Двигатель асинхронный однофазный — устройство, принцип работы и схема подключения
Никто глубоко не задумывался о том, как бы жили люди без такого изобретения, как электродвигатель асинхронный однофазный. Казалось бы, что такое умное слово никого не касается и витает где-то в заоблачной дали. Но этот большой помощник в быту встречается на каждом шагу.
Скажите, как можно обходиться без холодильника или пылесоса. А ведь не будь двигателя, всего этого не было бы сейчас. Предлагаем в статье узнать все подробности об этом устройстве, а дочитавшим до конца будет бонус в виде полезного справочника по асинхронным двигателям
Так выглядит однофазный асинхронный двигатель.
История возникновения
Более 60 лет понадобилось многим ученым, пока однофазный асинхронный двигатель начал покорять просторы земного шара. Началось все с 1820-х годов, когда Джозеф Генри и Майкл Фарадей – открыли явления индукции и начали первые эксперименты.
Принцип работы асинхронного двигателя (однофазного) основан на этих основных физических законах. В 80-х годах позапрошлого столетия многие умы разрабатывают трансформаторы и генераторы переменного тока. Год 1885 принес идею первого многофазного двигателя переменного тока от Галилео Феррариса, вскоре Никола Тесла уже представил свой многофазный мотор (1888 год).В 1889-1891годах русский электротехник, поляк по происхождению, Михаил Осипович Доливо-Добровольский придумал ротор в виде “беличьей клетки”. К этому изобретению его подтолкнул доклад Феррариса «О вращающемся магнитном поле». С началом ХХ века пришло широкое внедрение электромеханических устройств.
Применение однофазных асинхронных двигателей
Известно, что однофазные двигатели уступают трехфазным по некоторым характеристикам. Однофазные моторы имеют в основном бытовое назначение:
- пылесосы;
- вентиляторы;
- электронасосы;
- холодильники;
- машины для переработки сырья.
Для того, чтобы выполнить подключение асинхронного двигателя нужна однофазная сеть переменного тока. Такие двигатели работают при напряжении 220 Вольт и частоте 50 Гц. Прилагательное «асинхронный» указывает на то, что скорость вращения якоря отстает от магнитного поля статора.
Однофазные двигатели имеют две независимых цепи, но работают они в основном на одной, отсюда и название. Основные части двигателя:
- Статор (неподвижный элемент).
- Ротор (вращающаяся часть).
- Механическое соединение этих двух частей.
- Поворотные подшипники.
Соединение состоит из внутренних колец, установленных на закрепленных втулках вала ротора, наружных колец в защитных боковых крышках, прикрепленных к статору.
Для запуска однофазного асинхронного двигателя с пусковой обмоткой установлена другая катушка. Обмотка стартера установлена со смещением от рабочей катушки на 900 С. Для создания сдвига тока, в цепи однофазного двигателя имеется схема сдвига фаз. Сдвиг можно получить при помощи различных элементов. Это могут быть:
- Активное сопротивление.
- Емкостное.
- Индуктивное.
В видео, представленном ниже, показан принцип работы однофазных асинхронных двигателей.
Принцип действия
Обмотки статора при помощи переменного тока образуют магнитные поля. Они имеют одинаковую амплитуду и частоту, но действуют в разных направлениях, поэтому статический ротор начинает вращаться.
Если в двигателе отсутствует пусковой механизм, ротор останавливается, потому что результирующий крутящий момент равен нулю. В случае, когда ротор начинает вращаться в одном направлении, соответствующий крутящий момент становится выше, когда вал двигателя продолжает вращаться в заданном направлении.
Принцип работы однофазного асинхронного двигателя.
Момент запуска
Сигналом к запуску становится магнитное поле двух обмоток, вращающее подвижную часть двигателя. Оно создается 2 обмотками: главной и пусковой. Дополнительная обмотка меньшего размера является пусковой и подключается к основной схеме включения однофазного двигателя через ёмкостное или индуктивное сопротивление.
Подключение происходит только в момент пуска. При удержании пусковой кнопки короткое время (порядка 2-3 секунд) происходит разгон ротора. В момент отпускания кнопки электрический мотор переходит в режим работы основной фазы.
Пусковая обмотка может работать кратковременно. Более длительное время нахождения под нагрузкой может вызвать перегревание и воспламенение изолирующих элементов, что приведет к выходу из строя.
Надежность повышается за счет встраивания в схему однофазного асинхронного двигателя таких элементов как тепловое реле и центробежный выключатель. Последний отключает пусковую фазу в тот момент, когда ротор разгоняется до номинальной скорости. Отключение происходит автоматически.
Работа реле происходит следующим образом: когда обмотки нагреваются до предельного значения, установленного на реле, механизм прерывает подачу питания на обе фазы, предотвращая отказ из-за перегрузки или по любой другой причине. Это защищает от возгорания.
Возможно, вам будет интересно также почитать все, что нужно знать о шаговых электродвигателях в другой нашей статье.
Варианты подключения
Для того, чтобы мотор заработал необходимо иметь одну 220-вольтовую фазу. Это значит, что подойдет любая стандартная розетка. Благодаря этой простоте двигатели завоевали популярность в быту. Любой прибор, начиная от стиральной машины и до соковыжималки, имеет подобные механизмы в своем составе.
Известны два типа однофазных двигателей в зависимости от способа подключения:
- Однофазный асинхронный двигатель с пусковой обмоткой.
- Однофазный двигатель с конденсатором.
Схема подключения однофазного асинхронного двигателя с помощью конденсаторов изображена на рисунке.
Схема подключения однофазного асинхронного двигателя с помощью конденсаторов.
Схема содержит пусковую обмотку с конденсатором. После ускорения ротора происходит выключение катушки. Рабочий конденсатор не позволяет размыкаться пусковой цепи, и запускающая обмотка работает через конденсатор в постоянном режиме.
Одновременно с рабочей обмоткой пусковая катушка снабжена током через конденсатор. При использовании в режиме пуска у катушки более высокое активное сопротивление. Фазовый сдвиг при этом имеет достаточную величину, чтобы началось вращение.
Допускается брать пусковую обмотку, с меньшей индуктивностью и большим сопротивлением. Запуск конденсатора осуществляется при подключении его к пусковой обмотке и временному источнику питания.
Чтобы достичь максимального значения пускового момента требуется вращающееся магнитное поле. Для этого нужно добиться положения обмоток под углом 900. При правильно рассчитанной емкости конденсатора обмотки могут быть смещены на 900 градусов. Расчет однофазного асинхронного двигателя зависит от схем подключения, которые приведены ниже.
Схемы включения однофазного асинхронного двигателя.
Различные варианты подключения:
- временное включение электрического тока на стартовую обмотку через конденсатор;
- подача на пусковое устройство через резистор, без конденсатора;
- запуск через конденсатор на пусковую обмотку постоянно, одновременно с работой рабочей обмотки.
Расчет проводной принадлежности
Для расчета проводов, соединяющих рабочую и пусковую обмотки, понадобится омметр. Измеряется сопротивление обмоток. R рабочей обмотки должно быть ниже, чем у стартера. Например, если измерения составили 12 Ом для одной обмотки и 30 Ом для другой, то сработают обе. У рабочей обмотки поперечное сечение больше, чем у выходной.
Выбор емкости конденсатора
Чтобы определить емкость конденсатора, необходимо знать ток потребления электродвигателя. Если ток 1,4 А, то понадобится конденсатор емкостью 6 микрофарад. Также можно ориентироваться на таблицу расчета емкости конденсатора, приведенную ниже.
Таблица расчета емкости конденсаторов.
Проверка работоспособности
Тестирование начинается с визуального осмотра. Возможные неисправности:
- Если опорная часть на устройстве была сломана, это может привести к неисправностям.
- При потемнении корпуса в средней части идет перегрев. Бывает попадание в корпус различных посторонних предметов, это способствует перегреванию. При износе и загрязнении подшипников возможен перегрев.
- Когда однофазный электродвигатель на 220 вольт имеет в схеме подключения конденсатор увеличенного размера, он начинает перегреваться.
Если есть подозрение на наличие такого элемента, его необходимо отсоединить от пусковой обмотки, включить двигатель в сети и вращать вал вручную.
Запустить двигатель минут на пятнадцать, а затем проверить, не прогрелся ли он. Если двигатель не греется, причиной являлась увеличенная емкость конденсатора. Необходимо установить конденсатор, имеющий меньшую емкость.
Для лучшего понимания механизма работы двигателей, рекомендуем также подробнее прочитать, что такое трехфазный двигатель и как он работает.
Достоинства и недостатки
Основными плюсами являются:
- простота конструкции;
- повсеместная доступность однофазных сетей переменного тока 220 В при частоте 50 Гц (практически во всех районах).
К минусам можно отнести следующие обстоятельства:
- невысокий пусковой момент двигателя;
- низкая эффективность.
Основные достоинства и недостатки однофазных асинхронных двигателей
Заключение
Маломощные однофазные электродвигатели выпускаются в разной модификации и для разного назначения. Перед приобретением необходимо точно знать некоторые характеристики. Подробно с устройством данного типа двигателей можно ознакомиться, скачав книгу Алиева И. И. Асинхронные двигатели в трехфазном и однофазном режимах.
Российские производители предлагают некоторые серии устройств, имеющие мощность от 18 до 600 Вт, частоту вращения 3000 и 1500 об/мин. Все они предназначены для подключения в сеть с напряжением 127, 220 или 380 Вольт и частотой 50 Гц.
Асинхронный двигатель с короткозамкнутым ротором схема включения 220в
Подключение однофазного асинхронного двигателя и принцип его работы
Используемые в настоящее время бытовые приборы в своем подавляющем большинстве работают при помощи однофазного асинхронного двигателя. Максимальная мощность такого двигателя не превышает 500 Вт.
Однофазный асинхронный двигатель: принцип работы
Однофазный двигатель работает за счет вращающегося магнитного поля, которое возникает при смещении в пространстве двух обмоток статора, соединенных параллельно, относительно друг друга. Важным условием работы однофазного двигателя является сдвиг по фазе токов обмоток. Для этого в конструкции двигателя предусмотрен фазосмещающий элемент (как правило, это конденсатор), он подключен последовательно одной из статорных обмоток. Роль фазосмещающего сетевого элемента может выполнять активное сопротивление или индуктивность.
В том случае если при работе двигателя цепь обмотки разрывается, прекращается движение магнитного потока (Ф) статора. Происходит инерционное вращение ротора, поэтому, поток остается вращающимся по отношению к обмотке ротора и наводит ЭДС, силу тока (I) и собственный магнитный поток (Ф), при этом движение магнитного потока (Ф) ротора совпадает со статорным магнитным потоком.
Магнитный поток ротора изменяется. Данное действие основывается на синусоидальном законе согласно которому, изменяя направление на противоположное, ротор остается в состоянии вращения. В связи с этим запуск мотора возможен в том случае если наличествует внешний фактор, который способен осуществить возвратное вращательное движение ротора в первоначальное направление.
Так как при запуске однофазного двигателя применяется пусковая катушка с применением фазосмещающего элемента. Сопротивление активного типа используется в этом роде очень часто, в связи с дешевизной.
После запуска двигателя возникает отключение обмотки действующей для запуска. Обмотка пуска работает в кратковременном режиме, и для ее изготовления применяется более тонкий провод, чем идет на изготовление рабочей обмотки.
Подключение однофазного асинхронного двигателя
Рис. №1.Схемы подключения асинхронного двигателя к однофазной сети
Для подключения однофазного асинхронного двигателя к однофазной сети прибегают к помощи резистора, используемого для запуска, и присоединенного к пусковой катушке (обмотке) последовательным методом, таким образом, между токами, которые присутствуют в обмотке двигателя, наблюдается сдвиг фаз на 30 о. этого хватает для запуска асинхронной машины в работу. В конструкции двигателя, в котором присутствует сопротивление пуска, наличие фазового угла объясняется неодинаковым комплексным сопротивлением в электрических цепях двигателя.
Рис. №2. Схема включения асинхронного однофазного двигателя с распределенной статорной обмоткой, используемой в качестве привода активатора стиральных машин бытового назначения.
Кроме, использования сопротивления пуска применяется подключение однофазного двигателя к однофазной цепи с конденсаторным пуском. Двигатель, выполняющий эту операцию, будет использовать расщепленную фазу. Особенность этого способа в том, что вспомогательная катушка, в которую встроен конденсатор используется в момент времени запуска. Чтобы достигнуть максимально возможного эффекта сдвиг токов относительно обмоток должен достигать максимально высокого значения угла – 90 о .
Среди разнообразия элементов, используемых для сдвига фаз, только использование конденсатора дает возможность получения максимально лучшего пускового эффекта однофазного асинхронного двигателя .
Однофазный двигатель с расщепленной фазой и экранированными полюсами
При рассмотрении однофазных электродвигателей нельзя забыть о моделях двигателей в конструкции, которых применяются экранированные полюса, в такой машине присутствует расщепленная фаза и короткозамкнутая вспомогательная обмотка. Статор такого двигателя имеет явно выраженные полюса, каждый из которых разделен аксиальным пазом на две неодинаковые части, на меньшей части находится короткозамкнутый виток.
При присоединении статора двигателя в электрическую сеть, магнитный поток, для которого характерно пульсирующее действие и созданный в магнитопроводе машины, делится на 2 части. Движение одной из них идет по части полюса без экрана, вторая следует по части полюса покрытой экраном. Индуктивность витка приводит к отставанию тока по фазе от наведенной магнитным потоком ЭДС. Магнитный поток короткозамкнутой обмотки создает результирующий поток, который движется в экранированной части полюса. В разноименных частях полюсов наблюдается сдвиг разных магнитных потоков на определенное значение угла, а также на разницу во времени.
Недостаток этих моделей заключается в значительных электрических потерях, которые присутствуют в витках обмотки замкнутой накоротко.
Используется в конструкции тепловентиляторов и вентиляторов.
Однофазный двигатель с ассиметричным магнитопроводом статора
Особенность конструкции заключается в наличии явно выраженных полюсов, расположенных на несимметричном сердечнике, изготовленным шихтованным способом. Конструкция ротора короткозамкнутая, тип обмотки – «беличья клетка». В конструкции такого двигателя характерно отсутствие элементов для сдвига по фазе. Улучшение пусковой характеристики достигается добавление в конструкцию магнитных шунтов.
Рис. №3. Чертеж асимметричного статора асинхронной машины.
Недостатки этих машин.
- Малый КПД.
- Невозможность реверсирования.
- Невысокий пусковой момент.
- Сложность операций по изготовлению магнитных шунтов.
Несмотря на наличие недостатков, однофазные асинхронные машины широко используются для конструирования бытовой техники, причина в невысокой мощности бытовой электрической сети, которой соответствует мощность однофазных асинхронных двигателей.
Еще материалы по теме:
Самостоятельное проектирование и изготовление вертикального ветряка на основе асинхронного двигателя Экономитель воды – аэратор: примеры использования и принцип работы Вольтметр. Устройство, принцип работы, виды и характеристики Все условия параллельной работы трансформаторов
Однофазный асинхронный двигатель, схема подключения и запуска
Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.
Отличие от трехфазных двигателей
Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.
Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:
- добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
- для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.
Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.
После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.
Схема подключения коллекторного электродвигателя в 220В
Схема подключения однофазного асинхронного двигателя (схема звезда)
Как это работает
Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.
Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.
Основные схемы подключения
В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.
однофазный асинхронный двигатель и конденсатор
Различают три основные способа запуска однофазного асинхронного двигателя через:
- рабочий;
- пусковой;
- рабочий и пусковой конденсатор.
В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.
Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).
Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.
Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.
Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.
Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.
На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.
Другие способы
При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.
С экранированными полюсами и расщепленной фазой
В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.
После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.
Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.
С асимметричным магнитопроводом статора
Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.
Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.
Подбор конденсатора
Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя.
Керамический и электролитический конденсатор
Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.
Подключение однофазного двигателя: схемы, проверка, видео
Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.
Асинхронный или коллекторный: как отличить
Содержание статьи
Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.
Так выглядит новый однофазный конденсаторный двигатель
Как устроены коллекторные движки
Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.
Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.
Строение коллекторного двигателя
Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.
Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.
Асинхронные
Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.
Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.
Строение асинхронного двигателя
Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.
В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.
Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.
Схемы подключения однофазных асинхронных двигателей
С пусковой обмоткой
Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.
Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»
Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.
Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).
Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):
- один с рабочей обмотки — рабочий;
- с пусковой обмотки;
- общий.
С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.
Со всеми этими
Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.
Конденсаторный
При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).
Схемы подключения однофазного конденсаторного двигателя
Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.
Схема с двумя конденсаторами
Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым
При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.
Подбор конденсаторов
Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:
- рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
- пусковой — в 2-3 раза больше.
Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.
Изменение направления движения мотора
Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.
Как все может выглядеть на практике
Схема Подключения Однофазного Электродвигателя — tokzamer.ru
Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его. Другие способы При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.
Значения КПД, мощности и пускового момента, у однофазных моторов существенно ниже, чем у трехфазных устройств тех же размеров. Пара, дающая максимальное сопротивление, означает, что измерение выполнено через две обмотки одновременно, как на схеме.
Обе фазы таких устройств являются рабочими и включены все время. Одна из них движется через экранированную часть полюса.
Однофазные двигатели. Включаем оптимально. (Обзор)
Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Присутствует постоянное разделение емкости.
Во время удерживания частота вращения ротора достигала значения номинальной величины. В этом примере направление вращения, вы уже не измените, какое есть такое и будет.
Примерами их использования ДАК могут служить стиральные машины, электросоковыжималки и, конечно же, любой электроинструмент. Пример размещения конденсатора на внешней стороне корпуса электродвигателя В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения.
Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье. Существуют модели, в которых пусковая обмотка работает не только при запуске, а и все остальное время.
Электродвигатель может быть взят от одного прибора и подключен к другому.
Как просто подключить трехфазный двигатель треугольником и звездой в сеть 220, через конденсатор.
Подключение однофазного асинхронного двигателя и принцип его работы
Использовать необходимо только конденсаторы, которые идут в комплекте поставки. Подбирать конденсаторы нужно с рабочим напряжением не меньше В. Только после того, как будет достоверно установлено, что нет короткого замыкания на корпусе, определены контакты каждой из обмоток, можно приступать к подключению.
Роторные обмотки намотаны в виде рамок и помещаются в специальных пазах, а их переключение происходит при помощи коллекторных выводов и контактов в виде графитовых щёток.
В данной статье будет рассказано о том, как подключить однофазный электродвигатель в сеть В, в зависимости от его типа. Такие электромоторы также называют индукционными.
Эти моторы также могут быть использованы в установках для мойки, генераторах теплого воздуха, системах централизованного обогрева.
С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Для этого выполняют подключение, как на схеме.
Рассмотрим, как подключить однофазный электродвигатель, чтобы он выполнял роль генератора трехфазного напряжения. В формулах выше Iном — это номинальный ток фазы электродвигателя.
Такие устройства имеют коэффициент мощности больший, чем у выше описанных короткозамкнутых приборов, развивают по сравнению с ними больший вращающий момент.
Как подключить двигатель от старой стиральной машины через конденсатор или без него
Расчет емкости конденсатора мотора
Проводку маркируют и убирают в сторону, а остальные контакты продолжают прозванивать по приведенной схеме.
Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше.
Именно в этом причина популярности двигателя среди населения. Кроме того, сдвиг фаз может быть получен путем использования пусковой фазы с большим значением сопротивления и меньшей индуктивностью. В результате их взаимодействия между собой ротор приводится в движение.
Конденсатор подбирается по потребляемому двигателем току. Мы постараемся разобрать в этой статье основные приемы решения проблемы и представим несколько альтернативных схем с описанием для подключения однофазного электродвигателя с конденсатом на вольт. Почему так происходит? В рамках этой схемы конденсатор постоянно подключен к источнику электричества, а не только во время старта.
Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети В. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором. Однако многолетний опыт профессионалов показывает, что достаточно придерживаться следующих рекомендаций: на 1 кВт мощности мотора необходимо 0,8 мкФ рабочего конденсатора; пусковая обмотка требует, чтобы это значение было в 2 или 3 раза выше. Только после того, как будет достоверно установлено, что нет короткого замыкания на корпусе, определены контакты каждой из обмоток, можно приступать к подключению.
Подключение
Существует несколько режимов работы конденсаторного двигателя: С пусковым конденсатором и дополнительной обмоткой, которые подключаются только на время запуска. На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации — вторая, с рабочим.
Подключение остальных типов электродвигателей либо требует использования специальных устройств запуска, либо, как, например, шаговые, управляются электронными схемами. Некоторые конденсаторные электродвигатели имеют центробежный контакт, используемый при запуске, размыкающийся при наборе оборотов.
Схема с рабочим конденсатором Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Запустить Остановить Пульсирующее магнитное поле Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении. В то время как асинхронный двигатель работает в пределах максимальных оборотов, которые трудно, порою невозможно, плавно, без рывков, контролировать — уменьшать, увеличивать после разгонки.
Правильное подключение однофазного двигателя в сеть 220 v, от старой стиральной машинки.
Схема подключения однофазного двигателя через конденсатор
Во втором случае, для моторов с рабочим конденсатором, дополнительная обмотка подключена через конденсатор постоянно.
По информации на бирке мотора можно определить какая система в нем использована. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок.
Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Расчёт емкости производится исходя из рабочего напряжения и тока, или паспортной мощности мотора. Кратковременным подключением пускового конденсатора на валу двигателя создается мощный стартовый вращающий момент, время запуска сокращается в разы.
Из-за сложности формул расчёта принято выбирать емкости, исходя из приведённых выше пропорций. Расчет емкости конденсатора мотора Существует сложная формула, с помощью которой высчитывают необходимую точную емкость конденсатора. В этих двигателях, рабочая и пусковая — одинаковые обмотки по конструкции трехфазных обмоток. После списания прибора в утиль в большинстве случаев электродвигатели сохраняют работоспособность и могут еще довольно долго послужить в виде самодельных электронасосов, точил, станков, вентиляторов и газонокосилок.
Статья по теме: Виды электромонтажных работ по смете
Заключение
В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Это схема обмотки звездой Красные стрелки — это распределение напряжения в обмотках мотора, говорит о том, что на одной обмотке распределяется напряжение единичной фазы в В, а двух других — линейного напряжения В.
После запуска двигателя, конденсаторы содержат определенное количество заряда, потому прикасаться к проводникам запрещается. В этой обмотке которая еще имеет название рабочей магнитный поток изменяется с такой частотой, с которой протекает по обмотке ток. Вычислить, какие провода к какой обмотке относятся, можно путем измерения сопротивления. Обмотка, у которой сопротивление меньше — есть рабочая. В статоре однофазного электродвигателя находится однофазная обмотка, что отличает его от трехфазного.
Двигатели с высотой вращения более 90 мм представлены в чугунном исполнении. Такая схема исключает блок электроники, а следовательно — мотор сразу же с момента старта, будет работать на полную мощность — на максимальных оборотах, при запуске буквально срываясь с силой от пускового электротока, который вызывает искры в коллекторе; существуют электромоторы с двумя скоростями. Это необходимый запас для компенсации потерь мощности при старте — создании вращающегося момента магнитного поля. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле в холодильниках.
Генератор может исполнять роль двигателя, а он в свою очередь — генератора. На корпусе однофазного асинхронного электродвигателя должна быть схема подключения, где указываются выводы основной и дополнительной обмотки, а также емкость конденсатора. В этом случае движок гудит, ротор остается на месте.
Подключение однофазного электродвигателя
Подключение однофазного двигателя АИРЕ 80С2
Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».
Несколько дней назад ко мне обратился один из моих читателей с просьбой о подключении однофазного двигателя серии АИРЕ 80С2. На самом деле этот двигатель является не совсем однофазным. Его будет точнее и правильнее отнести к двухфазным из категории асинхронных конденсаторных двигателей. Поэтому в данной статье речь пойдет о подключении именно таких двигателей.
Итак, у нас имеется асинхронный конденсаторный однофазный двигатель АИРЕ 80С2, который имеет следующие технические данные:
- мощность 2,2 (кВт)
- частота вращения 3000 об/мин
- КПД 76%
- cosφ = 0,9
- режим работы S1
- напряжение сети 220 (В)
- степень защиты IP54
- емкость рабочего конденсатора 50 (мкФ)
- напряжение рабочего конденсатора 450 (В)
Этот двигатель установлен на малогабаритном буровом станке и его нам нужно подключить к электрической сети 220 (В).
Расшифровка двигателя серии АИРЕ 80С2:
В данной статье габаритные и установочные размеры однофазного двигателя АИРЕ 80С2 я приводить не буду. Их можно найти в паспорте на этот двигатель. Давайте лучше перейдем к его подключению.
Подключение конденсаторного однофазного двигателя
Асинхронный конденсаторный однофазный двигатель состоит из двух одинаковых обмоток, которые сдвинуты в пространстве относительно друг друга на 90 электрических градусов:
главная или рабочая (U1, U2)
вспомогательная или пусковая (Z1, Z2)
А Вы знаете, как отличить рабочую обмотку от пусковой? Если нет, то переходите по указанной ссылочке.
Главную (рабочую) обмотку такого двигателя подключают непосредственно в однофазную сеть. Вспомогательную (пусковую) обмотку подключают в эту же сеть, но только через рабочий конденсатор.
На этом этапе многие электрики путаются и ошибаются, потому что в обычном асинхронном однофазном двигателе вспомогательную обмотку после пуска нужно отключать. Здесь же вспомогательная обмотка всегда находится под напряжением, т.е. в работе. Это значит, что конденсаторный однофазный двигатель имеет вращающуюся магнитодвижущую силу (МДС) на протяжении всего рабочего процесса. Вот поэтому он по своим характеристикам практически не уступает трехфазным. Но тем не менее недостатки у него имеются:
Для нашего однофазного двигателя АИРЕ 80С2 емкость рабочего конденсатора уже известна (из паспорта), и она составляет 50 (мкФ). Вообще то можно и самостоятельно рассчитать емкость рабочего конденсатора, но формула эта достаточно сложная, поэтому я ее Вам приводить не буду.
Если не знаете (или подзабыли) как можно измерить емкость, то напомню Вам, что я уже писал статью о том, как пользоваться цифровым мультиметром при измерении емкости конденсатора. Читайте, там все подробно описано.
Если по условиям пуска однофазного двигателя требуется более высокий момент, то параллельно рабочему конденсатору на время пуска необходимо подключить пусковой конденсатор, емкость которого выбирают опытным путем для получения наибольшего пускового момента. По опыту могу сказать, что емкость пускового конденсатора можно взять в 2-3 раза больше рабочего.
Вот пример подключения однофазного конденсаторного двигателя с тяжелым пуском:
Подключить пусковой конденсатор можно с помощью кнопки или же использовать более сложную схему, например, на реле времени.
Забыл сказать о роторах.
Чаще всего роторы однофазных двигателей выполняются короткозамкнутыми. Более подробно о короткозамкнутых роторах я рассказывал в статье про устройство асинхронных двигателей.
Схема подключения однофазного двигателя (конденсаторного)
Ну вот мы добрались и до схемы подключения конденсаторного двигателя. На клеммнике такого двигателя расположены 6 выводов:
Эти вывода подключены к обмоткам двигателя в следующем порядке:
Вот так выглядит клеммник с выводами двигателя АИРЕ 80С2:
Чтобы подключить двигатель в прямом направлении, нужно подать переменное напряжение ~220 (В) на клеммы W2 и V1, а перемычки поставить, как показано на картинке ниже, т.е. между клемм U1-W2 и V1-U2.
Чтобы подключить двигатель в обратном направлении, нужно подать переменное напряжение ~220 (В) на те же клеммы W2 и V1, а перемычки поставить, как показано на картинке ниже, т.е. между клемм U1-V1 и W2-U2.
Думаю с этим все понятно. Устанавливаем перемычки для нужного вращения двигателя и подключаем однофазный двигатель к питающей сети, как показано на рисунках выше.
Но что делать когда нам необходимо дистанционно управлять направлением вращения? А для этого нам нужно собрать схему реверса однофазного двигателя. Как это сделать Вы узнаете из следующей моей статьи.
Чтобы не пропустить выпуск новой статьи, подпишитесь (форма подписки находится в конце статьи и в правой колонке сайта), указав свой адрес электронной почты.
Спасибо за внимание.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
подключение трехфазного двигателя к однофазной и трехфазной сети
За счет простой конструкции и легкости обслуживания асинхронные электрические двигатели находят широкое применение практически в любой сфере от промышленных предприятий до бытовой техники. Из-за особенности рабочего принципа они по-разному подключаются к трехфазным и однофазным электросетям.
Содержание:
- Принцип работы
- Подключение к однофазной сети через конденсатор
- Подключение без конденсатора
- Реверс двигателя в однофазной сети
- Подключение к трехфазной сети двигателя с короткозамкнутым ротором
- Подключение двигателя с фазным ротором
Принцип работы
Асинхронный трехфазный электродвигатель представляет собой конструкцию из двух основных компонентов: статора – большого неподвижного элемента, служащего одновременно и корпусом двигателя, и ротора – подвижной детали, передающей механическую энергию на вал. Читайте более подробно о принципе работы асинхронного двигателя в отдельной статье. Очень рекомендуем сделать это, т.к. информация там может быть полезна в работе!
Коротко, статор представляет собой корпус, внутри которого находится сердечник или магнитопровод. Внешне он похож на беличье колесо и собирается из электротехнической стали, изолированный с помощью нанесения специального лака. Такая конструкция снижает количество вихревых токов, появляющихся при воздействии с круговым магнитным полем двигателя. В пазах сердечника располагаются три обмотки, на которые подается питание.
беличье колесо
Ротор представляет собой шихтованный сердечник и вал. Стальные листы, используемые в роторном сердечнике, не обрабатываются лаком-изолятором. Обмотка ротора – короткозамкнутая.
Рассмотрим принцип действия этой конструкции. После подачи энергии на асинхронный двигатель с короткозамкнутым ротором на фиксированных обмотках статора создается магнитное поле. При подключении к сети с синусоидальным переменным током, характер поля будет изменяться с изменением показателей сети. Поскольку обмотки статора смещены относительно друг друга не только в пространстве, но и во времени, возникают три магнитных потока со смещением, в результате взаимодействия которых возникает вращающееся результирующее поле, проводящее ротор в движение.
Несмотря на то, что фактически ротор неподвижен, вращение магнитных полей на обмотках статора создает относительно вращение, что и приводит его в движение. Результирующее поле, «собранное» потоками обмоток, в процессе вращения наводит электродвижущую силу в проводники ротора. Согласно правилу Ленца, основное поле буквально пытается догнать поток на обмотках с целью сокращения относительной скорости.
Асинхронные двигателя относятся к электрическим машинам и, следовательно, могут использоваться не только в качестве моторов, но и как генераторы. Для этого необходимо, чтобы вращение ротора осуществлялось через некий внешний источник энергии, например, через другой двигатель или воздушную турбину. При наблюдении остаточного магнетизма на роторе, то в обмотках статора также будет генерироваться переменный поток, что приведет к получению напряжения на них за счет принципа индукции. Такие генераторы называют индукционными, они находят в бытовой и хозяйственной сфере для обеспечения бесперебойной работы непостоянных сетей переменного тока.
Подключение к однофазной сети через конденсатор
Подключение трехфазного двигателя к однофазной сети невозможно в чистом виде, без изменения схемы питания. Дело в том, что для создания вращающегося магнитного потока необходимо наличие как минимум двух обмоток со сдвигом по фазе, за счет которого и создает относительное движение статора. Если мотор подключить к бытовой однофазной сети напрямую, подав питание на одну из обмоток статора, он не будет работать. Это связано с тем, что одна работающая фаза создает пульсирующее поле, которое может обеспечивать движение вращающегося ротора, но не способно запустить его.
Для решения этой проблемы в двигателе размещается дополнительная обмотка под углом в 90˚ относительно основной, в цепь которой последовательно включен фазосмещающий элемент. В этом качестве могут выступать резисторы, индукционные катушки и другие устройства, однако лучшую эффективность показало применение конденсаторов.
Дополнительная обмотка, создаваемая с помощью конденсаторов, чаще всего выступает в роли пускателя двигателя, поэтому её называют пусковой. По достижении определенной температуры и скорости вращения вала срабатывает переключатель, размыкающий цепь. После этого работа двигателя обеспечивает взаимодействием между ротором и пульсирующим полем рабочей обмотки, как уже было описано выше.
Для обеспечения максимальной эффективности работы необходимо использование конденсаторов, чья ёмкость подходит под сетевые показатели. Кроме того, нередко в таких двигателях используется магнитный пускатель или реле тока для автоматического управления рабочим процессом. В видео ниже, будет и про магнитный пускатель.
Функциональные особенности подключения асинхронного двигателя с одним конденсатором отличаются хорошими пусковыми характеристиками, но сравнительно небольшой мощностью. Поскольку частота бытовой сети с напряжением 220 В составляет 50 Гц, такие моторы не могут вращаться со скоростью более 3000 об/мин. Это сокращает сферу их использования до бытовых приборов: пылесосов, холодильников, триммеров, блендеров и т.д.
Очень настоятельно рекомендуем посмотреть два видео ролика в этом разделе (одно сверху, другое снизу), т.к. наглядное пособие, может быть крайне полезным.
Подключение без конденсатора
Для подключения асинхронного двигателя в однофазную сеть без использования конденсаторов существуют две популярные схемы. Для обеспечения работы двигателя берутся синисторы с разнополярными импульсами управления и симметричный динистор.
Первая схема предназначена для электродвигателей с величиной номинального вращения от 1500 об/мин. В качестве фазосмещающего элемента выступает специальная цепочка. Схема соединения обмоток статора – треугольник.
Необходимо создать сдвинутое напряжение на конденсаторе путем изменения сопротивления. После того, как напряжение конденсатора достигнет нужного уровня, динистор переключится и включит заряженный конденсатор в схему запуска.
Вторая схема подходит для электродвигателей с большим пусковым сопротивлением или номинальной скоростью вращения от 3000 об/мин.
Очевидно, в данной ситуации необходимо создать сильный пусковой момент. Именно по этой причине в машинах этого типа для подключения статорных обмоток используется треугольник. Вместо фазосдвигающих конденсаторов в этой схеме применяются электронные ключи. Первый из них последовательно включается в цепь рабочей фазы, а второй – параллельно. В результате этой хитрости создается опережающий сдвиг тока. Однако данный способ эффективен только для двигателей 120˚ электрическим смещением.
Трехфазный электромотор можно подключить с помощью тиристорного ключа. Это, пожалуй, самый простой и эффективный способ подключения асинхронного двигателя в однофазную сеть без конденсаторов. Принцип его действия таков: ключ остается закрытым во время максимального сопротивления. Благодаря этому создается наибольший фазовый сдвиг и, соответственно, пусковой момент. По мере ускорения вала сопротивление снижается до оптимального уровня, сохраняющего сдвиг по фазе в пределах значения, обеспечивающего работу двигателя.
При наличии тиристорного ключа можно и вовсе отказаться от конденсаторов – он демонстрирует лучшие рабочие и пусковые характеристики даже для двигателей мощностью более 2 кВт.
Реверс электродвигателя в однофазной сети
При подключении асинхронного двигателя в сеть с однофазным током управлять реверсом (обратным вращением) ротора можно с помощью третьей обмотки. Для этого необходим тумблер или аналогичный двухпозиционный переключатель. Сначала с ним через конденсатор соединяется третья обмотка. Два контакта тумблера подключаются к двум другим обмоткам. Такая простая схема позволит управлять направлением вращения, переводя переключатель в нужное положение.
Подключение к трехфазной сети двигателя с короткозамкнутым ротором
Самыми эффективными и часто используемыми способами подключения асинхронного двигателя к трехфазной сети являются так называемые звезда и треугольник.
В конструкции двигателя с короткозамкнутым ротором есть всего шесть контактов обмоток – по три на каждой. Для того чтобы подключить асинхронный двигатель звездой необходимо соединить концы обмоток в одном месте, подобно лучам звезды. Примечательно, что в такой схеме напряжение у начал обмоток составляет 380 В, а на участке цепи, пролегающем между их соединением и местом подключения фаз – 220 В. Возможность включения двигателя данным методом указывается на его бирке символом Y.
Главное достоинство этой схемы в том, что она предотвращает возникновение перегрузок по току на электродвигателе при условии использования четырехполюсного автомата. Машина запускает плавно, без рывков. Недостаток схемы в том, что пониженное напряжение на каждой из обмоток не дает двигателю развивать максимальную мощность.
схема подключения звезда
Если электродвигатель с короткозамкнутым ротором был подключен по схеме звезда, это можно заметить по общей перемычке на концах обмоток.
Асинхронный двигатель, звезда в сборе
Для обеспечения предельной рабочей мощности трехфазного электродвигателя его подключают к сети треугольником. В этой схеме обмотки статора соединяются друг с другом по принципу конец-начало. При питании от трехфазной сети нет необходимости в соединении с рабочим нулем. Напряжение на участках цепи между выводами будет равняться 380 В. На табличке двигателя, подходящего для подключения треугольников, изображается символ ∆. Иногда производитель даже указывает номинальную мощность при использовании той или иной схемы.
схема подключения «треугольник»
Главный недостаток треугольника – пусковые токи слишком большой величины, которые иногда перегружают проводку и выводят её из строя. В качестве оптимального решения изредка создают комбинированную схему, в которой запуск и набор скорости происходит при «звезде», а затем обмотки переключают на «треугольник».
Подключение с фазным ротором
Асинхронные электродвигатели с фазным ротором имеют высокие пусковые и регулировочные характеристики, благодаря чему применяются в высокомощных машинах и приборах малой мощности. Конструктивно этот асинхронный двигатель отличается от обычного трехфазного тем, что на роторе есть своя трехфазная обмотка со сдвинутыми катушками.
Для подключения электродвигателей с фазным ротором применяются описанные выше схемы звезда и треугольник (для 380 В и 220 В сетей соответственно). Стоит заметить, что для того или иного двигателя может быть использована только одна схема, указанная в паспорте. Пренебрежение этим требованием может привести к сгоранию мотора.
Соединение обмоток в клеммной коробке производится так же, как на схемах из предыдущего способа. Изменение рабочих характеристик так же закономерно: треугольник выдает практически в полтора раза большую мощность, а звезда, в свою очередь, мягче функционирует и управляется.
В отличие от моделей с короткозамкнутым ротором, асинхронный двигатель с трехфазным ротором имеет более сложную конструкцию, но это позволяет получать улучшенные пусковые характеристики и обеспечивать плавную регулировку вращения. Используются такие машины в оборудовании, требуемом регулировки частоты вращения и запускаемом под нагрузкой, к примеру, в крановых механизмах.
Это может быть интересно:Асинхронный двигатель с короткозамкнутым ротором: конструкция, принцип работы
Учитывая то, что электроснабжение традиционно осуществляется путём доставки потребителям переменного тока, понятно стремление к созданию электромашин, работающих на поставляемой электроэнергии. В частности, переменный ток активно используется в асинхронных электродвигателях, нашедших широкое применение во многих областях деятельности человека. Особого внимания заслуживает асинхронный двигатель с короткозамкнутым ротором, который в силу ряда причин занял прочные позиции в применении.
Секрет такой популярности состоит, прежде всего, в простоте конструкции и дешевизне его изготовления. У электромоторов на короткозамкнутых роторах есть и другие преимущества, о которых вы узнаете из данной статьи. А для начала рассмотрим конструктивные особенности этого типа электрических двигателей.
Конструкция
В каждом электромоторе есть две важных рабочих детали: ротор и статор. Они заключены в защитный кожух. Для охлаждения проводников обмотки на валу ротора установлен вентилятор. Это общий принцип строения всех типов электродвигателей.
Конструкции статоров рассматриваемых электродвигателей ничем не отличаются от строения этих деталей в других типах электромоторов, работающих в сетях переменного тока. Сердечники статора, предназначенного для работы при трехфазном напряжении, располагаются по кругу под углом 120º. На них устанавливаются обмотки из изолированной медной проволоки определённого сечения, которые соединяются треугольником или звездой. Конструкция магнитопровода статора жёстко крепится на стенках цилиндрического корпуса.
Строение электродвигателя понятно из рисунка 1. Обратите внимание на конструкцию обмоток без сердечника в короткозамкнутом роторе.
Рис. 1. Строение асинхронного двигателя с КЗ РоторомНемного по-другому устроен ротор. Конструкция его обмотки очень похожа на беличью клетку. Она состоит из алюминиевых стержней, концы которых замыкают короткозамыкающие кольца. В двигателях большой мощности в качестве короткозамкнутых обмоток ротора можно увидеть применение медных стержней. У этого металла низкое удельное сопротивление, но он дороже алюминия. К тому же медь быстрее плавится, а это не желательно, так как вихревые токи могут сильно нагревать сердечник.
Конструктивно стержни расположены поверх сердечников ротора, которые состоят из трансформаторной стали. При изготовлении роторов сердечники монтируют на валу, а проводники обмотки впрессовывают (заливают) в пазы магнитопровода. При этом нет необходимости в изоляции пазов сердечника. На рисунке 2 показано фото ротора с КЗ обмотками.
Рис. 2. Ротор асинхронного двигателя с КЗ обмоткамиПластины магнитопроводов таких роторов не требуют лаковой изоляции поверхностей. Они очень просты в изготовлении, что удешевляет себестоимость асинхронных электродвигателей, доля которых составляет до 90% от общего числа электромоторов.
Ротор асинхронно вращается внутри статора. Между этими деталями устанавливаются минимальные расстояния в виде воздушных зазоров. Оптимальный зазор находится в пределах от 0,5 мм до 2 мм.
В зависимости от количества используемых фаз асинхронные электродвигатели можно разделить на три типа:
Они отличаются количеством и расположением обмоток статора. Модели с трехфазными обмотками отличаются высокой стабильностью работы при номинальной нагрузке. У них лучшие пусковые характеристики. Зачастую такие электродвигатели используют простую схему пуска.
Двухфазные двигатели имеют две перпендикулярно расположенных обмотки статора, на каждую из которых поступает переменный ток. Их часто используют в однофазных сетях – одну обмотку подключают напрямую к фазе, а для питания второй применяют фазосдвигающий конденсатор. Без этой детали вращение вала асинхронного электродвигателя самостоятельно не начнётся. В связи с тем, что конденсатор является неотъемлемой частью двухфазного электромотора, такие двигатели ещё называют конденсаторными.
В конструкции однофазного электродвигателя используют только одну рабочую обмотку. Для запуска вращения ротора применяют пусковую катушку индуктивности, которую через конденсатор кратковременно подключают к сети, либо замыкают накоротко. Эти маломощные моторчики используются в качестве электрических приводов некоторых бытовых приборов.
Принцип работы
Функционирование асинхронного двигателя осуществляется на основе свойства трёхфазного тока, способного создавать в обмотках статора вращающее магнитное поле. В рассматриваемых электродвигателях синхронная частота вращения электромагнитного поля связана прямо пропорциональной зависимостью с собственной частотой переменного тока.
Существует обратно пропорциональная зависимость частоты вращения от количества пар полюсов в обмотках статора. Учитывая то, что сдвиг фаз составляет 60º, зависимость частоты вращения ротора (в об/мин.) можно выразить формулой:
n1 = (f1*60) / p, где n1 – синхронная частота, f1 – частота переменного тока, а p – количество пар полюсов.
В результате действия магнитной индукции на сердечник ротора, в нём возникнет ЭДС, которая, в свою очередь, вызывает появление электрического тока в замкнутом проводнике. Возникнет сила Ампера, под действием которой замкнутый контур начнёт вращение вдогонку за магнитным полем. В номинальном режиме работы частота вращения ротора немного отстаёт от скорости вращения создаваемого в статоре магнитного поля. При совпадении частот происходит прекращение магнитного потока, ток исчезает в обмотках ротора, вследствие чего прекращается действие силы. Как только скорость вращения вала отстанет, переменными токами магнитных полей, возобновляется действие амперовой силы.
Разницу частот вращения магнитных полей называют частотой скольжения: ns=n1–n2, а относительную величину s, характеризующую отставание, называют скольжением.
s = 100% * ( ns / n1) = 100% * (n1 — n2) / n1 , где ns – частота скольжения; n1, n2 – частоты вращений статорных и роторных магнитных полей соответственно.
С целью уменьшения гармоник ЭДС и сглаживания пульсаций момента силы, стержни короткозамкнутых витков немного скашивают. Взгляните ещё раз на рис. 2 и обратите внимание на расположение стержней, выполняющих роль обмоток ротора, относительно оси вращения.
Скольжение зависит от того, какую механическую нагрузку приложено к валу двигателя. В асинхронных электромоторах изменение параметров скольжения происходит в диапазоне от 0 до 1. Причём в режиме холостого хода набравший обороты ротор почти не испытывает активного сопротивления. S приближается к нулю.
Увеличение нагрузки способствует увеличению скольжения, которое может достигнуть единицы, в момент остановки двигателя из-за перегрузки. Такое состояние равносильно режиму короткого замыкания и может вывести устройство из строя.
Относительная величина отставания соответствующая номинальной нагрузке электрической машины называется номинальным скольжением. Для маломощных электромоторов и двигателей средней мощности этот показатель изменяется в небольших пределах – от 8% до 2%. При неподвижности ротора электродвигателя скольжение стремится к 0, а при работе на холостом ходу оно приближается к 100%.
Во время запуска электромотора его обмотки испытывают нагрузку, что приводит к резкому увеличению пусковых токов. При достижении номинальных мощностей электрические двигатели с короткозамкнутыми витками самостоятельно восстанавливают номинальную частоту ротора.
Обратите внимание на кривую крутящего момента скольжения, изображённую на рис. 3.
Рис. 3. Кривая крутящего момента скольженияПри увеличении крутящего момента коэффициент s изменяется от 1 до 0 (см. отрезок «моторная область»). Возрастает также скорость вращения вала. Если скорость вращения вала превысит номинальную частоту, то крутящий момент станет отрицательным, а двигатель перейдёт в режим генерации (отрезок «генерирующая область»). В таком режиме ротор будет испытывать магнитное сопротивление, что приведёт к торможению мотора. Колебательный процесс будет повторяться, пока не стабилизируется крутящий момент, а скольжение не приблизится к номинальному значению.
Преимущества и недостатки
Повсеместное использование асинхронных двигателей с короткозамкнутыми роторами обусловлено их неоспоримыми преимуществами:
- стабильностью работы на оптимальных нагрузках;
- высокой надёжностью в эксплуатации;
- низкие эксплуатационные затраты;
- долговечностью функционирования без обслуживания;
- сравнительно высокими показателями КПД;
- невысокой стоимостью, по сравнению с моделями на основе фазных роторов и с другими типами электромоторов.
Из недостатков можно отметить:
- высокие пусковые токи;
- чувствительность к перепадам напряжений;
- низкие коэффициенты скольжений;
- необходимость в применении устройств, таких как преобразователи частоты, пусковые реостаты и др., для улучшения характеристик электромотора;
- ЭД с короткозамкнутым ротором нуждаются в дополнительных коммутационных управляющих устройствах, в случаях, когда возникает необходимость регулировать скорость.
Электродвигатели данного типа имеют приличную механическую характеристику. Несмотря на недостатки, они лидируют по показателям их применения.
Основные технические характеристики
В зависимости от класса электродвигателя, его технические характеристики меняются. В рамках данной статьи не ставится задача приведения параметров всех существующих классов двигателей. Мы остановимся на описании основных технических характеристик для электромоторов классов 56 А2 – 80 В2.
В этом небольшом промежутке на линейке моделей эелектромоторов с короткозамкнутыми роторами можно отметить следующее:
Мощность составляет от 0,18 кВт (класс 56 А2) до 2,2 кВт (класс 80 В2).
Ток при максимальном напряжении – от 0,55 А до 5А.
КПД от 66% до 83%.
Частота вращения вала для всех моделей из указанного промежутка составляет 3000 об./мин.
Технические характеристики конкретного двигателя указаны в его паспорте.
Подключение
Статорные обмотки трёхфазного АДКР можно подключать по схеме «треугольник» либо «звезда». При этом для звёздочки требуется напряжение выше, чем для треугольника.
Обратите внимание на то, что электродвигатель, подключенный разными способами к одной и той же сети, потребляет разную мощность. Поэтому нельзя подключать электромотор, рассчитанный на схему «звезда» по принципу треугольника. Но с целью уменьшения пусковых токов можно коммутировать на время пуска контакты звезды в треугольник, но тогда уменьшится и пусковой момент.
Схемы включения понятны из рисунка 4.
Рис. 4. Схемы подключенияДля подключения трёхфазного электрического двигателя к однофазному току применяют фазосдвигающие элементы: конденсаторы, резисторы. Примеры таких подключений смотрите на рисунке 5. Можно использовать как звезду, так и треугольник.
Рис. 5. Примеры схем подключений в однофазную сетьС целью управления работой двигателя в электрическую цепь статора подключаются дополнительные устройства.