Электросхема холодильника – электросхема, индезит, холодильник, ремонт, Индезит B18L.FNF, B18L.FNF, схема, принципиальная схема, B20 FNF.025, ремонт холодильника, ремонт холодильников, Тольятти, Самарская область, B20, FNF, 025, B18L, FN, электрическая схема, no frost, total frost, freee frost, full frost, морозильник, таймер, тепловое реле, термореле, скачать схему

Содержание

Схема подключения старого холодильника. Схема холодильника и сервисные инструкции

Мир бытовых устройств в последнее время неуклонно расширяется и совершенствуется. Без некоторых из них наша жизнь уже немыслима. И кто не знает, какое огорчение приносит поломка незаменимого в доме прибора?

Однако, ремонт холодильника в домашних условиях вполне возможен без обращения в сервис. Причин тому несколько. Во-первых, за последние полвека холодильник стал действительно незаменимым прибором в домашнем хозяйстве. Распространенность холодильников позволяет накопить определенный опыт не только эксплуатации, но и устранения возникающих в её процессе неисправностей. Во-вторых, несмотря на размеры, холодильник относительно несложно устроен, разобраться в принципе его работы может даже пятиклассник.

Cтатья, которую мы предлагаем, помогут вам самостоятельно разобраться не только в устройстве холодильника, но и устранить большинство возникающих в быту неисправностей этого поистине незаменимого прибора.

Часть Первая: Откуда берется холод?

Прежде, чем говорить о ремонте холодильников, давайте разберемся в устройстве и принципах работы этого важного бытового устройства.
Основной принцип работы холодильного агрегата

Главная часть холодильника — холодильный агрегат — производит охлаждение основной части, рабочей камеры холодильника. Холодильный агрегат состоит из трех больших модулей, соединенных между собой системой трубопроводов: конденсатора, испарителя и компрессора, который является «сердцем» холодильника. Система холодильного агрегата замкнута, она заполнена специальным холодильным газом, в качестве которого раньше использовали фреон-12. Сейчас в качестве холодильного газа используются вещества, которые не представляют угрозу для озонового слоя земли. Схематическое устройство холодильного агрегата показано на рисунке 1.

Компрессор, снабженный электрическим мотором, выкачивает холодильный газ из испарителя, обеспечивая охлаждение его стенок. Газ нагнетается в конденсатор, где, благодаря системе радиаторов, охлаждается, переходит в жидкое состояние. Жидкий холодильный газ поступает снова в испаритель, где, под низким давлением испаряется, отдавая тепло внутренним стенкам испарителя. Благодаря непрерывному циклу, при работающем моторе обеспечивается непрерывное испарение.

Жизненный цикл охлаждения.

В целях экономии электрической энергии и предотвращения преждевременного механического износа холодильного агрегата, рабочая камера холодильника, как правило, большую часть времени изолирована от окружающей среды массивной дверцей. Для поддержания определенного температурного режима в таких условиях, существует система контроля над периодическим включением и выключением мотора компрессора.

Основным механизмом системы контроля температуры является температурное реле, которое работает в определенном коридоре. Если температура камеры холодильника выше верхней границы этого температурного коридора, то реле включает мотор компрессора, когда температура опускается ниже заданной границы, реле отключает мотор. Помимо этого, системы контроля температуры, как правило, снабжены реле защиты мотора от перегрева, которое, при достижении компрессором определенной температуры, также отключают мотор. Эти элементы автоматической работы холодильника обеспечивают непрерывную работу системы, схематически они изображены на принципиальной электрической схеме на рисунке 2.

Кроме того, холодильные камеры снабжены сигнальными лампами, лампами дополнительного освещения, нагревательными элементами принудительного оттаивания и многими другими дополнительными модулями, влияние которых на основной принцип работы холодильника малозначительно. Они на принципиальной электрической схеме холодильника не показаны.

Давайте визуально пройдемся по схеме и попробуем понять более детально, как работает холодильник.

В режиме «работа», когда идет охлаждение, и двигатель компрессора мотора вращается с номинальной скоростью, по основной цепи идет ток — из сети через замкнутые контакты датчика-реле температуры Р1, контакты датчика-реле оттаивания Р2 тоже замкнуты. Таким образом, образуется замкнутая цепь с рабочей обмоткой электродвигателя компрессора мотора, катушкой пускового реле К, нагревательным элементом Р2, биметаллической пластиной БМ, контактами теплового защитного реле КК. Потребляемый холодильником ток в таком режиме равен номинальной величине — то, что написано в паспорте устройства.

Когда температура в холодильной камере опускается ниже рамок заданного температурного коридора, срабатывает реле и размыкает контакты Р1, после чего по сети перестает течь ток, мотор холодильного агрегата останавливается.

Когда температура в холодильной камере достигает верхних рамок темп

Лекция 7 — Электрич.схемы быт.хол

Лекции по дисциплине:

«БЫТОВЫЕ МАШИНЫ И ПРИБОРЫ»

          РАЗДЕЛ 1 ХОЛОДИЛЬНЫЕ МАШИНЫ БЫТОВОГО НАЗНАЧЕНИЯ

1.10 ПРИБОРЫ АВТОМАТИКИ И ЭЛЕКТРООБОРУДОВАНИЕ БЫТОВЫХ ХОЛОДИЛЬНЫХ МАШИН

1.10.2 ЭЛЕКТРИЧЕСКИЕ СХЕМЫ БЫТОВЫХ ХОЛОДИЛЬНИКОВ

1.10.2.1 Электрические схемы однокамерных холодильников

Электрические схемы однокамерных холодильников рассмотрим на примере холодильника «STINOL-205″(рис. 1). Электрическая схема однокамерного холодильника включает в себя электродвигатель компрессора СО1, тепловое реле компрессора Rh2, пусковое реле компрессора RА1, датчик — реле температуры ТН1 холодильной камеры, сигнальную лампу сети SL1, лампу освещения холодильного отделения L1, выключатель лампы IL1.

При включении в электрическую сеть холодильника на панели управления загорается сигнальная лампочка наличия напряжения электросети SL (рис. 1).

При открытой двери холодильного отделения кнопкой ILI включается лампа LI освещения холодильной камеры. Лампа освещения L1 холодильной камеры включается автоматически при открывании двери и выключается при закрытии с помощью выключателя IL1. Кнопка выключателя IL1 выступает наружу и при закрытой двери шкафа упирается во внутреннюю панель. Контакты выключателя замыкаются при открывании двери холодильной камеры и размыкаются при закрытии двери.

Терморегулятором ТН1 подается напряжение на электрическую схему холодильника и задается температура в холодильной камере (ХК) холодильника. Замыкание контактов терморегулятора происходит при повышении температуры в холодильной камере до верхнего предельного значения при выбранной уставке терморегулятора. При замыкании основных контактов датчика — реле температуры ТН1 происходит запуск электродвигателя СО1 компрессора.

Вращение ротора электродвигателя компрессора начинается после замыкания контактов пусковой обмотки пускового реле RА1. Пусковое реле RAI включает компрессор С01, который обеспечивает циркуляцию хладагента в системе, снижение температуры в ХК и НТО. После разгона ротора пусковая обмотка отключается, и ток проходит только через рабочую обмотку.

Защитное реле RHI обеспечивает отключение компрессора при его перегрузке и неисправности. При повышении силы тока свыше допустимых значений нормально замкнутые контакты защитного реле размыкаются с помощью биметаллической пластины, и электродвигатель отключается. После остывания контакты защитного реле замыкаются, и электродвигатель компрессора снова запускается.

При понижении температуры в холодильной камере до установленного значения контакты терморегулятора ТН1 размыкаются, и компрессор выключается. При повышении температуры в ХК терморегулятор включает компрессор и цикл работы холодильника повторяется.

1.10.2.2 Электрические схемы двухкамерных холодильников

Электрическая схема (рис. 2) обеспечивает работу холодильника в полностью автоматическом режиме. При замыкании цепи терморегулятора ТН1 напряжение подается на контакты 2—3 таймера TIM, через них в электрическую цепь компрессора СО1, электродвигателя вентилятора MV, электродвигателя М таймера TIM.

Компрессор обеспечивает циркуляцию хладагента в системе холодильного агрегата и снижение температуры в морозильной и холодильной камерах.

Рис. 1 – Электрическая схема однокамерного холодильника «STINOL-205»

L – сеть; N – нейтральная фаза; СО1  электродвигатель компрессора, Rh2  тепловое реле компрессора, RА1  пусковое реле компрессора, ТН1  датчик — реле температуры холодильной камеры, SL1  сигнальная лампа сети, L1  лампа освещения холодильного отделения, IL1  выключатель лампы.

Рис. 2 – Электрическая схема двухкамерного холодильника «STINOL-107»

L – сеть; N – нейтральная фаза; ТН1  терморегулятор; Rh2  тепловое реле компрессора; RА1  пусковое реле компрессора; SL1  светосигнальная лампа; IL1  выключатель лампы освещения; L1  лампа освещения; TIM – таймер; ТР2 – реле термозащиты;ТР1 – замедлитель включения вентилятора; IMV – выключатель вентилятора; MV – электродвигатель вентилятора; TF – тепловой плавкий предохранитель; СО1  электродвигатель компрессора; R1 – нагреватель поддона каплепадения; R2 – сопротивление нагревателя испарителя.

При снижении температуры испарителя до —10°С реле ТР1 (замедлитель вращения крыльчатки), закрепленное на испарителе, включает электродвигатель вентилятора, который обдувает ребристый испаритель и подает воздух в МК. Реле термозащиты ТР2 также замыкается, обеспечивая включение электродвигателя М таймера, который начинает отсчет времени работы компрессора.

Таймер TIM через определенный отрезок времени работы компрессора (8 — 10 часов) отключает электродвигатели компрессора, вентилятора, таймера и включает электронагревательные сопротивления R2 (оттайки испарителя) и RI (нагревателя поддона каплепадения). Если контакты терморегулятора ТН1 замкнуты, идет процесс оттаивания «снеговой шубы» испарителя МК. При достижении испарителем температуры +10°С реле ТР2 отключает электронагревательные сопротивления RI, R2 и обеспечивает по электрической цепи ТН1, TIM, (RI, R2), М, RHI, COI, RAI работу электродвигателя таймера. Контакты таймера переключаются, при этом отключаются цепи нагревательных сопротивлений RI и R2 и включаются цепи электродвигателя компрессора, вентилятора, таймера. Контакты реле ТР1 и ТР2 при этом разомкнуты. Начинается охлаждение испарителя МК, через некоторое время срабатывает реле ТР1, включается электродвигатель вентилятора. При открывании двери МК выключатель IMV отключает вентилятор.

Если по какой-либо причине температура испарителя МК достигает 60°С, расплавляется термопредохранитель TF, расположенный в одном корпусе с реле термозащиты ТР2, и вся электрическая схема, обеспечивающая работу холодильного агрегата, отключается.

1.10.2.3 Электрические схемы двухкамерных холодильников-морозильников

Электрическая схема холодильника-морозильника комбинированного «STINOL-102» (рис. 3) состоит из двух частей.

Левая часть электрической схемы (рис. 3) обеспечивает работу компрессора СО1, обслуживающего холодильную камеру, и ничем не отличается от электрических схем однокамерных бытовых холодильников. Она состоит из терморегулятора ТН1, компрессора, реле пускового RAI и защитного RHI, дверного выключателя ILI, электролампочек LI освещения ХК и светосигнальной (зеленой) SLI.

Правая часть электрической схемы (рис. 3) обеспечивает работу воздухоохладителя системы «No frost» МК в полностью автоматическом режиме. При замыкании цепи терморегулятора ТН2 напряжение подается на контакты 2—3 таймера TIM, через них в электроцепь компрессора С02, электродвигателя вентилятора MV, электродвигателя самого таймера М. Компрессор обеспечивает циркуляцию хладона в системе хладоагрегата и снижение температуры испарителя МК.

При снижении температуры испарителя до —10°С реле ТР1, закрепленное на испарителе, включает электродвигатель вентилятора, который обдувает ребристый испаритель и подает воздух в МК, реле термозащиты ТР2 также замыкается, обеспечивая включение электродвигателя М таймера, который начинает отсчет времени работы компрессора.

Таймер TIM через определенный отрезок времени работы компрессора (8—10 часов) отключает электродвигатели компрессора, вентилятора, таймера и включает электронагревательные сопротивления R2 (оттайки испарителя) и RI (нагревателя поддона каплепадения). Если контакты терморегулятора ТН2 замкнуты, идет процесс оттаивания «снеговой шубы» испарителя МК. При достижении испарителем температуры + 10°С реле ТР2 отключает электронагревательные сопротивления R2, RI и обеспечивает по электрической цепи ТН2, TIM, R2, RI, М, Rh3, С02, RA2 работу электродвигателя таймера. Контакты таймера переключаются, при этом отключаются нагревательные сопротивления RI и R2 и включаются цепи электродвигателя компрессора, вентилятора, таймера. Контакты реле ТР1 и ТР2 при этом разомкнуты. Начинается охлаждение испарителя МК, через некоторое время срабатывает реле ТР1, включается электродвигатель вентилятора. При открывании двери МК выключатель IMV отключает вентилятор.

Рис. 3 – Электрическая схема холодильника-морозильника «STINOL-102»

L – сеть; N – нейтральная фаза; ТН1  терморегулятор; Rh2  тепловое реле компрессора; RА1  пусковое реле компрессора; SL1  светосигнальная лампа; IL1  выключатель лампы освещения; L1  лампа освещения; TIM – таймер; ТР2 – реле термозащиты;ТР1 – замедлитель включения вентилятора; IMV – выключатель вентилятора; MV – электродвигатель вентилятора; TF – тепловой плавкий предохранитель; СО1, СО2  электродвигатели компрессоров; R1 – нагреватель поддона каплепадения; R2 – сопротивление нагревателя испарителя.

Если по какой-либо причине температура испарителя МК достигает 60°С, расплавляется термопредохранитель TF, расположенный в одном корпусе с реле термозащиты ТР2, и вся часть электрической схемы, обеспечивающая работу холодильного агрегата МК, отключается.

4

Электрические схемы холодильников Норд

Электросхема холодильников Nord с открытым испарителем отличается от схем холодильников с запененным испарителем ХК наличием электрического нагревателя контура и нагревателя оттайки.

Схема холодильника ДХ-214, ДХ-233

На схеме холодильника Nord:

L,N — сеть;
EL — лампа освещения ХК;
SQ — выключатель освещения;
EK1 — нагреватель поперечины;
EK2 — нагреватель оттайки;
SK — терморегулятор;
М — мотор-компрессор;
К — реле пускозащитное.

Принцип работы холодильника с электрическим нагревателем поперечины и оттайки:

При включении холодильника в электросеть через нормально замкнутые контакты терморегулятора SК на компрессор подается напряжение и холодильник начинает работать. Лампа освещения холодильной камеры EL включается выключателем SQ при открывании двери. Пускозащитное реле К отключает компресор при его перегрузке или неисправности. При охлаждении испарителя до заданной температуры нормально замкнутые контакты датчика-реле температуры SK размыкаются и отключают компрессор. Оттаивание холодильной камеры происходит во время нерабочей части циклакомпрессора — при разомкнутых контактах термореле включается нагреватель оттайки EK2 испарителя ХК. Нагреватель поперечины EK1 работает постоянно для предотвращения образования влаги на поперечине между камерами.

Схема холодильника с запененным испарителем

Схема двухкомпрессорного холодильника Nord ДХМ-180-7, -181-7, -182-7, -183-7, -184-7, -185-7

На электросхеме:

А 1 — блок сигнализации и управления;
А 2 — блок сигнализации или речевой сигнализатор;
EL — лампа накаливания;
K1, К2 — реле пускозащитное;
М1, М2- компрессор;
SK1 — терморегулятор МК;
SK2 — терморегулятор ХК;
SQ — выключатель освещения;
XР — шнур сетевой;
С — конденсатор;
L — фаза;
N — ноль;
Е — заземление.

Схема однокомпрессорного холодильника Nord ДХМ-101H-7, ДХМ-105H-7 с системой NoFrost

Обозначения на схеме:
  • А — блок сигнализации;
  • EL — лампа накаливания;
  • С — конденсатор;
  • K — реле пускозащитное;
  • М1 — компрессор;
    М2 — вентилятор;
  • SK1 — датчик-реле температуры ХК;
    SK2 — датчик-реле температуры ТАБ;
  • SQ1 — выключатель освещения ХК;
    SQ2 — выключатель вентилятора МК;
  • XP — шнур сетевой;
  • Т — таймер;
  • ЕК1 — нагреватель поддона;
    ЕК2 — нагреватель испарителя.

Принципы работы холодильника — Электропортал

Основополагающие принципы работы холодильника

Основной часть холодильника является холодильный агрегат, на него возложена функция охлаждения рабочей камеры. Холодильный агрегат сконструирован из трёх модулей, которые соединены системой трубопроводов. Речь идёт о конденсаторе, испарителе и компрессоре, который воплощает собой «сердце» холодильника. Холодильный агрегат, является замкнутой системой, которая заполнена специфическим холодильным газом, в былые времена вместо него, использовался фреон – 12. В настоящее время, используется холодильный газ, не представляющий угрозу озоновому слою планеты, к примеру, R134а.

Компрессор оснащён мотором на электрической тяге, который занимается выкачиванием холодильного газа из испарителя, которому свойственно там образовываться в ходе кипения хладагента. Этот процесс, способствует обеспечению охлаждения стенок. Происходит нагнетание газа в конденсаторе, после чего в жидком состоянии, что достигается благодаря системе радиаторов, осуществляется его охлаждение. Хладагент, в жидком состоянии поступает опять в испаритель, где, под воздействием низкого давления испаряется, отдавая при этом тепло стенкам испарителя. Непрерывный цикл, обеспечивает при работающем моторе непрерывный процесс испарения.

Цикличность охлаждения.

Чтобы сэкономить электроэнергию и предотвратить преждевременный механический износ холодильного агрегата, большую часть времени рабочую камеру холодильника подвергают изоляции от окружающего пространства при помощи массивной двери. Для сохранения необходимого температурного режима в данных условиях, разработана система контроля, которая периодически включает и выключает мотор компрессора.

Основной механизм, который осуществляет систему контроля над температурным режимом, это температурное реле. В том случае если, температура холодильной камеры выходит за пределы температурного коридора в его верхней точке, то реле запускает мотор компрессора. Соответственно при пересечении нижней границы коридора, происходит отключение мотора. Кроме этого, система контролирующая температуру снабжена реле защищающим мотор, от перегрева. Эта система также, производит отключение мотора, в случае достижения компрессором определённых температурных показателей. Данные элементы автоматизации работы холодильника, призваны обеспечивать непрерывную работу всей системы. Такой режим работы позволяет в разы продлить срок службы автоматизированного оборудования. Поэтому, при исправной и четко отрегулированной системе контроля, холодильная камера б/у может эксплуатироваться более 25 лет на производстве или в быту.
Помимо этого, в холодильных камерах, встроены сигнальные лампы и лампы дополнительного освещения. Кроме них, предусмотрены нагревательные элементы принудительного оттаивания и множество прочих модулей влияющих на основные принципы работы холодильника в незначительной степени.

Принципы работы холодильника

 Если визуально пройтись по схеме холодильника и попробовать понять в деталях принцип его работы, то можно увидеть следующее. При включении рабочего режима, в процессе охлаждения происходит вращение двигателя компрессора мотора с номинальной скоростью. В это время по основной цепи происходит передача тока, он достигает замкнутых контактов датчика – реле Р1, что касается контактов датчика – реле Р2, отвечающего за оттаивание, то они также замкнуты. Это образует замкнутую цепь в распоряжении которой, рабочая обмотка электрического двигателя компрессора мотора, катушка пускового реле К, а также нагревательный элемент Р2. Тут же, есть биметаллические пластины БМ и контакты теплового реле, с защитными функциями КК.

Ток, который потребляется холодильником в данном режиме, равняется номинальной величине указанной в паспорте.

В момент опускания температуры в камере холодильника ниже рамок заданных температурным коридором, происходит срабатывание реле и размыкание контактов Р1. После этого в сети прекращается передача токаи происходит остановка мотора агрегата. При достижении верхнего температурного порога снова срабатывает реле, что приводит к замыканию контактов Р1 и запуску мотора компрессора.

В начале момента запуска не происходит вращение двигателя мотора холодильного компрессора и ток потребляемый двигателем превышает номинальные показатели в несколько раз, окончательная цифра зависит от показателей мощности агрегата.

На повышение этих показателей происходит реакция катушки К, относящейся к пусковому реле. Оно в свою очередь срабатывает и способствует замыканию контактов КД, по которым происходит подключение пусковой обмотки электродвигателя. С момента начала вращения ротора мотора, происходит снижение потребления тока до номинала. Ток, который минует катушку К не способен удержать контакты КД, что приводит к их размыканию и запуску холодильника. Данный процесс носит название «пусковой работы».

Однако в неисправном холодильнике при неудачной первой попытке запуска мотора компрессора, происходит прохождение повышенного пустого тока по цепи более 10 секунд, что приводит к нагреванию биметаллических пластин БМ. При нагревании она изгибается и размыкает контакты КК, разрывая цепь. Пока БМ пластина не остынет, ток проходить не будет, лишь после этого произойдёт повторная попытка запуска, если она также будет неудачной то, снова сработает система перегрева.

 

Ремонт холодильника своими руками | Руки-крюки

Ремонт холодильника своими руками

Мир бытовых устройств в последнее время неуклонно расширяется и совершенствуется. Без некоторых из них наша жизнь уже немыслима. И кто не знает, какое огорчение приносит поломка незаменимого в доме прибора?

Однако, ремонт холодильника в домашних условиях вполне возможен без обращения в сервис. Причин тому несколько. Во-первых, за последние полвека холодильник стал действительно незаменимым прибором в домашнем хозяйстве. Распространенность холодильников позволяет накопить определенный опыт не только эксплуатации, но и устранения возникающих в её процессе неисправностей. Во-вторых, несмотря на размеры, холодильник относительно несложно устроен, разобраться в принципе его работы может даже пятиклассник.

Cтатья, которую мы предлагаем, помогут вам самостоятельно разобраться не только в устройстве холодильника, но и устранить большинство возникающих в быту неисправностей этого поистине незаменимого прибора.

Часть Первая: Откуда берется холод?

Прежде, чем говорить о ремонте холодильников, давайте разберемся в устройстве и принципах работы этого важного бытового устройства.
Основной принцип работы холодильного агрегата

Главная часть холодильника — холодильный агрегат — производит охлаждение основной части, рабочей камеры холодильника. Холодильный агрегат состоит из трех больших модулей, соединенных между собой системой трубопроводов: конденсатора, испарителя и компрессора, который является «сердцем» холодильника. Система холодильного агрегата замкнута, она заполнена специальным холодильным газом, в качестве которого раньше использовали фреон-12. Сейчас в качестве холодильного газа используются вещества, которые не представляют угрозу для озонового слоя земли. Схематическое устройство холодильного агрегата показано на рисунке 1.

Компрессор, снабженный электрическим мотором, выкачивает холодильный газ из испарителя, обеспечивая охлаждение его стенок. Газ нагнетается в конденсатор, где, благодаря системе радиаторов, охлаждается, переходит в жидкое состояние. Жидкий холодильный газ поступает снова в испаритель, где, под низким давлением испаряется, отдавая тепло внутренним стенкам испарителя. Благодаря непрерывному циклу, при работающем моторе обеспечивается непрерывное испарение.

Ремонт холодильника своими руками

Жизненный цикл охлаждения.

В целях экономии электрической энергии и предотвращения преждевременного механического износа холодильного агрегата, рабочая камера холодильника, как правило, большую часть времени изолирована от окружающей среды массивной дверцей. Для поддержания определенного температурного режима в таких условиях, существует система контроля над периодическим включением и выключением мотора компрессора.

Основным механизмом системы контроля температуры является температурное реле, которое работает в определенном коридоре. Если температура камеры холодильника выше верхней границы этого температурного коридора, то реле включает мотор компрессора, когда температура опускается ниже заданной границы, реле отключает мотор. Помимо этого, системы контроля температуры, как правило, снабжены реле защиты мотора от перегрева, которое, при достижении компрессором определенной температуры, также отключают мотор. Эти элементы автоматической работы холодильника обеспечивают непрерывную работу системы, схематически они изображены на принципиальной электрической схеме на рисунке 2.

Кроме того, холодильные камеры снабжены сигнальными лампами, лампами дополнительного освещения, нагревательными элементами принудительного оттаивания и многими другими дополнительными модулями, влияние которых на основной принцип работы холодильника малозначительно. Они на принципиальной электрической схеме холодильника не показаны.

Давайте визуально пройдемся по схеме и попробуем понять более детально, как работает холодильник.

Ремонт холодильника своими руками

В режиме «работа», когда идет охлаждение, и двигатель компрессора мотора вращается с номинальной скоростью, по основной цепи идет ток — из сети через замкнутые контакты датчика-реле температуры Р1, контакты датчика-реле оттаивания Р2 тоже замкнуты. Таким образом, образуется замкнутая цепь с рабочей обмоткой электродвигателя компрессора мотора, катушкой пускового реле К, нагревательным элементом Р2, биметаллической пластиной БМ, контактами теплового защитного реле КК. Потребляемый холодильником ток в таком режиме равен номинальной величине — то, что написано в паспорте устройства.

Когда температура в холодильной камере опускается ниже рамок заданного температурного коридора, срабатывает реле и размыкает контакты Р1, после чего по сети перестает течь ток, мотор холодильного агрегата останавливается.

Когда температура в холодильной камере достигает верхних рамок температурного коридора, реле снова срабатывает и замыкает контакты Р1, мотор компрессора включается.

Тут происходит самое интересное во всем процессе непрерывной циклической работы холодильника. В начальный момент запуска двигатель мотора компрессора холодильника не вращается, и потребляемый двигателем ток (так называемый «пусковой ток») выше номинального в три-пять раз, в зависимости от модели и мощности холодильного агрегата. На повышенное потребление тока реагирует катушка К пускового реле. Пусковое реле срабатывает и замыкает контакты КД. По этим контактам к сети подключается пусковая обмотка электродвигателя. После того, как ротор мотора начинает крутиться, двигатель снижает потребление тока до номинального уровня, ток, проходящий через катушку К недостаточен для удержания контактов КД, они размыкаются и холодильник начинает работать в штатном режиме. Весь этот процесс, называемый «пусковая работа» в исправном холодильнике занимает не более двух-трех секунд.

Если холодильник неисправен, или просто не удалось запустить мотор компрессора с первого раза, и повышенный пусковой ток будет проходить по цепи в течение 5-10 секунд, то нагреется биметаллическая пластина БМ. Нагревшись, пластина БМ изогнется и разомкнёт контакты КК, разорвав цепь. Ток не будет проходить до тех пор, пока пластина БМ не остынет и не вернется в исходное положение. После этого произойдёт попытка перезапуска двигателя, если она не удастся, то система защиты от перегрева сработает снова.

Именно такой, циклический принцип заложен в основы автоматики как всей работы холодильника, так и самого начального её этапа.

Часть Вторая: Холодильный доктор — это просто

Перейдем теперь собственно к диагностике и устранению неисправностей. Сначала попытаемся классифицировать неисправность, понять для себя, что же случилось с нашим холодильником. Оценим свои возможности, насколько реально сможем помочь своими силами домашнему любимцу.
Мухи — отдельно, котлеты — отдельно

Основные неисправности, с которыми приходится сталкиваться при эксплуатации холодильника, подразделяются на две большие группы:

При включении холодильника мотор компрессора нормально запускается, слышна работа холодильного агрегата, но внутри самой камеры охлаждения не происходит. В этом случае для выявления неисправности следует пользоваться рисунком 1, так как причина лежит, скорее всего, в одном из больших модулей агрегата.

При включении в розетку холодильник не включается, либо он включается на очень короткое время, после чего автоматически отключается. После чего, либо с некоторой периодичностью происходят попытки перезапуска мотора компрессора, либо попытки перезапуска не происходит до выключения и нового включения холодильника в сеть. В этом случае неисправность следует искать в электрической схеме холодильника и руководствоваться рисунком 2.

Что мы не можем — оставляем мастеру

Как правило, если неисправность холодильника принадлежит к первой группе, то выполнить ремонт самостоятельно, в домашних условиях невозможно. Причиной может быть, например, разгерметизация системы холодильного агрегата, повлекшая за собой утечку холодильного газа. Для устранения неисправностей первой группы придётся обратиться к специалистам, так как может потребоваться замена конденсатора, испарителя, компрессора или всего холодильного агрегата полностью.

Что мы можем — делаем своими руками

Рассмотрим неисправности второй группы, касающиеся проблем в электрической схеме холодильника — точнее те из них, которые можно устранить в домашних условиях, своими руками. Понятно, что, например, межвитковое замыкание в обмотках электродвигателя или засорение капиллярной трубки испарителя потребует замену всего модуля, поэтому рассматривать эти неисправности мы не будем. Однако необходимо провести предварительную диагностику, чтобы исключить, либо, наоборот, подтвердить эти неисправности.

Основные инструменты, которые вам потребуются для диагностики, это отвертка и универсальный тестер.

Если есть подозрение на неисправность в электрической схеме холодильника, то, в первую очередь, с помощью тестера нужно убедиться в нормальном напряжении в электрической сети — оно должно быть 220 Вольт ±10%. При напряжении 195 Вольт и ниже многие холодильники работать не смогут.

После этого необходимо убедиться, что сетевая розетка и вилка шнура исправны, обеспечивают полный контакт, не греются и не искрят.

А вместо сердца пламенный мотор

Обратите внимание на контактные клеммы компрессора, они не должны быть оплавленными, обуглившимися или растрескавшимися. После того, как вы с помощью тестера убедитесь в наличии нормального напряжения на клеммах мотора, холодильник от сети необходимо отключить и все дальнейшие работы нужно проводить только при отключенном электропитании.

Компрессор, как правило, располагается в нижней части задней стенки холодильника. Необходимо осмотреть мотор на предмет механических повреждений, деформаций, которые могут говорить о термическом воздействии на деталь, обугленностей. Аномалии явно укажут на место, в котором следует искать неисправность.

Если визуально неисправности нельзя локализовать, то следующее, что нужно сделать, это проверить целость обмоток мотора компрессора. Как правило, на жестких выводах компрессора, либо непосредственно рядом с ним закреплено пускозащитное реле. Перед проверкой необходимо отсоединить три гибких проводка, идущих от реле к клеммам двигателя (часто эти клеммы для соединения с пускозащитным реле помечены особо — «пуск», вывод пусковой обмотки, «раб», вывод рабочей обмотки и «общ», общий вывод для этих обмоток).

Проверять нужно целостность цепи обмотки. Для этого один из щупов тестера (в режиме омметра) закрепляется за один свободный вывод, а другим щупом нужно по очереди касаться двух других оставшихся выводов и корпуса двигателя. После также необходимо измерить попарно и два других вывода. Для стрелочного тестера о наличии контакта будет свидетельствовать отклонение стрелки прибора в режиме омметра. У рабочего мотора компрессора прибор должен показывать наличие контакта между любыми двумя выводами двигателя и отсутствие контакта между любым из них и корпусом мотора. Если это не так, значит произошел либо обрыв обмотки, либо замыкание обмотки на корпус. В этом случае необходима замена мотора компрессора.

Проверить надежность управления

Если с обмотками все в порядке, обратитесь еще раз к рисунку 2. Нужно будет проверить цепи управления. Для этого два предварительно отсоединенных от пускозащитного реле подводящих провода следует замкнуть между собой и проверить наличие контакта между ними и контактными штырями сетевой вилки. Если тестер показывает наличие контакта, то из дальнейшего поиска неисправностей следует исключить вилку, и сетевой шнур, датчик реле температуры Р1 и реле-переключатель «оттаивание» Р2, так как эти блоки входят в единую цепь.

Если контакта нет, то каждый из названных блоков следует тщательно проверить по отдельности.

На неисправностях сетевого шнура и его вилки подробно останавливаться нет смысла, так как такой тип неисправности довольно часто встречается в быту вообще. Стоит лишь сказать, что нужно обратить пристальное внимание на изгибы в сетевом шнуре — в этих местах может быть разрыв токоведущих жил.

Часть Третья: Самый маленький работает больше всех

Давайте обратим более пристальное внимание на мелкие детали. Согласитесь, иногда бывает досадно из-за того, что мелкая, незначительная деталь, выполняющая рутинную несложную работу во всём механизме, становится узким местом, не позволяет полнокровно функционировать большому организму холодильного агрегата.

Жучок — не всегда хорошо

Чтобы проверить датчик температуры и реле «оттаивание», необходимо с помощью отвертки их предварительно снять, отсоединив подводящие провода. Затем тестером нужно проверить каждое реле по отдельности, короткое замыкание будет означать, что данное реле неисправно и нуждается в замене.

В принципе, в случае неисправности реле «оттаивание», его можно заменить простой перемычкой, металлическим «жучком». Но, строго говоря, делать это можно только для старых холодильников, в которых нет сложных систем балансировки, поддержания микроклимата внутри холодильной камеры и прочих высокотехнологичных датчиков, которые могут прийти в негодность от неконтролируемой заморозки. Ведь холодильник будет работать без перерыва, процесс работы будет контролироваться только вручную, включением и выключением шнура питания из розетки электросети. Да и в этом случае нужно позаботиться о более частой очистке морозильной камеры, так как излишний ледяной нарост может деформировать испаритель и повредить, таким образом, всю систему холодильного агрегата. При первой возможности металлический «жучок» как можно быстрее нужно будет заменить исправным реле.

Для неисправного датчика температуры никакие способы «тюнинга» неприемлемы, его необходимо заменить исправным реле.

Поиграем в «Сделай Сам»

Ремонт холодильника своими руками

Если цепь управления оказалась исправной, то необходимо проверить пускозащитное реле. Для этого необходимо снять крышку, предварительно высверлив алюминиевые заклепки (после ремонта при сборке крышку нужно закрепить винтами М3 с гайками).

В некоторых моделях отечественных холодильников крышка пускозащитного реле, как одного из уязвимых блоков, крепится на защёлках. Для того, чтобы её открыть, нужно всего лишь отогнуть отверткой эти защёлки у основания реле.

У большинства пускозащитных реле устройство соответствует схематическому обозначению на рисунке 5. Чаще всего встречается обгорание контактной пары 1-2, заклинивание сердечника 5 в катушке, поломка штока 3 и заклинивание пружины. Для устранения этих неисправностей, прежде всего, нужно извлечь катушку 4 (она крепится, как правило, на защелках). Из неё необходимо извлечь сердечник 5, контакты 2 (они извлекаются вместе со штоком 3). После этого нужно хорошо очистить это всё от грязи, например, тканевой чистой тряпкой, смоченной в спирте. Если есть необходимость, сердечник 5 нужно будет слегка зачистить напильником или наждачной бумагой, чтобы он свободно смог входить в канал катушки. Обязательно нужно зачистить наждачной бумагой рабочие поверхности контактов 1 и 2.

Частой причиной выхода из строя пускозащитного реле является поломка штока 3.

Как правило, оригинальный шток делается из пластмассы, однако его можно заменить самодельным штоком, сделанным из гвоздя 2, 5х35 мм. Металлический шток в реле, вместо пластмассового, работает долго и надежно. На рисунке 6 показаны размеры штока 3 для наиболее распространенного пускозащитного реле типа РТК-Х (М) или его аналога. Для любого другого типа реле размеры можно уточнить на месте.

После этого реле нужно будет собрать в обратной последовательности, поставить на место, закрепить и подсоединить подводные провода.

В случае, если причиной неисправности были окислившиеся контакты 1 и 2, и через короткое время работы, после того, как вы их зачистили, они снова окислились и обгорели, то необходимо обратиться к специалисту за более глубоким ремонтом, так как причины такого поведения контактов могут быть в нарушении работы всей электрической цепи холодильника.

Ремонт холодильника своими руками

Последний по порядку — не последний по значению

Другая неисправность, которая тоже довольно часто встречается, заключается в перегорании нагревателя R2 в реле тепловой защиты. Это легко определяется с помощью тестера при снятой крышке пускозащитного реле. Если неисправность в этом, пускозащитное реле необходимо заменить на новое.

Холодильник с одним мотор компрессором

 

Уважаемые посетители сайта!!!

Среди Ваших вопросов встречаются вопросы по монтажным электросхемам холодильников.   С Вами здесь вполне согласен, так как монтажные схемы дают более объективное представление об электрических схемах.

Поняв сущность изложенного, Вы уже свободно сможете читать схемы любых типов холодильников.   Каждый из нас выбирает тип холодильника на свое усмотрение, где учитывается :

  • семейное положение \бюджет семьи\;
  • состав \количество\ семьи;
  • площадь проживания.

Зачем к примеру приобретать большой холодильник если допустим гражданин  приобретающий данный электроприбор проживает в 9 — 12 кв. метрах своей жилплощади.   То есть получается, что мы зависимы от оказывающего влияния на нас различных факторов.

Приобретая холодильник, впоследствии у нас возникают проблемы — Как починить холодильник?   Где найти электрическую либо монтажную схему на холодильник:

  • Бирюса;
  • Индезит;
  • Самсунг;
  • Веко;
  • Атлант

и далее.   В общем то не надо искать электрические схемы на тот или иной тип холодильника.   Необходимо понять характер таких электрических соединений, как соединяются в электрической схеме холодильника:

  • термостат;
  • электролампа;
  • выключатель лампы;
  • теплозащитное реле

или к примеру: Как правильно соединяется мотор компрессор с теплозащитным реле?

Это является так сказать «сердцем»  для проведения ремонта всех типов холодильников, — по электрической части.   Итак, к делу друзья!!!

Перед нами две схемы холодильника:

  1. принципиальная электрическая схема
  2. монтажная электросхема.

 

Монтажные электросхемы холодильников

 

электросхема холодильника

 

 

монтажная электросхема холодильника

 

 

Две данные схемы абсолютно одинаковы в своем изложении.   Как в  принципиальной электрической схеме  так и в монтажной электросхеме холодильника, — мы можем обратить свое внимание,  что  электрическая цепь состоит из двух линий:

  • силовой, от которой питается мотор компрессор;
  • осветительной, где электрическая цепь имеет соединения с выключателем света и электролампой.

Читаем   электрическую схему  холодильника:

Рабочая обмотка статора электродвигателя соединена последовательно через:

  • электромагнитную катушку пускового реле  ПР;
  • защитное реле  ЗР;
  • контакты термостата.

Данная электрическая цепь \смотреть электрическую схему\ является силовой, так как подключена с электродвигателем и вторая электрическая цепь является осветительной.

Осветительная цепь состоит из двух элементов:

  • электролампы;
  • выключателя света.

Теперь, чтобы лучше освоить эту тему, перейдем к объяснению по монтажной электросхеме  холодильника:

Конец пусковой обмотки ПО соединен с контактом пускового реле.   Контакт пускового реле как мы видим находится в разомкнутом положении.

При разомкнутом положении контактов термостата \смотреть монтажную электросхему\ на рабочую обмотку статора электродвигателя поступает ток.

Контакты выключателя света замыкают электрическую цепь при открывании дверцы холодильника.   Одновременно при включении холодильника, когда контакты:

  • термостата;
  • теплового реле

находятся в замкнутом положении, — происходит замыкание контактов пускового реле.   После того как ротор электродвигателя набрал обороты —  контакты пускового реле размыкаются,  то есть  электрическая цепь для данного участка разъединяется.

Это и есть сама сущность принципа работы пуско защитного реле,  как Вы поняли после размыкания контактов пускового реле, — электродвигатель начинает работать с одной,  рабочей обмоткой.

Получается здесь как бы следующее:

При замыкании контактов пускового реле,  при включенной пусковой обмотке, через цепь:

  • пускового реле;
  • теплового реле,

— протекает суммарный ток обеих обмоток:

  • рабочей;
  • пусковой.

И что же может произойти при неисправности теплозащитного реле?    При неисправности пускового реле, в том случае если контакты не примут исходное разомкнутое положение, — увеличится токовая нагрузка как для пусковой так и для рабочей обмоток статора электродвигателя.

То же самое и при неисправности теплового реле создастся токовая нагрузка на обе обмотки статора.   В результате что может произойти? —  Произойти может перегорание обмоток статора электродвигателя.

 Холодильник aeg santo — в наглядном примере

 

холодильник aeg santo

рис.1

В примере, рассмотрим монтажную схему холодильника aeg santo, состоящую из:

  1. клеммной коробки;
  2. компрессора;
  3. термореле;
  4. термостата;
  5. выключателя;
  6. выключателя нагревательного элемента;
  7. лампы;
  8. вентилятора;
  9. конденсатора;
  10. нагревательного элемента.

Пояснение к схеме — холодильника

Прослеживаем соединения в схеме:

Контакты выключателя света 5 замыкаются при открывании дверцы холодильника, электролампа 7 при этом загорается.   Выключатель нагревательного элемента 6 служит для включения нагревателя 10,  при включении которого происходит разморозка морозильной камеры.

С замыканием контактов термостата 4 включается в электрическую цепь пускозащитное реле компрессора 2.   Конденсатор 9 в электрической схеме соединен параллельно.   Как и для других схем, данная схема состоит из:

  • силовой;
  • осветительной

линий.   От силовой линии питается мотор компрессор, осветительная линия состоит из выключателя света и электролампы.   Вентилятор 8 включается в схеме одновременно с замыканием контактов термостата 4.      Металлические корпуса:

  • термостата;
  • вентилятора;
  • компрессора,

как мы видим по схеме — заземлены.

В чем отличие  приведенных монтажных электросхем холодильников в этой теме?   Отличия  в этих схемах состоят лишь в том, что в  одни схемы дополнительно внесены:

  • вентилятор;
  • нагревательный элемент,

а в других схемах данные элементы отсутствуют.   Так же следует отметить, что например  для двухкамерных холодильников  в электрические схемы внесены два мотор компрессора.

Тема, по мере Ваших задаваемых вопросов будет развиваться.

На этом пока все.

Схема подключения компрессора холодильника: конденсатором, включения, напрямую

Компрессором называют насосный блок с электроприводом и двигателем, за счет работы которого осуществляется циркуляция хладагента. Знание схемы подключения компрессора холодильника поможет в домашних условиях определить, исправен двигатель или пришел в негодность. Иногда самостоятельно можно найти причину поломки, но точную диагностику и ремонт лучше доверить специалисту.

Пошаговая инструкция по подключению

При старте компрессора нагрузка осуществляется на пусковую обмотку. Для дальнейшей работы происходит переключение на рабочую. Во время действия основной обмотки снижено энергопотребление, а пусковая нужна, чтобы выдержать повышенную мощность. Помимо электродвигателя, в конструкции компрессора предусмотрены дополнительные реле. Они расположены на внешней стороне компрессора и нужны для поддержания нужного температурного режима.

Стандартное подключение по заводской схеме предусматривает использование кабеля со стандартной вилкой. После ее включения в розетку ток по проводам поступает на корпус реле. Реле необходимо, чтобы отрегулировать конфликт полярности соединений, поскольку работа компрессора осуществляется на переменном токе.

Если один из компонентов схемы неисправен, мотор не заработает. Дальнейшая диагностика предусматривает проверку компонентов в цепи питания путем их исключения из работы. При неисправности приборов такая проверка диагностирует поломку в одном из компонентов компрессора.

Как подключить без конденсатора и реле

Как подключить без конденсатора и релеКак подключить без конденсатора и реле

Кто производитель вашего холодильника?Poll Options are limited because JavaScript is disabled in your browser.

В современных холодильниках конденсатор не используется. В старых моделях он нужен для изменения формы хладагента с газообразной на жидкостную. Без конденсатора запрещена длительная работа холодильного оборудования, поэтому двигатель без этой детали можно запустить, но лишь в диагностических целях. Перед тем как подключить компрессор холодильника, потребуется демонтировать, то есть выпаять, конденсатор. Пуск электродвигателя в этом случае осуществляется через штатное реле.

При неисправности конденсатора запуск без него компрессора осуществим, и мотор заработает.

Если этого не произошло, проблема может быть в реле, либо мотор неисправен. Проверить это предположение можно, если подать ток на обмотку электродвигателя напрямую. Для этого потребуется с помощью соединительных клемм подключить к обеим обмоткам медный провод с вилкой питания на конце.

Проверка работоспособности

При подаче питания мимо реле при неисправности последнего мотор должен заработать. Если этого не произошло — конденсатор и реле исправны, причина поломки в самом электродвигателе. При исправности реле и конденсатора это может быть только:

  1. Клин подшипников, поломка поршневого насоса. В этом случае из компрессора при попытке включить его донесется гул. Он свидетельствует о том, что мотор пытается работать, но из-за неисправности не отключается. Такую поломку можно устранить в сервисном центре.
  2. Обрыв проводов внутри компрессора. Если это произошло, электродвигатель холодильника подлежит утилизации, поскольку починить его невозможно. Утилизация сломанного холодильного электродвигателя должна производиться через сервисные центры, нельзя выбрасывать такое оборудование вместе с бытовым мусором.

Поломка холодильника может произойти, даже если агрегат входит в рейтинг лучших приборов для кухни. Владельцам в такой ситуации остается проверить состояние мотора перечисленными способами, а в дальнейшем доверить ремонт профессионалам. Самостоятельная починка холодильников Атлант и других фирм не рекомендуется, поскольку в процессе устранения дефектов любители часто доламывают технику. Ремонт в мастерской дешевле, чем покупка нового холодильника, при этом неграмотно сработавшего мастера можно будет привлечь к ответственности и возмещению убытков.

Какой марки холодильник Вы рекомендуете покупать?Poll Options are limited because JavaScript is disabled in your browser.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *