревать жало до нужной температуры достаточно быстро.

Простые модели обладают спиралью, которая намотана на корпус не проводящий электричество. Чтобы проволока не теряла тепло, ее помещают в изоляторы.

Подобные модели чаще всего применяются в бытовом непрофессиональном использовании.

Нихромовый паяльник

Недостатки:

  • Паяльник для радиодеталей с нихромовым нагревательным элементом долго нагревается;
  • Спираль быстро перегорает и ее приходится менять.

Источник: http://svarkaipayka.ru/oborudovanie/payalniki/dlya-payki-mikroshem.html

Паяльник для микросхем – как выбрать подходящий?

В начале 90-х, когда радиолюбители собирали домашние персональные компьютеры «Ленинград» и «Пентагон» на процессорах Z80, вопросов «как правильно паять микросхемы?» не возникало. Все корпуса имели форм-фактор DIP, расстояние между ножками было достаточным для того, чтобы использовать обыкновенный паяльник с медным жалом мощностью 25 Вт.

Сложности возникали при обратном процессе. При отсутствии строительных фенов, вопрос как отпаять микросхему был проблемным. Необходимо было одновременно нагреть 16, а то и 54 ножки, и быстро вытянуть деталь из платы. Впрочем, у настоящих мастеров были свои секреты.

Ножки освобождались от припоя по очереди, с помощью тонких трубочек, например – от медицинского шприца.

Существовали даже специальные паяльники с отсосом расплавленного олова.

Сегодня, разнообразие корпусов и контактов на микросхемах не позволяет обойтись «старым дедовским способом».

В промышленных условиях, монтаж печатных плат доверен роботам. В этом случае технология позволяет выдерживать температуру, не повреждая радиодетали. А именно этот вопрос наиболее актуален при работах с микросхемами.

[tip]Если паяльник (или другой источник тепла) будет слишком мощным, можно сжечь деталь (в буквальном смысле) при первом прикосновении. Напротив, слабый паяльник потребует длительного воздействия на контакты, что опять же повлечет за собой перегрев. Малая температура может привести к так называемым «непропаям», которые сложно обнаружить визуально.[/tip]

Какой паяльник выбрать для работы с микросхемами

В принципе, существуют три варианта:

Паяльник с фиксированной мощностью

Для микропайки подойдет значение 15-25 Вт. Прибор может работать от напряжения 220 или 12 вольт. Второй вариант предпочтительнее, поскольку переменное напряжение с частотой 50 Гц может наводить паразитные токи на микросхему, что приводит к ее повреждению.

Популярное:  Паяльник или паяльный фен? Изготавливаем своими руками

Дополнительное удобство 12 вольтового паяльника – возможность автономно работать в гараже, при ремонте электроники автомобиля.

Главный компонент при работе с микросхемами – это правильное рабочее жало. Конечно, можно работать с классикой – медный стержень с плоской заточкой на конце.

Но такой инструмент неудобен при точном монтаже. Обычно для работы с микросхемами жало стачивают конусом. При этом медь быстро изнашивается, и наконечник приходится выбрасывать. К тому же, этот материал быстро окисляется, и его приходится постоянно чистить.

Поэтому радиолюбители отдают предпочтение керамическим паяльникам.

Сам электроинструмент ничем не отличается от обычного, разве что крепление наконечника выполнено иначе. Главное отличие – это керамическое рабочее жало. Материал моментально прогревается, не подвержен окислению и практически не изнашивается. Форма сразу пригодна для работы с микросхемами – имеет заточку под конус.

презентация паяльника с керамическим жалом, которым можно паять микросхемы.

Паяльник с регулируемой мощностью

Главное, не путать регулируемую мощность с понижением температуры в паузах между работой. Прибор имеет переключатель или кнопку на рукоятке, с помощью которой выбирается мощность, и соответственно температура.

Таким устройством работать удобней, поскольку диапазон применения его гораздо шире.

Разновидностью таких паяльников являются пистолеты мгновенного нагрева. Особенность конструкции в том, что в нерабочем состоянии жало холодное. Непосредственно перед пайкой вы нажимаете на курок, и температура моментально поднимается до рабочей.

Как правило, такие пистолеты имеют несколько режимов нагрева. Некоторым образом, можно контролировать температуру, периодически подавая напряжение на нагревательный элемент вручную, с помощью кратковременного нажатия на курок.

Недостаток конструкции – некоторая ее громоздкость.

Паяльная станция. Идеальный инструмент для пайки микросхем

Они могут быть сложными в управлении, или напротив – примитивными. Стоимость разнится в зависимости от функций и именитости производителя. Неизменным остается главный принцип работы – полный контроль над мощностью и температурой паяльника. Для плат с различными типами деталей – это оптимальный вариант.

Популярное:  Импульсный паяльник своими руками – не просто, а очень просто!

Регулируя подачу мощности, можно моментально перенастроить инструмент для работы с планарными микросхемами на тончайших ножках или для монтажа выпрямительных сборок с контактами сечением в несколько миллиметров.

Существуют и более продвинутые комплекты – станции с набором из паяльника и небольшого нагревательного фена.

Причем регуляторы температуры есть на каждом из компонентов. Имея такой набор – вы не будете мучиться вопросом, как выпаять микросхему из платы, для любого форм-фактора можно найти комбинацию из температуры горячего воздуха и жала паяльника.

Недостатков у паяльной станции два: высокая стоимость и необходимость определенной квалификации оператора. Однако п

правила работы паяльником и паяльной станцией

Современные радиоэлектронные устройства невозможно представить без микросхем – сложных деталей, в которые, по сути, интегрированы десятки, а то и сотни простых, элементарных компонентов.

Микросхемы позволяют сделать устройства легкими и компактными. Рассчитываться за это приходится удобством и простотой монтажа и достаточно высокой ценой деталей. Цена микросхемы не играет важной роли в формировании общей цены изделия, в котором она применяется. Если же испортить такую деталь при монтаже, при замене на новую стоимость может существенно увеличиться. Несложно припаять толстый провод, большой резистор или конденсатор, для этого достаточно владения начальными навыками в пайке. Микросхему же надо припаивать совсем иным способом.

Чтобы не произошло досадных недоразумений, при пайке микросхем необходимо пользоваться определенными инструментами и соблюдать некоторые правила, основанные на многочисленном опыте и знаниях.

Оборудование для пайки

Для пайки микросхем можно использовать различное паяльное оборудование, начиная от простейшего – паяльника, и заканчивая сложными устройствами и паяльными станциями с использованием инфракрасного излучения.

Паяльник для пайки микросхем должен быть маломощным, желательно рассчитанным на напряжение питания 12 В. Жало такого паяльника должно быть остро заточено под конус и хорошо облужено.

Для выпаивания микросхем может быть применен вакуумный оловоотсос – инструмент, позволяющий поочередно очищать ножки на плате от припоя. Этот инструмент представляет собой подобие шприца, в котором поршень подпружинен вверх. Перед началом работ он вдавливается в корпус и фиксируется, а когда необходимо, освобождается нажатием кнопки и под действием пружины поднимается, собирая припой с контакта.

Более совершенным оборудованием считается термовоздушная станция, которая позволяет осуществлять и демонтаж микросхем и пайку горячим воздухом. Такая станция имеет в своем арсенале фен с регулируемой температурой потока воздуха.

Очень востребован при пайке микросхем такой элемент оборудования, как термостол. Он подогревает плату снизу, в то время, как сверху производятся действия по монтажу или демонтажу. Опционально термостол может быть оснащен и верхним подогревом.

В промышленных масштабах пайка микросхем осуществляется специальными автоматами, использующими ИК-излучение. При этом производится предварительный разогрев схемы, непосредственно пайка и плавное ступенчатое охлаждение контактов ножек.

В домашних условиях

Пайка микросхем в домашних условиях может потребоваться для ремонта сложной бытовой техники, материнских плат компьютеров.

Как правило, чтобы припаять ножки микросхемы, используют паяльник или паяльный фен.

Работа паяльником осуществляется с помощью обычного припоя или паяльной пасты.

В последнее время стал чаще применяться бессвинцовый припой для пайки с более высокой температурой плавления. Это необходимо для уменьшения вредного действия свинца на организм.

Какие приспособления потребуются

Для пайки микросхем, кроме самого паяльного оборудования, потребуются еще некоторые приспособления.

Если микросхема новая и выполнена в BGA-корпусе, то припой уже нанесен на ножки в виде маленьких шариков. Отсюда и название – Ball Grid Array, что означает массив шариков. Такие корпуса предназначены для поверхностного монтажа. Это означает, что деталь устанавливается на плату, и каждая ножка быстрым точным действием припаивается к контактным пятачкам.

Если же микросхема уже использовалась в другом устройстве и используется как запчасти, бывшие в употреблении, необходимо выполнить реболлинг. Реболлингом называется процесс восстановления шариков припоя на ножках. Иногда он применяется и в случае отвала – потери контакта ножек с контактными пятачками.

Для осуществления реболлинга понадобится трафарет – пластина из тугоплавкого материала с отверстиями, расположенными в соответствии с расположением выводов микросхемы. Существуют готовые универсальные трафареты под несколько самых распространенных типов микросхем.

Паяльная паста и флюс

Для правильной пайки микросхем необходимо соблюдать определенные условия. Если работа осуществляется паяльником, то жало его должно быть хорошо облужено.

Для этого используется флюс – вещество, растворяющее оксидную пленку и защищающее жало от окисления до покрытия припоем во время пайки микросхемы.

Наиболее распространенный флюс – сосновая канифоль в твердом, кристаллическом виде. Но, чтобы припаять микросхему, такой флюс не годится. Ножки ее и контактные пятачки обрабатывают жидким флюсом. Его можно сделать самостоятельно, растворив канифоль в спирте или кислоте, а можно купить готовый.

Припой в этом случае удобнее использовать в виде присадочной проволоки. Иногда он может содержать внутри флюс из порошковой канифоли. Можно приобрести готовый паяльный набор для пайки микросхем, включающий в свой состав канифоль, жидкий флюс с кисточкой, несколько видов припоя.

При осуществлении реболлинга используется паяльная паста, представляющая собой основу из вязкого материала, в которой содержатся мельчайшие шарики припоя и флюса. Такая паста наносится тонким слоем на ножки микросхемы с обратной стороны трафарета. После этого паста разогревается феном или инфракрасным паяльником до расплавления припоя и канифоли. После застывания, они образуют шарики на ножках микросхемы.

Порядок проведения работ

Перед началом работ необходимо подготовить все инструменты, материалы и приспособления, чтобы они были под рукой.

При монтаже или демонтаже плату можно расположить на термостоле. Если для демонтажа используется паяльный фен, то для исключения его воздействия на другие компоненты, нужно их изолировать. Сделать это можно установкой пластин из тугоплавкого материала, например, полосок, нарезанных из старых плат, пришедших в негодность.

При использовании для демонтажа оловоотсоса процесс происходит аккуратнее, но дольше. Оловоотсос «заряжается» при очистке каждой ножки. По мере заполнения кусками застывшего припоя, его нужно очищать.

Есть несколько правил пайки, которые следует обязательно исполнять:

  • паять микросхемы на плате надо быстро, чтобы не перегреть чувствительную деталь;
  • можно каждую ножку во время пайки придерживать пинцетом, чтобы обеспечить дополнительный теплоотвод от корпуса;
  • при монтаже с помощью фена или инфракрасного паяльника, необходимо следить за температурой детали, чтобы она не поднималась выше 240-280 °C.

Радиоэлектронные детали очень чувствительны к статическому электричеству. Поэтому при сборке лучше использовать антистатический коврик, который подкладывается под плату.

Зачем сушить чипы

Чипами называют микросхемы, заключенные в BGA-корпусах. Название, видимо, пошло еще от аббревиатуры, означавшей «Числовой Интегральный Процессор».

По опыту использования у профессионалов существует устойчивое мнение, что при хранении, транспортировке, пересылке, чипы впитывают в себя влагу и во время пайки она, увеличиваясь в объеме, разрушает деталь.

Действие влаги на чип можно увидеть, если нагреть последний. На поверхности его будут образовываться вздутия и пузыри еще задолго до того, как температура поднимется до значения, достаточного для расплавления припоя. Можно только представить, что же происходит внутри детали.

Чтобы избежать нежелательных последствий наличия влаги в корпусе чипа, при монтаже плат осуществляется сушка чипов перед пайкой. Эта процедура помогает удалить влагу из корпуса.

Правила сушки

Сушку чипов необходимо производить, соблюдая температурный режим и продолжительность. Новые чипы, которые были приобретены в магазине, со склада, присланы по почте, рекомендуется сушить не менее 24 часов при температуре 125 °C. Для этого можно использовать специальные сушильные печи. Можно высушить чип, расположив его на термостоле.

Температуру сушки необходимо контролировать, чтобы не допустить перегрева и выхода детали из строя.

Если чипы были высушены и хранились до монтажа в обычных комнатных условиях, достаточно просушить их в течение 8-10 часов.

Учитывая стоимость деталей, очевидно, лучше провести сушку, чтобы с уверенностью приступать к монтажу, чем пытаться паять непросушенный чип. Неприятности могут обернуться не только денежными тратами, а еще и потерянным временем.

ПАЙКА SMD ДЕТАЛЕЙ БЕЗ ФЕНА

Все понимают, как можно с помощью обычного паяльника ЭПСН, мощностью 40 ватт, и мультиметра, самостоятельно ремонтировать различную электронную технику, с выводными деталями. Но такие детали сейчас встречаются, в основном только в блоках питания различной техники, и тому подобных силовых платах, где протекают значительные токи, и присутствует высокое напряжение, а все платы управления, сейчас идут на SMD элементной базе.

На плате SMD радиодетали

Так как же быть, если мы не умеем демонтировать и впаивать обратно SMD радиодетали, ведь тогда минимум 70% от возможных ремонтов техники, мы уже самостоятельно не сможем выполнить… Кто нибудь, не очень глубоко знакомый с темой монтажа и демонтажа, возможно скажет, для этого необходимы паяльная станция и паяльный фен, различные насадки и жала к ним, безотмывочный флюс, типа RMA-223, и тому подобное, чего в мастерской домашнего мастера обычно не бывает.

Паяльная станция фото

Паяльная станция

У меня есть дома в наличии, паяльная станция и фен, насадки и жала, флюсы, и припой с флюсом различных диаметров. Но как быть, если тебе вдруг потребуется починить технику, на выезде на заказ, или в гостях у знакомых? А разбирать, и привозить дефектную плату домой, или в мастерскую, где есть в наличии соответствующее паяльное оборудование, неудобно, по тем или иным причинам? Оказывается выход есть, и довольно простой. Что нам для этого потребуется?

Что нужно для хорошей пайки

  • 1. Паяльник ЭПСН 25 ватт, с жалом заточенным в иголку, для монтажа новой микросхемы.

Паяльная станция фото

  • 2. Паяльник ЭПСН 40-65 ватт с жалом заточенным под острый конус, для демонтажа микросхемы, с применением сплава Розе или Вуда. Паяльник, мощностью 40-65 ватт, должен быть включен обязательно через Диммер, устройство для регулирования мощности паяльника. Можно такой как на фото ниже, очень удобно.

Паяльная станция фото

  • 3. Сплав Розе или Вуда. Откусываем кусочек припоя бокорезами от капельки, и кладем прямо на контакты микросхемы с обоих сторон, в случае если она у нас, например в корпусе Soic-8.

Паяльная станция фото

Паяльная станция фото

  • 4. Демонтажная оплетка. Требуется для того, чтобы удалить остатки припоя с контактов на плате, а также на самой микросхеме, после демонтажа.

Паяльная станция фото

  • 5. Флюс СКФ (спиртоканифольный флюс, растолченная в порошок, растворенная в 97% спирте, канифоль), либо RMA-223, или подобные флюсы, желательно на основе канифоли.

Паяльная станция фото

  • 6. Удалитель остатков флюса Flux Off, или 646 растворитель, и маленькая кисточка, с щетиной средней жесткости, которой пользуются обычно в школе, для закрашивания на уроках рисования.

Паяльная станция фото

  • 7. Трубчатый припой с флюсом, диаметром 0.5 мм, (желательно, но не обязательно такого диаметра).

Паяльная станция фото

  • 8. Пинцет, желательно загнутый, Г — образной формы.

Паяльная станция фото

Распайка планарных деталей

Итак, как происходит сам процесс? Кое-что почитайте тут. Мы откусываем маленькие кусочки припоя (сплава) Розе или Вуда. Наносим наш флюс, обильно, на все контакты микросхемы. Кладем по капельке припоя Розе, с обоих сторон микросхемы, там где расположены контакты. Включаем паяльник, и выставляем с помощью диммера, мощность ориентировочно ватт 30-35, больше не рекомендую, есть риск перегреть микросхему при демонтаже. Проводим жалом нагревшегося паяльника, вдоль всех ножек микросхемы, с обоих сторон.

Демонтаж с помощью сплава Розе

Демонтаж с помощью сплава Розе

Контакты микросхемы у нас при этом замкнутся, но это не страшно, после того как демонтируем микросхему, мы легко с помощью демонтажной оплетки, уберем излишки припоя с контактов на плате, и с контактов на микросхеме.

Итак, мы взялись за нашу микросхему пинцетом, по краям, там где отсутствуют ножки. Обычно длина микросхемы, там где мы придерживаем ее пинцетом, позволяет одновременно водить жалом паяльника, между кончиками пинцета, попеременно с двух сторон микросхемы, там где расположены контакты, и слегка тянуть ее вверх пинцетом. За счет того что при расплавлении сплава Розе или Вуда, которые имеют очень низкую температуру плавления, (порядка 100 градусов), относительно бессвинцового припоя, и даже обычного ПОС-61, и смещаясь с припоем на контактах, он тем самым снижает общую температуру плавления припоя.

Демонтаж с помощью оплетки

Демонтаж микросхем с помощью оплетки

И таким образом микросхема у нас демонтируется, без опасного для нее перегрева. На плате у нас образуются остатки припоя, сплава Розе и бессвинцового, в виде слипшихся контактов. Для приведения платы в нормальный вид мы берем демонтажную оплетку, если флюс жидкий, можно даже обмакнуть ее кончик в нее, и кладем на образовавшиеся на плате “сопли” из припоя. Затем прогреваем сверху, придавив жалом паяльника, и проводим оплеткой вдоль контактов.

Выпаивание с оплеткой

Выпаивание радиодеталей с оплеткой

Таким образом весь припой с контактов впитывается в оплетку, переходит на нее, и контакты на плате оказываются очищенными полностью от припоя. Затем эту же процедуру, нужно проделать со всеми контактами микросхемы, если мы собираемся запаивать микросхему в другую плату, или в эту же, например после прошивания с помощью программатора, если это микросхема Flash памяти, содержащая прошивку BIOS материнской платы, или монитора, или какой либо другой техники. Эту процедуру, нужно выполнить, чтобы очистить контакты микросхемы от излишков припоя. После этого наносим флюс заново, кладем микросхему на плату, располагаем ее так, чтобы контакты на плате строго соответствовали контактам микросхемы, и еще оставалось немного места на контактах на плате, по краям ножек. С какой целью мы оставляем это место? Чтобы можно было слегка коснувшись контактов, жалом паяльника, припаять их к плате. Затем мы берем паяльник ЭПСН 25 ватт, или подобный маломощный, и касаемся двух ножек микросхемы расположенных по диагонали.

Припаивание SMD радиодеталей паяльником

Припаивание SMD радиодеталей паяльником

В итоге микросхема у нас оказывается “прихвачена”, и уже не сдвинется с места, так как расплавившийся припой на контактных площадках, будет держать микросхему. Затем мы берем припой диаметром 0.5 мм, с флюсом внутри, подносим его к каждому контакту микросхемы, и касаемся одновременно кончиком жала паяльника, припоя, и каждого контакта микросхемы. Использовать припой большего диаметра, не рекомендую, есть риск навесить “соплю”. Таким образом, у нас на каждом контакте “осаждается” припой. Повторяем эту процедуру со всеми контактами, и микросхема впаяна на место. При наличии опыта, все эти процедуры реально выполнить за 15-20 минут, а то и за меньшее время. Нам останется только смыть с платы остатки флюса, растворителем 646, или отмывочным  средством Flux Off, и плата готова к тестам, после просушивания, а это происходит очень быстро, так как вещества применяемые для смывания, очень летучие. 646 растворитель, в частности, сделан на основе ацетона. Надписи, шелкография на плате, и паяльная маска, при этом не смываются и не растворяются.

Микросхема Soic - 16

Единственное, демонтировать таким образом микросхему в корпусе Soic-16 и более многовыводную, будет проблематично, из-за сложностей с одновременным прогреванием, большого количества ножек. Всем удачной пайки, и поменьше перегретых микросхем! Специально для Радиосхем — AKV.

   Форум

   Обсудить статью ПАЙКА SMD ДЕТАЛЕЙ БЕЗ ФЕНА


Как правильно паять SMD компоненты – список инструментов и принцип пайки

Многие задаются вопросом, как правильно паять SMD-компоненты. Но перед тем как разобраться с этой проблемой, необходимо уточнить, что же это за элементы. Surface Mounted Devices – в переводе с английского это выражение означает компоненты для поверхностного монтажа. Главным их достоинством является большая, нежели у обычных деталей, монтажная плотность. Этот аспект влияет на использование SMD-элементов в массовом производстве печатных плат, а также на их экономичность и технологичность монтажа. Обычные детали, у которых выводы проволочного типа, утратили свое широкое применение наряду с быстрорастущей популярностью SMD-компонентов.

Ошибки и основные принцип пайки

Некоторые умельцы утверждают, что паять такие элементы своими руками очень сложно и довольно неудобно. На самом деле, аналогичные работы с ТН-компонентами проводить намного труднее. И вообще эти два вида деталей применяются в различных областях электроники. Однако многие совершают определенные ошибки при пайке SMD-компонентов в домашних условиях.

 

SMD компонентыSMD-компоненты

Главной проблемой, с которой сталкиваются любители, является выбор тонкого жала на паяльник. Это связано с существованием мнения о том, что при паянии обычным паяльником можно заляпать оловом ножки SMD-контактов. В итоге процесс паяния проходит долго и мучительно. Такое суждение нельзя считать верным, так как в этих процессах существенную роль играет капиллярный эффект, поверхностное натяжение, а также сила смачивания. Игнорирование этих дополнительных хитростей усложняет выполнение работы своими руками.

Пайка SMD компонентовПайка SMD-компонентов

Чтобы правильно паять SMD-компоненты, необходимо придерживаться определенных действий. Для начала прикладывают жало паяльника к ножкам взятого элемента. Вследствие этого начинает расти температура и плавиться олово, которое в итоге полностью обтекает ножку данного компонента. Этот процесс называется силой смачивания. В это же мгновение происходит затекание олова под ножку, что объясняется капиллярным эффектом. Вместе со смачиванием ножки происходит аналогичное действие на самой плате. В итоге получается равномерно залитая связка платы с ножками.

Контакта припоя с соседними ножками не происходит из-за того, что начинает действовать сила натяжения, формирующая отдельные капли олова. Очевидно, что описанные процессы протекают сами по себе, лишь с небольшим участием паяльщика, который только разогревает паяльником ножки детали. При работе с очень маленькими элементами возможно их прилипание к жалу паяльника. Чтобы этого не произошло, обе стороны припаивают по отдельности.

Пайка в заводских условиях

Этот процесс происходит на основе группового метода. Пайка SMD-компонентов выполняется с помощью специальной паяльной пасты, которая равномерно распределяется тончайшим слоем на подготовленную печатную плату, где уже имеются контактные площадки. Этот способ нанесения называется шелкографией. Применяемый материал по своему виду и консистенции напоминает зубную пасту. Этот порошок состоит из припоя, в который добавлен и перемешан флюс. Процесс нанесения выполняется автоматически при прохождении печатной платы по конвейеру.

 

Заводская пайка SMD деталейЗаводская пайка SMD-деталей

Далее установленные по ленте движения роботы раскладывают в нужном порядке все необходимые элементы. Детали в процессе передвижения платы прочно удерживаются на установленном месте за счет достаточной липкости паяльной пасты. Следующим этапом происходит нагрев конструкции в специальной печи до температуры, которая немного больше той, при которой плавится припой. В итоге такого нагрева происходит расплавление припоя и обтекание его вокруг ножек компонентов, а флюс испаряется. Этот процесс и делает детали припаянными на свои посадочные места. После печки плате дают остыть, и все готово.

Необходимые материалы и инструменты

Для того чтобы своими руками выполнять работы по впаиванию SMD-компонентов, понадобится наличие определенных инструментов и расходных материалов, к которым можно отнести следующие:

  • паяльник для пайки SMD-контактов;
  • пинцет и бокорезы;
  • шило или игла с острым концом;
  • припой;
  • увеличительное стекло или лупа, которые необходимы при работе с очень мелкими деталями;
  • нейтральный жидкий флюс безотмывочного типа;
  • шприц, с помощью которого можно наносить флюс;
  • при отсутствии последнего материала можно обойтись спиртовым раствором канифоли;
  • для удобства паяния мастера пользуются специальным паяльным феном.
Пинцет для установки и снятия SMD компонентовПинцет для установки и снятия SMD-компонентов

Использование флюса просто необходимо, и он должен быть жидким. В таком состоянии этот материал обезжиривает рабочую поверхность, а также убирает образовавшиеся окислы на паяемом металле. В результате этого на припое появляется оптимальная сила смачивания, и капля для пайки лучше сохраняет свою форму, что облегчает весь процесс работы и исключает образование «соплей». Использование спиртового раствора канифоли не позволит добиться значимого результата, да и образовавшийся белый налет вряд ли удастся убрать.

 

Припой для пайкиПрипой для пайки

Очень важен выбор паяльника. Лучше всего подходит такой инструмент, у которого возможна регулировка температуры. Это позволяет не переживать за возможность повреждения деталей перегревом, но этот нюанс не касается моментов, когда требуется выпаивать SMD-компоненты. Любая паяемая деталь способна выдерживать температуру около 250–300 °С, что обеспечивает регулируемый паяльник. При отсутствии такого устройства можно воспользоваться аналогичным инструментом мощностью от 20 до 30 Вт, рассчитанным на напряжение 12–36 В.

Использование паяльника на 220 В приведет к не лучшим последствиям. Это связано с высокой температурой нагрева его жала, под действием которой жидкий флюс быстро улетучивается и не позволяет эффективно смачивать детали припоем.

Специалисты не советуют пользоваться паяльником с конусным жалом, так как припой трудно наносить на детали и тратится уйма времени. Наиболее эффективным считается жало под названием «Микроволна». Очевидным его преимуществом является небольшое отверстие на срезе для более удобного захвата припоя в нужном количестве. Еще с таким жалом на паяльнике удобно собирать излишки пайки.

 

 

Жало для паяльника «Микроволна»Жало для паяльника «Микроволна»

Использовать припой можно любой, но лучше применять тонкую проволочку, с помощью которой комфортно дозировать количество используемого материала. Паяемая деталь при помощи такой проволочки будет лучше обработана за счет более удобного доступа к ней.

Как паять SMD-компоненты?

Порядок работ

Процесс пайки при тщательном подходе к теории и получении определенного опыта не является сложным. Итак, можно всю процедуру разделить на несколько пунктов:

  1. Необходимо поместить SMD-компоненты на специальные контактные площадки, расположенные на плате.
  2. Наносится жидкий флюс на ножки детали и нагревается компонент при помощи жала паяльника.
  3. Под действием температуры происходит заливание контактных площадок и самих ножек детали.
  4. После заливки отводится паяльник и дается время на остывание компонента. Когда припой остыл — работа выполнена.
Процесс пайки SMD компонентовПроцесс пайки SMD-компонентов

При выполнении аналогичных действий с микросхемой процесс пайки немного отличается от вышеприведенного. Технология будет выглядеть следующим образом:

  1. Ножки SMD-компонентов устанавливаются точно на свои контактные места.
  2. В местах контактных площадок выполняется смачивание флюсом.
  3. Для точного попадания детали на посадочное место необходимо сначала припаять одну ее крайнюю ножку, после чего компонент легко выставляется.
  4. Дальнейшая пайка выполняется с предельной аккуратностью, и припой наносится на все ножки. Излишки припоя устраняются жалом паяльника.
Паяльник с острым жалом 24 В.Паяльник с острым жалом 24 В.

Как паять при помощи фена?

При таком способе пайки необходимо смазать посадочные места специальной пастой. Затем на контактную площадку укладывается необходимая деталь — помимо компонентов это могут быть резисторы, транзисторы, конденсаторы и т. д. Для удобства можно воспользоваться пинцетом. После этого деталь нагревается горячим воздухом, подаваемым из фена, температурой около 250º C. Как и в предыдущих примерах пайки, флюс под действием температуры испаряется и плавится припой, тем самым заливая контактные дорожки и ножки деталей. Затем отводится фен, и плата начинает остывать. При полном остывании можно считать пайку оконченной.

Фен для паяния мелких деталейФен для паяния мелких деталей

Как правильно паять SMD | Практическая электроника

Как правильно паять SMD? Рано или поздно всем электронщикам приходилось сталкиваться с таким вопросом.

Бывают случаи, когда простым паяльником не подобраться к SMD элементам. В этом случае лучше всего использовать паяльный фен и тонкий металлический пинцет.

В этой статье мы с вами поговорим о том, как же правильно запаивать и отпаивать SMD. Тренироваться будем на трупике телефона. Красным прямоугольничком я показал, что мы будем отпаивать и запаивать обратно.

           

 За дело берется Паяльная станция AOYUE INT 768

Для фена нужна подходящая насадка. Выбираем самую маленькую, так как отпаивать и припаивать будет маленькую smd-шку.

А вот вся конструкция в сборе.

С помощью зубочистки  наносим флюсплюс на smd-шку.

Вот так мы ее смазали.

Выставляем на паяльной станции температуру фена 300-330 градусов и начинаем жарить нашу детальку. Если припой не плавится, то его можно разбавить сплавом Вуда или Розе с помощью тонкого  жала  паяльника. Как увидим, что припой начинает плавиться, с помощью пицента аккуратно снимаем детальку, не задев smd-шки, которые рядом.

А вот и наша деталька под микроскопом

Как правильно паять SMD

Теперь припаяем ее обратно. Для этого чистим пятачки (если вы не забыли – это контактные площадки) с помощью медной оплетки.

После того, как мы их почистили от лишнего припоя, нам нужно сделать  бугорки с помощью нового припоя. Для этого на кончике жала паяльника берем совсем чуть-чуть припоя.

Как правильно паять SMD

И делаем бугорки на каждой контактной площадке.

Как правильно паять SMD

Ставим туда smd-детальку

Как правильно паять SMD

И пригреваем ее феном, до тех пор, пока припой не растечется по стенкам детальки. Не забывайте про флюс, но его надо очень немного.

Готово!

Как правильно паять SMD

В заключении хотелось бы добавить, что данная процедура требует умение работать с мелкими детальками. Сразу все не получится, но кому это надо, со временем научится припаивать и выпаивать SMD-компоненты. Некоторые умельцы припаивают smd-шки с помощью паяльной пасты. Паяльную пасту я использовал при запаивании BGA микросхем в это й статье.

Пайка безвыводных микросхем типа LGA или MLF

Комплектуха все мельчает и мельчает. Последнее время намечается тендеция на то, что производителям западло тратить место на выводы и они делают чипы типа LGA или BGA.

И если BGA корпус на коленке не применим, т.к. требует изготовления многослойной платы, то вот LGA вполне сьедобный корпус. Если конечно вы являетесь джедаем наколенных PCB технологий. =)))

Правильная разводка дорожек
При проектировании платы под такие микросхемы надо внимательно относиться к подводу дорожек к падам микросхемы. Дело в том, что при запайке феном или в печи они самоустанавливаются под действием сил поверхностного натяжения. И вот тут главное, чтобы конфигурация выводов была такой формы, чтобы не искажать эти силы. Иначе чип может встать криво и запаять его будет очень сложно.

 

Плату я сделал родным Лазерным утюгом. Ибо ничего другого не признаю идеологически. Получилось влет, несмотря на перезаправленный и безбожно полосящий картридж 🙂
 

Начинаем паять
Я не использовал паяльную пасту или какую-то специфическую химию. Обошелся чисто крестьянским инструментом — феном да обычным припоем. В качестве флюса использовался ASAHI WF6033 для лужения платы и чипа (после был тщательно смыт), а для запайки применялся безотмывочный ASAHI QF3110A. В принципе они заменяются на глицерин-гидразин и спиртоканифольный флюс соответственно. С равным результатом.
 

Подготовка

 

После подготовки ватой и спиртом тщательно снес остатки флюса которым лудил и приступил к запайке. Пайка велась феном. На минимальном потоке воздуха и температуре около 350 градусов. Когда припой расплавился микруха сама встала на место.
 

Пайка

 

Только паяльник! Только хардкор!
Ну и, напоследок, покажу вам видео по запайке того же корпуса в совсем тяжелых условиях, когда под рукой только паяльник и дикое желание запаять эту хреновину.
 

Позиционируем микросхему как можно точней. Тут ТОЛЬКО твердая рука и меткий глаз. Сама она уже не встанет. Можно подклеить ее на флюс и акуратно выровнять. А дальше греем паяльником дорожки и пропаиваем все выводы. Гарантия успешной запайки 50/50 если припаяешь криво, то отпаять только феном.
 

Паяем!

Пока заливалось видео я проверил запаяюную микросхему — она встала нормально и работала штатно. Несмотря на то, что встала криво и по одной стороне перехлест был едва ли не на 50%. ОДнако ничего не коротнуло и контакт есть.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *