Амперметр схема: назначение, схемы подключения, типы, параметры – Как подключить амперметр? Схемы подключения. Как включают в цепь постоянного тока и через трансформатор тока?

Как из вольтметра сделать амперметр схема

♦ В предыдущей статье: «Выпрямитель для зарядки аккумулятора « для контроля зарядного тока применяется амперметр на 5 — 8 ампер. Амперметр довольно дефицитная вещь и не всегда подберешь его на такой ток. Попробуем изготовить амперметр своими руками.
Для этого потребуется стрелочный измерительный прибор магнитно-электрической системы на любой ток полного отклонения стрелки по шкале.

Необходимо посмотреть, чтоб у него не было внутреннего шунта или добавочного сопротивления для вольтметра.
♦ Измерительный стрелочный прибор имеет внутреннее сопротивление подвижной рамки и ток полного отклонения стрелки. Стрелочный прибор может использоваться как вольтметр (добавочное сопротивление включается последовательно с прибором) и как амперметр (добавочное сопротивление включается параллельно с прибором).

♦ Схема для амперметра справа на рисунке.

Добавочное сопротивление — шунт рассчитывается по специальным формулам. Мы же изготовим его практическим путем, применив только калибровочный амперметр на ток до 5 — 8 ампер

, или применив тестер, если он имеет такой предел измерения.

♦ Соберем несложную схему из зарядного выпрямителя, образцового амперметра, провода для шунта и заряжаемого аккумулятора. Смотрите рисунок.

♦ В качестве шунта можно использовать толстый провод из стали или меди. Лучше всего и проще, взять тот же провод, каким наматывалась вторичная обмотка, или чуть-чуть потолще.

Необходимо взять отрезок медного или стального провода длиной около 80 сантиметров, снять с него изоляцию. На двух концах отрезка сделать колечки для болтового крепления. Включить этот отрезок последовательно в цепь с образцовым амперметром.

Один конец от нашего стрелочного прибора припаять к концу шунта, а другим проводить по проводу шунта. Включить питание, установить регулятором или тумблерами ток заряда по контрольному амперметру — 5 ампер.
Начиная от места пайки, другим концом от стрелочного прибора проводить по проводу. Установить одинаковые показания обоих амперметров. В зависимости от сопротивления рамки вашего стрелочного прибора, разные стрелочные приборы будут иметь разную длину провода шунта, иногда до одного метра.

Это конечно не всегда удобно, но если у вас будет свободное место в корпусе, можно аккуратно разместить.

♦ Провод шунта можно смотать в спираль как на рисунке, или еще как нибудь по обстоятельствам. Витки немного растянуть, чтоб не касались друг друга или надеть колечки из хлорвиниловой трубочки по всей длине шунта.
♦ Можно предварительно определить длину провода шунта, а потом вместо голого применить провод в изоляции и намотать уже в навал на заготовку.
Подбирать надо тщательно, проделывая все операции несколько раз, тем точнее будут показания вашего амперметра.
Соединительные провода от прибора необходимо обязательно припаивать непосредственно к шунту, иначе будут неправильные показания стрелки прибора.

♦ Соединительные провода могут быть любой длины, а потому шунт может быть расположен в любом месте корпуса выпрямителя.
♦ Необходимо подобрать шкалу к амперметру. Шкала у амперметра для измерения постоянного тока равномерная.

Один из вариантов шкалы смотрите на рисунке:

Тут можно сделать шкалу на 5 ампер, на 8 ампер или на полное отклонение стрелки до 10 ампер.
Могут быть другие шкалы, на другие цифры по шкале.
А можно подрисовать свои цифры.
Нужно немного пофантазировать.

Такой амперметр подойдет только для измерения постоянного или пульсирующего тока.

Рассмотрены не сложные схемы цифровых вольтметра и амперметра, построенных без использования микроконтроллеров на микросхемах СА3162, КР514ИД2. Обычно, у хорошего лабораторного блока питания есть встроенные приборы, — вольтметр и амперметр. Вольтметр позволяет точно установить выходное напряжение, а амперметр покажет ток через нагрузку.

В старых лабораторных блоках питания были стрелочные индикаторы, но сейчас должны быть цифровые. Сейчас радиолюбители чаще всего делают такие приборы на основе микроконтроллера или микросхем АЦП вроде КР572ПВ2, КР572ПВ5.

Микросхема СА3162Е

Но существуют и другие микросхемы аналогичного действия. Например, есть микросхема СА3162Е, которая предназначена для создания измерителя аналоговой величины с отображением результата на трехразрядном цифровом индикаторе.

Микросхема СА3162Е представляет собой АЦП с максимальным входным напряжением 999 mV (при этом показания «999») и логической схемой, которая выдает сведения о результате измерения в виде трех поочередно меняющихся двоично-десятичных четырехразрядных кодов на параллельном выходе и трех выходах для опроса разрядов схемы динамической индикации.

Чтобы получить законченный прибор нужно добавить дешифратор для работы на семисегментный индикатор и сборку из трех семисегментных индикаторов, включенных в матрицу для динамической индикации, а так же, трех управляющих ключей.

Тип индикаторов может быть любым, -светодиодные, люминесцентные, газоразрядные, жидкокристаллические, все зависит от схемы выходного узла на дешифраторе и ключах. Здесь используется светодиодная индикация на табло из трех семисегментных индикаторов с общими анодами.

Индикаторые включены по схеме динамической матрицы, то есть, все их сегментные (катодные) выводы включены параллельно. А для опроса, то есть, последовательного переключения, используются общие анодные выводы.

Принципиальная схема вольтметра

Теперь ближе к схеме. На рисунке 1 показана схема вольтметра, измеряющего напряжение от 0 до 100V (0. 99,9V). Измеряемое напряжение поступает на выводы 11-10 (вход) микросхемы D1 через делитель на резисторах R1-R3.

Конденсатор СЗ исключает влияние помех на результат измерения. Резистором R4 устанавливают показания прибора на ноль, при отсутствии входного напряжения А резистором R5 выставляют предел измерения так чтобы результат измерения соответствовал реальному, то есть, можно сказать, им калибруют прибор.

Как из вольтметра сделать амперметр схема

Рис. 1. Принципиальная схема цифрового вольтметра до 100В на микросхемах СА3162, КР514ИД2.

Теперь о выходах микросхемы. Логическая часть СА3162Е построена по логике ТТЛ, а выходы еще и с открытыми коллекторами. На выходах «1-2-4-8» формируется двоичнодесятичный код, который периодически сменяется, обеспечивая последовательную передачу данных о трех разрядах результата измерения.

Если используется дешифратор ТТЛ, как, например, КР514ИД2, то его входы непосредственно подключаются к данным входам D1. Если же будет применен дешифратор логики КМОП или МОП, то его входы будет необходимо подтянуть к плюсу при помощи резисторов. Это нужно будет сделать, например, если вместо КР514ИД2 будет использован дешифратор К176ИД2 или CD4056.

Выходы дешифратора D2 через токоограничивающие резисторы R7-R13 подключены к сегментным выводам светодиодных индикаторов Н1-НЗ. Одноименные сегментные выводы всех трех индикаторов соединены вместе. Для опроса индикаторов используются транзисторные ключи VT1-VT3, на базы которых подаются команды с выходов Н1-НЗ микросхемы D1.

Эти выводы тоже сделаны по схеме с открытым коллектором. Активный ноль, поэтому используются транзисторы структуры р-п-р.

Принципиальная схема амперметра

Схема амперметра показана на рисунке 2. Схема практически такая же, за исключением входа. Здесь вместо делителя стоит шунт на пятиваттном резисторе R2 сопротивлением 0,1 От. При таком шунте прибор измеряет ток до 10А (0. 9.99А). Установка на ноль и калибровка, как и в первой схеме, осуществляется резисторами R4 и R5.

Как из вольтметра сделать амперметр схема

Рис. 2. Принципиальная схема цифрового амперметра до 10А и более на микросхемах СА3162, КР514ИД2.

Выбрав другие делители и шунты можно задать другие пределы измерения, например, 0. 9.99V, 0. 999mA, 0. 999V, 0. 99.9А, это зависит от выходных параметров того лабораторного блока питания, в который будут установлены эти индикаторы. Так же, на основе данных схем можно сделать и самостоятельный измерительный прибор для измерения напряжения и тока (настольный мультиметр).

При этом нужно учесть, что даже используя жидкокристаллические индикаторы прибор будет потреблять существенный ток, так как логическая часть СА3162Е построена по ТТЛ-логике. Поэтому, хороший прибор с автономным питанием вряд ли получится. А вот автомобильный вольтметр (рис.4) выйдет неплохой.

Питаются приборы постоянным стабилизированным напряжением 5V. В источнике питания, в который будут они установлены, необходимо предусмотреть наличие такого напряжения при токе не ниже 150mA.

Подключение прибора

На рисунке 3 показана схема подключения измерителей в лабораторном источнике.

Как из вольтметра сделать амперметр схема

Рис. 3. Схема подключения измерителей в лабораторном источнике.

Как из вольтметра сделать амперметр схема

Рис.4. Самодельный автомобильный вольтметр на микросхемах.

Детали

Пожалуй, самое труднодоставаемое — это микросхемы СА3162Е. Из аналогов мне известна только NTE2054. Возможно есть и другие аналоги, о которых мне не известно.

С остальным значительно проще. Как уже сказано, выходную схему можно сделать на любом дешифраторе и соответствующих индикаторах. Например, если индикаторы будут с общим катодом, то нужно КР514ИД2 заменить на КР514ИД1 (цоколевка такая же), а транзисторы VТ1-VТЗ перетащить вниз, подсоединив их коллектора к минусу питания, а эмиттеры к общим катодам индикаторов. Можно использовать дешифраторы КМОП-логики, подтянув их входы к плюсу питания при помощи резисторов.

Налаживание

В общем-то оно совсем несложное. Начнем с вольтметра. Сначала замкнем между собой выводы 10 и 11 D1, и подстройкой R4 выставим нулевые показания. Затем, убираем перемычку, замыкающую выводы 11-10 и подключаем к клеммам «нагрузка» образцовый прибор, например, мультиметр.

Регулируя напряжение на выходе источника, резистором R5 настраиваем калибровку прибора так, чтобы его показания совпадали с показаниями мультиметра. Далее, налаживаем амперметр. Сначала, не подключая нагрузку, регулировкой резистора R5 устанавливаем его показания на ноль. Теперь потребуется постоянный резистор сопротивлением 20 От и мощностью не ниже 5W.

Устанавливаем на блоке питания напряжение 10V и подключаем этот резистор в качестве нагрузки. Подстраиваем R5 так чтобы амперметр показал 0,50 А.

Можно выполнить калибровку и по образцовому амперметру, но мне показалось удобнее с резистором, хотя конечно на качество калибровки очень влияет погрешность сопротивления резистора.

По этой же схеме можно сделать и автомобильный вольтметр. Схема такого прибора показана на рисунке 4. Схема от показанной на рисунке 1 отличается только входом и схемой питания. Этот прибор теперь питается от измеряемого напряжения, то есть, измеряет напряжение, поступающее на него как питающее.

Напряжение от бортовой сети автомобиля через делитель R1-R2-R3 поступает на вход микросхемы D1. Параметры этого делителя такие же как в схеме на рисунке 1, то есть для измерения в пределах 0. 99.9V.

Но в автомобиле напряжение редко бывает более 18V (больше 14,5V уже неисправность). И редко опускается ниже 6V, разве только падает до нуля при полном отключении. Поэтому прибор реально работает в интервале 7. 16V. Питание 5V формируется из того же источника, с помощью стабилизатора А1.

Шунт для амперметра. Или как сделать вольтметр из амперметра и наоборот.

Эту статью я решил написать, когда делал источник питания для своей домашней лаборатории. Из собственного опыта замечено, что на регулируемом блоке питания должен быть

вольтметр, для оценки устанавливаемого напряжения. А так же амперметр, для приблизительной оценки тока потребляемого нагрузкой. Решено в новый источник питания установить эти полезные элементы: вольтметр и амперметр. Поискав в ящиках, нашел две подходящих измерительных головки (основной критерий — минимальные размеры). С максимальным током 50мкА и 30мА.

Как из вольтметра сделать амперметр схемаКак из вольтметра сделать амперметр схема

Сначала сделаем вольтметр из амперметра

Итак, перейдем к расчетам.

Самое простое сделать вольтметр из амперметра, я использую второй амперметр. Для расчетов нам понадобятся: максимальный ток отклонения стрелки — в моем случае 30мА, Максимальное напряжение, которое должен измерять наш вольтметр — 30В.

Используя закон Ома находим сопротивление: R=U/I, R=1кОм.

Значит шунт (резистор) сопротивлением 1кОм нужно подключить последовательно с амперметром. При этом мы получим вольтметр. Т.е. если через такую последовательную цепь будет протекать ток в 30мА, то падение напряжения на этом резисторе равно 30В. В моем случае мне даже не нужно изменять шкалу прибора, достаточно наклеить букву «V», чтобы было понятно, что это вольтметр.

Следует помнить, что через такой вольтметр всегда будет течь ток 0-30мА, в зависимости от измеряемого напряжения от 0-30В. А так как он используется в блоке питания это не критично. Так же не следует забывать, что резистор должен быть подходящей можности, которую определим по формуле P = I*I*R получим P=30мА*30мА*1кОм=0,9Вт ставим с запасом не меньше 1Вт.

Надо ещё учесть внутреннее сопротивление прибора. Тогда добавочный резистор считается так: Rд=Uп/Iи-Rи.
Rд — сопротивление добавочного резистора;
Uп — макс. значение выбранного предела измерения напряжения;
Iи — ток полного отклонения выбранного амперметра;
Rи — внутреннее сопротивление (рамки прибора) выбранного амперметра, оно указывается.

Делаем амперметр из амперметра у которого маленькая шкала.

У первого амперметра шкала 50мкА это очень мало, мне нужно 1,5А. Чтобы расширить диапазон измерения амперметра, нужно установить шунт, но не последовательно, а параллельно с измерительной головкой. Получается ток будет разветвляться и одна часть потечет через амперметр, а другая через сопротивление. Нужно подобрать такое сопротивление, чтобы ток в 1,5А делился на два, 50мкА через амперметр, а остальной ток через резистор.

Для расчетов понадобится знать сопротивление амперметра, но так как его я не знаю, то шунт буду изготавливать методом подгона. Для этого нужно взять медную проволоку диаметром 0,8-1мм длинной 1 метр и измерить ток, при котором стрелка отклоняется в крайнее положение.

Как из вольтметра сделать амперметр схема

Для этого понадобится регулируемый источник напряжения и нагрузка, я использовал автомобильную лампочку. Далее таким образом подгоняем шунт увеличивая длину проволоки если нужно уменьшить максимальный ток или укорачиваем проволоку если нужно увеличить максимальное значение шкалы амперметра.

Как из вольтметра сделать амперметр схема

У меня получился вот такой шунт в четыре слоя. Края я проклеил силиконовым клеем.

Как из вольтметра сделать амперметр схема

Следует помнить, что если случайно оторвется шунт, то через микроамперметр потечет большой ток и он выйдет из строя.

Амперметр из вольтметра делается по аналогии с первым вариантом, только шунт устанавливается не последовательно а параллельно. Также бывает, что в вольтметрах устанавливаются внутренние резисторы, убрав которые можно получить амперметр.

Следует помнить что амперметр должен иметь минимальное сопротивление, а вольтметр должен обладать очень высоким сопротивлением.

Схемы амперметров с линейной шкалой для измерения переменного тока

Применив синхронное выпрямление переменного тока, автор линеаризовал шкалу шунтового амперметра магнитоэлектрического типа без какого-либо усилителя В статье предлагаются варианты схем с однополупериодным и кольцевым синхронным выпрямителем, применяемым обычно в кольцевых модуляторах.

Шкала амперметра переменного тока, построенного с использованием магнитоэлектрического стрелочного прибора с шунтом и простого выпрямителя, обычно нелинейна. Это связано с тем что при уменьшении напряжения ниже некоторого порога (0,2…0,6 В) выпрямительные свойства германиевых и кремниевых диодов резко ухудшаются.

В результате требуется увеличивать падение напряжения на шунте либо применять линейные выпрямители на основе усилителей переменного напряжения. Однако повышение падения напряжения на шунте неизбежно приводит к потерям мощности и росту выходного сопротивления источника питания. К тому же этот способ лишь уменьшает нелинейность, но не устраняет ее полностью.

Правда, применение усилителей позволяет практически полностью устранить нелинейность, но сильно усложняет измеритель.

Между тем линейность простых из мерительных выпрямителей на полупроводниковых диодах можно значительно улучшить без особого усложнения, если использовать синхронное выпрямление.

Однополупериодный синхронный выпрямитель для амперметра

На рис 1 приведена схема однополупериодного синхронного выпрямителя для амперметра с линеаризованной шкалой. В положительный полупериод переменного напряжения (плюс на верхних концах обмоток II и III) открываются диоды VD1 и VD2 подключая микроамперметр к шунту Rш. В отрицательный полупериод диоды закрыты.

В открытом состоянии диоды имеют малое дифференциальное сопротивление, и нелинейность этого сопротивления невелика, поэтому шкала получается практически линейной.

Схема амперметра с трасформатором

Рис. 1. Схема амперметра с трасформатором.

При использовании микроампер метров со шкалой 50 .200 мкА с максимальным падением напряжения на рамке не более 150 мВ минимальное напряжение на обмотке III может составлять 1,5…2 В для германиевых и 2…2,5 В для кремниевых диодов (при меньшем напряжении его нестабильность заметно сказывается на показаниях амперметра).

Максимальное напряжение ограничивается максимально допустимым обратным напряжением используемых диодов Минимальный ток диодов должен в 10.. 20 раз превышать максимальный ток микроамперметра. Дополнительную обмотку можно изготовить самостоятельно, намотав несколько витков тонкого изолированного про вода на катушку трансформатора, если его конструкция позволяет это сделать.

Резисторы R3 и R4 служат для подстройки нуля амперметра, сдвиг которого возникает за счет тока диода VD2, протекающего через шунт, и разброса параметров диодов.

Синфазность подключения обмоток II и III важна при сравнительно низком напряжении обмотки III (менее 2 В), так как при противофазном включении этих обмоток (в этом случае полярность подключения микроамперметра нужно изменить) в приборе появляется нелинейность шкалы (цена деления в конце шкалы плавно увеличивается), что, кстати, иногда может оказаться полезным. Однако при напряжении на обмотке III выше 4 ..5 В эта нелинейность практически не заметна и на фазу включения обмоток можно не обращать внимания

Для защиты микроамперметра от случайных перегрузок параллельно его выводам полезно включить кремниевый диод Д220 КД522 или КД521 в прямом направлении, предварительно убедившись, что он не влияет на показания микроамперметра в конце шкалы.

Двухполупериодный выпрямитель для амперметра

Добавлением еще двух диодов и одного резистора синхронный выпрямитель можно преобразовать в двухполупериодный (рис 2). В качестве источника, открывающего диоды, здесь использована рабочая обмотка трансформатора

Преимущество двухполупериодной схемы выпрямления перед однополупериодной состоит в том, что требуемое падение напряжения на Вш примерно в два раза меньше при одинаковом токе полного отклонения микроамперметра.

Схема двухполупериодного выпрямителя для амперметра

Рис. 2. Схема двухполупериодного выпрямителя для амперметра.

 Так, если в однополупериодном выпрямителе с диодами Д220 для полного отклонения стрелки микроамперметра на 200 мкА (с сопротивлением рамки около 670 Ом) требовалось падение напряжения на Rш, около 0,4 В, то в двухполупериодном это напряжение не превышало 0,2 В.

Приведенная схема является модификацией обычного кольцевого модулятора При увеличении напряжения на R„, до 0,4 В (амплитудное значение) для германиевых и 1,2 В для кремниевых диодов через диоды VD1 VD3 и VD2, VD4 начинает протекать сквозной ток нагрузки. Поэтому резисторы R3-R5 служат не только для балансировки моста Они ограничивают ток через диоды при перегрузке.

Исходя из этих соображений, в двухполупериодном выпрямителе лучше использовать кремниевые диоды и рассчитывать амперметр на максимальное падение напряжения на Rш, не более 0,5….0,6 В.

На случаи перегрузки или КЗ можно принять дополнительные меры по ограничению тока через диоды. Это может быть увеличение сопротивления резисторов R3- R5, гасящего резистора и шунтирующих диодов или стабилитронов.

Получение открывающего напряжения непосредственно от сети 220 В

Для открывания диодов измерительного моста амперметра с линейной шкалой не обязательно использовать трансформатор. На рисунке 3 показан способ получения открывающего напряжения непосредственно от сети 220 В, стабилитрон VD1 ограничивает и стабилизирует это напряжение. Диод VD2 уменьшает нагрев гасящего резистора R5.

Схема - способ получения открывающего напряжения непосредственно от сети 220 В

Рис. 3. Схема — способ получения открывающего напряжения непосредственно от сети 220 В.

Такую схему питания целесообразно использовать и в случае питания от трансформатора, если его выходное напряжение превышает несколько десятков вольт При использовании в подобном случае двухполупериодного выпрямителя диод VD2 необходимо исключить, а последовательно со стабилитроном VD1 включить встречно еще один (того же типа) или использовать двуханодный стабилитрон

При расчете элементов однополупериодного выпрямителя и проведении измерений нужно помнить об особенностях измерения несинусоидального тока или напряжения, учитывая коэффициент формы.

При изготовлении многопредельного амперметра с пределами измеряемого тока менее 0 2 0 4 А необходимо учитывать следующую особенность этих мостовых схем. Ток, открывающий диод VD1 на рис 1 (или VD1, VD2 на рис 2), замыкается непосредственно на источник питания, а ток диода VD2 (или VD3 VD4 на рис. 2) проходит через резистор Rш, и создает на нем падение напряжения, которое, как указывалось выше, компенсируется подстройкой резистора R4

Когда сопротивление резистора Rш не более 0,1…0 20м, падение напряжения на нем от тока диода VD2 (1 …2 мА) не превышает 0,1 .0,4 мВ. При максимальном падении напряжения на шунте 100 ..200 мВ его можно не учитывать. Если же на минимальном пределе измерения сопротивление имеет большее значение, то необходимо принимать меры по поддержанию нуля при переключении пределов измерения.

Если питание моста производится от дополнительной обмотки то на минимальном пределе можно составить шунт из двух половин и подключить вывод обмотки питания моста к средней точке шунта Возможно также использовать дополнительную секцию безразрывного переключателя, чтобы при переключении пределов ток в цепи питания отдельных плеч измерительного моста не прерывался.

При изготовлении амперметров по приведенным схемам необходимо принять меры к повышению температурной стабильности показаний прибора, которая в основном определяется равенством температур диодов измерительного моста.

Для этого целесообразно использовать диодные сборки в одном корпусе либо разместить диоды рядом друг с другом и обеспечить хороший тепловой контакт, залив их компаундом.

В. Андреев, г. Тольятти, Самарская обл. Р2001, 1.

Вольтметр и амперметр повышенной точности — Eddy’s site

Затеял я навести порядок на рабочем столе и радикально упрятать в корпус привода для чтения CD-ROM лабораторный блок питания, блок питания паяльника TS-100, USB-хаб и USB-зарядку. Но в последний момент возникла трудность — китайский вольтметр с амперметром не влезли по ширине передней панели привода. Решил я сделать свой, снова на PIC16F690, схему которого я давно публиковал на моём старом сайте. Но под руку попали сдвоенные 7-сегментные индикаторы, которые замечательно вписались по ширине корпуса 30мм. Пришлось ставить четырехразрядные индикаторы и переписывать программу контроллера для более точного расчета напряжения и тока…

Как выяснилось уже в процессе эксплуатации нового измерителя, повышенное разрешение приборов очень удобно при диагностике ремонтируемых устройств или отладке новых. Реже приходится пользоваться тестером для замера тока потребления.

Схема нового вольтметра и амперметра для лабораторного блока питания мало отличается от схемы старого. Но софт переписал с нуля и радикально. Главное отличие в схеме амперметра применен шунт не 0,1 Ом, а 0,01. Это очень уменьшило падение напряжения на нём, но повысило требования к преобразователю тока в напряжение. Так как в качестве усилителя я применил «народный» LM358, пришлось для компенсации напряжения смещения вводить программную коррекцию. При первом включении прибора (обязательно без нагрузки) он измеряет падение напряжения на шунте и смещение ОУ и принимает этот уровень за ноль и сохраняет значение в энергонезависимую память. Далее все измерения производятся относительно запомненного уровня.

Если по какой-то причине Вы захотите произвести снова калибровку нуля, сделать это можно подав питание на плату с нажатой кнопкой калибровки. Прибор сотрет старое значение. Следующее включение амперметра приведет к измерению и сохранению напряжения условного нуля отсчета.

Резистор, подключенный к выводу 4 микроконтроллера, определяет тип используемого экрана — с общим анодом или общим катодом.
Плата рассчитана на индикатор высотой знака 0,36″.
Мой неудачный первый опыт сборки прибора показал, что зелёные индикаторы почему-то светят весьма слабо. Видимо потому, что яркость слабого свечения зеленых индикаторов делится во времени не на три, а на восемь разрядов двух индикаторов.

В архиве три платы (индикатор и два варианта процессорной платы для контроллеров в корпусах SSOP и SOIC), схема и прошивка прибора.

Если у Вас возникнут вопросы или Вы захотите связаться со мной, сделайте это с помощью формы на страничке «Обратная связь»

Как подключить амперметр, что это за прибор?

Как подключить амперметр, что это за прибор?

Весьма часто в нашей жизнедеятельности возникает ситуация, при которой нам необходимо измерить силу тока. Для чего? Чтобы узнать предполагаемую мощность того или иного оборудования, например. Для определения потенциально уровня нагревания кабеля и так далее. Примерно для этих целей нам и понадобится амперметр переменного тока. Именно он служит для измерения силы тока. К слову, с помощью прибора можно измерить силу не только переменного, но и постоянного тока. Как пользоваться этим инструментом?

Подключение

Чтобы понять, как подключить амперметр, нужно уяснить принцип диапазона измерения. То есть, прибор работает в определенном диапазоне, измеряя от значений в мкА до значений в кА. Учитывая техническую схему подключения, следует опередить максимальный уровень тока шкалы. Само подключение происходит последовательно, а не параллельно существующей нагрузки. Иначе существует опасность перенапряжения прибора. Соответственно, он станет нефункционален, проще говоря, перегорит.

Важным моментом является то, что измеряемый ток сильно зависит от общего сопротивления цепи. Из этого следует, что внутреннее сопротивление прибора должно быть предельно небольшим. Иначе, класс точности результатов может быть под вопросом. Ведь само оборудование будет влиять на числительный показатель. Чтобы точнее уяснить, понадобится схема подключения амперметра.

Шунт

Как подключить амперметр, если величина тока, которая необходима для измерения, превосходит возможности прибора? Для этого как раз и используются разнообразные шунты. Они позволяют расширить измеримый диапазон тока. Нагрузка будет распределена в пользу шунта, он примет на себя большую часть. По сути, шунт просто покажет снижение тока, которое зафиксирует прибор. В данном случае он будет работать по принципу милливольтметра, однако, его показатели будут в амперах, а значит и конечная информации будет корректной.
Для более детального понимания необходима схема включения амперметра через шунт.

Где применяется амперметр?

Амперметр постоянного тока применяется повсеместно. Если мы исключим бытовые нужды, то первым вариантом будут крупные промышленные предприятия. Естественно лишь те, которые, так или иначе, занимаются созданием (генерацией) и дальнейшим потреблением электрической или тепловой энергии.
Помимо этого, широкое применение прибор нашел в строительстве. Ни один серьезный проект не проходит без этого маленького помощника.

Разнообразие оборудования

Устройство амперметра может довольно сильно отличаться в зависимости от модели. Если классифицировать их по типу отсчета, можно выделить стрелочные, световые и электронные варианты.
Амперметр постоянного тока может быть различным также как и способы его функционирования. Тут ряд шире, и остановиться на нем стоит подробнее.

Электромагнитные амперметры необходимы для измерения переменного тока с невысокой частотностью. Схема амперметра данного типа самая простая, соответственно – они наиболее дешевые на рынке.
Если вам интересно, как называется прибор для измерения силы тока с высокой частотностью, то это термоэлектрический измеритель. Принцип действия амперметра такого рода заключается в работе проводника и термопары. Проводник с помощью проходящего по нему тока нагревает термопару, что и служит способом вычисления силы тока.

Ферродинамические устройства необходимы для стрессовой среды с повышенным магнитным полем. Они более устойчивы к внешнему и внутреннему воздействию. Самым последним словом техники является амперметр цифровой. Это наиболее прогрессивные модели, которые не боятся сильного напряжения, механических повреждений. Они гораздо проще в освоении и применении. Как подключить цифровой амперметр? В большинстве случаев, если производитель не указал иное, точно так же как и обычный.

На этом основные виды амперметров можно считать исчерпанными. Некоторые пользователи, правда, посчитают, что один вид мы пропустили. А именно вольтметр.

Отличия вольтметра от амперметра

Для начала давайте просто разберем этимологию слов. Сразу понятно, что приборы произошли от слов «ампер» и «вольт». И хотя первый может подключаться к той же цепи, что и вольтметр, назначение у них совершенно разное. Ампер – единица измерения силы тока, тогда как вольт – единица измерения напряжения. Так чем же амперметр отличается от вольтметра? Правильно, первый измеряет силу, а второй напряжение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *