Тиристорный регулятор мощности схема: Сайт заблокирован

Содержание

Регулятор мощности тиристорный, схемы регуляторов напряжения на тиристорах

В статье стоит раскрыть тему того, как совершает работу тиристорный регулятор напряжения, схему которого можно более подробно осмотреть в интернете.

В повседневной жизни в большинстве случаев может развиться особая необходимость в регулировании общей мощности бытовых приборов, к примеру, электроплит, паяльника, кипятильника, а также ТЭНов, на транспорте — оборотов двигателя и прочего. В этом случае на помощь нам придёт простая и радиолюбительская конструкция — это особый регулятор мощности на тиристоре.

Создать такое устройство не составит особого труда, оно может стать тем первым самодельным прибором, который будет выполнять функцию регулировки температуры жала в паяльнике у любого начинающего радиолюбителя. Нужно отметить и тот факт, что готовые паяльники на станции с общим контролем температуры и остальными особенными функциями стоят намного больше, чем самые простые модели паяльников.

Минимальное число деталей в конструкции поможет собрать несложный тиристорный регулятор мощности с навесным монтажом.

Следует отметить, что навесной тип монтажа — это вариант осуществления сборки радиоэлектронных компонентов без использования при этом специальной печатной платы, а при качественном навыке он помогает быстро собрать электронные устройства со средней сложностью производства.

Также вы можете заказать электронный тип конструктора тиристорного типа регулятора, а тот, кто хочет полностью разобраться во всём самостоятельно, должен изучить некоторые схемы и принцип функционирования прибора.

Между прочим, такое устройство является регулятором общей мощности

. Такое устройство может быть применимо для управления общей мощностью либо управлением числа оборотов. Но для начала нужно полностью разобраться в общем принципе функционирования такого устройства, ведь это поможет понять, на какую нагрузку стоит рассчитывать при использовании такого регулятора.

Как совершает свою работу тиристор?

Тиристор — это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.

Тиристор обладает сразу тремя выводами тока:

  1. Катод.
  2. Анод.
  3. Управляемый электрод.

Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.

Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод — катод.

Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.

Вам, скорее всего, сложно понять схему его строения. Но, не нужно расстраиваться — ниже будет более подробно описан процесс функционирования такого устройства.

Область использования тиристорных устройств

В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.

Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?

Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом,

от общей глубины нажатия на кнопку-курок в устройстве. Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.

Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом.

Как работает такое устройство?

Описанные ниже характеристики будет соответствовать большинству схем.

  1. Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
  2. Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.

При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.

Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).

В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.

Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.

Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.

Тиристорный регулятор напряжения своими руками

Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.

Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса.

Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.

Способы регулирования фазового напряжения в сети

  1. Есть сразу несколько способов осуществления регуляции переменного напряжения в тиристорах: можно совершать пропуск или же запрещать выход на регуляторе целых четыре полупериода (либо периода) переменного напряжения. Можно включать не в начале совершения полупериода сетевого напряжения, а с совершением некоторой задержки. В течение данного времени напряжение на выходе из регулятора будет равняется отметки нуль, а общая мощность не будет передаваться на выход устройства. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
  2. Время задержки в большинстве случаев именуют углом открывания тиристора, так как во время нулевого значения угла почти всё напряжение от входа будет переходить к выходу, только падение на открытой области тиристора начнёт теряться. Во время увеличения общего тиристорного угла регулятор напряжения будет значительно снижать выходной параметр напряжения.
  3. Регулировочная характеристика у такого прибора во время своей работы, во время активной нагрузки осуществляется особо интенсивно. При угле равному 90 градусов (электрических) на выходе из разъёма будет половина входного напряжения, а при общем угле в 180 электрических градусов на выходе будет показатель нуль.

На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.

Схемы на тиристорах

Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.

Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.

  1. VD — КД209 (либо близкие по его общим характеристикам).
  2. R 1 — сопротивление с особым номиналом в 15 кОм.
  3. R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
  4. Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).

Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.

Морской флот —

description

bookmark access_time personadmin chat_bubble0

Для особо сильно нагруженных узлов с большим крутящим моментом, применяются эвольвентные шлицевые соединения. Они способны выдерживать динамические нагрузки и работать …

description

Отвертка — простейший инструмент, который всегда должен быть под рукой: дома, на даче, в гараже, ведь трудно представить какое-либо изделие, …

description

После заливки бетонного пола на его поверхности обычно появляются различные неровности, которые могут стать причиной некачественного монтажа напольного покрытия. Чтобы …

description

Современные угловые шлифмашины, более известные как приборы под названием «болгарки», используются для различных технологических процессов при строительстве и ремонте. Подбирая …

description

Шлифовка придаёт внутреннему пространству дома из бруса красоту и завершённость. Даже строганый брус после усушки покрывается ворсом, это свойство присуще …

description

Когда деталь готова, ее поверхность следует тщательно отшлифовать. У деталей из цельного дерева принято сглаживать спилы или удалять следы клея, …

description

Какие преимущества ручной шлифовки? Шлифование дерева вручную хоть и требует больших трудозатрат, но взамен обеспечивает ряд важных преимуществ: менее агрессивную …

description

При проведении различного типа ремонта, на момент производства мебели или деревянных вещей нередко приходится проводить шлифование древесины. Существует довольно много …

description

Рекомендованные сообщения Создайте аккаунт или войдите в него для комментирования Вы должны быть пользователем, чтобы оставить комментарий Создать аккаунт Зарегистрируйтесь …

description

Установки для автоматической сварки продольных швов обечаек – в наличии на складе! Высокая производительность, удобство, простота в управлении и надежность …

Тиристорный регулятор напряжения простая схема, принцип работы

Тиристор это один из мощнейших полупроводниковых приборов, именно поэтому он часто используется в мощных преобразователях энергии. Но он обладает своей спецификой управления: его можно открыть импульсом тока, а вот закроется он только когда ток опуститься почти до нуля (если быть точнее, то ниже тока удержания). Из этого тиристор в основном применяются для коммутирования переменного тока.

Фазовое регулирование напряжения

Существует несколько способов регулирования переменного напряжения тиристорами: можно пропускать или запрещать на выход регулятора целые полупериоды (или периоды) переменного напряжения. А можно включать не в начале полупериода сетевого напряжения, а с некоторой задержкой — ‘a’. В течении этого времени напряжение на выходе регулятора будет равно нулю, а мощность не будет передаваться на выход. Вторую часть полупериода тиристор будет проводить ток и на выходе регулятора появиться входное напряжение.

Время задержки ещё часто называют углом открывания тиристора, так вот при нулевом угле практически всё напряжение со входа будет попадать на выход, только падение на открытом тиристоре будет теряться. При увеличении угла тиристорный регулятор напряжения будет снижать выходное напряжение.

Регулировочная характеристика тиристорного преобразователя при работе на активную нагрузку приведена на следующем рисунке. При угле равном 90 электрических градусов на выходе будет половина входного напряжения, а при угле 180 эл. градусов на выходе будет ноль.

На основе принципов фазового регулирования напряжения можно построить схемы регулирования, стабилизации, а также плавного пуска. Для плавного пуска напряжение нужно повышать постепенно от нуля до максимального значения. Таким образом угол открывания тиристора должен изменяться от максимального значения до нуля.

Схема тиристорного регулятора напряжения

Таблица номиналов элементов

  • C1 – 0,33мкФ напряжение не ниже 16В;
  • R1, R2 – 10 кОм 2Вт;
  • R3 – 100 Ом;
  • R4 – переменный резистор 33 кОм;
  • R5 – 3,3 кОм;
  • R6 – 4,3 кОм;
  • R7 – 4,7 кОм;
  • VD1 .. VD4 – Д246А;
  • VD5 – Д814Д;
  • VS1 – КУ202Н;
  • VT1 – КТ361B;
  • VT2 – КТ315B.

Схема построена на отечественной элементной базе, собрать её можно из тех деталей, которые провалялись у радиолюбителей 20-30 лет. Если тиристор VS1 и диоды VD1-VD4 установить на соответствующие охладители, то тиристорный регулятор напряжения будет способен отдавать в нагрузку 10А, то есть при напряжении 220 В получаем возможность регулировать напряжение на нагрузке в 2,2 кВт.

В устройстве всего два силовых компонента диодный мост и тиристор. Они рассчитаны на напряжение 400В и ток 10А. Диодный мост превращает переменное напряжение в однополярное пульсирующее, а фазовое регулирование полупериодов осуществляет тиристор.

Параметрический стабилизатор из резисторов R1, R2 и стабилитрона VD5 ограничивает напряжение, которое подается на систему управления на уровне 15 В. Последовательное включение резисторов нужно для увеличения пробивного напряжения и увеличения рассеиваемой мощности.

В самом начале полупериода переменного напряжения С1 разряжен и в точке соединения R6 и R7 тоже нулевое напряжение. Постепенно напряжения в этих двух точках начинают расти и чем меньше сопротивление резистора R4, тем быстрее напряжение на эмиттере VT1 перегонит напряжение на его базе и откроет транзистор.
Транзисторы VT1, VT2 составляют маломощный тиристор. При появлении напряжения на база-эмиттерном переходе VT1 больше порогового, транзистор открывается и открывает VT2. А VT2 отпирает тиристор.

Представленная схема достаточно проста, её можно перевести на современною элементную базу. Также можно при минимальных переделках снизить мощность или напряжение работы.

Тиристорный регулятор напряжения сети. — Радиомастер инфо

Эти регуляторы напряжения сети широко известны и успешно применяются для регулировки яркости свечения ламп, температуры нагревателей, кипятильников, жала паяльника, регулировки тока заряда аккумулятора и так далее. В этой статье рассмотрены самые простые схемы таких регуляторов, показаны испытания в работе.

В основном наиболее распространены три схемы:

  1. Тиристорный регулятор на двух тиристорах, четырех диодах и двух конденсаторах.

  1. Тиристорный регулятор на двух тиристорах, двух динисторах и двух конденсаторах.

  1. Симисторный регулятор. Эта схема имеет минимальное количество деталей, так как симистор, это в принципе два тиристора в одном корпусе и он один работает на две полуволны, отрицательную и положительную, в то время как тиристор только на одну полуволну, и мы вынуждены были включать их встречно-параллельно, как и видно из предыдущих схем. Динистор DB3, также двунаправленный, в отличие от КН102.

 

Все схемы рабочие, выбрать можно ту, детали которой для вас доступнее. В свое время, очень давно, я выбрал схему 1, она по описанию регулирует напряжение от 40 В до 220В. Когда собрал, попробовал расширить пределы регулировки. Удалось добиться регулировки от 2 В до 215 В при напряжении сети 220 В. Изменены всего несколько номиналов резисторов и емкость одного конденсатора. Для удобства добавлен выключатель, предохранитель и вольтметр. Получилась вот такая схема, своего рода маленький ЛАТР (лабораторный автотрансформатор).

Недостатком является то, что при включении напряжение скачет до максимума, а затем устанавливается в соответствии с выставленным переменным резистором значением. Но это не слишком мешает если вы регулируете нагреватель, паяльник или лампу. Большим достоинством является плавная регулировка напряжения на нагрузке от 2-3 вольт до максимального значения, которое, как уже говорилось, всего на несколько вольт ниже напряжения сети. Если планируете регулировать напряжение на нагрузке с большими токами (5-7) А, тиристоры нужно установить на радиаторы. Их максимальный ток 10 А, но на пределе использовать не желательно.

Конструктивно тиристорный регулятор выполнен в алюминиевом корпусе, без печатной платы, навесным монтажом, на куске гетинакса.

Расположение основных деталей:

Минимальное напряжение на нагрузке несколько вольт, около 0 В.

Максимальное напряжение на нагрузке, на несколько вольт ниже напряжения сети.

Достоинство этой схемы – простота и надежность. Собрана в свое время из подручных деталей. Отработала без отказов много лет. В основном подключал нагрузки до 300 Вт, хотя иногда и больше.

Материал статьи продублирован на видео:

(PDF) Тиристорный регулятор мощности переменного тока на микроконтроллере

Тиристор и симистор управляются подобно триггеру. При подаче

управляющего импульса в цепь управления (напряжение между управляющим

электродом и катодом) тиристор резко переходит в открытое состояние и

остается в таком состоянии до тех пор, пока через него проходит прямой ток,

даже если управляющий сигнал прекратился. Поэтому тиристоры можно

открывать короткими импульсами. Закрываются они сами при снижении тока до

нуля. На переменном токе каждый тиристор можно открывать в полуволне

напряжения одного знака, поскольку тиристор проводит силовой ток в одном

направлении, как диод. Симистор может проводить ток в обоих направлениях и

открывается в любой полуволне напряжения.

Если открывающий импульс сместить относительно начала полуволны

напряжения на время

t, то на нагрузке выделится только ее часть. Изменяя с

помощью напряжения регулировки

V временное смещение

t можно

регулировать ширину части полуволны напряжения

V, которое

прикладывается к нагрузке. Такой способ регулирования называют фазовым.

Система управления

Микроконтроллер в системе управления выполняет функции фазового

регулятора. Назначение выводов микроконтроллера в данной схеме следующее:

Аналоговые входы 0-5 В

GP0 – напряжение регулировки угла

или временного смещения

t

открывания вентиля,

GP1 – задатчик времени нарастания и спада угла регулировки от 0 до

максимума в пределах 20 мс-10 с,

GP2 – задатчик времени реакции на провалы напряжения сети 20 мс-2,56 с,

Дискретные порты

GP3 – вход синхроимпульсов,

GP4 – выход индикатора задаваемого угла проводимости вентиля,

GP5 – выход открывающих импульсов.

Система управления работает следующим образом. В нормальном режиме

на выводе GP3 микроконтроллера должны быть синхроимпульсы с частотой

100 Гц ±5%, поступающие через оптрон синхронизации. Тогда на выходе GP4

будут индикаторные импульсы и на выходе GP5 – серии открывающих

импульсов с частотой синхроимпульсов. Выходные импульсы разрешены при

напряжении регулировки

V>0,1 В. Изменение напряжения регулировки

V от примерно 0,1 В до 5 В вызовет изменение временного смещения

t

открывающих импульсов от 10мс до нуля, как видно на диаграмме напряжений

регулятора. Возможна регулировка потенциометром и внешним сигналом в виде

постоянного либо импульсного напряжения с частотой более 500 Гц.

Программный алгоритм микроконтроллера имеет функции временной

фильтрации импульсных помех сигнала синхронизации, что позволяет сохранять

устойчивую работу системы управления в условиях промышленной сети.

схема, принцип работы и применение. Тиристорный прибор управления

Регуляторы мощности получили широкое применение в повседневной жизни. Их использование очень разнообразное: от регулирования величины яркости освещения до управления оборотами различных двигателей, с их помощью можно выставлять требуемую температуру различных нагревательных приборов. Таким образом, регулировать мощность можно для нагрузки любого вида как реактивной, так и активной.

Регулятор мощности представляет собой определённую электронную схему, с помощью которой можно контролировать значение энергии, подводимой к нагрузке.

Устройства, предназначенные для управления значениями мощности, разделяют по способу регулировки:

По виду выходного сигнала:

  • стабилизированные;
  • не стабилизированные.

Регулировка осуществляется при питании как от постоянного, так и переменного напряжения. Управлять можно величиной напряжения или тока.

По своему виду расположения регуляторы могут быть портативными и стационарными, устанавливаться в любом положении: вертикальном, потолочном, горизонтальном, крепиться на специальную дин рейку или встраиваться. Конструктивно выполняются как на специализированных печатных платах, так и с помощью навесного монтажа.

Основными характеристиками , на которые следует обращать внимание, являются следующие параметры:

  • плавность регулировки;
  • рабочая и пиковая подводимая мощность;
  • диапазон входного рабочего напряжения;
  • диапазон задания напряжения, поступающего на нагрузку;
  • условия эксплуатации.

Тиристорный регулятор мощности

Схема и принцип работы такого устройства не отличается особой сложностью. Основное назначение тиристорного преобразователя — управление устройствами с малой мощностью, но в редких случаях и большой. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока. Главным компонентом такой схемы является тиристор, работающий в режиме ключа. При появлении разности потенциалов на управляющем контакте он открывается. Чем больше задержка при включении, тем меньше мощности поступает в нагрузку.

Простейшая схема, кроме тиристора, содержит два биполярных транзистора, два резистора, задающих рабочую точку, и конденсатор. Транзисторы, работая в режиме ключа, формируют управляющий сигнал. Как только разность потенциалов на конденсаторе достигает значения, равному рабочему, то транзисторы открываются, и подаётся сигнал на управляющий контакт. Конденсатор начинает разряжаться до следующего полупериода.

Преимущества этого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом используется как активная, так и пассивная система охлаждения.

Применяется тиристорный регулятор для управления мощностью бытовых (паяльники, электронагреватели, лампы накаливания и т. д.) и производственных приборов (плавный запуск мощных силовых установок). Агрегат может быть однофазным и трёхфазным.

Изготовление устройства самостоятельно

Если есть необходимость использовать тиристорный регулятор мощности, можно своими руками сделать прибор неплохого качества. Для этого нужно в специализированной точке продаж приобрести набор, содержащий подробную схему с описанием принципа сборки и работы. Или можно использовать любую схему из интернета или литературы и спаять устройство самостоятельно.

В качестве тиристоров можно использовать любой тип, например, отечественный КУ202Н или импортный bt151, в зависимости от необходимой мощности. Кроме тиристора, значение последней будет также зависеть от параметров , применяемого в схеме. Регулировка мощности осуществляется с помощью переменного резистора. Если нет возможности или желания изготовить печатную плату, можно собрать прибор с помощью навесного монтажа. При этом необходимо тщательно заизолировать все места соединений во избежание короткого замыкания.

Симистор является полупроводниковым элементом, предназначенным для использования в цепях переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, проводящего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно из-за этой способности симистор и применяется в сетях переменного тока.

Мощность регулируется в этом случае путём изменения количества полупериодов напряжения, которые действуют на нагрузку. Главное отличие от тиристорных схем в том, что здесь не используется выпрямительное устройство. Работа схемы основана на принципе фазного управления, то есть на изменении момента открытия симистора относительно перехода сетевого напряжения через ноль.

Этот прибор используется для управления нагревательными элементами, лампами накаливания, оборотами двигателя. Сигнал на выходе устройства имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление прибора даже проще, чем изготовление тиристорного регулятора. Широкую популярность получили симисторы средней мощности типа BT137−600E или MAC97A6. Схема регулятора мощности на симисторе с использованием этих элементов отличается простотой изготовления.

Фазовый регулятор

Фазовое регулирование используется для плавного запуска двигателей различного типа или управления током при заряде аккумулятора. Один из видов таких приборов является диммер.

Основа работы лежит в изменении угла открытия ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижается действующая величина напряжения.

Достоинство такого типа регулирования — низкая стоимость ввиду применения недорогих радиодеталей. А вот основной недостаток — значимый коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

Нередко в конструкции такого вида регуляторов используются микросхемы низкочастотного типа. Благодаря этому регулятор способен быстро изменять мощность. Фазовые регуляторы редко стабилизируют с помощью стабилитронов, обычно роль стабилизатора выполняют попарно работающие тиристоры.

Регулятор мощности для паяльника своими руками

Рассмотрим пример изготовления регулятора тока своими руками. Например, будем регулировать мощность паяльника. Регулирование в таком устройстве позволяет не перегревать место пайки и способно защищать жало паяльника от выгорания.

Такого типа устройства выпускаются достаточно давно. Одним из видов его был отечественный прибор, носящий название «Добавочное устройство для электропаяльника типа П223». Он позволял использовать низковольтный паяльник напряжением 36 вольт, питаемый от сети 220 В.

Регулятор на симисторе КУ208Г

Схема прибора довольно интересная и простая в реализации. Отличительной её особенностью является использование неоновой лампочки.

Конденсатор, величиной порядка 0,1 мкФ, предназначен для генерации пилообразного импульса и защиты схемы управления от помех. Резисторы применяются для ограничения тока, а с помощью переменного резистора ток регулируется, его величина составляет около 220 кОм. Неоновая лампочка позволяет выполнять линейное управление и одновременно является индикатором. По интенсивности её яркости можно контролировать регулировку.

Недостатком такой схемы будет слабая информированность о мощности паяльника. Для наглядного отображения значений выставленного значения, при достаточном уровне радиоподготовки, можно применить микроконтроллер, например, pic16f628a. На нем также возможно будет выполнить электронную регулировку мощности, отказавшись от переменного резистора.

Регулировка на интегральном стабилизаторе

Ещё одним способом управления мощностью является применение интегральных стабилизаторов. Используя такое устройство, очень легко изготовить диммер для 12 вольтового регулятора напряжения. Такое устройство простое в сборке и обладает встроенной защитой, может использоваться как для подключения паяльника на 12 В, так и светодиодной ленты. Обычно переменный резистор подключается к входу управляющего электрода микросхемы. Недостаток — сильный нагрев стабилизирующей микросхемы.

Переменное напряжение сети 220 В понижается через трансформатор до 16−18 вольт. Далее через диодный мост и сглаживающий конденсатор выпрямленное значение поступает на вход линейного стабилизатора. С помощью переменного резистора посредством изменения рабочей характеристики микросхемы выставляется требуемое напряжение на выходе. Такое напряжение будет стабилизированным и для нашего случая составит 12 вольт.

При самостоятельном изготовлении приборов соблюдайте осторожность и помните про технику безопасности при работе с сетью переменного тока 220 В. Как правило, верно выполненный регулятор из исправных деталей не требует настройки и сразу начинает работать.

Если в жилье есть газоснабжение, готовить пищу на газовой плите удобнее, а отопление газовым котлом обычно дешевле электрического варианта. Но при отсутствии газа оптимизация потребления электроэнергии становится очень важной задачей. Для ее решения надо потреблять ровно столько электрической энергии, сколько необходимо. А для этого потребуется оптимальное управление бытовыми электроприборами и освещением. Многие электроплиты, электрообогреватели, вентиляторы и т.д. снабжены встроенными регуляторами.

Но технические возможности системы управления электрооборудованием стоят немалых денег. И по этой причине чаще всего покупаются недорогие электроприборы с простейшими регуляторами. Далее мы расскажем читателям об устройствах, использование которых даст не только экономию электроэнергии, но и сделает многие электроприборы более удобными. Эти устройства — регуляторы мощности. Их назначение — регулировка среднего значения напряжения на нагрузке.

Проще всего купить диммер

Они уменьшают его величину, а соответственно, и потребляемую мощность. По законам Джоуля-Ленца и Ома для электрической цепи. Эффективное регулирование мощности нагрузки обеспечивают специальные технические решения. А любая схема регулятора мощности содержит полупроводниковый коммутатор. Кто желает поскорее обрести возможность гибкого управления своими электроприборами, может легко купить простой регулятор мощности. Им является диммер. Разнообразные модели этого устройства продаются в торговых сетях.

Очень удобен такой регулятор на даче. Он будет замечательным дополнением к маленькому кипятильнику или одно-, двухконфорочной электроплитке. Теперь в ходе приготовления еды не будет подгорания и слишком сильного кипения. Покупая регулятор мощности, обязательно удостоверьтесь в его соответствии решаемым задачам. Он должен быть мощнее управляемого электрооборудования. Большинство моделей диммеров рассчитано на обслуживание квартирного освещения. По этой причине они в основном регулируют мощность до 300 Вт.

Не нашел в магазине — сделай сам

Чтобы приобрести более мощную модель, придется поискать ее в торговых сетях. Альтернативное решение — просмотр схем регуляторов мощности, изготовление своими руками выбранной модели. Чтобы помочь нашим читателям выбрать оптимальную схему, более подробно опишем главные особенности этих устройств. Регулятор на полупроводниковом ключе может быть выполнен на

Регулятор мощности, схема которого содержит любой из перечисленных полупроводниковых ключей, всегда пребывает в одном из двух состояний. Он либо максимально ограничивает ток (отключает нагрузку), либо почти не оказывает сопротивления (подключает нагрузку). При срабатывании сопротивление переходов полупроводниковых приборов быстро изменяется по величине. Каждому его значению соответствует определенная электрическая мощность. Она выделяется как тепло и носит название динамических потерь. Чем быстрее срабатывает прибор (отключает или подключает нагрузку), тем меньше динамические потери.

Наиболее быстродействующими ключами являются транзисторы. Но они и включаются и выключаются при любой ненулевой величине напряжения. Если эти процессы происходят вблизи его амплитудного значения, динамические потери будут максимально большими. Обычный тиристорный ключ отличается тем, что выключается без управляющего сигнала при переходе тока нагрузки через ноль. Хотя его включение происходит при той же амплитуде переменного напряжения, что и у транзисторов.

Выбери триак

По этой причине схема тиристора, а особенно симисторного регулятора мощности получается более простой, экономичной и надежной. Особенно если он быстро включается. У регулятора мощности на симисторе кроме него нет больше полупроводниковых приборов, по которым течет ток нагрузки. А у регуляторов с остальными ключами такими приборами обязательно будут выпрямительные диоды, в том числе встроенные. Поэтому рекомендуем остановиться на симисторах — схемы с ними есть во многих справочниках, популярных журналах а, следовательно, и в интернете. Их легко найти и выбрать что-либо приемлемое.

Первый регулятор мощности на симисторе КУ208Г используется уже много лет, начиная с 80-х годов прошлого века.

Современные симисторы в регуляторах

Устаревший дизайн КУ208Г не всегда удобен для размещения в корпусе регулятора. Новая модель BT136 600E, у которой параметры включения и регулировки примерно такие же, позволит собрать более компактный симисторный регулятор мощности. С этой моделью из-за ее компактности получается значительно больше вариантов конструкции, из которых можно выбирать.

Если самостоятельно изготавливается регулятор мощности, схема которого взята из какого-либо источника, обязательно сравните максимальные токи используемого ключа и нагрузки. В этих целях разделите паспортную мощность нагрузки на 220. Для надежной работы регулятора мощности на симисторе и не только полученное значение тока должно составлять 0,7 от номинального значения ключа, используемого в схеме. Поэтому для многих бытовых электроприборов КУ208Г окажется слабоват. Но его можно заменить более мощным, например ВТА 12.

Этот ключ со своими 12 амперами сможет надежно регулировать нагрузку до 1848 Вт с непродолжительным увеличением ее до 2000 Вт. Собранный регулятор мощности на симисторе этой модели, например, можно применить для управления электрическим чайником. Один из таких вариантов показан далее.

При выборе схемы регулятора мощности

  • коллекторного мотора постоянного тока,
  • универсальных (тоже коллекторных) двигателей,
  • пригодного для управления электродвигателя в каком-либо электрооборудовании,

рекомендуем обратить внимание на безопасность управления. Она обеспечивается гальванической развязкой в схеме регулятора. Ключ надежно развязывается от управляющего элемента, к которому прикасается пользователь. Для этого применяются схемотехнические решения с трансформаторами, а также оптронные электронные приборы. Примеры подобных схем показаны далее. В этих схемах управляющий элемент является частью контроллера.

Эффективный, надежный и безопасный регулятор мощности добавит многим вашим электроприборам новые потребительские свойства. За вами остается правильный выбор устройства при покупке или изготовление их без ошибок своими руками по выбранной схеме.

В статье мы расскажем о том, как изготовить симисторный регулятор мощности своими руками. Что такое симистор? Это прибор, построенный на кристалле полупроводника. У него аж 5 p-n-переходов, ток может проходить как в прямом, так и в обратном направлении. Но эти элементы широкое распространение в современной промышленной аппаратуре не получили, так как у них высокая чувствительность к помехам электромагнитной природы.

Также они не могут работать при высокой частоте тока, выделяют большое количество тепла, если производят коммутацию больших нагрузок. Поэтому в промышленной аппаратуре используют IGBT-транзисторы и тиристоры. Но симисторы тоже не стоит упускать из виду — они дешевые, у них маленький размер, а самое главное — высокий ресурс. Поэтому они могут использоваться там, где перечисленные выше недостатки не играют большой роли.

Как работает симистор?

Встретить сегодня симисторный регулятор мощности можно в любой бытовой технике — в болгарках, шуруповертах, стиральных машинках и пылесосах. Другими словами, везде, где есть необходимость в плавной регулировке частоты вращения двигателя.

Регулятор работает как электронный ключ — он закрывается и открывается с определенной частотой, которая задается схемой управления. Когда прибор отпирается, полуволна напряжения проходит через него. Следовательно, к нагрузке поступает небольшая часть минимальной мощности.

Можно ли сделать самому?

Многие радиолюбители изготавливают своими руками симисторные регуляторы мощности для различных целей. С его помощью можно контролировать нагрев жала паяльника. Но, к сожалению, на рынке готовые устройства встретить можно, но довольно редко.

У них низкая стоимость, но часто приборы не отвечают требованиям, которые предъявляются потребителями. Именно поэтому намного проще, оказывается, не купить готовый регулятор, а сделать его самостоятельно. В этом случае вы сможете учесть все нюансы использования прибора.

Схема регулятора

Давайте рассмотрим простой симисторный регулятор мощности, который можно использовать с любой нагрузкой. Управление фазово-импульсное, все компоненты традиционные для таких конструкций. Нужно применять такие элементы:

  1. Непосредственно симистор, рассчитанный на напряжение 400 В и ток 10 А.
  2. Динистор с порогом открывания 32 В.
  3. Для регулировки мощности используется переменный резистор.

Ток, который протекает через переменный резистор и сопротивление, заряжает конденсатор с каждой полуволной. Как только конденсатор накопит заряд и напряжение между его пластинами будет 32 В, откроется динистор. При этом конденсатор разряжается через него и сопротивление на управляющий вход симистора. Последний при этом открывается, чтобы ток прошел к нагрузке.

Чтобы изменить длительность импульсов, нужно подобрать переменный резистор и пороговое напряжение динистора (но это постоянная величина). Поэтому придется «играть» с сопротивлением переменного резистора. В нагрузке мощность оказывается сопротивлению переменного резистора. Диоды и постоянный резистор использовать не обязательно, цепочка предназначена для того, чтобы обеспечить точность и плавность регулировки мощности.

Как работает устройство

Ток, который протекает через динистор, ограничивается постоянным резистором. Именно с его помощью происходит корректировка длины импульса. С помощью предохранителя происходит защита цепи от КЗ. Нужно отметить тот факт, что динистор в каждой полуволне открывается на один и тот же угол.

Поэтому выпрямление протекающего тока не происходит, можно подключить даже индуктивную нагрузку к выходу. Поэтому использоваться может симисторный регулятор мощности и для трансформатора. Для того чтобы подобрать симисторы, нужно учесть, что для нагрузки в 200 Вт необходимо, чтобы ток был равен 1 А.

В схеме используются такие элементы:

  1. Динистор типа DB3.
  2. Симисторы типа ВТ136-600, ТС106-10-4 и аналогичные с номиналом по току до 12 А.
  3. Полупроводниковые диоды германиевые — 1N4007.
  4. Электролитический конденсатор на напряжение более 250 В, емкость 0,47 мкФ.
  5. Переменный резистор 100 кОм, постоянные — от 270 Ом до 1,6 кОм (подбираются опытным путем).

Особенности схемы регулятора

Такая схема является самой распространенной, но можно встретить и небольшие ее вариации. Например, иногда вместо динистора ставят диодный мостик. В некоторых схемах встречается цепочка из емкости и сопротивления для подавления помех. Существуют и более современные конструкции, в которых применяется схема управления на микроконтроллерах. При использовании такой схемы вы получаете точную регулировку тока и напряжения в нагрузке, но реализовать ее сложнее.

Подготовительные работы

Для того чтобы собрать симисторный регулятор мощности для электродвигателя, вам достаточно придерживаться такой последовательности:

  1. Сначала нужно определить характеристики прибора, который будет подключаться к регулятору. К характеристикам можно отнести: число фаз (либо 3, либо 1), необходимость в точной корректировке мощности, напряжение и ток.
  2. Теперь нужно выбрать конкретный тип устройства — цифровой или аналоговый. После этого можно осуществить выбор компонентов по мощности нагрузки. В принципе, для моделирования можно использовать специально программное обеспечение.
  3. Рассчитайте тепловыделение. Для этого умножьте два параметра — номинальный ток (в Амперах) и падение напряжения на симисторе (в Вольтах). Все эти данные можно найти среди характеристик элемента. В итоге вы получите мощность рассеяния, выраженную в Ваттах. Исходя из этого значения, нужно выбрать радиатор и кулер (при необходимости).
  4. Закупите все необходимые элементы или подготовьте их, если они у вас имеются.

Теперь можно приступить непосредственно к сборке устройства.

Сборка регулятора

Прежде чем собрать по схеме симисторный регулятор мощности, нужно выполнить ряд действий:

  1. Осуществите разводку дорожек на плате и подготовьте площадки, на которых нужно установить элементы. Заранее предусмотрите места для монтажа симистора и радиатора.
  2. Установите все элементы на плате и припаяйте их. В том случае, если у вас нет возможности сделать печатную плату, допускается использование навесного монтажа. Провода, которыми соединяются все элементы, должны быть как можно короче.
  3. Обратите внимание на то, соблюдена ли полярность при подключении симистора и диодов. Если отсутствует маркировка, прозвоните элементы мультиметром.
  4. Проверьте схему, используя мультиметр в режиме измерения сопротивления.
  5. Закрепите на радиаторе симистор, желательно использовать термопасту для лучшего контакта поверхностей.
  6. Всю схему можно установить в пластиковом корпусе.
  7. Установите в крайнее левое положение ручку переменного резистора и включите прибор.
  8. Измерьте значение напряжения на выходе устройства. Если вращать ручку резистора, напряжение должно плавно увеличиваться.

Как видите, изготовленный своими руками симисторный регулятор мощности — это полезная конструкция, которую можно использовать в быту практически без ограничений. Ремонт этого устройства копеечный, так как себестоимость довольно низкая.

Приборы, которые работают на потреблении электрического тока, можно настраивать. Для этого существуют специальные регуляторы. Сегодня всё большую популярность набирает симисторный подтип. Его существенным отличием стало двухстороннее действие. Благодаря тому, что в приборе есть анод и катод, в процессе их передвижения появляется возможность изменять направления тока.

Не стоит думать, то этот элемент можно заменить контакторами, пускателями или реле. Именно симисторы отличаются долговечностью, детали на приборе практически не изнашиваются. Основным положительным моментом от использования симистора, стало полное отсутствие искры в электрических приборах. Были проанализированы схемы, в которых использовались симисторы двунаправленные, их стоимость была значительно меньше, чем те, которые базировались на транзисторах и микросхемах .

Плюсы и минусы использования симисторов

Среди основных преимуществ можно назвать следующие:

  • минимальная стоимость прибора;
  • длительный срок эксплуатации;
  • возможность избежать механических контактов.

Есть и недостатки:

  • чтобы не произошло перегрева прибора, необходимо обязательно устанавливать радиатор;
  • симистор очень чувствителен к переходным процессам;
  • нет возможности использовать на больших частотах;
  • реагирует на посторонние помехи и шумы.

Особенности применения в электроприборах

Учитывая те показатели, которыми обладает симистор, его активно используют в работе приборов бытовой техники, таких как:

  • осветительные приборы, которые можно регулировать;
  • бытовые строительные электроинструменты;
  • нагревательные приборы;
  • приборы с наличием компрессора;
  • стиральные машины , пылесосы, вентиляторы, фены.

Как сделать регулятор мощности своими руками

Сегодня есть возможность установки простых диммеров в электрические приборы. Рассмотрим несколько вариантов схем по установке симисторов.

Для паяльника

Для этого прибора есть возможность собрать устройство настройки мощности до 100 Вт, необходимо всего несколько деталей. Именно с помощью него можно контролировать температуру жала паяльника, яркость настольной лампы, скорость вращения вентилятора. Сам регулятор можно собрать на основе симистора ВТА 16600. Его отличительными чертами станет то, что в цепи управляющего электрода симистора будет находить неоновая лампа.

Если вы решите использовать именно такой вид, то необходимо правильно выбрать неоновую лампу, она должна иметь минимальные показатели напряжения пробоя. Это очень важно, так как именно этот показатель и будет влиять на плавность регулировки мощности лампы или паяльника. Если устанавливать стартер в светильник, здесь можно неоновую лампочку не применять.

Варианты схем

Схемы диммера являются сами простыми. В качестве диодного моста используются диоды Д226, обязательно включаются тиристор КУ202Н, который имеет свою цепь управления. Если вы хотите иметь до 9 фиксированных положений регулировки, то нужно немного усложнить схему и добавить элемент логики – счётчик К561ИЕ8. Здесь также регулировать нагрузку будет тиристор. В схеме после установки диодного моста будет находиться обычный параметрический стабилизатор, который будет подавать питание на микросхему. Необходимо правильно для такой схемы подобрать диоды, их мощность должна равняться нагрузке, которую будет настраивать аппарат.

Существует ещё один вариант составления схемы для регулировки мощности пальника. В самой схеме нет ничего сложного, никаких дорогих или дефицитных деталей. С помощью установки светодиода можно контролировать включение и выключение прибора. Допустимые параметры выходного напряжения варьируются в пределах от 130 до 220 вольт. Для всех приборов можно использовать специальный индикатор напряжения. Его можно взять из старых моделей магнитофонов. Для того чтобы усовершенствовать такую головку, можно добавить светодиод. Он покажет включение и выключение прибора и будет подсвечивать шкалу мощности.

Не стоит забывать, что для такого прибора должен быть подобран правильный корпус. Его можно изготовить из обычного пластика, так как его удобно и легко резать, гнуть, обрабатывать, склеивать. Из куска пластика необходимо вырезать заготовку, зачистить края, и с помощью клея собрать коробку. В неё вкладывается собранный диммер. Когда собран сам прибор регулирования мощности, то его необходимо проверить перед введением в эксплуатацию.

Для проверки можно использовать обычный паяльник или мультиметр. Эти проборы достаточно подключить к выходу схемы, и постепенно вращать ручку регулятора. Это даст возможность определить плавность изменения выходного напряжения. Если в устройстве вы установили светодиод, то по его яркости свечения можно определить уменьшение или увеличение выходного напряжения.

Настройка устройства

Существуют схемы регулировки мощности, при нагрузке до 500 Вт или при переменном токе в 220 В. Это могут быть домашние вентиляторы, электродрели. Здесь нужно использовать устройства широкого диапазона, большой мощности. Симисторный регулятор будет использоваться в качестве фазового управления. Основным назначением прибора будет изменение момента включения симистора относительно перехода сетевого напряжения через ноль.

Изначально, в периоде положительного полупериода симистор закрыт. Как только начнёт увеличиваться напряжение, конденсатор заряжается и делится в двух направлениях. По мере увеличения сетевого напряжения, напряжение на конденсате отстаёт на величину, суммарного сопротивления делителя и ёмкости. Конденсатор будет заряжаться до момента получения напряжения около 32 В. В этот момент происходит открытие динистора, а с ним и симистора. Тогда начнёт поступать равный суммарному сопротивлению симистора и нагрузки. Симистор будет открыт на весь полупериод. Таким образом, происходит регулировка мощности напряжения.

Собрать симисторный регулятор мощности достаточно просто, даже не обладая специальными знаниями. Гораздо сложнее чётко усвоить правила его эксплуатации. Чрезвычайно важно, чтобы вышеизложенные нюансы строго соблюдались. В ином случае, собственноручная конструкция не будет функционировать качественно и может принести проблемы, связанные с целостностью и эффективной эксплуатацией электроприборов.

Видео: изготовление симисторного диммера

Регулятор мощности симисторный предназначен для регулировки мощности нагревательных и осветительных приборов мощность которых не првышает 1000 Вт.

Технические характеристики :
Рабочее напряжение; 160-300 В
Диапазон регулировки мащности 10-90%
Ток нагрузки: до 5 А

Устройство состоит из симистора и времязадающей цепочки. Принцип регулировки мощности заключается в изменения продолжительности времени открытого состояния симистора (рисунок 1). Чем большее время симистор открыт, тем большая мощность отдается в нагрузку. А так как симистор выключается в момент когда ток протекающий через симистор равен нулю, то задавать продолжительность открытия симистора будем в пределах половины периода. В начале положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения, конденсатор С1 заряжается через делитель R1, R2. Заряд конденсатора продолжается до тех пор, пока напряжение на нем не достигнет порога «пробоя» динистора (около 32 В). Динистор замкнет цепь Dl, Cl, D3 и откроет симистор U1. Симистор остается открытым до конца полупериода. Время зарядки конденсатора задается параметрами цепочки R1, R2, С1. Резистором R2 задаем время зарядки конденсатора, а соответственно и момент открытия динистора и симистора. Т.е. этим резистором производится регулировка мощности. При действии отрицательной полуволны принцип работы аналогичен. Светодиод LED индицирует рабочий режим регулятора мощности.


Используемые радиоэлементы:
R1 — 3.9…10K
R2 — 500K
C1 — 0.22мкФ
D1 — 1N4148
D2 — светодиод
D3 — DB4
U1 — BT06-600
P1,P2 клемники
R3 — 22K 2Вт
C2 — 0.22мкФ 400В


Правильно собранная схема наладки не требует.
При использовании нагрузки мощностью более 300 Вт, симистор необходимо установить на радиатор с площадью поверхности не мене 20 см 2
На переменный резистор необходимо установить ручку из изолированного материала.

При дополнении схемы всего двумя элементами (на схеме обозначены красным цветом)появляется возможность управления индуктивной нагрузкой. Т.е. можно на выход симисторного регулятора мощности подключить трансформатор.

ВНИМАНИЕ! Устройство гальванически не развязано от сети! Запрещается прикасаться к элементам включенной схемы!

Принцип работы тиристорного регулятора напряжения

В статье стоит раскрыть тему того, как совершает работу тиристорный регулятор напряжения, схему которого можно более подробно осмотреть в интернете.

В повседневной жизни в большинстве случаев может развиться особая необходимость в регулировании общей мощности бытовых приборов, к примеру, электроплит, паяльника, кипятильника, а также ТЭНов, на транспорте — оборотов двигателя и прочего. В этом случае на помощь нам придёт простая и радиолюбительская конструкция — это особый регулятор мощности на тиристоре.

Создать такое устройство не составит особого труда, оно может стать тем первым самодельным прибором, который будет выполнять функцию регулировки температуры жала в паяльнике у любого начинающего радиолюбителя. Нужно отметить и тот факт, что готовые паяльники на станции с общим контролем температуры и остальными особенными функциями стоят намного больше, чем самые простые модели паяльников. Минимальное число деталей в конструкции поможет собрать несложный тиристорный регулятор мощности с навесным монтажом.

Следует отметить, что навесной тип монтажа — это вариант осуществления сборки радиоэлектронных компонентов без использования при этом специальной печатной платы, а при качественном навыке он помогает быстро собрать электронные устройства со средней сложностью производства.

Также вы можете заказать электронный тип конструктора тиристорного типа регулятора, а тот, кто хочет полностью разобраться во всём самостоятельно, должен изучить некоторые схемы и принцип функционирования прибора.

Между прочим, такое устройство является регулятором общей мощности. Такое устройство может быть применимо для управления общей мощностью либо управлением числа оборотов. Но для начала нужно полностью разобраться в общем принципе функционирования такого устройства, ведь это поможет понять, на какую нагрузку стоит рассчитывать при использовании такого регулятора.

Как совершает свою работу тиристор?

Тиристор — это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.

Тиристор обладает сразу тремя выводами тока:

Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.

Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод — катод. Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.

Вам, скорее всего, сложно понять схему его строения. Но, не нужно расстраиваться — ниже будет более подробно описан процесс функционирования такого устройства.

Область использования тиристорных устройств

В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.

Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?

Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.

Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом.

Как работает такое устройство?

Описанные ниже характеристики будет соответствовать большинству схем.

  1. Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
  2. Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.

При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.

Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).

В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.

Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.

Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.

Тиристорный регулятор напряжения своими руками

Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.

Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.

Способы регулирования фазового напряжения в сети

  1. Есть сразу несколько способов осуществления регуляции переменного напряжения в тиристорах: можно совершать пропуск или же запрещать выход на регуляторе целых четыре полупериода (либо периода) переменного напряжения. Можно включать не в начале совершения полупериода сетевого напряжения, а с совершением некоторой задержки. В течение данного времени напряжение на выходе из регулятора будет равняется отметки нуль, а общая мощность не будет передаваться на выход устройства. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
  2. Время задержки в большинстве случаев именуют углом открывания тиристора, так как во время нулевого значения угла почти всё напряжение от входа будет переходить к выходу, только падение на открытой области тиристора начнёт теряться. Во время увеличения общего тиристорного угла регулятор напряжения будет значительно снижать выходной параметр напряжения.
  3. Регулировочная характеристика у такого прибора во время своей работы, во время активной нагрузки осуществляется особо интенсивно. При угле равному 90 градусов (электрических) на выходе из разъёма будет половина входного напряжения, а при общем угле в 180 электрических градусов на выходе будет показатель нуль.

На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.

Схемы на тиристорах

Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.

Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.

  1. VD — КД209 (либо близкие по его общим характеристикам).
  2. R 1 — сопротивление с особым номиналом в 15 кОм.
  3. R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
  4. Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).

Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.

В статье стоит раскрыть тему того, как совершает работу тиристорный регулятор напряжения, схему которого можно более подробно осмотреть в интернете.

В повседневной жизни в большинстве случаев может развиться особая необходимость в регулировании общей мощности бытовых приборов, к примеру, электроплит, паяльника, кипятильника, а также ТЭНов, на транспорте — оборотов двигателя и прочего. В этом случае на помощь нам придёт простая и радиолюбительская конструкция — это особый регулятор мощности на тиристоре.

Создать такое устройство не составит особого труда, оно может стать тем первым самодельным прибором, который будет выполнять функцию регулировки температуры жала в паяльнике у любого начинающего радиолюбителя. Нужно отметить и тот факт, что готовые паяльники на станции с общим контролем температуры и остальными особенными функциями стоят намного больше, чем самые простые модели паяльников. Минимальное число деталей в конструкции поможет собрать несложный тиристорный регулятор мощности с навесным монтажом.

Следует отметить, что навесной тип монтажа — это вариант осуществления сборки радиоэлектронных компонентов без использования при этом специальной печатной платы, а при качественном навыке он помогает быстро собрать электронные устройства со средней сложностью производства.

Также вы можете заказать электронный тип конструктора тиристорного типа регулятора, а тот, кто хочет полностью разобраться во всём самостоятельно, должен изучить некоторые схемы и принцип функционирования прибора.

Между прочим, такое устройство является регулятором общей мощности. Такое устройство может быть применимо для управления общей мощностью либо управлением числа оборотов. Но для начала нужно полностью разобраться в общем принципе функционирования такого устройства, ведь это поможет понять, на какую нагрузку стоит рассчитывать при использовании такого регулятора.

Как совершает свою работу тиристор?

Тиристор — это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.

Тиристор обладает сразу тремя выводами тока:

Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.

Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод — катод. Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.

Вам, скорее всего, сложно понять схему его строения. Но, не нужно расстраиваться — ниже будет более подробно описан процесс функционирования такого устройства.

Область использования тиристорных устройств

В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.

Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?

Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.

Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом.

Как работает такое устройство?

Описанные ниже характеристики будет соответствовать большинству схем.

  1. Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
  2. Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.

При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.

Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).

В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.

Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.

Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.

Тиристорный регулятор напряжения своими руками

Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.

Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.

Способы регулирования фазового напряжения в сети

  1. Есть сразу несколько способов осуществления регуляции переменного напряжения в тиристорах: можно совершать пропуск или же запрещать выход на регуляторе целых четыре полупериода (либо периода) переменного напряжения. Можно включать не в начале совершения полупериода сетевого напряжения, а с совершением некоторой задержки. В течение данного времени напряжение на выходе из регулятора будет равняется отметки нуль, а общая мощность не будет передаваться на выход устройства. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
  2. Время задержки в большинстве случаев именуют углом открывания тиристора, так как во время нулевого значения угла почти всё напряжение от входа будет переходить к выходу, только падение на открытой области тиристора начнёт теряться. Во время увеличения общего тиристорного угла регулятор напряжения будет значительно снижать выходной параметр напряжения.
  3. Регулировочная характеристика у такого прибора во время своей работы, во время активной нагрузки осуществляется особо интенсивно. При угле равному 90 градусов (электрических) на выходе из разъёма будет половина входного напряжения, а при общем угле в 180 электрических градусов на выходе будет показатель нуль.

На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.

Схемы на тиристорах

Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.

Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.

  1. VD — КД209 (либо близкие по его общим характеристикам).
  2. R 1 — сопротивление с особым номиналом в 15 кОм.
  3. R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
  4. Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).

Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.

В статье рассказывается о том, как работает тиристорный регулятор мощности, схема которого будет представлена ниже

В повседневной жизни очень часто возникает необходимость регулирования мощности бытовых приборов, например электроплиты, паяльника, кипятильников и ТЭНов, на транспорте – оборотов двигателя и т.д. На помощь приходит простейшая радиолюбительская конструкция – регулятор мощности на тиристоре. Собрать такое устройство не составит труда, оно может стать тем самым первым самодельным прибором, который будет выполнять функцию регулировки температуры жала паяльника начинающего радиолюбителя. Стоит отметить, что готовые паяльные станции с контролем температуры и прочими приятными функциями стоят на порядок дороже простого паяльника. Минимальный набор деталей позволяет собрать простой тиристорный регулятор мощности навесным монтажом.

К сведению, навесной монтаж — это способ сборки радиоэлектронных компонентов без применения печатной платы, а при хорошем навыке он позволяет быстро собрать электронные устройства средней сложности.

Вы также можете заказать электронный конструктор тиристорного регулятора, а для тех, кто хочет разобраться во всём самостоятельно, ниже будет представлена схема и объяснён принцип работы.

Область применения тиристорных регуляторов

Между прочим, это однофазный тиристорный регулятор мощности. Такой прибор может быть использован для управления мощностью или количеством оборотов. Однако для начала следует разобраться в принципе работы тиристора, ведь это позволит нам понять, на какую нагрузку лучше использовать такой регулятор.

Как работает тиристор?

Тиристор – это управляемый полупроводниковый прибор, способный проводить ток в одном направлении. Слово «управляемый» употреблено неспроста, поскольку с его помощью, в отличие от диода, который тоже проводит ток только к одному полюсу, можно выбирать момент, когда тиристор начнет проводить ток. Тиристор имеет три вывода:

Для того чтобы ток начал течь через тиристор, необходимо выполнить следующие условия: деталь должна стоять в цепи, находящейся под напряжением, на управляющий электрод должен быть подан кратковременный импульс. В отличие от транзистора, управление тиристором не требует удержания управляющего сигнала. На этом нюансы не заканчиваются: тиристор можно закрыть, лишь прервав ток в цепи, или сформировав обратное напряжение анод – катод. Это значит, что использование тиристора в цепях постоянного тока весьма специфично и часто неблагоразумно, а вот цепях переменного, например в таком приборе как тиристорный регулятор мощности, схема построена таким образом, что обеспечено условие для закрытия. Каждая из полуволн будет закрывать соответствующий тиристор.

Вам, скорее всего, не всё понятно? Не стоит отчаиваться – ниже будет подробно описан процесс работы готового устройства.

Область применения тиристорных регуляторов

В каких цепях эффективно использовать тиристорный регулятор мощности? Схема позволяет отлично регулировать мощность нагревательных приборов, то есть воздействовать на активную нагрузку. При работе с высокоиндуктивной нагрузкой тиристоры могут просто не закрыться, что может привести к выходу регулятора из строя.

Можно ли регулировать обороты двигателя?

Я думаю, многие из читателей видели или пользовались дрелями, углошлифовальными машинами, которые в народе именуют «болгарками», и прочим электроинструментом. Вы могли заметить, что количество оборотов зависит от глубины нажатия на кнопку-курок прибора. Вот в этот элемент как раз и встроен такой тиристорный регулятор мощности (схема которого приведена ниже), с помощью которого осуществляется изменение количества оборотов.

Обратите внимание! Тиристорный регулятор не может изменять обороты асинхронных двигателей. Таким образом, напряжение регулируется на коллекторных двигателях, оборудованных щёточным узлом.

Схема тиристорного регулятора мощности на одном и двух тиристорах

Типовая схема для того, чтобы собрать тиристорный регулятор мощности своими руками изображена на рисунке ниже.

Выходное напряжение у данной схемы от 15 до 215 вольт, в случае применения указанных тиристоров, установленных на теплоотводах, мощность составляет порядка 1 кВт. Кстати выключатель с регулятором яркости света сделан по подобной схеме.

Если у вас нет необходимости полной регулировки напряжения и достаточно получать на выходе от 110 до 220 вольт, воспользуйтесь этой схемой, которая показывает однополупериодный регулятор мощности на тиристоре.

Как это работает?

Описанная ниже информация справедлива для большинства схем. Буквенные обозначения будут браться в соответствии первой схемы тиристорного регулятора

Тиристорный регулятор мощности, принцип работы которого основан на фазовом управлении величиной напряжения, изменяет и мощность. Данный принцип заключается в том, что в нормальных условиях на нагрузку действует переменное напряжение бытовой сети, изменяющееся по синусоидальному закону. Выше, при описании принципа работы тиристора, было сказано, что каждый тиристор работает в одном направлении, то есть управляет своей полуволной от синусоиды. Что это значит?

Если с помощью тиристора периодически подключать нагрузку в строго определенный момент, величина действующего напряжения будет ниже, поскольку часть напряжения (действующая величина, которая «попадёт» на нагрузку) будет меньше, чем сетевое. Данное явление проиллюстрировано на графике.

Заштрихованная область – это и есть область напряжения, которое оказалось под нагрузкой. Буквой «а» на горизонтальной оси обозначен момент открытия тиристора. Когда положительная полуволна закончится и начнется период с отрицательной полуволной, один из тиристоров закрывается, и в тот же момент открывается второй тиристор.

Разберемся, как работает конкретно наш тиристорный регулятор мощности

Оговорим заранее, что вместо слов «положительная» и «отрицательная» будут использованы «первая» и «вторая» (полуволна).

Итак, когда на нашу схему начинает действовать первая полуволна, начинают заряжаться ёмкости C1 и C2. Скорость их заряда ограничена потенциометром R5. данный элемент является переменным, и с его помощью задаётся выходное напряжение. Когда на конденсаторе C1 появляется необходимое для открытия динистора VS3 напряжение, динистор открывается, через него поступает ток, с помощью которого будет открыт тиристор VS1. Момент пробоя динистора и есть точка «а» на графике, представленном в предыдущем разделе статьи. Когда значение напряжения переходит через ноль и схема оказывается под второй полуволной, тиристор VS1 закрывается, и процесс повторяется заново, только для второго динистора, тиристора и конденсатора. Резисторы R3 и R3 служат для ограничения тока управления, а R1 и R2 – для термостабилизации схемы.

Принцип работы второй схемы аналогичен, но в ней идёт управление только одной из полуволн переменного напряжения. Теперь, зная принцип работы и схему, вы можете собрать или починить тиристорный регулятор мощности своими руками.

Применение регулятора в быту и техника безопасности

Нельзя не сказать о том, что данная схема не обеспечивает гальванической развязки от сети, поэтому существует опасность поражения электрическим током. Это значит, что не стоит касаться руками элементов регулятора. Необходимо использовать изолированный корпус. Следует проектировать конструкцию вашего прибора так, чтобы по возможности вы могли спрятать её в регулируемом устройстве, найти свободное место в корпусе. Если регулируемый прибор располагается стационарно, то вообще имеет смысл подключить его через выключатель с регулятором яркости света. Такое решение частично обезопасит от поражения током, избавит от необходимости поиска подходящего корпуса, имеет привлекательный внешний вид и изготовлено промышленным методом.

Трехфазный регулятор мощности SCR, регулятор мощности SCR, тиристорный регулятор напряжения — китайский производитель и поставщик

Трехфазный регулятор мощности SCR (SCR)

1. Характеристики продукта:

• Этот продукт представляет собой многофункциональный модуль интеграции мощности, объединенный внутри трехфазной тиристорной схемы питания, однокристальной схемы управления фазовым сдвигом, схемы датчика обнаружения сигнала и схемы регулятора напряжения.

• Это полная система управления без обратной связи со сдвигом фазы мощности, которая позволяет регулировать напряжение нагрузки.

• Со встроенной линейной схемой управления, хорошей симметрией формы сигнала, хорошей линейностью, высокой точностью управления, стабильной работой.

• Широко используется в различных индуктивных нагрузках и резистивных нагрузках, таких как скорость двигателя переменного тока, промышленная автоматизация, управление электрическим нагревом, механическая и электрическая интеграция, все виды энергетики, химической, текстильной, коммуникационной и других областей.

• Может обеспечить ручное управление, интерфейс автоматического управления, вход главной цепи без требований чередования фаз.

2.Технические данные:

• Номинальное напряжение: 3-фазное 380 В переменного тока (трехфазное четырехпроводное)

• Номинальный ток: 60A, 100A, 200A

• Частота: 50 Гц, 60 Гц

• Рабочий источник питания: этот продукт имеет встроенное питание, рабочее напряжение 220 В переменного тока, клемма управления ① должна быть подключена к стороне питания N при ее использовании.

• Выходное напряжение: асимметрия выходного напряжения ≤ 5%

• Ручное управление: внешнее подключение к потенциометру 10K / 2W

• Внутренняя электрическая схема подключения:

• Схема контроля фаз:

3.Схема подключения:

• Методы контроля:

1) DC0 ~ 10V 2) DC1-5V 3) 4-20mA

4) Потенциометр 10K 5) Использование внешнего рабочего источника питания

При использовании внешнего источника питания напряжение DC1V, ток ≥1A. Управляющая клемма ① должна быть отключена от стороны питания N, остальные соединения остаются.

4.Размер изделия (без радиатора и вентилятора)

Габаритные размеры: ДхШхВ = 105 мм x 73 мм x 63 мм

Установочные размеры: 92 мм x 47,6 мм (φ5,3 мм)

5. Меры предосторожности

1) В главной цепи используется трехфазный четырехпроводной вход, чередование фаз не требуется.

2) Этот продукт является сильноточным, пожалуйста, не забудьте заблокировать клеммы (A1, B1, C1) и (A2, B2, C2), иначе это приведет к перегреву клемм и возгоранию продукта.

3) Этот продукт должен быть оборудован подходящим радиатором, а между радиатором и модулем должен быть покрыт термопастой. Если мощность большая или условия охлаждения неудовлетворительны, рассмотрите возможность использования с воздушным или водяным охлаждением.

4) Запрещается выводить большой ток при малом угле проводимости (модуль при высоком входном напряжении, низкое выходное напряжение), что может привести к нагреву и повреждению модуля.

5) Защита модуля: защита от короткого замыкания с помощью специального полупроводникового плавкого предохранителя.Для защиты от перенапряжения рекомендуется одновременное использование резистивного поглощения и варистора. Принцип его выбора такой же, как и у модуля SCR.

6) Выбранный ток модуля должен более чем в 2 раза превышать ток нагрузки для резистивной нагрузки; Для индуктивной нагрузки ток модуля должен более чем в 3 раза превышать ток нагрузки.

КОНТРОЛЛЕР SCR С РЕГУЛЯТОРОМ — CEHCO

CEHCO является производителем, перепродавцом и дистрибьютором продукции для выпрямления питания, такой как выпрямители постоянного тока, трансформаторные выпрямительные сборки и специальные источники питания с 1945 года.

Наше подразделение L / C Magnetics Inc. (www.lcmagnetics.com) производит трансформаторы от 0,1 кВА до 100 МВА. Все трансформаторы CEHCO производятся L / C Magnetics Inc.

.

CEHCO — это специалист по ремонту и замене устаревших и снятых с производства выпрямителей постоянного тока.

Отправьте нам электронное письмо для получения бесплатного предложения.

Наши инженеры ответят в течение часа.

О КОНТРОЛЛЕРЕ SCR С РЕГУЛЯТОРОМ

Контроллер SCR и плата регулятора используются в источниках питания, управляемых SCR.

CEHCO предлагает однофазные и трехфазные контроллеры SCR с платами регулятора.

Для получения дополнительных сведений щелкните ссылки ниже.

ОДНОФАЗНЫЙ КОНТРОЛЛЕР SCR С ПЛАТЫ РЕГУЛЯТОРА

ТРЕХФАЗНЫЙ КОНТРОЛЛЕР SCR С ПЛАТЫ РЕГУЛЯТОРА

Наши инженеры готовы помочь вам со всеми вашими требованиями к управлению SCR. Свяжитесь с нами по телефону 714 624-4740 или отправьте нам письмо по электронной почте quote @ cehco.com .

(Соответствующие соответствия этой категории показаны ниже)

Контроллер двигателя 10000 Вт SCR

Цепь регулятора мощности трехфазного тиристора

Цепь управления нагревателем SCR

Регулировка мощности с помощью SCR pdf

Регулятор угла сдвига фаз SCR

Регулятор мощности SCR

Виды отказа SCR

Схема регулятора напряжения SCR

Контроллер SCR с регулятором

Однофазные контроллеры SCR

Однофазные контроллеры SCR

Контроллеры 1 PH SCR

Трехфазные контроллеры SCR

Контроллеры 3 PH SCR

Контроллеры мощности SCR

Однофазные контроллеры мощности SCR

Трехфазные контроллеры мощности SCR

Контроллеры мощности 1 PH SCR

Контроллеры мощности 3 PH SCR

Высоковольтные контроллеры SCR

Низковольтные контроллеры SCR

Сильноточные контроллеры SCR

Слаботочные контроллеры SCR

Устаревшие контроллеры SCR

Специальные контроллеры SCR

Индивидуальные контроллеры SCR

Запасные контроллеры SCR

Контроллеры SCR, снятые с производства

Трудно найти контроллеры SCR

Снятые с производства Контроллеры SCR

Плата управления и регулирования трехфазного scr

Контроллеры мощности SCR

Цепи зажигания для трехфазной силовой электроники

Регуляторы фазового угла SCR

Цепь управления мощностью SCR

Тиристоры и схемы управления мощностью

Управление мощностью с помощью SCR

Управление фазой с помощью тиристоров

Кремниевые выпрямители и трансформаторы в системах управления мощностью

Общие сведения об элементах управления питанием scr

Плата управления и регулирования трехфазного scr

Аналоговые контроллеры мощности SCR

Регулятор мощности SCR, регулятор мощности SCR

Усовершенствованные контроллеры мощности SCR

Промышленный контроллер питания SCR

Регуляторы мощности SCR для резистивных нагревателей

Цифровой трехфазный контроллер мощности SCR

Источники питания с регулировкой фазы SCR

Выпрямители SCR

Снят с производства Контроллер SCR с регулятором

Специалист по контроллеру SCR с регулятором

Индивидуальный дизайн контроллера SCR с регулятором

Высоковольтный контроллер SCR с регулятором

Сильноточный контроллер SCR с регулятором

Применение OEM Контроллер SCR с регулятором

Сделано в США, контроллер SCR с регулятором

Недорогой контроллер SCR с регулятором

Контроллер SCR с регулятором 30 лет работы

Регулятор SCR с регулируемым выходом и регулятором

Высокочастотный контроллер SCR с регулятором

Регулятор SCR 400 Гц с регулятором

Регулятор SCR среднего напряжения с регулятором

Замена эквивалентного контроллера SCR с регулятором

Контроллер SCR с несколькими выходами с регулятором

Контроллер SCR с 4 ядрами Mil C с регулятором

Контроллер SCR с регулятором категории K

Контроллер SCR 300 А с регулятором

Применение в печи Контроллер SCR с регулятором

Нагревательный элемент Контроллер SCR с регулятором

500 А Контроллер SCR с регулятором

Контроллер SCR 700 А с регулятором

Ремонт регулятора SCR с регулятором

Реконструкция контроллера SCR с регулятором

Трехфазный регулируемый регулятор SCR с регулятором

Промышленный контроллер SCR сухого типа с регулятором

Промышленный контроллер средней SCR с регулятором

Регулируемый регулятор среднего напряжения SCR с регулятором

Трехфазный контроллер MVA / SCR с регулятором

Контроллер SCR сухого типа, 400 Гц с регулятором

Контроллер SCR с вариационным управлением и регулятором

Контроллер SCR с вариационным управлением и регулятором, залитый

Контроллер SCR с вариационным управлением и регулятором 60 Гц

Контроллер SCR с вариационным управлением и регулятором 50/60 Гц

Контроллер SCR с вариационным управлением и регулятором 5 кГц

Контроллер SCR с вариационным управлением и регулятором 10 кГц


Общайтесь с нами,
работает на LiveChat

Схема

, принцип работы и применение

В статье описано, как работает тиристорный регулятор мощности, схема которого будет представлена ​​ниже

В быту очень часто возникает необходимость регулирования мощности бытовой техники, например, электроплит, паяльника, нагревателей и электронагревателей. , в транспорте — обороты двигателя и др.На помощь приходит простейшая радиолюбительская конструкция — тиристорный регулятор мощности. Собрать такой прибор несложно, он может стать первым самодельным устройством, которое будет выполнять функцию регулировки температуры жала паяльника начинающего радиолюбителя. Стоит отметить, что готовые паяльные станции с контролем температуры и другими приятными функциями стоят на порядок дороже простого паяльника. Минимальный набор деталей позволяет собрать простой тиристорный регулятор мощности путем навесного монтажа.

Для сведения, навесной монтаж — это способ сборки радиоэлектронных компонентов без использования печатной платы, и при хорошем мастерстве он позволяет быстро собрать электронные устройства средней сложности.

Также можно заказать электронный конструктор тиристорного регулятора, а для тех, кто хочет во всем разобраться сам, ниже будет представлена ​​схема и объяснен принцип работы.

Сфера применения тиристорных регуляторов

Кстати, это однофазный тиристорный регулятор мощности.Такое устройство можно использовать для контроля мощности или количества оборотов. Однако для начала нужно понять принцип работы тиристора, потому что он позволит понять, с какой нагрузкой лучше использовать такой регулятор.

Как работает тиристор?

Тиристор — это управляемое полупроводниковое устройство, способное проводить ток в одном направлении. Слово «управляемый» употреблено не зря, поскольку с его помощью, в отличие от диода, который также проводит ток только на один полюс, можно выбрать момент, когда тиристор начинает проводить ток.Тиристор имеет три вывода:

,
    ,
  • , анод.
  • Катод.
  • Электрод контрольный.

Для протекания тока через тиристор должны быть выполнены следующие условия: деталь должна находиться в цепи под напряжением, на управляющий электрод должен подаваться короткий импульс. В отличие от транзистора, тиристорное управление не требует удержания управляющего сигнала. На этом нюансы не заканчиваются: тиристор можно замкнуть, прервав ток в цепи, либо сформировав обратное напряжение анод-катод.Это означает, что использование тиристора в цепях постоянного тока очень специфично и часто нецелесообразно, но в чередующихся цепях, например в таком приборе, как тиристорный регулятор мощности, схема построена таким образом, что обеспечивается условие замыкания. Каждая из полуволн закроет соответствующий тиристор.

Вы наверное не все понимаете? Не отчаивайтесь — процесс создания готового устройства подробно будет описан ниже.

Сфера применения тиристорных регуляторов

В каких схемах эффективно используется тиристорный регулятор мощности? Схема дает возможность идеально регулировать мощность нагревательных приборов, то есть воздействовать на активную нагрузку.При работе с высокоиндуктивными нагрузками тиристоры могут просто не закрываться, что может привести к выходу регулятора из строя.

Можно ли регулировать обороты двигателя?

Думаю, многие читатели видели или использовали дрели, угловые шлифовальные машины, которые в народе называют «болгарками», и другие электроинструменты. Вы могли заметить, что количество оборотов зависит от глубины нажатия на спусковой крючок устройства. Вот как раз в этот элемент встроен такой встроенный тиристорный регулятор мощности (схема которого приведена ниже), с помощью которого изменяется количество оборотов.

Примечание! Тиристорный регулятор не может изменять скорость асинхронных двигателей. Таким образом, напряжение регулируется на коллекторных двигателях, оборудованных щеточным узлом.

Схема тиристорного регулятора мощности на одном и двух тиристорах

Типовая схема сборки тиристорного регулятора мощности своими руками представлена ​​на рисунке ниже.

Выходное напряжение для этой схемы составляет от 15 до 215 вольт, в случае использования этих тиристоров, установленных на радиаторах, мощность около 1 кВт.Кстати, переключатель с регулировкой яркости выполнен по аналогичной схеме.

Если вам не нужно полностью регулировать напряжение и достаточно, чтобы получить на выходе от 110 до 220 вольт, используйте эту схему, которая показывает полуволновой регулятор мощности на тиристоре.

Как это работает?

Информация, описанная ниже, действительна для большинства схем. Буквы будем брать в соответствии с первой схемой тиристорного регулятора

Тиристорный регулятор мощности, принцип действия которого основан на фазовом регулировании величины напряжения, также меняет мощность.Этот принцип заключается в том, что в нормальных условиях на нагрузку влияет переменное напряжение бытовой сети, изменяющееся по синусоидальному закону. Выше при описании принципа действия тиристора было сказано, что каждый тиристор работает в одном направлении, то есть управляет своей полуволной от синусоиды. Что это значит?

Если на тиристор периодически подключается нагрузка в строго определенное время, значение действующего напряжения будет ниже, так как часть напряжения (действующее значение, которое «попадает» в нагрузку) будет меньше напряжения сети.Это явление проиллюстрировано на графике.

Заштриховано напряжение домена, которое оказалось под нагрузкой. Буква «а» на горизонтальной оси указывает время открытия тиристора. Когда положительная полуволна заканчивается и начинается период с отрицательной полуволной, в этот же момент закрывается один из тиристоров и открывается второй тиристор.

Разберемся, как конкретно работает наш тиристорный регулятор мощности

Схема первая

Заранее оговорим, что вместо слов «положительный» и «отрицательный» будут «первый» и «второй» (полуволна ) будет использоваться.

Итак, когда наша схема начинает действовать первой полуволной, емкости С1 и С2 начинают заряжаться. Скорость их заряда ограничена потенциометром R5. Этот элемент является переменным и используется для установки выходного напряжения. При появлении на конденсаторе С1 напряжения, необходимого для размыкания VS3 VS3, DSN размыкается, через него подается ток, через который откроется тиристор VS1. Момент выхода из строя динистора — точка «а» на графике, представленном в предыдущем разделе статьи.Когда напряжение достигает нуля и цепь находится ниже второй полуволны, тиристор VS1 закрывается, и процесс повторяется снова, только для второго динистора, тиристора и конденсатора. Резисторы R3 и R3 используются для ограничения управляющего тока, а R1 и R2 используются для термической стабилизации цепи.

Принцип работы второй схемы аналогичен, но в ней контролируется только одна из полуволн переменного напряжения. Теперь, зная принцип работы и схему, вы сможете собрать или отремонтировать тиристорный регулятор мощности своими руками.

Применение регулятора в быту и безопасности

Нельзя сказать, что данная схема не обеспечивает гальваническую развязку от сети, поэтому существует опасность поражения электрическим током. Это значит, что нельзя прикасаться к элементам регулятора. Вы должны использовать изолированный корпус. Следует спроектировать свое устройство так, чтобы по возможности можно было спрятать его в регулируемом устройстве, найти свободное место в корпусе. Если регулируемое устройство стационарное, то в целом имеет смысл подключить его через выключатель с диммером.Такое решение частично защитит от поражения электрическим током, избавит от необходимости подбирать подходящий чехол, имеет привлекательный внешний вид и изготавливается промышленным способом.

Цифровой тиристорный регулятор мощности | Taiwantrade.com

Цифровой тиристорный регулятор мощности

Основные характеристики

Наш регулятор мощности с коммуникацией Modbus RS485 и 4-20 мА или 0-10 В (две функции выбирают одну).Он может отображать данные для напряжения (RMS), тока (RMS) и мощности (RMS).

ОСОБЕННОСТИ:

  • Трехфазное напряжение (RMS), ток (RMS) и может отображаться
  • Специальный режим управления с постоянным напряжением (RMS), предельным током (RMS), постоянным током (RMS), постоянным мощность (RMS).
  • С функцией запуска фазы и цикла перехода через ноль
  • С сигнальным контактом RUN и STOP
  • Панель, открывающаяся вниз, легко заменяется предохранителем.
  • Верхняя и нижняя экранирующие крышки предназначены для обеспечения безопасности и стильного внешнего вида, а также просты в установке проводки.
  • Использование европейского съемного разъема управляющего сигнала для легкой замены без повторного монтажа проводки.
  • Он содержит быстродействующие предохранители для предотвращения повреждения основных компонентов при возникновении аномалий, освобождая внешнюю проводку и уменьшая пространство для установки.
  • Цепь запуска и основная плата спроектированы отдельно, чтобы избежать повреждения основной платы при неисправности главной цепи.
  • Автоматическое определение частоты сети в диапазоне 45 ~ 65 Гц. Нет необходимости выбирать переключатель.
  • Цифровой блок управления может отображать информацию в реальном времени и прост в эксплуатации. Он может вытягиваться наружу и может быть альтернативным напряжением, током или таблицей отображения мощности.
  • Режим с напряжением (RMS), током (RMS), мощностью (RMS).
  • Он может подключать 250 устройств с помощью связи RS485 (MODBUS RTU).
  • Он может равномерно распределять мощность с помощью нескольких функций подключения.
  • Цифровой пульт оператора может устанавливать параметры. (входной процент, выходной процент… ..)
  • Входное разрешение 10 бит, выходное разрешение 0.1%, чтобы клиенты могли лучше удовлетворить спрос, можно установить различные параметры.
  • Он может добавить связь RS485, аналоговый выход (0-20 мА или 4-20 мА) и электронные контакты.
  • 4 ~ 20 мА, 1 ~ 5 В постоянного тока, 2 ~ 10 В постоянного тока, 0 ~ 20 мА, 0 ~ 5 В постоянного тока, 0 ~ 10 В постоянного тока, точки сухого контакта и т. Д., И все управляющие сигналы готовы к использованию.
  • Два входа аналогового сигнала могут быть запрограммированы для ряда функций: аномальное реверсирование, процент выхода, максимальный предел выхода, настройка ручного управления, переключатель настройки ручного и автоматического управления.
  • Девять режимов управления: пропорциональный выход фазового управления, выборка цикла пересечения нуля , Выборка времени перехода через нуль, Начало фазы для выборки цикла, Начало фазы для выборки времени, Постоянное напряжение фазы, Ток ограничения фазы, Постоянный ток фазы, Постоянная мощность фазы.Он может подойти для всех случаев и удовлетворить ваши требования.
  • Уведомление об ошибке: перегорел предохранитель, перегрузка по току, перегрев, ошибка датчика температуры, обнаружение низкого тока, трехфазный дисбаланс нагрузки, ошибка EEPROM, ошибка связи, доп. Он может предлагать оперативную защиту от исключений и отслеживать отклонения от нормы.
  • Многофункциональный сухой контакт: ненормальный сухой контакт (нормально открытый), ненормальный сухой контакт (нормально закрытый), рабочий выходной контакт.


Последнее обновление: 2021-04-16 Загрузка…

Ваш запрос отправлен

Шаг 1 Заполните форму Шаг 2 Завершение

Мистер Джонсон, ПРОМЫШЛЕННАЯ КО. ЛИДЕРА, ЛТД.

Требуется сообщение 0 /1500

Форматы файлов: htm, html, doc, docx, pdf, txt, jpg, gif, png, odt, ods.Максимум 3 файла (всего 10 МБ).

Общий размер: 0

{{/если}} {{#ifCond ttLoginType 3}}

Подтвердите пароль

{{/ ifCond}} {{#if isLogin}} Просмотр и изменение {{/если}}

Порекомендуйте других поставщиков, если этот поставщик не отвечает.

Пожалуйста, заполните все обязательные поля.

Ok

Тиристорный регулятор напряжения. Экспериментальные исследования

Елена Соснина * , Александр Севостьянов, Евгений Крюков, Рустам Бедретдинов

Нижегородский государственный технический университет им. R.E. Алексеев, Кафедра электроэнергетики, электроснабжения и силовой электроники, Нижний Новгород, Россия

Статья посвящена разработке тиристорного регулятора напряжения (ТВР).Целью ТВР является управление перетоками и регулирование напряжения в распределительных электрических сетях (ДЭН) 6-20 кВ. Принцип действия ТВР основан на введении в линию питания положительной (или отрицательной) ЭДС при совместном использовании продольного (изменение величины) и поперечного (изменение фазы) регулирования напряжения. Дано описание прототипа ТВР. Прототип ТВР состоит из тиристорных ключей 0,4 кВ, силовых трансформаторов (параллельных и последовательных) и распределительного устройства 6 кВ. TVR имеет двухуровневую систему управления (CS).Экспериментальные исследования прототипа ТВР проводились в четыре этапа: проверка силового оборудования, исследование КС первого уровня, исследование КС второго уровня, испытания прототипа в целом. При испытании силовой части проверялись схемы подключения (блок тиристорных переключателей, трансформатор и измерительное оборудование) и надежность контактных соединений. Качественная характеристика входных и выходных сигналов была получена при тестировании КС первого уровня. Установлено, что импульсы управления тиристором формируются по разработанному алгоритму.Правильность алгоритмов системы управления, выполненных и переданных команд, переданных и полученных данных подтверждена в результате испытаний КС второго уровня. Результаты исследования TVR показывают, что прототип обеспечивает плавность и заданную точность регулирования напряжения во всех режимах. Диапазон регулирования выходного напряжения относительно входного составлял ± 10%. Дискретность регулирования не превышала 1,5%. Диапазон изменения угла сдвига выходного напряжения относительно входного составлял ± 5 °.Исследования подтвердили работоспособность ТВР ЭС и готовность к опытной эксплуатации.

Напряжение переменного тока — обзор

Инверторный привод SPWM

Когда асинхронный двигатель приводится в действие от идеального источника переменного напряжения, его нормальная рабочая скорость менее чем на 5% ниже синхронной скорости, которая определяется частотой источника переменного тока и количество полюсов двигателя. С помощью инвертора с синусоидальной модуляцией (SPWM), показанного на рис. 30.17, частоту питания двигателя можно легко отрегулировать для переменной скорости.Уравнение (30.18) подразумевает, что, если номинальный поток в воздушном зазоре должен поддерживаться на его номинальном значении на всех скоростях, напряжение питания двигателя В 1 должно изменяться пропорционально частоте f 1 , когда падение напряжения на сопротивлении статора можно считать незначительным. Блок-схема на рис. 30.18A показывает, как частота f 1 и выходное напряжение В 1 инвертора SPWM пропорционально регулируются с опорной скоростью.Сигнал задания скорости обычно проходит через фильтр, который позволяет только постепенное изменение частоты f 1 . Этот тип управления широко известен как инверторный привод V-f . Управление входным напряжением статора В 1 в зависимости от частоты f 1 легко осуществляется внутри инвертора путем модуляции переключателей T1-T6. Однако на низкой скорости, когда входное напряжение В 1 низкое, большая часть входного напряжения может падать на импедансе статора, что приводит к уменьшению магнитного потока в воздушном зазоре и потере крутящего момента.

Рис. 30.17. Привод V-f с инвертором SPWM.

Рис. 30.18. (A) Входной опорный фильтр и генерация опорного напряжения и частоты для инверторного привода V-f и (B) компенсация напряжения на низкой скорости.

Часто используется компенсация падения сопротивления статора, как показано на рис. 30.18B. Однако, если двигатель становится слегка нагруженным на низкой скорости, магнитный поток в воздушном зазоре может превысить номинальное значение, что приведет к перегреву двигателя.

Из эквивалентной схемы рис.30,13 и пренебрегая индуктивностью рассеяния ротора, развиваемый крутящий момент T и ток ротора I 2 равны

(30,24) I2 = E1sω1R2′ω1 = λmR2′sω1A

и

(30,24) T = 3pR2′ωrI2′2Nm

, где s ω 1 — частота скольжения, которая также является частотой напряжений и токов в роторе. Уравнение (30.24) подразумевает, что, ограничивая скольжение s , ток ротора может быть ограничен, что, в свою очередь, ограничивает развиваемый крутящий момент Eq.(30,25). Следовательно, привод с ограничением скольжения также является приводом с ограничением крутящего момента. Обратите внимание, что это верно только в устойчивом состоянии. Система регулирования скорости с таким ограничителем скольжения показана на рис. 30.19. В этой схеме скорость двигателя измеряется и добавляется к ошибке ограниченной скорости (или скорости ограниченного скольжения) для получения частоты (или задания скорости для привода V-f ).

Рис. 30.19. Замкнутый регулятор скорости с внутренним контуром скольжения.

Однако многие приложения контроллера Vf представляют собой схемы с разомкнутым контуром, в которых любое требуемое изменение V 1 проходит через ограничитель рампы (или фильтр), так что внезапные изменения скорости скольжения r исключаются, что позволяет двигателю следить за изменением частоты питания без превышения предельных значений тока и крутящего момента ротора.

Из приведенного выше анализа очевидно, что инверторный привод V-f по существу работает во всех четырех квадрантах, при этом скорость ротора немного падает с нагрузкой и развивает полный крутящий момент при той же скорости скольжения на всех скоростях. Это предполагает, что входное напряжение статора правильно скомпенсировано, так что двигатель работает с постоянным (или номинальным) магнитным потоком в воздушном зазоре на всех скоростях. Двигатель может работать со скоростью выше базовой, поддерживая постоянным входное напряжение В 1 , увеличивая при этом частоту статора выше базовой, чтобы двигатель работал на скоростях, превышающих базовую скорость.Поток в воздушном зазоре и, следовательно, максимальный развиваемый крутящий момент теперь падают со скоростью, что приводит к характеристике с постоянной мощностью. На рис. 30.20 показаны T-ω характеристики такого частотно-регулируемого привода для различных рабочих частот. На этом рисунке полностью изображена характеристика T-ω для базовой скорости с указанием максимального развиваемого крутящего момента T max и номинального крутящего момента. Ниже базовой скорости сохраняется отношение V1-f1, чтобы поток в воздушном зазоре оставался постоянным.Выше базовой скорости V 1 остается постоянной, а f 1 увеличивается с увеличением скорости, тем самым ослабляя поток в воздушном зазоре. Прямое движение в квадранте 1 происходит с последовательностью выходных напряжений инвертора a-b-c, тогда как обратное движение в квадранте 3 происходит с последовательностью a-b-c. Рекуперативное торможение при движении вперед происходит путем регулировки входной частоты f 1 таким образом, чтобы двигатель работал в квадранте 2 (квадрант 4 для обратного торможения) с желаемой характеристикой торможения.

Рис. 30.20. Типичные характеристики T-ω привода V-f с входной частотой f 1 и напряжением В 1 ниже и выше базовой скорости.

Обратите внимание, что характеристики на рис. 30.20 основаны на модели двигателя за счет эквивалентной схемы в установившемся режиме. Такой привод страдает плохой реакцией крутящего момента во время переходного режима из-за зависящих от времени взаимодействий между потоками статора и ротора. На рис. 30.21 показан поток в воздушном зазоре машины во время ускорения с управлением V-f , полученный из динамической модели.Ясно, что поток в воздушном зазоре не остается постоянным во время динамической работы.

Рис. 30.21. Переходный отклик крутящего момента, скорости, тока и магнитного потока в воздушном зазоре во время ускорения из состояния покоя с использованием инверторного привода V-f .

Трехфазный тиристорный регулятор мощности 90 кВт

Описание продукта

Трехфазный тиристорный регулятор мощности 90 кВт

Регулятор напряжения SCR Тиристорный регулятор мощности SCR

Описание регулятора напряжения SCR

Кремниевый выпрямитель или выпрямитель с полупроводниковым управлением — это четырехслойное твердотельное устройство управления током.Принцип четырехслойного p – n – p – n переключения был разработан Моллом, Таненбаумом, Голди и Холоньяком из Bell Laboratories в 1956 году. Практическая демонстрация кремниевого управляемого переключения и подробное теоретическое поведение устройства в соответствии с экспериментальными результатами. был представлен д-ром Яном М. Макинтошем из Bell Laboratories в январе 1958 года. Название «кремниевый управляемый выпрямитель» является торговым названием General Electric для типа тиристора. SCR был разработан группой инженеров-энергетиков во главе с Гордоном Холлом и коммерциализирован Фрэнком В.«Билл» Гуцвиллер в 1957 году.

Некоторые источники определяют кремниевые выпрямители и тиристоры как синонимы, другие источники определяют кремниевые выпрямители как надлежащее подмножество набора тиристоров, те [которые?] Являются устройствами по крайней мере с четырьмя чередующимися слоями n- и p-типа. материал. По словам Билла Гуцвиллера, термины «SCR» и «управляемый выпрямитель» были раньше, а «тиристор» применялся позже, поскольку использование устройства распространилось по всему миру.

SCR — это однонаправленные устройства (т.е.е. могут проводить ток только в одном направлении), в отличие от симисторов, которые являются двунаправленными (т.е. носители заряда могут проходить через них в любом направлении). SCR могут нормально срабатывать только положительным током, идущим в затвор, в отличие от TRIAC, которые могут нормально запускаться либо положительным, либо отрицательным током, подаваемым на его электрод затвора.



Спецификация регулятора напряжения SCR

Трехфазный регулятор напряжения серии CTH

Внимание перед выбором модели

При размещении заказа инструкция:

◆ Тип нагрузки: трехфазный электрический нагрев

◆ Номинальная мощность нагрузки

1, номинальное входное напряжение; 2, номинальный рабочий ток

◆ Выбор типа управления (опция)

1, Ручная регулировка потенциометра: 2.2-470 К

2, сигнал автоматического управления: 4-20 мА

3, сигнал автоматического управления: 1-5 В постоянного тока, 2-10 В постоянного тока

Введение в продукт

1. Панель имеет несколько светодиодных индикаторов, отображающих рабочее состояние и причину неисправности регулятора напряжения, для удобного своевременного обслуживания.

2. На печатной плате применяется пастер SMD, защита от помех и низкий уровень отказов.

3. Содержит функцию медленного запуска, скорость плавно делает компоненты более прочными.

4. Линейный выход пропорционального типа и точность контроля температуры, точность 0,3% соответствует всем видам требований к нагрузке.

5. Этот продукт имеет патентную конструкцию ZL 20072 0128369.6, весь прибор изготовлен из алюминиевого сплава, имеет очень хороший излучающий эффект, небольшой размер, 100% тепловыделение воздушного потока вентилятора.

6. Тип входа: 4-20 мА, DC1 DC2-10V -5V, три типа автоматического переключения выбора с помощью P1 JUMP не требуют смены хоста.

7. Во всех сериях устанавливаются быстродействующие предохранители и перегреватели, выводящие выход СОТП на защитные выключатели, и защищающий регулятор напряжения.

8. Рабочая температура -10C ~ 65 ℃.

9. Основное питание и рабочее напряжение печатной платы без взаимосвязи последовательности, удобное использование (автоматическая идентификация 50-60 Гц).

10. Установленный в шкафу управления закрытого типа должен иметь конвекционное отверстие для воздуха и охлаждающий вентилятор. Если излучение плохое, выберите менее 70% энергопотребления, иначе это приведет к тому, что функция защиты контроллера мощности от перегрева остановит выход.

Выбор модели

Выбор трехфазного регулятора напряжения CTH-I, установочные размеры и конфигурация предохранителей
Спецификация модели Номинальная мощность Номинальный ток

Установите расстояние между отверстиями

(мм)

Размеры

(Д × Ш × В)

(мм)

Спецификация предохранителя

(А)

Плавкий предохранитель

тип

CTH-I-30 кВт 30 кВт 53A 164 × 127 255 × 139 × 191 60 Встроенный
CTH-I-50 кВт 50 кВт 88A 204 × 127 295 × 139 × 191 80 Встроенный
CTH-I-70 кВт 70 кВт 123A 254 × 127 345 × 139 × 191 125 Встроенный
CTH-I-90 кВт 90 кВт 158A 304 × 127 395 × 139 × 191 140 Дополнение
CTH-I-110 кВт 110 кВт 193A 354 × 127 445 × 139 × 191 175 Дополнение

Описание: 1 мощность 10 кВт и более 110 кВт, которую предохранитель для устранения проблем со структурой не может установить, может обеспечить установку пользователем при доставке товара.

Примечание: Вышеуказанные продукты в основном подходят для электрических нагревательных нагрузок, указывают номинальную мощность и номинальный ток, только выбор меньше номинального значения.

Режим управления: регулирование тока 4-20 мА; Регулировка напряжения 1-5 В постоянного тока; Регулировка напряжения 2-10VDC всего три режима управления. Номинальный ток включает 15% расчетный запас по перегрузке в форме.

Пользователь должен показать режим управления при выборе, чтобы он был настроен на заводе до наилучшего состояния.

Выбор трехфазного регулятора напряжения CTH-II, установочные размеры и конфигурация предохранителей
Спецификация модели Номинальная мощность Номинальный ток

Установите расстояние между отверстиями

(мм)

Размеры

(Д × Ш × В)

(мм)

Спецификация предохранителя

(А)

Плавкий предохранитель

тип

CTH-II-10 кВт 10 кВт 18A 100 × 100 180 × 100 × 161 20A Встроенный
CTH-II-15 кВт 15 кВт 27A 130 × 100 210 × 100 × 161 32A Встроенный
CTH-II-20 кВт 20 кВт 35A 130 × 100 210 × 100 × 161 40A Дополнение
CTH-II-25 кВт 25 кВт 44A 160 × 100 210 × 100 × 161 50A Дополнение

Примечание: Вышеуказанные продукты в основном подходят для электрических нагревательных нагрузок, указывают номинальную мощность и номинальный ток, только выбор меньше номинального значения.

Режим управления: регулирование тока 4-20 мА; Регулировка напряжения 1-5 В постоянного тока; Регулировка напряжения 2-10VDC всего выбор трех режимов управления Номинальный ток включает 15% расчетный запас по перегрузке в форме.

Пользователь должен отображать режим управления при выборе, чтобы на заводе было установлено наилучшее состояние.

Инструкция по регулятору напряжения

Серия CTH-I 30–110 кВт

Внимание

◆ Исходящие продукты уже проходят строгие испытания, можно использовать проводку для подтверждения правильности.

◆ При осмотре продукта рекомендуется использовать 3 лампочки (мощность ≥100 Вт), соединенные в звездообразную форму для нагрузочного тестирования. Если тестирование выполняется нормально, обратите внимание на то, чтобы общественная точка звездообразной формы не касалась нейтрали.

◆ Шкаф управления должен иметь отверстие для конвекции воздуха и вентилятор охлаждения, температура окружающей среды должна быть ниже 55 C.

◆ При выборе модели в случае перенапряжения системы питания и напряжения (более 15%) следует увеличить характеристики мощности продукта или повысить уровень.

Простое обслуживание Введение

1, Ответственный за тестирование. Ток не подключения или ток нагрузки менее 0,6, SCR не работает. (нагрузка должна быть больше 0,6 А)

2, Явление неисправности SCR не может отключиться, выход был, выходной ток около нормального значения 20% -50%

◆ Возможно, переключение потенциометра панели SCR (BIAS), пожалуйста, переключите против часовой стрелки на минимум.

◆ Линии нагрузки не соединяют нейтраль или заземление, иначе SCR не сможет замкнуться и потеряет управление.

◆ С помощью мультиметра измерьте нагрузку, и корпус машины имеет короткое замыкание или нет.

3, (SCR) нет выхода, нет тока

◆ Индикатор панели (PWL) не горит, SCR не работает, проверьте, перегорел ли предохранитель.

◆ Проверьте IN и OUT светятся или нет. Если количество блокировок, пожалуйста, проверьте, есть ли входной сигнал, например, 4-20MA или DC2-10V

◆ Возможно переключение потенциометра панели SCR (MAX). Пожалуйста, поверните по часовой стрелке на максимум или E3, E2 не закорачивайте

◆ Загорается ERRO, вывод прекращается.Означает перегрев SCR. Убедитесь, что вентилятор работает нормально или нет, или улучшите систему подачи воздуха в карабин

◆ Осветление FB, остановка вывода. Означает, что предохранитель SCR сгорел, проверьте, что нагрузка короткое замыкание или нет, или возникла нагрузка заземления, замените предохранитель

◆ При установке, пожалуйста, обращайте внимание на то, чтобы горячий газ выходил.

Наша компания

Основанная в 1992 году компания Wuxi Gold Control Technology Co., Ltd., частная высокотехнологичная компания, специализируется на исследованиях и производстве твердотельных реле, электронных полупроводников, приводов двигателей постоянного тока и устройств регулирования напряжения переменного тока.

Последние 10 лет подряд наша компания была признана «частным высокотехнологичным бизнесом Цзянсу». Мы также в течение многих лет удостаивались звания «10 лучших частных научно-технических предприятий Уси».

Наши продукты, электронные модули с торговой маркой Gold, были включены в список «Известных продуктов Wuxi».Наша компания имеет 5 патентов на твердотельные реле. Наши продукты широко используются в различных областях промышленной автоматизации, таких как оборудование с химическим волокном, контроль температуры электрических печей, оборудование для производства резины и пластика, управление фонтаном и оборудование с цифровым управлением, и продаются в Европу, Америку, Корею и Турцию.

Наш F завод

Наша фабрика может производить около 50 000 штук в месяц.Мы можем предоставить вам хорошее качество и приемлемые цены. У нас есть 20 профессиональных исследователей, которые окончили известные университеты и колледжи. При производстве мы проводим строгие тесты: самотестирование, межтестирование и специальное тестирование.

Наш сертификат

Наши продукты, электронные модули с торговой маркой Gold, были включены в список «Известных продуктов Wuxi». Наша компания имеет 5 патентов на твердотельные реле.Наши продукты широко используются в различных областях промышленной автоматизации, таких как оборудование с химическим волокном, контроль температуры электрических печей, оборудование для производства резины и пластика, управление фонтаном и оборудование с цифровым управлением, и продаются в Европу, Америку, Корею и Турцию.

Наша компания прошла сертификацию ISO9001: 2000 в 2000 году. Наши основные продукты получили сертификат CE Европейского Союза, сертификаты UL, CUL и RoHS.


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *