Схема двухполярный блок питания: Блоки питания мощные и не очень для УМЗЧ – Двухполярный блок питания с регулировкой напряжения

Блок питания усилителя мощности | РадиоГазета

Блок питания усилителя мощностиКазалось бы, что может быть проще — взял блок питания, подключил его двумя или тремя проводами к усилителю и всё… должно запеть? Оказывается не всегда. Как мы уже выяснили в первой части этого цикла статей, тут существует множество подводных камней.

Продолжим разбираться в хитросплетении питающих усилитель проводов. И как ни странно, больше всего проблем может доставить общий (земляной) проводник.

Для начала исправим одну оплошность. В первой части статьи была опубликована схема двухполярного блока питания усилителя, но отсутствовала его монтажная схема.

Вот вам и то, и другое:

Двухполярный блок питания

Двухполярный блок питания усилителя мощности.

 

Блок питания усилителя

Монтажная схема двухполярного блока питания усилителя мощности

По сути здесь два «отзеркаленных» однополярных блока.

Обратный ток акустической системы

Как известно, акустическая система является реактивной нагрузкой. А значит, она может возвращать ток усилителю. Этот ток, протекая по проводникам, создаёт разность потенциалов, что может привести к появлению положительной обратной связи и как следствие нестабильности усилителя.

Для избежания этого, земляную клемму громкоговорителя следует подключать к общему выводу конденсаторов фильтра питания. Часто вывод громкоговорителя подключают к общему выводу микросхемы, как показано на рисунке:

Выходной каскад усилителя мощности

Такое подключение замыкает отрицательную полуволну сигнала в локальном контуре, исключая фильтрующий конденсатор, который мог бы снизить излучаемые помехи и повысить стабильность системы.

На рисунке показано, как ток утечки на землю одной полуволны сигнала может навести неприятные помехи и искажения, если общий провод громкоговорителя подключен  к выводу выходного каскада микросхемы:

блок питания усилителя мощности

Аналогично, если на плате усилителя в цепях питания есть байпасные конденсаторы (а они обычно есть) довольно большой ёмкости в несколько сотен микрофарад, то импульсы зарядного тока также создадут на общем проводнике разность потенциалов. Поэтому, повторимся ещё раз, наилучшая точка подключения общего провода акустической системы — это общий вывод конденсаторов фильтра питания.

Чем больше мощность, тем хуже…

Часто радиолюбители стараются сделать свой усилитель как можно мощнее (типа, так круче), да и аудиофилы зачастую оснащают свои системы усилителями с мощностью в разы превышающей необходимую для озвучивания обычной комнаты до нормального уровня громкости, мотивируя тем, что так получается больший динамический диапазон. Такие усилители (большой мощности) порой решают одни проблемы, но создают другие.

Индуктивность проводников питания является основным «слабым звеном» усилителей мощности класса АВ. В таких усилителях выходные транзисторы включаются и выключаются поочередно, соответственно по плюсовой и минусовой шинам питания протекают полуволны зарядных токов.

Если эти импульсы через емкостные и индуктивные связи попадут в звуковой тракт это приводит к ужасному размытому звучанию.

Такое происходит, если какая-то чувствительная дорожка (проводник) проходит рядом с шиной питания. Бифилярная свивка проводов питания эффективно подавляет излучаемые помехи за счёт взаимной компенсации положительной и отрицательной полуволн.

подключение блока питания

На печатной плате этот метод можно реализовать, если шины питания расположить друг над другом с двухсторон платы (требуется двухсторонняяя печатная плата)

Достойный образец проектирования печатной платы для усилителя мощности — это конструкция Ultra-LD 200W, представленная в одном из номеров журнала «Практическая электроника каждый день». На печатной плате этого усилителя реализованы все рекомендации по монтажу, представленные в данном цикле статей. И во многом за счёт этого удалось получить уровень шумов -122 дБ и уровень нелинейных искажений ниже 0,001%.

Примечание редакции РадиоГазеты: если нашим читателям интересно, пишите в комментариях и мы опубликуем описание этого усилителя.

Заземление одной стороны печатной платы хорошо работает в высокочастотных и слаботочных конструкциях. Для усилителей мощности это не подходит, потому как трудно предсказать протекание токов в зависимости от выбора точек заземления.

В современных ламповых усилителях часто общую шину делают в виде отрезка тостого лужёного провода. Многие гуру проповедуют разводку звездой с единственной точкой подключения. Бывают случаи, когда при таком подходе усилители плохо работают. Сказывает большое количество длинных проводов, которые снижают стабильность конструкции.

Как правило, в хорошем усилителе есть несколько точек заземления.

Развязка

При использовании двух фильтрующих конденсаторов при двухполярном питании надо следить, чтобы две полуволны сигнала суммировались

в одной точке, как показано на рисунке:

двухполярное питание усилителя

Часто применение одного конденсатора, включенного между плюсом и минусом питания, позволяет решить эту проблему. Этот метод хорошо работает с операционными усилителями типа 5532, и для усилителей мощности типа LM3886.

Когда питание драйверного каскада и выходного каскада подключено раздельными проводами, это может вызвать некоторую нестабильность усилителя на высоких частотах. Проблема решается подключением керамического конденсатора небольшой ёмкости между выводами питания микросхемы:

усилитель с однополярным питанием

увеличение по клику

Если ёмкость байпасных (блокировочных) конденсаторов больше 100мкФ, их общий провод должен подключаться к «грязной» земле, так как большие зарядные токи могут создавать ощутимые помехи, если конденсаторы будут подключены к сигнальной земле.

 

Цепь Цобеля

Цепь Цобеля на выходе усилителя предотвращает его возбуждение на высоких частотах. Импульсы тока в этой цепи могут вызвать проблемы, поэтому должны замыкаться на «грязную» землю, то есть на общий вывод конденсаторов фильтра или байпасных конденсаторов.

цепь Цобеля

Для некоторых микросхем усилителей мощности длинные провода в цепях Цобеля вызывают нестабильность на отрицательных полуволнах сигнала.

 

Пример монтажа моно-усилителя

Обычно «звезда» в усилителе с однополярным питанием бывает трёхлучевой: сигнальная земля, земля конденсаторов фильтра питания и «грязная» земля. Пример представлен на рисунке:

усилитель с однополярным питанием

увеличение по клику

Здесь под усилителем следует понимать как интегральное исполнение, так и усилители на дискретных элементах.

Как видно, к одному лучу подключена сигнальная земля — здесь токи очень малы, поэтому подключать все элементы отдельными проводниками нет необходимости. Ко второму лучу отдельными проводниками подключены выводы сильноточных цепей: выходного каскада, цепи Цобеля, общий вывод акустической системы и байпасных конденсаторов. К третьему лучу подключен общий вывод фильтрующего конденсатора блока питания.

Правильное подключение общего провода к выводам микросхем показан на рисунке:

цепи питания усилителя

Вариант «с» — это неправильный вариант. Из-за сопротивления дорожки большой ток поднимет потенциал слаботочного общего провода относительно вывода микросхемы, что приведет к росту искажений.

Продолжение следует…

Статья подготовлена по материалам журнала «Практическая электроника каждый день»

Автор: Джек Розман

Вольный перевод: Главный редактор «РадиоГазеты»

Похожие статьи:


Схема двухполярного блока питания на 15 вольт

В этом обзоре канала “Обзоры посылок и самоделки от jakson” о простой схеме двухполярного блока питания с выходным напряжением на выходе 15 вольт. Cхема, которую будем собирать, не требует много деталей. Главное – найти то 2 регулятора 7815 и 7915. Их можно заказать в Китае.

Радиодетали, платы можно купить с бесплатной доставкой в этом китайском магазине.

Схема двухполярного блока питания
Схема двухполярного блока питания

В итоге на выходе должно получиться плюс 15 и минус 15 вольт двухполярного питания. Для этого нам понадобится специальный трансформатор, на выходе из которого сможем получить двухполярное питание со средней точкой.

Этого может добиться двумя методами. Например, если трансформатор построен так, что между двумя его контактами (в нашем случае +15 и -15) есть средняя точка, которая является контактом середины вторичной обмотки. Напряжение между средним и первым контактом будет 15 вольт, а между средним и последним тоже по 15. Между первым и последним – 30 вольт.

Если в конструкции трансформатора не предусмотрена нужная нам точка, можно взять две вторичные обмотки с одинаковым напряжением. Серединная точка между ними будет средней точкой нашего 2-полярного питания. Так и сделаем. Будут не 2 обмотки, а 4, поскольку много вторичных обмоток в этом трансформаторе, соединим несколько, чтобы получить необходимое напряжение.

Будет использован старый советский военный трансформатор, которому уже более 30 лет. Несмотря на это, он отлично работает и по сути тут нечему ломаться, так как полностью залитый, он герметичный. Возможно его качество будет даже лучше, чем у современных китайских трансформаторов. Но его мощность всего лишь 60 ватт.

Схема двухполярного блока питания

Схема двухполярного блока питания

Сборка блока будет реализована на макетной печатной плате хорошего качества. В диодном мосту диоды IN 5408. Их хватит с запасом. Также нам понадобится четыре электролитических конденсатора.  Два из них на 2200 микрофарад, 25 вольт и другие на 100 микрофарад, 35 вольт. Два конденсатора на 0,1 мкф. Также регуляторы, о которых речь шла выше. При пайке регуляторов будьте внимательны, так как распиновка у них разная.

В схеме блока два светодида – индикаторы, в которых нет особой нужды, их можно не ставить.

Далее подробности на видео:

Обсуждение

  1. Зачем эти стабилизаторы и вся эта лишняя дичь. Трансформатор ведь с средней точкой два плеча по 18 вольт, то что нужно. Просто выпрямить две фазы пропустить через ёмкости и на усилок. Зачем эти стабилизаторы на 1 ампер, чтобы задушить микросхему и в придачу греться? С таким успехом можно просто автомагнитолу поставить от 12 вольт больше выдаст. По характеристике tda 7294 +/-27 вольт на 4 Ом динамик.
  2. Мощность маловата для питания усилителя. Стабилизаторы выдают около 1,5 Ампер тока, при этом адски нагреваясь! Радиаторов, что на видео, ну никак не хватит для охлаждения. Такую схему можно использовать только для питания небольших нагрузок.
  3. Вопрос от незнайки. )) Зачем нужно двухполярное питание? а чем хуже соединить в параллель две по 15 вольт (усилить силу тока) и собрать два независимых друг от друга одинаковых усилителей и запитать одним плюсом и одним минусом? Вот у меня есть две микросхемы тда 7296, хочу два усилителя из них сделать, на левый и правый канал и на саб из али моно усилок на 60 ватт класс д. И всё это запитать одним выходом из трансформатора

Двухполярный блок питания


Двухполярный блок питания часто используется для питания операционных усилителей и выходных каскадов мощных усилителей низкой частоты (audio). Так же двухполярное напряжение используется в компьютерных блоках питания.

Схема двухполярного блока питания

На данном рисунке изображена простейшая схема двухполярного блока питания. Допустим, вторичная обмотка трансформатора выдаёт переменное напряжение 12.6 вольт. Конденсатор C1 заряжается положительным напряжением через диод VD1 во время положительного полупериода, а конденсатор C2 заряжается отрицательным напряжением через диод VD2 во время отрицательного полупериода. Каждый из конденсаторов будет заряжаться до напряжения 17.8 вольт (12.6 * 1.41). Полярности обоих конденсаторов противоположны относительно «земли» (общего вывода).

В данном блоке питания сохраняются проблемы однополупериодных выпрямителей. Т.е. ёмкость конденсаторов должна быть довольно приличной.

На следующем рисунке показана схема двухполярного блока питания, использующего диодный мост и удвоенную вторичную обмотку трансформатора с отводом от середины как общий вывод.

В данной схеме используется двухполупериодное выпрямление при котором можно использовать конденсаторы фильтра меньшей емкости при том же токе нагрузки. Но, чтобы получить то же напряжение, что и в предыдущей схеме, нам необходимо иметь обмотку на двойное напряжение, т.е. 12.6 х 2 = 25.2 вольта, с отводом от середины.

Стабилизированный двухполярный блок питания

Наибольшую ценность представляют стабилизированные двухполярные блоки питания. Именно они применяются в audio усилителях. Такие блоки состоят из двух стабилизированных блоков. Один из них стабилизирует положительное напряжение, а второй — отрицательное относительно общего вывода. Схема такого блока показана на следующем рисунке.

При использовании стабилизаторов 7805 и 7905 такой блок будет выдавать стабилизированное двухполярное напряжение ±5В.


Двухполярный выпрямитель | 2 Схемы

Схема представляет из себя самый обычный симметричный нестабилизированный источник питания, состоящий из выпрямительного диодного моста и фильтрующих конденсаторов. Блок питания такой в основном используется для питания усилителей звука. Мост выпрямительный необходимо подобрать по потреблению тока усилителем (например KBU10M на 1000 вольт и 10 ампер). К нему остаётся подключить хороший сетевой трансформатор на 220 В, желательно тороидальный, с двумя обмотками.

Корпуса под конденсаторы на плате были подобраны таким образом, чтобы позволить припайку элементов различных размеров, вплоть до максимального диаметра. Двухполярный БП был создан для питание УМЗЧ, а его простота и качество позволяют рекомендовать его и для установки в другие аналогичные проекты.

Принцип действия выпрямителя

Схема двухполярного блока питания представлена на рисунке. Разъемы ввода напряжения — AR1 (TB2) и AR2 (TB2), к которым необходимо подключить вторичные обмотки трансформатора.

Переменное напряжение выпрямляется с помощью выпрямительного моста BR1 (KBU10M) и далее фильтруется с помощью конденсаторов C1-C2 (4700uF/50V), C3-C4 (470uF/50V) и C5-C6 (100nF). В качестве выходных разъемов используются паяные соединения.

Сборка двухполярного выпрямителя

Поможет в монтаже платы этот рисунок со стороны элементов. В этом случае порядок монтажа деталей является произвольным.


Выпрямительный мост можно установить на слегка согнутых выводах, если необходимо установить его на радиаторе. Двойную обмотку трансформатора можно прикрутить к болтовым соединениям. Для этого предусмотрено 4 контакта, поскольку подавляющее большинство симметричных трансформаторов имеет две отдельные обмотки (а не одну с отводом от центра).

Убедитесь, что эти обмотки соединены в ряд, и их напряжение складывается — если одну из обмоток подключить неправильно — напряжения будут вычитаться и станет на выходе ноль.

В качестве выходных разъемов используются паяные соединения, но можете при сборке БП применить любые другие контактные разъемы, обращая внимание на максимальный ток такого гнезда.

Двух-полярный лабораторный блок питания своими руками — Блоки питания — Источники питания

 

автор DDREDD.

 

 

Решил пополнить свою лабораторию двух-полярным блоком питания. Промышленные блоки питания с необходимыми мне характеристиками довольно дороги и доступны далеко не каждому радиолюбителю, поэтому решил собрать такой блок питания сам.

За основу своей конструкции, я взял распространенную в интернете схему блока питания. Она обеспечивает регулировку по напряжению 0-30В, ограничение по току в диапазоне 0,002-3А.

Для меня это пока более чем достаточно, поэтому я решил приступить к сборке. Да, кстати схема этого блока питания одно-полярная, так что для обеспечения двух-полярности — придётся собирать две одинаковые.

 

 

Сразу скажу, что силовой транзистор Q4 = 2N3055 в данном блоке питания ( в этой схеме) не подходит. Он очень часто выходит из строя при коротком замыкании и ток в 3 ампера практически не тянет! Лучше всего и гораздо надёжнее, поменять его на наш родной совковый КТ819 в металле. Можно поставить и КТ827А, этот транзистор составной и в этом случае надобность в транзисторе Q2 отпадает и его, а так же резистор R16 можно не ставить и базу КТ827А подключить на место базы Q2. В принципе можно транзистор и резистор и не удалять (при замене на КТ827А), всё работает и с ними и не возбуждается. Я сразу поставил наши КТ827А и не удалял  транзистор Q2 (схему не менял), а заменил его на BD139 (КТ815), теперь и он не греется, правда вместе с ним надо заменить R13 на 33к. Выпрямительные диоды у меня с запасом по мощности. В исходной схеме стоят диоды на ток 3 А, желательно поставить на 5 А (можно и поболее), запас лишним никогда не будет.

 

     

Блок питания;

R1 = 2,2 кОм 2W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R20, R21 = 10 кОм 1/4W
R13 = 10 кОм (если используете транзистор BD139 то номинал 33кОм) R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K триммер
P1, P2 = 10KOhm линейный потенциометр (группы А)
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ полиэстр
C5 = 200нФ полиэстр
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5402,3,4 диод 2A — RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6V зенеревский
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548, NPN транзистор или BC547
Q2 = 2N2219 NPN транзистор (можно заменить на BD139)
Q3 = BC557, PNP транзистор или BC327
Q4 = 2N3055 NPN силовой транзистор (заменить на КТ819 или КТ 827А и не ставить Q2, R16)
U1, U2, U3 = TL081, опер. усилитель
D12 = LED диод.

Индикатор;

Резистор = 10K триммер — 2 шт.
Резистор = 3K3 триммер — 3 шт.
Резистор = 100кОм 1/4W
Резистор = 51кОм 1/4W — 3 шт.
Резистор = 6,8кОм 1/4W
Резистор = 5,1кОм 1/4W — 2 шт.
Резистор = 1,5кОм 1/4W
Резистор = 200 Ом 1/4W — 2 шт.
Резистор = 100 Ом 1/4W
Резистор = 56 Ом 1/4W
Диод = 1N4148 — 3 шт.
Диод = 1N4001 — 4 шт. (мост) или любые другие на ток не менее 1 А. (лучше 3 А)
Стабилизатор = 7805 — 2 шт.
Конденсатор = 1000 uF/16V электролитический
Конденсатор = 100нФ полиэстр — 5 шт.
Операционный усилитель МСР502 — 2 шт.
C4 = 100нФ полиэстр
Микроконтроллер ATMega8
LCD 2/16 (контроллер HD44780)



Печатную плату автора я повторять не стал, а перерисовал её по своему и сделал, как мне кажется, гораздо удобней (не говоря о том что я на треть уменьшил её в размерах).

В качестве измерителя (индикаторов), после поисков в просторах «инета», было принято решение использовать схему на микроконтроллере Atmega8, позволяющую реализовать два вольтметра и два амперметра с использованием одного дисплея.

За основу корпуса блока питания, был взят корпус от нерабочего ИБП, который мне подарили друзья из сервисного центра. Ну а дальше немного терпения, и пилил, точил, кромсал. Процесс сборки блока питания запечатлел, и некоторые подробности предоставляю Вашему вниманию.

Да, кстати печатные платы которые я собрал, немного отличаются от печатки, которую я выложил в архиве. Просто после сборки передвинул детали и «положил» на плату конденсатор, это как оказалось, может быть очень полезно для экономии места в корпусе.

Так как, у меня силовые транзисторы прикреплены к радиатору просто через термо-пасту, то потребовалось изолировать их радиаторы друг от друга и от корпуса. Для этого я в авто-магазине прикупил пластмассок, через которые и прикрепил радиаторы к корпусу БП.

Потом конечно же всё проверил и прозвонил, всё оказалось замечательно, ничего, нигде не касается и не коротит.

Для обеспечения температурного режима элементов блока питания, разметил и высверлил в корпусе вентиляционные отверстия для отвода тепла, потом немного покрыл корпус грунтовкой, чтобы выявить какие остались косячки.

Под чутким руководством Кирилла (Kirmav) прошил микроконтроллер и проверил работу индикатора, пока что без калибровок.

Вольтметры работают нормально, амперметры нагрузить было нечем, но скорее всего тоже работают, так как касаюсь пальцами контактов на плате, значения на индикаторе меняются.

День как говорится, закончился для меня очень удачно.

Потом перемотал (вернее домотал) силовой трансформатор. Раньше на нём была одна силовая обмотка на 24 В переменки, домотал ещё одну для второго канала БП, благо — тор, и разбирать ничего не нужно. Так же добавил ещё одну обмотку на 8,5 вольт переменки (примерно 12В постоянки), проводом 0,5 мм. Запитал от этой обмотки индикатор и куллер с регулятором оборотов, всё вроде нормально работает.

 

Имейте в виду, что для данного блока питания необходим трансформатор с двумя раздельными вторичными обмотками.

Трансформатор с вторичной обмоткой со средней точкой не подойдёт!

Стабилизатор 7805 греется, но в принципе рука держит, значит температура его около 35-40 С, с заменой радиатора думаю все станет лучше.

Регулировка для куллера была выдрана из комповского БП и в общем то работает нормально.

Немного греются диоды на плате индикатора (диодный мост), но думаю не так страшно.

Начал красить корпус, потом уже после того, как его покрасил, только на фотографии заметил, что не прокрасил заднюю часть лицевой панели, а она выглядывает из за корпуса и вид её не очень, придется заново её перекрасить.

Забыл сказать про индикатор, вольтамперметр. Автор этого вольтамперметра, пользователь C@at с сайта c2.at.ua. За основу моего индикатора, была выбрана та схема, где на одном дисплее реализуются два вольтметра и два амперметра.

Сначала я собрал эту схему, но в процессе наладки выявилось то, что данная схема хорошо работает там, где два источника с общим минусом, а вот в двух-полярном блоке питания она совершенно не желает отображать отрицательные величины.

Долго мне пришлось повозиться, прежде чем на появились положительные результаты.

И вот наконец, на основе наработанной другим человеком схемы, нескольких дней «плясок с бубном», работой с протеусом, кучей потраченного времени и нервов, я построил свою, которая способна показывать величину отрицательного плеча. Правда она показывает её в положительной полярности, но это не сильно печально, главное, что она уже работает, и я связался с автором прошивки и попросил его немного изменить прошивку так, чтобы ко второму каналу индикатора (U2 и А2), программа просто пририсовывала бы минусы к выводимым показаниям (надеюсь на его помощь). Но это уже так, просто эстетический момент, главное что схема уже работает.

Прошу знатоков посмотреть схему и оценить номиналы (в амперметре подобраны методом тыка, но погрешность очень мала и меня более чем устраивает).

Потом сделал печатку для индикатора, собрал всё в кучу и проверил. Вольтметры заработали оба и амперметр положительного плеча тоже. Плюс ко всему, сегодня твердо уяснил для себя, что все надо проектировать заранее, а потом уже пилить и вытачивать. Ну да ладно это все мелочи. В общем посидел, покипел и кое что дорисовал, потом проверил отрицательный амперметр — все работает. В связи с этим выкладываю свою печатку вольт-амперметра, может кому и сгодится.

Плату собирал из того, что было под руками. Для шунта взял 45 см. медного провода, диаметром 1мм и намотал его спиралью и впаял в плату. Я конечно понимаю, что медь не лучший материал для шунта (конечно же не в коем случае не прошу следовать моему примеру), но меня пока устраивает, а дальше будет видно.

В печатке которую я вытравил себе — немного «накосячил» с диодным мостом (видно на фото платы), но переделывать было уже лень — вышел из положения перекрестив диоды, после этого печатку поправил (в архиве исправленный вариант). Так же на схеме и на печатке есть разъём для подключения куллера.

Хочу сказать, что после того как схема заработал, я прямо таки полюбил протеус, не плохо оказывается работает, и уяснил для себя, что чтобы добиться желаемого результата, надо расширять свои познания в разных областях, и естественно учиться.

Ещё один вечер пришлось посвятить черчению передней панели. Дело это хоть и не сложное, но все же нудное и требует много терпения.

Для черчения, я в основном использую программу «Компас 3D». Не знаю кому как, но мне почему то проще сначала сделать 3D-модель, а уже потом на её основе изготовить чертёж. Мне как то в свое время стало просто интересно что нибудь в «Компасе» начертить, чтобы соблюсти все размеры и прочее, решил попробовать, и как то это всё затянуло. Я конечно не владею Компасом на ура, но на базовом уровне вполне себе ничего. Ну и помимо Компаса — некоторая доработка передней панели в фотошоп.

Я уже говорил, что попросил автора схемы и прошивки — немного переделать саму прошивку, и вот наконец-то при его поддержке (спасибо ему огромное), удалось изменить приветствие при включении блока питания, а так же дорисовать долгожданный минус в отрицательном плече второго канала индикатора (мелочь, а приятно).У меня это теперь выглядит вот так.

Ну, и специально для тех, кто решит повторить данную конструкцию, он сделал общий вариант приветствия при включении блока питания, который выглядит следующим образом (ну и конечно-же минусы в отрицательном плече).

Специально для тех кому интересно, выкладываю так же в прикреплённом архиве печатку платы контроля работы куллера. Я её перерисовал с готовой платы которая была изъята из комповского бп — должна работать.

P.S. Сам ещё её не собирал.

При испытании собранного БП — решил проверить усилочик, отданный мне в дар. Блок питания успешно справился со своей задачей (обеспечил требуемое напряжение и ток для проверки) правда больше полутора ампер усилок не потреблял в момент проверки.

Для тех, кто решит собирать данный блок питания, скажу, что схема проверенная, повторяемость 100%, при правильной сборке из исправных, проверенных деталей, в налаживании практически не нуждается.

Правда регулировка напряжения и тока раздельная для каждого канала, но это может и лучше с одной стороны.

В архиве установка FUSE (фузов), которые соответствуют работе от внутреннего генератора 4MHz, скрин установки для программы PonyProg.

Удачи в сборке!

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их ЗДЕСЬ на форуме.

Архив для статьи

 

Простая схема получения из однополярного источника питания двухполярное

Зачастую, источники двухполярного питания обладают неизменяемым напряжением на выходе. Стремление малыми затратами из нерегулируемого двухполярного источники питания сконструировать регулируемый лабораторный блок питания обычно не к чему хорошему не приводит, так как это ведет к дисбалансу выходных напряжений (по амплитуде) противоположных полярностей. Для осуществления такого варианта приходится значительно «утяжелять» схему.

Существует также вариант, когда к однополярному блоку питания прибавляют электронный узел, который формирует отрицательное напряжение из положительного. Но данный вариант двухполярного источника так же имеет дисбаланс противоположных напряжений и не позволяет использовать в блоках питания с плавной регулировкой выходного напряжения.

В данной статье приводится еще один оригинальный вариант двухполярное питание из однополярного имеющий право на существования. Это приставка – делитель напряжения, построенная на операционном усилителе LM358, к обычному однополярному источнику питания, которая позволяет получить полноценное двухполярное напряжение на выходе.

В качестве источника входного напряжения может выступать любой блок питания с напряжением 7…30 вольт, причем на выходе будет получено напряжение 3…14,5 вольт.

В процессе работы, данный делитель не искажает выходные параметры однополярного источника питания. Данная приставка-делитель может выдержать нагрузку до 10 ампер, не искажая напряжение, как по положительному, так и по отрицательному каналу. Например, если в отрицательной цепи двухполярного источника питания подключена нагрузка с током потребления 9 ампер, а в положительной 0,2 ампер, то разница между отрицательным и положительным напряжением будет менее 0,01 вольта.

Следует заметить, что только наличие регулятора в однополярном блоке питания может обеспечить изменение выходного в двухполярном, в противном случае регулировка будет невозможна.

Описание приставки-делителя однополярного напряжения в двухполярное

Операционный усилитель LM358 (DA1) замеряет разность потенциалов между общим проводом и средней точкой делителя напряжения, собранного на сопротивлениях R1, R2, R3. При изменении данной разницы ОУ LM358 приводит к стабилизации выходного напряжения, уменьшая его или увеличивая.

Когда на схему подано входное напряжение, емкости С1 и С2 заряжаются половинным напряжением питания. При сбалансированной нагрузке, данные напряжения и будут выходным напряжением двухполярного источника питания.

Теперь проанализируем ситуацию, когда к выходу двухполярного блока питания подсоединена несбалансированная нагрузка, к примеру, сопротивление нагрузки в положительной цепи значительно ниже сопротивления нагрузки подсоединенной к отрицательной цепи.

Поскольку к емкости С1 параллельно подсоединена нагрузка (диод VD1 и небольшое сопротивление нагрузки), то емкость С2 будет заряжаться как через конденсатор С1 так и через выше обозначенную цепь (диод VD1 и небольшое сопротивление нагрузки).

По этой причине, заряд конденсатор С2 будет происходить большим напряжением чем конденсатор С1, а это приведёт к тому, что отрицательное напряжение будет выше положительного. На общем проводе напряжение увеличится относительно средней точки делителя напряжения R1, R2, R3, где напряжение равно 50% от входного.

Это способствует возникновению отрицательного напряжения на выходе ОУ LM358 относительно общего провода. В итоге открываются транзисторы VT2 и VT4 и аналогично электроцепи «диод VD1, небольшое сопротивление нагрузки» в положительной электроцепи, шунтирует емкость С2 в отрицательной цепи, что приводит к сбалансированности токов обоих цепей (положительной и отрицательной)

Аналогично, транзисторы VT1, VT3 откроются, если произойдет нарушение баланса нагрузки в сторону отрицательного напряжения.

www.meanders.ru

Двухполярный лабораторный блок питания своими руками

Собираем простой двухполярный лабораторный блок питания для лаборатории начинающего радиолюбителя

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

Лаборатория радиолюбителя.
Собираем лабораторный блок питания.
Часть 2.

В этой части занятия мы рассмотрим порядок действий радиолюбителя от подготовки схемы дорожек печатной платы до сборки радиодеталей на печатной плате.

Итак первое. Нам нужно определиться как будут располагаться детали на печатной плате, нарисовать схему соединения выводов на плате (дорожки) и подготовить плату к травлению.

Так как схема довольно-таки простая, то в данном случае мы будет пользоваться простым, старым “дедовским” способом. Для этого нам потребуется карандаш, ластик, лист обыкновенной бумаги в клетку и линейка. Нам нет нужды сейчас делать печатную плату на профессиональном уровне, с высоким качеством проводящих дорожек, минимализацией расположения деталей на плате. Главное, чтобы наша схема заработала. Но должен вам заметить, что даже выполняя работы “дедовскими” методами, надо стремиться к максимальному удобству в дальнейшей работе с собранным устройством и, как это не покажется странным, к эстетическому внешнему виду платы. Понятно, что ее и даже видно не будет в корпусе прибора, но как показывает практика, чем красивее собранная вами схема, тем дольше и качественней она будет работать.

Приступаем. Первое, крепим наши микросхемные стабилизаторы к имеющимся радиаторам с таким учетом, чтобы “ножки” микросхем были ниже уровня плоскости радиатора как минимум на 3 мм (1,5 мм – у нас толщина платы и еще 1,5 мм для качественного соединения “ножек” с дорожками платы при пайке). Второе, так как расстояние между ножками микросхем небольшое, нам необходимо отформировать расположение ножек для более удобного расположения их на плате:


Как видите, средний вывод мы выгибаем вперед, тем самым увеличивая расстояния между выводами. При это надо учитывать, что начинать гнуть выводы рекомендуется не ближе 5 мм от их основания во избежание облома.

Второе, располагаем, приблизительно, ориентируясь на схему, на листе бумаги все крупногабаритные детали и очерчиваем по их габаритам места которые они будут занимать на плате (это для того, чтобы в дальнейшем мы визуально видели какие места они занимают и не пытались подсунуть под них другие радиодетали). Таких деталей у нас не много: радиаторы, диодный мост и конденсаторы большой емкости. После этого определяем места остальных деталей с учетом удобства рисования дорожек и как можно меньшим количеством перемычек. При определении мест деталей и рисовании дорожек надо не забывать, что рисунок делается со стороны фольги, т.е. в зеркальном отражении, особенно это касается всех деталей имеющих 3 и более выводов, так как детали то потом мы будем устанавливать с другой стороны и естественно поменяется нумерация выводов. Так же надо учитывать, что дорожки по которым идет основная нагрузка (шины питания) надо делать пошире, чем все остальные. В конечном итоге у вас может получиться нечто вроде этого:

Я думаю, что вы сможете разобраться в этом рисунке. Пунктирными линиями здесь показаны перемычки (соединение проводами).

Третье, определяемся с размерами платы. Я исходил из того, что радиаторы у меня будут заходить на плату на 5 мм. Определившись с размерами, берем фольгированный стеклотекстолит и отрезаем заготовку нужных нам размеров:

Четвертое, подготавливаем заготовку к сверлению отверстий под радиодетали, детали крепления платы к корпусу. Под радиодетали будем использовать сверло 1 мм, а под остальные отверстия – на ваше усмотрение. Для сверления отверстий накладываем наш рисунок на заготовку со стороны фольги, заворачиваем края во внутрь и закрепляем их липкой лентой, так, чтобы рисунок крепко держался на плате:

И после этого аккуратно приступаем к сверлению отверстий. После этого снимаем наш рисунок с заготовки и “нулевкой” зачищаем фольгу:

Нечто такое должно получиться и у вас.

Пятое, наносим рисунок дорожек на нашу заготовку. Для этого нам потребуется цапонлак, или другой быстросохнущий лак, и обыкновенный медицинский шприц. Перед работой шприц надо немного доработать, так как у иглы отверстие сделано под большим углом. Обрезаем иглу под 90 градусов на расстоянии 1,5 – 2 см от основания, и получившееся отверстие обрабатываем “нулевкой”. Я рекомендую выбирать шприц с толщиной иглы 22 или 23 G. Набираем в шприц немного лака и на бумаге проверяем какой толщины получаются дорожки. Если лак выходит плохо или толщина дорожки получается слишком узкая – меняем иглу на большую диаметром или еще можно попробовать развести лак растворителем, сделать его более жидким. Если же все наоборот – то и поступаем наоборот, или можно дать время лаку немного загустеть, подержав его на открытом воздухе. После этого внимательно соединяем все отверстия дорожками из лака в соответствии с нашим рисунком. Если в процессе работы у вас слиплись между собой разные дорожки – ничего страшного, после высыхания лака, работая аккуратно иголкой, слипавшиеся дорожки разделяем, удаляя часть лака. Получается нечто такое:

После высыхания лака приступаем к травлению платы. Для этого используем химические реактивы перечисленные в первом занятии. Для более быстрого травления платы необходимо раствор подогреть до 40-45 градусов, а в процессе травления периодически его перемешивать. И у нас должна минут через 15-20 получиться готовая заготовка печатной платы. Промываем ее в воде, остатки лака снимаем с помощью ваты и растворителя:

Шестое, подготавливаем плату к пайке на ней радиодеталей. Еще раз слегка проходимся по плате “нулевкой”, залуживаем места пайки деталей (“пятачки” вокруг отверстий для выводов деталей). В принципе, многие радиолюбители полностью залуживают платы (покрывают тонким слоем припоя всю фольгу на плате), но если ваше устройство не предназначено для работы в каких-либо экстремальных условиях, то в принципе всю фольгу можно и не залуживать. На этот счет существуют разные мнения.

Седьмое, переходим к пайке деталей на плату в соответствии с нарисованной нами схемой. Еще раз обращаю ваше внимание на внимательную установку деталей на плату – не перепутайте выводы у микросхем, транзисторов и диодов, соблюдайте полярность электролитических конденсаторов. Вот такой примерно результат должен получиться у вас:

И обратная сторона:

После пайки с помощью ваты и растворителя необходимо удалить остатки канифоли с платы

Ну вот пока и все. В третьей части этого занятия мы полностью закончим сборку лабораторного источника питания. А для этого вам необходимо подготовить материал для корпуса прибора. Он может быть любой: или готовая подходящая по размерам коробка, листы жести, фанера, оргстекло и т.д.



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *