Стабилизаторы тока схемы: Схемы стабилизаторов тока для светодиодов на транзисторах и микросхемах

Содержание

Стабилизаторы тока. Виды и устройство. Работа и применение

Стабилизаторы тока предназначены для стабилизации тока на нагрузке. Напряжение на нагрузке зависит от его сопротивления. Стабилизаторы необходимы для функционирования различных электронных приборов, например газоразрядные лампы.

Для качественного заряда аккумуляторов также необходимы стабилизаторы тока. Они используются в микросхемах для настройки тока каскадов преобразования и усиления. В микросхемах они играют роль генератора тока. В электрических цепях всегда есть разного рода помехи. Они отрицательно влияют на действие приборов и электрических устройств. С такой проблемой легко справляются стабилизаторы.

Виды стабилизаторов тока

Отличительной чертой стабилизаторов тока является их значительное выходное сопротивление. Это дает возможность исключить влияние напряжения на входе, и сопротивления нагрузки, на значение тока на выходе устройства. Стабилизаторы тока поддерживают выходной ток в определенных пределах, меняя при этом напряжение таким образом, что ток, протекающий по нагрузке, остается постоянным.

Стабилизаторы тока на резисторе

В элементарном случае генератором тока может быть схема, состоящая из блока питания и сопротивления. Подобная схема часто используется для подключения светодиода, выполняющего функцию индикатора.

Из недостатков такой схемы можно отметить необходимость использования высоковольтного источника. Только при таком условии можно использовать резистор, имеющий высокое сопротивление, и получить хорошую стабильность тока. На сопротивлении рассеивается мощность P = I 2 х R.

Стабилизаторы на транзисторах

Значительно лучше функционируют стабилизаторы тока, собранные на транзисторах.

Можно выполнить настройку падения напряжения таким образом, что оно будет очень маленьким. Это дает возможность снижения потерь при хорошей стабильности тока на выходе. На выходе транзистора сопротивление очень большое. Такая схема применяется для подключения светодиодов или зарядки аккумуляторных батарей малой мощности.

Напряжение на транзисторе определяется стабилитроном VD1. R2 играет роль датчика тока и обуславливает ток на выходе стабилизатора. При увеличении тока падение напряжения на этом резисторе становится больше. Напряжение поступает на эмиттер транзистора. В итоге напряжение на переходе база-эмиттер, которое равно разности напряжения базы и эмиттерного напряжения, снижается, и ток возвращается к заданной величине.

Схема токового зеркала

Аналогично функционируют генераторы тока. Популярной схемой таких генераторов является «токовое зеркало», в которой вместо стабилитрона применяется биполярный транзистор, а точнее, эмиттерный переход. Вместо сопротивления R2 применяется сопротивление эмиттера.

Стабилизаторы тока на полевике

Схема с применением полевых транзисторов более простая.

Нагрузочный ток проходит через R1. Ток в цепи: «+» источника напряжения, сток-затвор VТ1, нагрузочное сопротивление, отрицательный полюс источника – очень незначительный, так как сток-затвор имеет смещение в обратную сторону.

Напряжение на R1 положительное: слева «-», справа напряжение равно напряжению правого плеча сопротивления. Поэтому напряжение затвора относительно истока минусовое. При снижении нагрузочного сопротивления, ток повышается. Поэтому напряжение затвора по сравнению с истоком имеет еще большую разницу. Вследствие этого транзистор закрывается сильнее.

При большем закрытии транзистора нагрузочный ток снизится, и возвратится к начальной величине.

Устройства на микросхеме

В прошлых схемах имеются элементы сравнения и регулировки. Аналогичная структура схемы применяется при проектировании устройств, выравнивающих напряжение. Отличие устройств, стабилизирующих ток и напряжение, заключается в том, что в цепь обратной связи сигнал приходит от датчика тока, который подключен к цепи нагрузочного тока. Поэтому для создания стабилизаторов тока используют популярные микросхемы 142 ЕН 5 или LМ 317.

Здесь роль датчика тока играет сопротивление R1, на котором стабилизатор поддерживает постоянное напряжение и нагрузочный ток. Величина сопротивления датчика значительно ниже, чем нагрузочное сопротивление. Снижение напряжения на датчике влияет на напряжение выхода стабилизатора. Подобная схема хорошо сочетается с зарядными устройствами, светодиодами.

Импульсный стабилизатор

Высокий КПД имеют импульсные стабилизаторы, выполненные на основе ключей. Они способны при незначительном напряжении входа создавать высокое напряжение на потребителе. Такая схема собрана на микросхеме МАХ 771.

Сопротивления R1 и R2 играют роль делителей напряжения на выходе микросхемы. Если напряжение на выходе микросхемы становится выше опорного значения, то микросхема снижает выходное напряжение, и наоборот.

Если схему изменить таким образом, чтобы микросхема реагировала и регулировала ток на выходе, то получится стабилизированный источник тока.

При падении напряжения на R3 ниже 1,5 В, схема работает в качестве стабилизатора напряжения. Как только нагрузочный ток повышается до определенного уровня, то на резисторе R3 падение напряжения становится больше, и схема действует как стабилизатор тока.

Сопротивление R8 подключается по схеме тогда, когда напряжение становится выше 16,5 В. Сопротивление R3 задает ток. Отрицательным моментом этой схемы можно отметить значительное падение напряжения на токоизмерительном сопротивлении R3. Эту проблему можно решить путем подключения операционного усилителя для усиления сигнала с сопротивления R3.

Устройство и принцип действия

На нестабильность нагрузочного тока влияет значение сопротивления и напряжения на входе. Пример: в котором сопротивление нагрузки постоянно, а напряжение на входе повышается. Ток нагрузки при этом также возрастает.

В результате этого повысится ток и напряжение на сопротивлениях R1 и R2. Напряжение стабилитрона станет равным сумме напряжений сопротивлений R1, R2 и на переходе VT1 база-эмиттер: Uvd1=UR1+UR2+UVT1(б/э)

Напряжение на VD1 не меняется при меняющемся входном напряжении. Вследствие этого ток на переходе база-эмиттер снизится, и повысится сопротивление между клеммами эмиттер-коллектор. Сила тока на переходе коллектор-эмиттере и нагрузочное сопротивление станет снижаться, то есть переходить к первоначальной величине. Так выполняется выравнивание тока и поддержание его на одном уровне.

Стабилизатор для светодиодов
Изготовить такое устройство самостоятельно можно с применением микросхемы LМ 317. Для этого останется только подобрать резистор. Питание для стабилизатора целесообразно применять следующее:
  • Блок от принтера на 32 В.
  • Блок от ноутбука на 19 В.
  • Любой блок питания на 12 В.

Достоинством такого устройства является низкая стоимость, простота конструкции, повышенная надежность. Сложную схему нет смысла собирать самостоятельно, проще ее приобрести.

Похожие темы:

схема, регулируемый, импульсный, конструкция и назначение

На чтение 9 мин Просмотров 1.8к. Опубликовано Обновлено

Яркость светодиодных источников зависит от протекающего тока, а он в свою очередь – от напряжения питания. В условиях колебания нагрузки возникает пульсация светильников. Для ее предотвращения используется специальный драйвер – стабилизатор тока. При поломках элемент можно сделать самостоятельно.

Конструкция и принцип работы

Стабилизатор обеспечивает постоянство тока при его отклонении

Стабилизатор обеспечивает постоянство показателей рабочего тока LED-диодов при его отклонении от нормы. Он предотвращает перегрев и выгорание светодиодов, поддерживает постоянство потока при перепадах напряжения или разрядке АКБ.

Простейшее устройство состоит из трансформатора, выпрямительного моста, соединенного с резисторами и конденсаторами. Действие стабилизатора основывается на следующих принципах:

  • подача тока на трансформатор и изменение его предельной частоты до частоты электросети – 50 Гц;
  • регулировка напряжения на повышение и понижение с последующим выравниванием частоты до 30 Гц.

В процессе преобразования также задействуются выпрямители высоковольтного типа. Они определяют полярность. Стабилизация электрического тока осуществляется при помощи конденсаторов. Для снижения помех применяются резисторы.

Разновидности токовых стабилизаторов

Светодиод загорается при достижении порогового значения тока. Для маломощных устройств этот показатель равняется 20 мА, для сверхъярких – от 350 мА. Разброс порогового напряжения объясняет наличие различных видов стабилизаторов.

Резисторные стабилизаторы

Стабилизатор КРЕН

Для регулируемого стабилизатора параметров тока для маломощных светодиодов применяется схема КРЕН. Она предусматривает наличие элементов КР142ЕН12 либо LM317. Процесс выравнивания осуществляется при силе тока 1,5 А и напряжении на входе 40 В. В условиях нормального теплового режима резисторы рассеивают мощность до 10 т. Собственное энергопотребление составляет около 8 мА.

Узел LM317 удерживает на главном резисторе постоянную величину напряжения, регулируемую подстроечным элементом. Основной, или токораздающий элемент может стабилизировать ток, пропущенный через него. По этой причине стабилизаторы на КРЕН применяются для зарядки аккумуляторов.

Величина в 8 мА не изменяется даже при колебаниях тока и напряжения на входе.

Транзисторные устройства

Схема транзисторного стабилизатора напряжения

Регулятор на транзисторах предусматривает использование одного или двух элементов. Несмотря на простоту схемы при колебаниях напряжения не всегда бывает стабильный ток нагрузки. При его увеличении на одном транзисторе повышается напряжение резистора до 0,5-0,6 В. после этого начинает работать второй транзистор. В момент его открытия первый элемент закрывается, а сила и величина тока, проходящие через него, понижается.

Второй транзистор должен быть биполярным.

Две схемы для транзисторов разной проводимости, в которых стабилитроны заменены двумя обычными диодами VD1, VD2

Для реализации схемы с заменой стабилитронов на диоды применяются:

  • диоды VD1 и VD2;
  • резистор R1;
  • резистор R2.

Подача тока через светодиодный элемент задается резистором R2. Для выхода на линейный участок ВАХ-диодов с привязкой к току базового транзистора используется резистор R1. Чтобы транзистор сохранял устойчивость, напряжение питания не должно быть меньше суммарного напряжения диодов + 2-2,5 В.

Для получения тока 30 мА через 3 последовательно подключенных диода с напряжением 3,1 В по прямой производится запитка 12 В. Резисторное сопротивление должно равняться 20 Ом при мощности рассеивания 18 мВт.

Схема нормализует режим работы элементов, снижает токовые пульсации.

Схема с советскими транзисторами. Допустимое напряжение советских КТ940 или КТ969 – до 300 В, что подходит, если источник света – мощный SMD-элемент. Параметры тока задаются резистором. Напряжение стабилитрона составляет при этом 5,1 В, а мощность – 0,5 В.

Минус схемы – падение напряжения при повышении силы тока. Его можно устранить, заменив биполярный транзистор на MOSFET с низкими параметрами сопротивления. Мощный диод заменяется элементом IRF7210 на 12 А или IRLML6402 на 3,7 А.

Стабилизаторы тока на полевике

Стабилизатор напряжения на полевом транзисторе

Полевой элемент отличается закороченным истоком и затвором, а также встроенным каналом. При использовании полевика (IRLZ 24) с 3-мя выводами на вход подается напряжение 50 В, на выходе получается 15,7 В.

Для подачи напряжения задействуется потенциал заземления. Параметры тока на выходе зависят от начального тока стока, и не привязываются к истоку.

Линейные устройства

Стабилизатор, или делитель постоянного показателя тока принимает нестабильное напряжение. На выходе линейный прибор его выравнивает. Он функционирует по принципу постоянного изменения параметров сопротивления для выравнивания питания на выходе.

К преимуществам эксплуатации относятся минимальное число деталей, отсутствие помех. Недостатком является малый КПД при разнице питания на входе и выходе.

Феррорезонансное устройство

Стабилизатор для переменного тока устаревшей модели, схема которого представлена конденсатором и двумя катушками – с ненасыщенным и насыщенным сердечником. К насыщенному (индуктивному) сердечнику подается напряжение постоянного типа, не зависимое от параметров тока. Это облегчает подбор данных для второй катушки и емкостный диапазон стабилизации питания.

Устройство работает по принципу качелей, которые сразу сложно остановить или раскачать сильнее. Подача напряжения происходит по инерции, поэтому возможны падения нагрузки или разрыв цепи питания.

Особенности схемы токового зеркала

Классическая схема токового зеркала

Токовое зеркало, или отражатель выстраивается на паре транзисторов согласованного типа, т.е. с одинаковыми параметрами. Для их производства используется один светодиодный кристалл полупроводника.

Схема токового зеркала по уравнению Эберса-Молла. Принцип работы заключается в том, что транзисторные базы объединяются, а эмиттеры подкидываются на одну шину питания. В итоге параметры переходного напряжения сцепки «база – транзистор-эмиттер» равны.

Преимущества схемы заключаются в равном диапазоне устойчивости и отсутствии падения напряжение на резисторе-эмиттере. Параметры легче задаются при помощи тока. Недостаток заключается в эффекте Эрли – привязке напряжения на выходе к коллекторному и его колебания.

Схема токового зеркала Уилсона. Токовое зеркало может стабилизировать постоянную величину выходного тока и реализуется так:

  1. Транзисторы № 1 и № 1 включены по принципу стандартного токового зеркала.
  2. Транзистор № 3 фиксирует потенциал коллектора элемента № 1 на удвоенный параметр падения диодного напряжения.
  3. Оно будет меньше, чем напряжение питания, что подавляет эффект Эрли.
  4. Коллектор транзистора № 1 задействуется для установления режима схемы.
  5. Ток на выходе зависит от транзистора № 2.
  6. Транзистор № 3 трансформирует выходной ток в нагрузку с переменным напряжением.

Транзистор № 3 можно не согласовывать с остальными.

Стабилизатор компенсационного напряжения

Компенсационный стабилизатор напряжения

Выпрямитель работает по принципу обратной связи цепи для напряжения. Полное или частичное напряжение приравнивает к опоре. В результате стабилизатор генерирует параметры напряжения ошибки, устраняя колебания яркости для светодиодов. Прибор состоит из следующих элементов:

  • Регулирующий элемент или транзистор, который совместно с сопротивлением нагрузки образует делитель напряжения. Эмиттерный показатель транзистора должен превышать ток нагрузки в 1,2 раза.
  • Усилитель – управляет РЭ, выполняется на базе транзистора №2. Маломощный элемент согласуется с мощным по составному принципу.
  • Источник напряжения опоры – в схеме задействуется стабилизатор параметрического типа. Он выравнивает напряжение стабилитрона и резистора.
  • Дополнительные источники.
  • Конденсаторы – для сглаживания пульсаций, устранения паразитного возбуждения.

Стабилизаторы компенсационного напряжения работают по принципу увеличения входного напряжения с дальнейшим возрастанием токов. Закрытие первого транзистора увеличивает сопротивление и напряжение зоны коллектор-эмиттер. После подачи нагрузки оно выравнивается до номинала.

Устройства на микросхемах

Микросхема 142ЕН5

Для стабилизующих приборов применяется микросхема 142ЕН5 или LМ317. Она позволяет выровнять напряжение, принимая по цепи обратной связи сигнал от датчика, подключенного к сети тока нагрузки.

В качестве датчика задействует сопротивление, при котором регулятор может поддерживать постоянное напряжение и ток нагрузки. Сопротивление датчика будет меньше сопротивления по нагрузке. Схему задействуют для зарядных устройств, по ней же проектируется ЛЕД-лампа.

Импульсные стабилизаторы

Импульсный прибор отличается высоким КПД и при минимальных параметрах входного напряжения создают высокое напряжение потребителей. Для сборки используется микросхема МАХ 771.

Регулировать силу тока будут один или два преобразователя. Делитель выпрямительного типа выравнивает магнитное поле, понижая допустимую частоту напряжения. Для подачи тока на обмотку светодиодный элемент передает сигнал транзисторам. Стабилизация на выходе осуществляется посредством вторичной обмотки.

Как сделать стабилизатор тока для светодиодов самостоятельно

Изготовление стабилизатора для светодиодов своими руками осуществляется несколькими способами. Новичку целесообразно работать с простыми схемами.

На основе драйверов

Понадобится выбрать микросхему, которую трудно выжечь – LM317. Она будет выполнять роль стабилизатора. Второй элемент – переменный резистор с сопротивлением в 0,5 кОм с тремя выводами и ручкой регулировки.

Сборка осуществляется по следующему алгоритму:

  1. Припаять проводники к среднему и крайнему выводу резистора.
  2. Перевести мультиметр в режим сопротивления.
  3. Замерить параметры резистора – они должны равняться 500 Ом.
  4. Проверить соединения на целостность и собрать цепь.

На выходе получится модуль с мощностью 1,5 А. Для увеличения тока до 10 А можно добавить полевик.

Стабилизатор для автомобильной подсветки

Стабилизатор L7812

Для работы потребуется линейный прибор в виде микросхемы L7812, две клеммы, конденсатор 100n (1-2 шт. ), текстолитовый материал и трубка с термоусадкой. Изготовление производится пошагово:

  1. Выбор схемы под L7805 из даташита.
  2. Вырезать из текстолита нужный по размеру кусок.
  3. Наметить дорожки, делая насечки отверткой.
  4. Припаять элементы так, чтобы вход был слева, а выход – справа.
  5. Сделать корпус из термотрубки.

Стабилизирующее устройство выдерживает до 1,5 А нагрузки, монтируется на радиатор.

В качестве радиатора задействуется кузов машины за счет соединения центрального вывода корпуса с минусом.

Нюансы расчета стабилизатора тока

Расчет стабилизатора производится на основании напряжения стабилизации U и тока (среднего) I. К примеру, напряжение входного делителя составляет 25 В, на выходе нужно получить 9 В. Вычисления предусматривают:

  1. Подбор по справочнику стабилитрона. Ориентируются на напряжение стабилизации: Д814В.
  2. Поиск среднего тока I по таблице. Он равен 5 мА.
  3. Вычисление подающего напряжения как разности стабильного напряжения входа и выхода: UR1 = Uвx — Uвых, или 25-9=16 В.
  4. Деление полученного значение по закону Ома на ток стабилизации по формуле R1 = UR1 / Iст, или 16/0,005=3200 Ом, или 3,2 кОм. Номинал элемента будет 3,3 кОм.
  5. Вычисление максимальной мощности по формуле РR1 = UR1 * Iст, или 16х0,005=0,08.

Через резистор проходит ток стабилитрона и выходной, поэтому его мощность должна быть в 2 раза больше (0,16 кВт). На основании таблицы данному номиналу соответствует 0,25 кВт.

Самостоятельная сборка стабилизатора для светодиодных устройств возможна только при знании схемы. Начинающим мастерам рекомендовано использовать простые алгоритмы. Рассчитать элемент по мощности можно на основании формул из школьного курса физики.

Как из простого преобразователя сделать стабилизатор тока.

Как сделать стабилизатор тока своими руками. Описание и схема Я уже как-то рассказывал про схему, позволяющую сделать индикацию тока нагрузки выше определенного порога. Сегодня расскажу про то, как при помощи этой схемы доработать простой преобразователь напряжения и получить в итоге стабилизатор тока.

Наверняка в хозяйстве многих радиолюбителей валяются подобные мелкие платки преобразователей напряжения. Стоят они копейки и часто их продают на вес десятками.

Платка мелкая, но очень полезная, но она позволяет работать только в режиме стабилизации напряжения, которое выставляется подстроечным резистором.

Также иногда бывают ситуации, когда надо сделать стабилизатор тока буквально «из палок и веревок», например для питания светодиодов, заряда аккумуляторов и прочего.
В этом может помочь простой индикатор тока потребления, о котором я подробно рассказывал в отдельном видео.

Собран он по простейшей схеме.
При прохождении тока через данную схему на резисторе R1 падает некоторое напряжение, которое зависит от силы тока.
Напряжение которое падает на резисторе R1 открывает транзистор когда для этого будет достаточно тока. Обычно транзистор открывается когда на резисторе R1 падает около 0.6-0.7 Вольта.
Открывшись, транзистор подает ток в цепь светодиода, засвечивая его. Изменяя номинал резистора R1 можно менять ток, при котором будет светиться светодиод. Например при номинале в 1 Ом этот ток составляет около 0.6-0.7 Ампера. Если поставить резистор в два раза меньше сопротивлением, то соответственно ток будет уже 1.2-1.4 Ампера, т.е. изменение пропорционально изменению сопротивления.

Транзистор, используемый в данной схеме — BC557B, хотя на самом деле выбор очень большой, например банальный КТ361, а если сделать схему «наизнанку», то и КТ315.

В качестве примера я попробую сделать стабилизатор тока для питания вот такой светодиодной сборки. На ней светодиоды включены параллельно-последовательно, т.е. общее падение около 7 Вольт при токе в 700мА.

Можно конечно было сделать стабилизатор тока на привычной LM317, но это линейный стабилизатор, потому греться он будет ощутимо.
Но мы пойдет другим путем.

Слева синим цветом выделена упрощенная схема понижающего стабилизатора напряжения, который я показал в самом начале. Микросхема контролирует выходное напряжение через вывод FB (FeedBack)

Красным цветом выделена показанная выше платка.

Чтобы правильно все подключить, надо найти где у микросхемы вход обратной связи, на схемах он также обозначается как FB либо Feedback.
На мой плате установлена LM2596, находим описание и выясняем что это вывод номер 4.

Припаиваем проводок прямо к выводу микросхемы, обычно выводы луженые и паяются очень легко.

Подключаем этот провод к коллектору транзистора платы контроля тока, попутно соединяем выход платы преобразователя со входом платы контроля.

На вход преобразователя подаем наше входное напряжение, в моем случае я подал около 17 Вольт. На выходе выставляем напряжение выше, чем надо диодной сборке, например 10-12 Вольт и подключаем сборку к выходу платы контроля тока.

Отлично, ток в цепи получился 650 мА, все работает отлично.

В некоторых ситуациях может потребоваться установка диода между выходом нашей платы и преобразователем, это необходимо чтобы наша схема не оказывала влияния на установку выходного напряжения преобразователя (зависит от примененного ШИМ контроллера).
А если мы хотим чтобы еще и светодиод светился в режиме ограничения тока, то желательно установить еще и резистор, как показано на схеме (R6), номиналом около 56-470 Ом.

Выше я писал насчет аккумуляторов.
Если верхний резистор делителя переключить с выхода преобразователя на выход платы контроля тока, как это показано на схеме, то плата вполне будет способна заряжать и аккумуляторы. Без этого резистора также можно заряжать, но падение напряжения на резисторе R1 будет оказывать некоторое влияние на напряжение окончания заряда.

В качестве дополнения я снял видео, возможно будет полезно.

На этом у меня все, как всегда буду рад вопросам. Кстати, есть вариант такой же доработки, но уже не преобразователя, а блока питания.

Эту страницу нашли, когда искали:
схемы стабилизаторов напряжения на 12 вольт, переделка китайского стабилизатора на lm317 в стабилизаторе тока, можно ли вместо шим контролера поставить стабилизатор, стабилизатор тока на кт829а, pt6312 применение, стабилизаторы с малым падением напряжения на транзисторе, 6, bnt 600 сделать из него стабилизатор тока, socomec переделка в стабилизатор, схема регулируемого стабилизатора тока для зарядного, линейный стабилизатор повышающий с 12 на 18 вольт схема, повышающий стабилизатор преобразователь на 17 вольт схема, hl2613 замена, схемы импульсных стабилизаторов напряжения своими руками, переделка дс регулятора напряжения в стабилизатор дс напряжения, стабилизация тока и напряжения схемы для ламп мотоцикла, линейный стабилизатор напряжения на транзисторе 12в 4а модуль, как из стабилизатора напряжения сделать стабилизатор тока сопротивление, lm2596s регулировка тока, стабилизатор на lt1585cm 15 своими руками видео, стабилизатор напряжения для оптопары, самодельный стабилизатор на 1,5 вольта., lm2596s доработка, стабилизатор тока на транзисторах расчет, транзисторный стабилизатор напряжения схемы, стабилизатор тока своими руками, стабилизатор тока схема, для начинающих радиолюбителей, простой стабилизатор

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

cxema.org — Три схемы простых регуляторов тока

В сети очень много схем регуляторов напряжения для самых разных целей, а вот с регуляторами тока дела обстоят иначе. И я хочу немного восполнить этот пробел, и представить вам три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так, как они универсальны и могут быть использованы во многих самодельных конструкциях. 

Регуляторы тока по идее не многим отличается от регуляторов напряжения. Прошу не путать регуляторы тока со стабилизаторами тока, в отличии от первых они поддерживают стабильный выходной ток не зависимо от напряжения на входе и выходной нагрузки.

Стабилизатор тока — неотемлимая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого на нагрузку. В этой статье мы рассмотрим пару стабилизаторов и один регулятор общего применения. 

Во всех трех вариантах в качестве датчика тока использованы шунты, по сути низкоомные резисторы. Для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта. Нужное значение тока выставляют вручную, как правило вращением переменного резистора. Все три схемы работают в линейном режиме, а значит силовой транзистор при больших нагрузках будет сильно нагреваться. 

Первая схема отличается максимальной простотой и доступностью компонентов.  Всего два транзистора, один из них управляющий, второй является силовым, по которому и протекает основной ток. 

Датчик тока представляет из себя низкоомный проволочный резистор. При подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение. Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт транзистор. Резистор R1, задает напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии. Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1 грубо говоря затухаеться или замыкается на массу питания через открытый переход маломощного транзистора, этим силовой транзистор будет закрываться, следовательно, ток протекающий по нему уменьшается вплоть до полного нуля.

Резистор R1 по сути обычный делитель напряжения, которым  мы можем задать как бы степень приоткрытия управляющего транзистора, а следовательно, управлять и силовым транзистором ограничивая ток протекающий по нему. 

Вторая схема построена на базе операционного усилителя. Ее неоднократно использовал в зарядных устройствах для автомобильного аккумулятора. В отличии от первого варианта — эта схема является стабилизатором тока.

Как и в первой схеме тут также имеется датчик тока (шунт), операционный усилитель фиксирует падение напряжения на этом шунте, все по уже знакомой нам схеме. Операционный усилитель  сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение. Операционный усилитель в свою очередь постарается сбалансировать напряжение на входах путем изменения выходного напряжения. 

Выход операционного усилителя управляет мощным полевым транзистором. То есть принцип работы мало чем отличается от первой схемы, за исключением того, что тут имеется источник опорного напряжения выполненный на стабилитроне. 

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться.

Последняя схема построена на базе популярной интегральной микросхеме стабилизатора LM317. Это линейный стабилизатор напряжения, но имеется возможность использовать микросхему в качестве стабилизатора тока. 

Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов. 

Максимально допустимый ток для микросхемы LM317 1,5 ампера, увеличить его можно дополнительным силовым транзистором. В этом случае микросхема уже будет в качестве управляющей, поэтому нагреваться не будет, взамен будет нагреваться транзистор и от этого никуда не денешься. 

Небольшое видео

Печатные платы 

 

Схема мощного стабилизатора тока на 100

В литературе не часто можно встретить описания стабилизаторов тока на 100…200 А, однако в некоторых процессах (гальваника, сварка и др.) они необходимы. На первый взгляд, для стабилизации таких токов необходимы и соответствующие мощные транзисторы.

Вашему вниманию предлагается стабилизатор тока на 150 А (с плавной регулировкой от нуля до максимума), выполненный на обычных, широко распространенных транзисторах серии КТ827. Примененное схемотехническое решение позволяет легко увеличить или уменьшить максимальный стабилизируемый ток.

Принципиальная схема

Принципиальная схема предлагаемого стабилизатора тока изображена на рис. 1. Как видно, нагрузка включена несколько необычно — в разрыв провода, соединяющего отрицательный вывод диодного моста VD5…VD8 с общим проводом устройства.

Рис. 1. Принципиальная схема мощного стабилизатора тока 150А на транзисторах.

Все мощные транзисторы VT1…VT16 включены по схеме с общим коллектором, но каждый из них нагружен на свой уравнивающий резистор (R4…R19), также соединенный с общим проводом.

Таким образом, через подключенную к розетке XS1 нагрузку стабилизатора протекает суммарный ток всех 16 транзисторов. Ток через каждый из транзисторов VT1…VT16 выбран около 9 А, что значительно меньше предельно допустимого значения для транзисторов КТ827А…КТ827В. При падении напряжения на транзисторе 10… 11 В рассеиваемая мощность достигает 100 Вт.

Разброс параметров транзисторов и сопротивлений резисторов R4…RI9 не имеет значения, так как каждый транзистор управляется своим операционным усилителем.

Выходы ОУ DA1.1…DA8.2 через транзисторы VT17…VT32 соединены с базами транзисторов VT1…VT16, а напряжения обратных связей поданы на инвертирующие входы с эмиттеров соответствующих транзисторов. ОУ поддерживают на инвертирующих входах (и, соответственно, на эмиттерах транзисторов VT1…VT16) такие же напряжения, какие имеются у них на неинвертирующих входах.

На неинвертирующие входы всех ОУ подано стабильное управляющее напряжение с резистивного делителя R2, R3, подключенного к выходу интегрального стабилизатора DA11. При изменении управляющего напряжения изменяется ток через каждый из резисторов R4…R19 и, соответственно, через общую нагрузку, подключенную к розетке XS1. Питаются ОУ от стабилизатора, выполненного на микросхемах DA9, DA10 и транзисторе VT33.

Детали и конструкция

Вместо составных транзисторов КТ827А в стабилизаторе тока можно применить транзисторы этой серии с индексами Б, В, Г или комбинации из двух транзисторов соответствующей мощности (например, КТ315 + КТ819 с любыми буквенными индексами).

Сдвоенные ОУ КР140УД20 заменимы на К157УД2 или на одинарные ОУ КР140УД6, К140УД7, К140УД14 и им подобные, стабилизатор 78L05 — на КР142ЕН5А, КР142ЕН5В или 78М05, транзисторы КТ315Е — на КТ3102, КТ603, диоды Д200 — на Д160. Вместо трансформатора ТПП232 (Т1) допустимо применение ТПП234, ТПП253 или любого другого с двумя вторичными обмотками на напряжение 16…20 В.

Резистор R1 может быть любого типа, R2 желательно применить высокостабильный, например, С2-29. Для регулирования тока нагрузки был использован переменный резистор СП5-35А (с высокой разрешающей способностью), но можно, конечно, применить и любой другой, обеспечивающий требуемую точность установки тока.

Конденсатор C3 набран из десяти конденсаторов К50-32А, С4, С6 — К50-35, остальные — любого типа. Использовать в качестве C3 один конденсатор большой емкости нельзя, так как он будет сильно перегреваться из-за того, что его выводы не рассчитаны на такие большие токи (недостаточное сечение провода).

Сдвоенные ОУ DA1…DA8, транзисторы VT17…VT32, интегральный стабилизатор напряжения DA11, резисторы R2, R3 и конденсаторы С4…С7 монтируют на печатной плате, изготовленной по чертежу, показанному на рисунке 2.

Рис. 2. Печатная плата для мощного стабилизатора тока.

Транзисторы VT1-VT16 закрепляют на теплоотводах, способных рассеять не менее 100 Вт каждый. Все 16 теплоотводов собраны в батарею, для их охлаждения применены четыре вентилятора, что позволило включать стабилизатор тока на долговременную постоянную нагрузку. Если нагрузка будет кратковременной или импульсной, можно обойтись и теплоотводами меньших размеров.

Резисторы R4…R19 изготавливают из высокоомного (манганинового или константанового) провода диаметром 1…2 мм и закрепляют на теплоотводах соответствующих им транзисторов Для охлаждения диодов VD5…VD8 используют стандартные теплоотводы, рассчитанные на установку диодов Д200 (обдув их вентилятором не требуется).

Микросхему DA9 и транзистор VT33 размещают на небольших пластинчатых теплоотводах. При монтаже стабилизатора тока нужно учитывать, что через некоторые цепи будет течь ток 150 А, поэтому их необходимо выполнить проводом соответствующего сечения.

Вторичная обмотка трансформатора Т2 должна обеспечивать напряжение около 14 В при токе нагрузки 150 А (хорошо подходит сварочный трансформатор). Падение напряжения на сопротивлении нагрузки стабилизатора должно быть не более 10 В (остальное напряжение падает на транзисторах VT1. VT16 и резисторах R4…R19).

При большем падении напряжения на нагрузке придется повысить напряжение вторичной обмотки трансформатора Т2, однако в этом случае необходимо проследить, чтобы мощность рассеяния каждого из транзисторов не превысила максимально допустимую.

Налаживание

Налаживание собранного из исправных деталей устройства сводится к установке максимального стабилизируемого тока подбором резистора R2. Это удобно сделать временно заменив последний включенным реостатом подстроечным резистором сопротивлением 1,5 — 2 кОм.

Установив его движок в положение максимального сопротивления а движок резистора R3 в верхнее (по схеме) положение и включив последовательно с нагрузкой амперметр на ток 150-200А (или просто подсоединив его к гнездам розетки XS1) включают стабилизатор в сеть и, уменьшая сопротивление подстроенного резистора, добиваются отклонения стрелки амперметра до соответствующей отметки шкалы. Затем измеряют сопротивление введенной части подстроенного резистора и заменяют его постоянным ближайшего номинала.

При максимальном токе 150А напряжение на эмиттерах транзисторов VT1 — VT16 должно быть около 1,88В. Поэтому налаживание можно проводить и по напряжению на эмиттере какого-либо из этих транзисторов, хотя точность установки тока при этом будет небольшой из-за разброса сопротивлений резисторов R4-R19.

Если необходимо увеличить или уменьшить отдаваемый в нагрузку максимальный ток можно соответственно увеличить или уменьшить число транзисторов и ОУ.

Таким образом, на основе описанного стабилизатора можно создать значительно более мощный источник тока. Подключая нагрузку к стабилизатору тока, следует помнить, что на «земляном» проводе будет плюсовой выход стабилизатора.

И. Коротков.

Как самому изготовить стабилизатор тока для светодиодов: схемы

Иногда у автолюбителей появляется необходимость ограничить ток заряда АКБ, проверить тот или иной источник питания или пропустить напряжение через диоды. Чтобы осуществить одну из этих задач, есть смысл применить стабилизатор тока для светодиодов своими руками. Подробнее о том, какие существуют схемы для разработки данного девайса, вы узнаете ниже.

Содержание

[ Раскрыть]

[ Скрыть]

Схемы стабилизаторов и регуляторов тока

Источники тока не имеют ничего общего с источниками напряжения. Предназначение первых заключается в стабилизации выходного параметра, а также возможном изменении выходного напряжения. Это происходит так, чтобы уровень ток все время был одинаковым. Источники тока используются для запитки светодиодных ламп, заряда АКБ в авто и т.д. Если у вас возникла необходимость сделать простейший импульсный стабилизатор тока ходовых огней 12в для автомобиля своими руками, то предлагаем вашему вниманию несколько схем.

На КРЕНке

Обустройство цепи на кренке

Чтобы сделать простейший автомобильный импульсный стабилизатор тока в домашних условиях, вам потребуется микросхема 12v. Для этих целей отлично подойдет lm317. Такой стабилизатор напряжения 12 в lm317 считается регулируемым и способен функционировать с токами бортовой сети до полутора ампер. При этом показатель входного напряжения может составить до 40 вольт, lm317 в состоянии рассеивать мощность до 10 ватт. Но это возможно только в том случае, если будет соблюдаться тепловой режим.

В целом потребление тока lm317 сравнительно небольшое — в районе 8 мили ампер, и данный показатель почти никогда не изменяется. Даже в том случае, если через крен lm317 проходит другой ток или меняется показатель входного напряжение. Как вы можете понять, стабилизатор 12 в lm317 для бортовой сети авто дает возможность удерживать постоянное напряжение на компоненте R3.

Кстати, этот показатель можно регулировать благодаря использованию элемента R2, но пределы будут незначительными. В устройстве lm317 компонент R3 является устройством задающего тока. Так как показатель сопротивления lm317 всегда остается на одном и том же уровне, ток, который проходит через него, также будет стабильным (автор видео — Denis T).

Что касается входа крен lm317, ток на них составит на 8 мили ампер выше. Используя вышеописанную схему, можно разработать самый простой стабилизатор напряжения для ДХО автомобиля. Такой девайс может применяться как устройство электронной нагрузки, источника тока для подзарядки АКБ и других целей. Нужно отметить, что интегральные девайсы током 3а или меньше довольно быстро реагируют на различные изменения импульса. Что касается недостатков, то такие девайсы характеризуются слишком высоким сопротивлением, в результате чего придется применять мощные компоненты.

На двух транзисторах

Довольно распространенными сегодня являются стабилизаторы для бортовой сети автомобиля 12v на двух транзисторах. Одним из основных недостатков такого устройства является плохая стабильность тока, если происходят изменения в питающем напряжении вольт. Тем не менее, данная схема для бортовой сети автомобиля 12v подходит для многих задач.

Обустройство цепи на транзисторах

Ниже вы сможете ознакомиться с самой схемой. В этом случае устройством, которое раздает ток, является резистор R2. Когда данный показатель растет, соответственно растет и напряжение на данном элементе. В том случае, если показатель составляет от 0.5 до 0.6 вольт, открывается компонент VT1. При открытии данное устройство будет закрывать элемент VT2, в результате чего ток, который проходит через VT2, начнет снижаться. При разработке схемы можно использовать полевой транзистор Мосфет вместе VT2.

Что касается компонента VD1, то он применяется на напряжение от 8 до 15 вольт и нужен в том случае, если его уровень слишком высокий и работоспособность транзистора может быть нарушена. Если транзистор мощный, то показатель напряжения в сети авто может составить около 20 вольт. Необходимо помнить о том, что транзистор Мосфет открывается в том случае, когда показатель напряжения на затворе составит 2 вольта. Если вы используете универсальный выпрямитель для заряда АКБ или других задач, то вам вполне хватит работы транзистора и резистора R1.

На операционном усилителе (на ОУ)

Механизм на операционном усилителе

Вариант сборки устройства со специальным усилителем ошибки для авто актуален в том случае, если у вас возникла необходимость разработать устройство, работающее в широких пределах. В данном случае выполнять функцию токозадающего элемента будет R7. Операционный увелитель DA2.2 позволяет усилить уровень напряжения в вольтах токозадающего элемента. Устройство DA 2.1 предназначено для сравнивания уровня опорного параметра. Помните о том, что данная схема девайса на 3а нуждается в дополнительном питании, которое должно подаваться на разъем ХР2. Уровня напряжения в вольтах должно хватить для того, чтобы обеспечить функциональность элементов всей системы.

Устройство для авто должно быть дополнено генератором, в нашем случае эту функцию выполняет элемент REF198, характеризующийся уровнем выходного напряжения в 4 вольта. Сама схема стоит достаточно дорого, так что при необходимости вместо нее можно установить кренку. Чтобы правильно произвести настройку, следует установить ползунок резистора R1 в верхнее положение, а с помощью элемента R3 выставляется нужное значение тока 3а. Чтобы предотвратить возбуждение, используются компоненты R2, C2 и R4.

На микросхеме импульсного стабилизатора

Схема механизма с применением импульсного устройства

В некоторых случаях устройство для авто должно функционировать не только в большом диапазоне нагрузок, при этом обладая высоким коэффициентом полезного действия. Тогда использование компенсационных устройств будет не целесообразным, вместо них применяются импульсные элементы.

Предлагаем ознакомиться с одной из наиболее распространенных схем МАХ771, ее особенности следующие:

  • уровень опорного напряжения — 1.5 вольт;
  • коэффициент полезного действия при нагрузке от 10 мили ампер до 1 ампера составит около 90%;
  • показатель питания составляет от 2 до 16.5 вольт;
  • мощность на выходе достигает 15 ватт (автор видео — Андрей Канаев).

Что представляет собой процедура стабилизации? Компоненты R1 и R2 — это делители выходных показателей схемы. Когда уровень делимого напряжения становится больше, чем опорное, устройство автоматически снижает выходной параметр. При обратном процессе устройство будет увеличивать данный показатель. Вы сможете получить рабочий стабилизированный источник тока в том случае, если цепи будут поменяны таким образом, что система в целом станет реагировать на выходной параметр.

Если нагрузка на устройство не особо большая, то есть менее 1.5 вольт, микросхема будет функционировать в качестве рабочего стабилизатора. Но когда этот параметр начнет резко возрастать, девайс переключится в режим стабилизации. Монтаж резистора R8 необходим только тогда, когда уровень нагрузки слишком высокий и составляет более 16 вольт.

Что касается элементы R3, то он является токораздающим. Одним из основных недостатков такого варианта является слишком высокое падение нагрузки на вышеуказанном резисторе. Если вы хотите избавиться от этого минуса, то для того, чтобы увеличить сигнал, необходимо дополнительно установить операционный усилитель.

Заключение

В этой статье мы рассмотрели несколько вариантов стабилизирующих девайсов для авто. Разумеется, такие схемы всегда можно при необходимости модернизировать, способствуя повышению показателя быстродействия и т.д. Имейте в виду, что если нужно, вы всегда можете использовать специально разработанные микросхемы в качестве регулятора. Также при возможности можно самостоятельно производить достаточно мощные регулирующие компоненты, но таких варианты более актуальны для того, чтобы решать определенные задачи.

Как вы видите, разработка схемы — дело достаточно сложное и кропотливое, к нему нельзя просто так подойти, не имея соответствующего опыта. Отсутствие определенных навыков не позволит получить необходимый результат. Чтобы своими руками сделать такую схему для авто, необходимо внимательно выполнять все действия, описанные выше.

Видео «Устройство для питания светодиодов»

Как в домашних условиях сделать стабилизатор для питания ламп в авто или других целей — узнайте из видео (автор видео — Дед Синь).

 Загрузка …

Нужен стабилизатор тока? Используйте стабилизатор напряжения!

Добавлено 9 ноября 2020 в 03:11

Сохранить или поделиться

В данной статье показано, как линейные стабилизаторы напряжения могут быть полезны и в приложениях стабилизации тока.

Линейные стабилизаторы напряжения, также (несколько неточно) называемые LDO, являются одними из наиболее распространенных электронных компонентов. Например, LM7805 приобрел почти легендарный статус и непременно был бы включен в зал славы интегральных микросхем, если бы такой зал существовал. В примечании к применению от Texas Instruments хорошо сказано: микросхемы линейных стабилизаторов «настолько просты в использовании», что они настолько «надежны» и «недороги», что обычно являются одними из самых дешевых компонентов в проекте.

Действительно, линейные стабилизаторы удобны, эффективны и универсальны. И на самом деле они могут быть даже более универсальными, чем вы думаете. Схемы линейных стабилизаторов построены на использовании отрицательной обратной связи, как показано на следующей диаграмме, взятой из того же примечания к применению:

Рисунок 1 – Схема линейного стабилизатора напряжения

Отрицательная обратная связь – очень полезная вещь, особенно в сочетании с источником фиксированного тока, как в случае со стабилизатором напряжения LT3085 от Linear Tech. На следующей диаграмме показана внутренняя структура этого устройства.

Рисунок 2 – Схема взята из технического описания LT3085

В предыдущей статье (исследование преобразователя напряжения в ток) мы исследовали использование отрицательной обратной связи в преобразователях напряжения в ток, которые могут точно контролировать яркость светодиода. Если вы знакомы с этими методами, для вас не будет сюрпризом, что для получения стабилизированного тока мы можем использовать стабилизатор напряжения, такой как LT3085.

В данной статье мы рассмотрим простой светодиодный драйвер на базе LT3085.

Линейный стабилизатор против операционного усилителя

Прежде чем мы проанализируем саму схему, мы должны обсудить преимущества подхода с линейным стабилизатором для получения стабилизированного тока. Методы с операционным усилителем, представленные в предыдущих статьях, несомненно, эффективны, так зачем возиться с новым методом?

Вот некоторые моменты, которые следует учитывать:

  • Большинство операционных усилителей не рассчитано на высокий выходной ток, поэтому схема на основе линейного стабилизатора позволяет избежать ограничений по выходному току типовых операционных усилителей.
  • Микросхема стабилизатора имеют защиту от перегрева.
  • Линейные стабилизаторы обеспечивают бо́льшую устойчивость к большим входным напряжениям и высокой рассеиваемой мощности.
  • Возможно, вы сможете найти один компонент, который подойдет практически для всех ваших требований по стабилизации напряжения и получения тока. Моим наименее любимым аспектом проектирования схем/печатных плат является создание запасов новых компонентов, поэтому я стараюсь использовать детали, которые могут пригодиться для будущих проектов.

LT3085 как стабилизатор напряжения

Давайте вкратце рассмотрим работу стабилизации напряжения LT3085. Эта информация поможет нам понять реализацию источника тока.

Ниже типовая конфигурация стабилизатора напряжения:

Рисунок 3 – Схема взята из технического описания LT3085

Источник тока (10 мкА) создает напряжение на Rнастр. Это напряжение появляется на неинвертирующем входе усилителя. Действие отрицательной обратной связи гарантирует, что напряжение на инвертирующем входе равно напряжению на неинвертирующем входе; другими словами, выходное напряжение равно напряжению на Rнастр. Выходной конденсатор необходим для обеспечения стабильности, а транзистор, подключенный к выходу усилителя, будет выглядеть очень знакомым, если вы читали мою статью «Как буферизовать выход операционного усилителя для получения более высокого тока».

От напряжения к току

Назначение стабилизатора напряжения – обеспечить неизменное выходное напряжение независимо от сопротивления нагрузки. Другими словами, идеальный стабилизатор будет выдавать напряжение, которое (например) равно 3,3 В при подключении к нагрузке 100 кОм и ровно 3,3 В при подключении к нагрузке 5 Ом. Что, конечно, меняется, так это ток нагрузки, который полностью определяется сопротивлением нагрузки (потому что напряжение на нагрузке не изменяется).

Что же произойдет, если мы дадим идеальному стабилизатору напряжения фиксированное сопротивление нагрузки? Если напряжение нагрузки не меняется и сопротивление нагрузки не меняется, и если закон Ома всё еще действует, то ток тоже не изменится.

Вуаля: источник тока.

На следующей диаграмме показано, как использовать LT3085 для решения задач, связанных с управлением светодиодами.

Рисунок 4 – Схема взята из технического описания LT3085

Вот как это работает:

  • Внутренний источник тока посылает 10 мкА через R1, генерируя напряжение, которое будет равно выходному напряжению (т.е. напряжению на R2).
  • Это выходное напряжение постоянно (потому что сопротивление R1 и значение силы тока внутреннего источника тока постоянны).
  • Это постоянное выходное напряжение будет создавать неизменный ток через R2, потому что сопротивление R2 постоянно.
  • Инвертирующий вход усилителя не выдает ток, поэтому почти весь ток R2 идет от положительного источника питания через транзистор, подключенный к выходу усилителя. (Я говорю «почти», потому что ток эмиттера биполярного транзистора представляет собой сумму тока базы и тока коллектора, но ток базы намного меньше тока коллектора.)
  • Светодиод включен последовательно с коллектором биполярного транзистора, и поэтому ток через светодиод фиксирован и (почти) равен току, протекающему через R2.

Ток через светодиод можно изменить, изменив значение R1 или R2; как показано в следующем уравнении, ток через светодиод – это просто значение силы тока внутреннего источника тока, умноженное на отношение R1 к R2.

\[I_{LED}=\frac{((10 \ мкА)\times R1)}{R2}=10 \ мкА \times \frac{R1}{R2}\]

Я бы назвал это довольно удобной схемой: процесс проектирования чрезвычайно прост, и требуется лишь несколько компонентов. Если вы замените один из резисторов потенциометром, результатом станет высокоточный светодиодный драйвер с регулируемым током с широким диапазоном входных напряжений и защитой от перегрева, который может обеспечивать ток до 500 мА.

И, конечно, эта схема не ограничивается светодиодами; вы могли бы так же легко использовать ее, скажем, с резистивным нагревательным элементом. Это позволит вам, несмотря на колебания напряжения питания, генерировать постоянное тепло (потому что P = I2R).

Заключение

Мы обсудили простой, но высокопроизводительный источник тока на базе микросхемы стабилизатора напряжения от Linear Tech. Я предполагаю, что аналогичные схемы на стабилизаторах доступны и у других производителей.

Мне нравится всегда включать моделирование SPICE в статьи, но в данном случае это казалось действительно ненужным. Однако прежде чем я написал статью, я проверил, что в LTspice действительно есть компонент LT3085 (в папке «[PowerProducts]«). Поэтому, если вы захотите исследовать эту схему дальше, то сможете легко это сделать.

Оригинал статьи:

Теги

LED / СветодиодLED драйвер / Светодиодный драйверЛинейный стабилизаторСтабилизатор напряженияСтабилизатор токаСтабилизация токаСхемотехника

Сохранить или поделиться

Анализ электрической схемы стабилизатора напряжения

Стабилизатор напряжения — это схема источника питания или устройство источника питания, которое может автоматически регулировать выходное напряжение. Его функция заключается в стабилизации напряжения источника питания, которое сильно колеблется и не соответствует требованиям электрического оборудования в пределах установленного диапазона значений. Стабилизатор напряжения предназначен для обеспечения нормальной работы различных цепей или электрического оборудования при номинальном рабочем напряжении.

Крупногабаритные стабилизаторы напряжения на десятки и даже сотни киловатт используются для обеспечения рабочей мощности крупномасштабного экспериментального оборудования. Существуют также небольшие стабилизаторы переменного напряжения мощностью от нескольких ватт до нескольких киловатт, обеспечивающие качественное питание небольших лабораторий или бытовой техники.

В самом начале стабилизатор напряжения стабилизировал напряжение по биению реле. Когда напряжение в сети колеблется, активируется схема автоматической коррекции стабилизатора напряжения, чтобы активировать внутреннее реле и заставить выходное напряжение оставаться близким к установленному значению.Преимущество этой схемы состоит в том, что схема проста, но недостатком является то, что точность регулирования напряжения невысока, и каждое биение и смещение реле вызовут мгновенное прерывание источника питания и искровые помехи.

Это вызовет серьезные помехи при чтении и записи компьютерного оборудования, а также может вызвать неправильные сигналы в компьютере. В тяжелых случаях жесткий диск будет поврежден.

Современные высококачественные малые стабилизаторы напряжения в основном используют метод угольных щеток с приводом от двигателя для стабилизации напряжения.Этот тип стабилизатора напряжения имеет небольшие помехи для электрического оборудования, а точность регулирования напряжения относительно высока. Это продукт без искажения формы волны.

Анализ принципиальной схемы стабилизатора напряжения

Схема стабилизации напряжения источника питания состоит из силового трансформатора T3, выпрямительных диодов VDl-VD4, конденсатора фильтра Cl-C3 и трехконтактных интегральных схем стабилизации напряжения IC1 и IC2.

Схема сравнения входов состоит из резистора Rl, потенциометра RPl-RP9, конденсатора C6-Cl4 и Nl-Ng внутри интегральной схемы операционного усилителя lC3-1C5.

Цепь управления кодом состоит из интегральной схемы без затвора IC6-1C8, интегральной схемы затвора и без затвора IC9, глянцевого диода IC10 VD8-VDl5, резистора R4-R11, конденсатора Cl5-C22.

Выходная цепь компенсации состоит из интегральных схем электронного переключателя ICl (Sl-S4), IC17 (S5-S8), тиристоров VTl-VT8, главного компенсационного трансформатора Tl, вспомогательного компенсационного трансформатора T2, контактора переменного тока KM, вольтметра PV и амперметра. PA.

Схема защиты от перенапряжения / пониженного напряжения состоит из незатворного D9 в IC7, диодов VD5-VD7, резисторов R2, R3, транзистора V и реле K.

Относительно простой стабилизатор напряжения 220 В переменного тока может использовать электронное обнаружение и механическую регулировку. Сравнивая понижающее и выпрямленное напряжение постоянного тока 220 В со стандартным напряжением, полученным интегральной схемой стабилизатора напряжения, можно обнаружить, что при низком напряжении источника питания 220 В выпрямленное выходное напряжение постоянного тока относительно низкое по сравнению со стандартным. Напряжение. Если схема триодного переключателя приводится в действие для срабатывания реле, контакт реле заставляет регулирующий двигатель вращаться вперед.Затем однофазный трансформатор регулирования напряжения, приводимый в действие регулирующим двигателем, увеличивает напряжение источника питания до тех пор, пока разница между выходным напряжением постоянного тока схемы обнаружения и стандартным напряжением не станет меньше, чем напряжение проводимости схемы переключения. Реле отпускается, и наддув закончен. Если 220 В слишком высокое, должна быть включена соответствующая цепь переключателя, чтобы двигатель регулирования реверсировал и понижал скорость.

Этот метод предназначен в основном для обнаружения цепи управления приводом.Используя различные регуляторы мощности или трансформаторы, можно просто изменить мощность регулятора. Однако точность этого метода стабилизации напряжения невысока и может достигать примерно 5%.

T1 — понижающий трансформатор переменного тока. Если вы хотите снизить напряжение 220 В переменного тока до более низкого напряжения, для этого выходного линейно регулируемого источника питания 12 В достаточно установить вторичное напряжение T1 на 14 В ~ 15 В.

Выпрямительный мост, состоящий из D1, D2, D3 и D4, может преобразовывать выходное переменное напряжение вторичной обмотки T1 в однонаправленное пульсирующее напряжение.

C1 и C2 — конденсаторы входного фильтра, которые могут преобразовывать однонаправленное пульсирующее напряжение в постоянное напряжение с небольшой пульсацией. Помимо пульсаций, это постоянное напряжение также будет изменяться с колебаниями напряжения сети, которое нестабильно.

C3 и C4 являются конденсаторами выходного фильтра, их основная функция заключается в подавлении автоколебаний, которые может создавать 7812, чтобы обеспечить его нормальную работу.

% PDF-1.7 % 1 0 объект > >> эндобдж 3 0 obj > эндобдж 2 0 obj > эндобдж 4 0 obj > >> / StructParents 104 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 / Аннотации [38 0 R] >> эндобдж 5 0 obj > >> / StructParents 105 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 6 0 obj > >> / StructParents 106 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 7 0 объект > >> / StructParents 107 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 8 0 объект > >> / StructParents 108 / CropBox [-68.525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 9 0 объект > >> / StructParents 109 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 10 0 obj > >> / StructParents 110 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 11 0 объект > >> / StructParents 111 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 12 0 объект > >> / StructParents 112 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 13 0 объект > >> / StructParents 113 / CropBox [-68.525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 14 0 объект > >> / StructParents 114 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 15 0 объект > >> / StructParents 115 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 16 0 объект > >> / StructParents 116 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 17 0 объект > >> / StructParents 117 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 18 0 объект > >> / StructParents 118 / CropBox [-68.525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 19 0 объект > >> / StructParents 119 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 20 0 объект > >> / StructParents 120 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 21 0 объект > >> / StructParents 121 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 22 0 объект > >> / StructParents 122 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 23 0 объект > >> / StructParents 123 / CropBox [-68.525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 24 0 объект > >> / StructParents 124 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 25 0 объект > >> / StructParents 125 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 26 0 объект > >> / StructParents 126 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 27 0 объект > >> / StructParents 127 / CropBox [-68,525 -76,22 526,92 765,48] / Повернуть 0 >> эндобдж 28 0 объект > >> / StructParents 128 / CropBox [-68.6b $ NZ գ VVtVwbt ގ

Введение в стабилизатор напряжения — Utmel

Стабилизатор напряжения — это устройство, которое стабилизирует выходное напряжение. Стабилизатор напряжения состоит из схемы стабилизатора напряжения, схемы управления и серводвигателя. При изменении входного напряжения или нагрузки схема управления производит выборку, сравнение и усиление, а затем приводит серводвигатель во вращение, чтобы изменить положение угольной щетки стабилизатора напряжения. Соотношение витков катушки автоматически регулируется для поддержания стабильного выходного напряжения.

Каталог

I Что такое стабилизатор напряжения?

Стабилизатор напряжения — это устройство, стабилизирующее выходное напряжение. Стабилизатор напряжения состоит из схемы стабилизатора напряжения, схемы управления и серводвигателя. При изменении входного напряжения или нагрузки схема управления производит выборку, сравнение и усиление, а затем приводит серводвигатель во вращение, чтобы изменить положение угольной щетки стабилизатора напряжения.Соотношение витков катушки автоматически регулируется для поддержания стабильного выходного напряжения.

II Принцип работы стабилизатора напряжения

Поскольку некоторые электрические приборы содержат компоненты катушки, вихревые токи, которые препятствуют току, будут генерироваться на начальной стадии подачи питания. Вихревые токи не только ослабят мгновенное напряжение при запуске прибора, что приведет к медленному запуску, но также усилит мгновенное напряжение, генерируемое после разрыва цепи, что может вызвать искру, которая повредит цепь.В это время необходим регулятор напряжения для защиты нормальной работы схемы.

Стабилизатор напряжения состоит из схемы регулирования напряжения , схемы управления и серводвигателя . При изменении входного напряжения или нагрузки схема управления производит выборку, сравнение и усиление, а затем приводит серводвигатель во вращение, чтобы изменить положение угольной щетки регулятора напряжения. Автоматически регулируя соотношение витков катушки, мы можем поддерживать стабильное выходное напряжение.Регулятор напряжения большей емкости также работает по принципу компенсации напряжения.

III Технические параметры стабилизатора напряжения

1. Диапазон адаптации входного напряжения

Согласно стандарту IEC входное напряжение изменяется в пределах ± 20 от номинального значения. Если значение выходит за пределы диапазона, автоматически включается звуковая и световая сигнализация, и выходное напряжение не может быть стабилизировано в пределах необходимого диапазона.

2. Скорость стабилизации выходного напряжения

Это эффект изменения входного напряжения, вызванный изменением выходного. При номинальной нагрузке отрегулируйте входное напряжение от номинального значения до верхнего предела и нижнего предела в соответствии с диапазоном источника напряжения, затем измерьте максимальное изменение выходного напряжения (±).

Чем меньше значение, тем лучше. Это важный показатель для измерения характеристик стабилизатора переменного напряжения.

3. Скорость регулирования нагрузки

Это эффект изменения выходной мощности, вызванный изменением нагрузки. Измените ток нагрузки и измерьте изменение выходного напряжения (& plusmn;). Чем меньше значение, тем лучше. Это также важный индикатор для измерения производительности регулятора переменного тока.

4. Относительное содержание гармоник в выходном напряжении

Это также называется искажение выходного напряжения , обычно выражаемое в THD, которое представляет собой отношение общего действующего значения гармоник к действующему значению основной волны. .Когда нагрузка номинальная и искажение входного напряжения соответствует базовым условиям (обычно менее 3), измерьте искажение выходного напряжения, когда входное напряжение имеет наименьшее, номинальное и наибольшее значение, и возьмите максимальное значение. Чем меньше значение, тем лучше.

5. КПД

КПД регулятора напряжения отношение выходной активной мощности P0 к входной активной мощности Pi (в процентах),

6. Коэффициент мощности нагрузки

Выражается мощность стабилизатора напряжения. в вольт-амперах (ВА) или киловольт-амперах (кВА).Помимо чисто резистивной нагрузки, существуют также индуктивные и емкостные нагрузки. Помимо активной мощности есть реактивная мощность. Этот показатель отражает способность регулятора переменного тока выдерживать индуктивные и емкостные нагрузки.

В обычных источниках питания со стабилизированным переменным током коэффициент мощности нагрузки cosφ равен 0,8. Когда продукт составляет 1 кВт, максимальная выходная активная мощность (то есть способность выдерживать резистивную нагрузку) составляет 800 Вт. Если продукт составляет 1 кВт (cosφ все еще равен 0,8), выходная активная мощность составляет 1 кВт, а выходная мощность S = 1000/0.8 = 1250 ВА в это время. Когда значение коэффициента мощности нагрузки невелико, это означает, что оборудование источника питания имеет сильную способность адаптироваться к реактивным нагрузкам.

7. Другие параметры

Другие параметры стабилизатора напряжения переменного тока включают выходную мощность, входную частоту, влияние частоты источника, случайное отклонение (временной дрейф), входную мощность без нагрузки, коэффициент мощности источника (это значение отличается от коэффициент мощности нагрузки. Чем больше значение, тем лучше. Максимальное значение 1), относительная гармоническая составляющая тока источника, звуковой шум и т. д., трехфазный источник питания переменного тока, асимметрия трехфазного выходного напряжения и т.д. и медицинское оборудование. Существуют также небольшие стабилизаторы переменного тока мощностью от нескольких ватт до нескольких киловатт, которые обеспечивают качественные источники питания для небольших лабораторий или бытовой техники.

В соответствии с различными выходными характеристиками стабилизатора напряжения, стабилизатор напряжения обычно делится на две категории: стабилизатор напряжения переменного тока (стабилизированный источник питания переменного тока) и стабилизатор напряжения постоянного тока (стабилизированный источник питания постоянного тока).Ниже рассматривается стабилизированный источник питания постоянного тока.

В зависимости от рабочего состояния трубки регулятора стабилизированный источник питания часто делится на две категории: линейный стабилизированный источник питания и импульсный стабилизированный источник питания. Также есть небольшой блок питания, в котором используется стабилизатор напряжения.

1.

Стабилизатор коммутируемого напряжения

Рисунок 1. Стабилизатор коммутируемого напряжения

Импульсный стабилизатор использует выходной каскад для многократного переключения состояний «включено» и «выключено» и вырабатывает выходное напряжение с компоненты накопителей энергии (конденсаторы и катушки индуктивности).Он регулирует время переключения в соответствии с образцом обратной связи выходного напряжения.

В регуляторе с фиксированной частотой синхронизация регулируется путем регулировки ширины импульса коммутируемого напряжения. Это так называемое управление ШИМ. В стробируемом генераторе или импульсном регуляторе ширина и частота переключающего импульса остаются постоянными, но включение или выключение выходного переключателя контролируется обратной связью.

В соответствии с расположением переключателей и компонентов накопителя энергии генерируемое выходное напряжение может быть больше или меньше входного напряжения, и для генерации нескольких выходных напряжений можно использовать регулятор напряжения.

В большинстве случаев при одинаковых требованиях к входному и выходному напряжению импульсные (понижающие) импульсные стабилизаторы более эффективны, чем линейные регуляторы для преобразования мощности. Тип компенсации — высокоточный регулируемый источник питания с компенсацией переменного тока (однофазный 0,5 кВА и выше, трехфазный 1,5 кВА и выше), имеет компенсационный трансформатор и выход 110 В.

2. Параметр

Стабилизатор напряжения

LDO (стабилизатор с низким падением напряжения) — это своего рода линейный регулятор.В линейном регуляторе используется транзистор или полевой транзистор, работающий в его линейной области, чтобы вычесть избыточное напряжение из входного напряжения для получения регулируемого напряжения. Так называемое падение напряжения относится к минимальной разнице между входным напряжением и выходным напряжением, необходимой для поддержания выходного напряжения в пределах ± 100 мВ от его номинального значения.

LDO с положительным выходным напряжением обычно использует силовые транзисторы (также называемые передаточными устройствами) в качестве PNP. Этот тип транзистора допускает насыщение, поэтому регулятор может иметь очень низкое падение напряжения, обычно около 200 мВ.Для сравнения, падение напряжения традиционного линейного регулятора, использующего композитные силовые транзисторы NPN, составляет около 2 В. Отрицательный выход LDO использует NPN в качестве устройства передачи, и его режим работы аналогичен режиму работы устройства LDO PNP с положительным выходом.

В более новых разработках используются силовые КМОП-транзисторы, обеспечивающие наименьшее падение напряжения. При использовании CMOS единственное падение напряжения на регуляторе вызывается сопротивлением включения тока нагрузки источника питания. Если нагрузка небольшая, падение напряжения, создаваемое этим методом, составляет всего десятки милливольт.

3.

Стабилизатор напряжения для станка лазерной резки

Когда напряжение источника питания распределительной сети колеблется или изменяется нагрузка, он может автоматически обеспечивать стабильность выходного напряжения. Он должен иметь большую емкость, высокую эффективность, широкий диапазон регулирования напряжения, отсутствие дополнительных искажений формы сигнала и фазового сдвига, быстрое время деформации и стабильность. Кроме того, он также имеет отличные функции защиты от аварийных сигналов, таких как короткое замыкание и механический отказ, а его объем должен быть как можно более компактным и простым в использовании.

Стабилизатор напряжения Применение и функция

1. Применение стабилизатора напряжения

Стабилизаторы напряжения могут широко использоваться на промышленных и горнодобывающих предприятиях, нефтяных месторождениях, железных дорогах, строительных площадках, школах, больницах, почте и телекоммуникациях. , гостиницы, электронные компьютеры, прецизионные станки, компьютерная томография (КТ), прецизионные инструменты, испытательные устройства для научных исследований, освещение лифтов, импортное оборудование, производственные линии и другие места, где требуется стабильное напряжение питания .

Рисунок 2. Стабилизатор напряжения компьютера

Он также подходит для пользователей в конце низковольтной распределительной сети, где напряжение источника питания слишком низкое или слишком высокое, а диапазон колебаний велик, что это электрооборудование с большими колебаниями нагрузки. Мощный компенсирующий стабилизатор мощности можно подключать к тепловым, гидравлическим и малогабаритным генераторам.

2.

Функция стабилизатора напряжения

Стабилизатор напряжения — это цепь источника питания или устройство источника питания, которое может автоматически регулировать выходное напряжение.Его функция заключается в стабилизации напряжения источника питания, которое сильно колеблется и не соответствует требованиям электрического оборудования в пределах установленного диапазона значений, чтобы различные цепи или электрические устройства могли нормально работать при номинальном рабочем напряжении.

Первоначальный регулятор мощности полагался на скачок реле для стабилизации напряжения. Когда напряжение в сети колеблется, активируется схема автоматической коррекции стабилизатора мощности, чтобы запустить внутреннее реле, заставляя выходное напряжение оставаться близким к установленному значению.Эта схема проста, но точность регулирования напряжения невысока, и каждый раз, когда реле прыгает и смещается, это вызывает мгновенное прерывание подачи питания, вызывая искровые помехи.

Это сильно мешает чтению и записи компьютерного оборудования, и очень легко вызвать неправильные сигналы на компьютере, а в серьезных случаях это приведет к повреждению жесткого диска.

В высококачественных малогабаритных стабилизаторах напряжения в основном используется двигатель для приведения в действие угольных щеток для стабилизации напряжения.Этот тип стабилизатора напряжения имеет мало помех для электрического оборудования и имеет относительно высокую точность стабилизации напряжения.

VI Меры предосторожности

1.

Ежедневное внимание

(1) Избегайте сильной вибрации и не допускайте попадания агрессивных газов и жидкости внутрь; предохранять от полива и помещать в проветриваемое и сухое место; не накрывайте тканью, чтобы затруднить вентиляцию и отвод тепла.

(2) Используйте трехконтактную розетку (заземленную), и винт заземления на машине должен быть правильно заземлен, в противном случае мы обнаружим, что корпус заряжен при тестировании.Это нормальное явление, вызванное электричеством, индуцированным распределенной емкостью, и его можно устранить после подключения к заземляющему проводу.

Если в корпусе имеется серьезная утечка тока и измеренное сопротивление изоляции меньше 2 МОм, слой изоляции может быть влажным или цепь и корпус закорочены. Перед использованием следует выяснить причину и устранить неисправность.

(3) В стабилизаторе напряжения малой мощности 0,5–1,5 кВА используется предохранитель для защиты от перегрузки по току и короткого замыкания, а стабилизатор напряжения 2–40 кВА работает как автоматический выключатель для защиты от перегрузки по току и короткого замыкания.Если предохранитель часто перегорает или автоматический выключатель часто срабатывает, проверьте, не слишком ли велик потребление электроэнергии.

(4) Когда выходное напряжение превышает значение защиты (значение защиты фазного напряжения установлено на заводе на 250 В ± 5 В), автоматически включается стабилизированный источник питания. Если выходное напряжение стабилизированного источника питания отключено, а индикатор перенапряжения все еще горит, пользователь должен немедленно выключить питание и проверить сетевое напряжение или стабилизатор напряжения.Если стабилизатор напряжения автоматически отключается (с входом, но без выхода), проверьте, не превышает ли напряжение сети 280 В. Если оно ниже 280 В, проверьте, исправен ли регулятор. Используйте после выяснения причины.

(5) Если выходное напряжение стабилизатора напряжения сильно отличается от 220 В, отрегулируйте потенциометр на панели управления до тех пор, пока выходное напряжение не станет нормальным (если входное напряжение не достигает диапазона регулирования напряжения, это не может быть скорректировано).

(6) Когда напряжение сети часто находится на нижнем пределе (<150 В) или верхнем пределе (> 260 В) входного напряжения стабилизатора напряжения, предельный микровыключатель легко затрагивается, и возможен сбой управления. . В это время регулятор напряжения не может регулировать напряжение или его можно только отрегулировать (или можно только отрегулировать), и сначала следует проверить микровыключатель.

(7) Пожалуйста, содержите внутреннюю часть машины в чистоте, пыль будет препятствовать вращению шестерни и влиять на точность выходного напряжения.Пожалуйста, очищайте и своевременно поддерживайте в чистоте контактную поверхность змеевика. Когда угольная щетка сильно изношена, давление следует отрегулировать, чтобы избежать пробоя на контактной поверхности угольной щетки и катушки. Угольную щетку следует заменить, если ее длина меньше 2 мм. А когда плоскость катушки обожжена черным, следует ее отполировать мелкой наждачной бумагой.

(8) Входной конец 3-фазного стабилизатора напряжения должен быть подключен к нулевой линии , иначе стабилизатор напряжения не сможет нормально работать с нагрузкой, и стабилизатор напряжения и электрооборудование будут повреждены.Не используйте заземляющий провод для замены нейтрального провода (но нейтральный и заземляющий провода можно подключать параллельно), а нейтральный провод нельзя подключать к предохранителю.

Рисунок 3. Трехфазный стабилизатор напряжения

(9) Когда выходное напряжение регулятора ниже номинального напряжения (220 В или трехфазное 380 В), проверьте, не слишком ли низкое входное напряжение. . Когда номинальное напряжение достигается без нагрузки, а выходное напряжение ниже номинального напряжения под нагрузкой, это происходит из-за того, что поверхность нагрузки входной линии слишком мала, или конец нагрузки превышает диапазон номинальной мощности регулятора, линейное напряжение падение слишком велико, когда используется нагрузка, а входное напряжение ниже, чем нижний предел диапазона регулировки регулятора, в это время вам следует заменить более толстый входной провод или увеличить емкость продукта.

(10) Когда одна нагрузка имеет большую мощность (например, кондиционер и т. Д.), Входная линия длинная, а поверхность нагрузки недостаточна, напряжение сильно снижается, когда нагрузка работает, и загрузка может быть затруднена. Когда нагрузка временно останавливается во время работы, в выходной момент произойдет сбой питания из-за перенапряжения. Если такое явление происходит, это не неисправность регулятора напряжения, и необходимо улучшить входную линию (линия должна быть утолщена, а длина входной линии должна быть как можно короче, чтобы уменьшить падение напряжения в линии). .

(11) Когда выходное напряжение стабилизатора напряжения серьезно отклоняется от 220 В, проверьте

①, находится ли входное напряжение в пределах диапазона стабилизации напряжения;

② сильно ли изношена шестерня мотора и можно ли его вращать;

③ не поврежден ли концевой выключатель;

④ гладкая ли плоскость катушки;

⑤ не повреждена ли плата управления.

2. Вопросы безопасности

(1) При включении стабилизированного источника питания не разбирайте стабилизированный источник питания и не тяните за входные и выходные линии стабилизированного источника питания по своему желанию, чтобы предотвратить поражение электрическим током. или другие несчастные случаи, связанные с электробезопасностью.

(2) Входные и выходные линии стабилизированного источника питания должны быть расположены разумно, чтобы предотвратить вытаскивание и износ, которые могут привести к утечкам.

(3) Стабилизированный источник питания должен быть надежно заземлен, и пользователь несет ответственность за поражение электрическим током или травмы людей, вызванные срабатыванием незаземленного провода.

(4) Заземляющий провод стабилизированного электроснабжения нельзя подключать к объектам общего пользования, таким как трубопроводы отопления, водопроводы, газопроводы и т. Д., чтобы избежать нарушения прав третьих лиц или причинения вреда.

(5) Входные и выходные линии стабилизированного источника питания следует регулярно проверять, чтобы избежать ослабления или падения, что может повлиять на нормальное использование и безопасность стабилизированного источника питания.

(6) Выбор соединительного провода стабилизатора напряжения должен обеспечивать достаточную допустимую нагрузку по току.

(7) Со стабилизатором напряжения следует обращаться осторожно, чтобы избежать сильной вибрации при работе;

(8) Убедитесь, что пружина угольной щетки стабилизатора напряжения имеет достаточное давление, чтобы избежать пробоя на контактной поверхности угольной щетки и катушки;

(9) Непрофессионалы не могут разобрать или отремонтировать стабилизированный блок питания.

VII Анализ отказов плата управления сломана

Отказ производительности: нет выхода, нет индикации напряжения или нет запуска

Анализ причин

3 Устранение неполадок 4 903

Защита от повышенного или пониженного напряжения

Отрегулируйте внутренний регулируемый потенциометр выходного напряжения

Защита от смещения и обрыва фазы

Произвольно поменяйте местами любые две фазы из трех фаз

Заменить

Выходной переменный ток сломан

Заменить

40 Превышен диапазон

Неисправное напряжение на выходе

Анализ причин

Устранение неисправностей

Это гомологичный регулятор

Заменить регулятором на шунтирующий регулятор

40

Заменить регулятором напряжения с широким диапазоном

Сломан концевой выключатель

Заменить

Плата фазовой схемы сломана

49

Серводвигатель перегорел

Заменить

Отказ: не регулируется

Анализ

90 003

Превышен диапазон регулятора напряжения

Заменить регулятор широкого диапазона

Концевой выключатель провода сломан

Заменить схему

Заменить

Серводвигатель сгорел

Заменить

3 4

Неисправность во время работы

Анализ причин

Устранение неисправностей

Общая тормозная способность мала

Заменить воздушным выключателем соответствующей мощности

Воздушный выключатель сломан

Заменить

Мгновенно слишком высокое импульсное напряжение

Заменить на бесконтактный высокоточный стабилизатор напряжения

мусор

Неисправность регулятора производительности

Анализ причин

Устранение неполадок

Перегрузка

Уменьшите количество подключенного оборудования

Отказ: Стабилизатор напряжения не может работать автоматически

Анализ причин

Поиск неисправностей Кнопочный переключатель atic не включен

Заменить

Отказ печатной платы

Заменить

— Неисправное напряжение на панели давления 2 регулятор мощности не имеет этой функции)

Анализ причин

Устранение неисправностей

Серводвигатель сгорел

406 Концевой выключатель свинца сломан

Заменить

Печатная плата сгорела

Заменить

Ручные и автоматические ручки не повернуты на ручные

Дружеское напоминание: Если стабилизатор напряжения выходит из строя, и вы не можете с этим справиться или прекратите подавать питание на внутреннее оборудование, обратитесь в профессиональную компанию.

Рекомендуемые статьи:

Мультивибратор: схемы, типы и применение

Драйвер светодиода: функция, типы и применение

Что такое цифровая интегральная схема и как ее использовать?

Введение в фотонные интегральные схемы и технологию PIC

Стабилизатор напряжения с регулируемой токовой защитой. Регулируемый регулятор напряжения с регулируемым пределом выходного тока.Схема стабилизатора с регулируемым блоком питания

11

Простенькая по схеме, со средними параметрами, на транзисторах с высоким коэффициентом усиления. Он создавался для собственных нужд как лаборатория.
Часто приходилось ремонтировать или запускать разные схемы, для чего просто нужно было что-то запитать на 3В, 5В, 6В, 9В, 12В … И каждый раз я искал что-то подходящее. В ходу были блоки питания от калькуляторов, магнитофонов, батарейки, батарейки.Иногда радовался, что соответствующий источник не давал больших токов, что избавляло меня от лишних трат. Конечно сделал один-два транзисторных стабилизатора для решения этой проблемы, но результативный не удовлетворил. Где-то на второй волне вдохновения я родился с тем, чем хочу поделиться.
Еще используется при ремонте и пуске устройств, при соответствующем выходном напряжении конечно. А также при не совсем обычном применении — проверяйте стабилитроны, заряжая пальчиковые батарейки, просто как источник стабильного тока.В таких случаях крайне удобно иметь на выходе хотя бы вольтметр.

Простейший стабилизированный блок питания

Конденсаторы после двух интегральных схем служат в основном для. Уменьшите индуктивное воздействие интегратора и соответствующих излучателей на остальные компоненты печатной схемы. Поэтому рекомендуется размещать их возле встроенного радиатора.

Этот тип стабилизированного источника питания, только благодаря использованию двух вышеупомянутых интегральных схем, позволяет.Обеспечивают защиту от токов короткого замыкания. Не требуются дополнительные электронные компоненты для дальнейшей стабилизации выходного напряжения.

Схема

Устройство разработано для выходного напряжения 1 … 12В и регулирования выходного тока в диапазоне 0,15 … 3А. Конечно, для хороших результатов я поставил транзисторы с коэффициентом усиления более 500 (снят с платы МЦ-31 телевизора, ОСТ), и составной регулятор, около 10000 (если счетчик не врет, я взял ТВ через модуль TPCS, растровая коррекция).
Наверное важно, чтобы он питал схему от автомобильного аккумулятора при съемке данных.
Далее поставил трансформатор и какие-то чудеса, типа 3А на 12В, стало невозможно. Напряжение на выходе выпрямителя упало. Кому еще интересно — ближе к схеме.

Это интегрированный линейный контроллер с контролем тока, который защищен от короткого замыкания и тока, температуры и максимального входного напряжения. Напряжение питания составляет 230 В переменного тока. При минимальном выходном напряжении источник питания может подавать только выходной сигнал 1А, поскольку рассеиваемая мощность будет слишком высокой и, следовательно, потребуется слишком много теплоносителя.

Он в первую очередь предназначен для последовательного, а затем линейного, но также может использоваться в качестве контроллера переключения. Он имеет внутренний источник опорного напряжения, который можно использовать для операций настройки, в частности, опорное напряжение 15 В, которое подается через специальный вывод интегральной микросхемы.


Схема стабилизатора напряжения с регулируемым ограничением выходного тока

Итак, на X1 подается отрицательный источник напряжения, а на X2 берется стабилизированное и ограниченное выходным током напряжение.Короче VT3 — регулирующий, VT4 — компаратор и усилитель сигнала ошибки регулятора напряжения, VT1 — компаратор и усилитель сигнала ошибки регулятора выходного тока, VT2 — датчик наличия ограничения выходного тока. За основу был взят распространенный вариант регулятора напряжения.

Integrated обеспечивает превосходные уровни управления линией и нагрузкой, то есть подавляет пульсации и шум входящего напряжения, а также поглощает изменения тока нагрузки, не создавая шума на выходном напряжении.Максимальный ток также может отличаться от указанного выше, изменяя лишь несколько значений.

Первая схема, то есть стабилизатор напряжения 7 В с максимальным напряжением 3 В, что меньше максимального напряжения входного тока 2А и защиты от короткого замыкания, выглядит так. Это верно, если входное напряжение 35 В, если оно меньше, мощность не 56, а меньше.


Схема источника с фиксированной защитой по напряжению и току

Она немного изменена, так что выходное напряжение может быть изменено в максимально возможной степени, а блок стабилизатора может быть удален.Добавлен R8 для включения работы схемы ограничения выходного тока на VT1. Добавлены R7 и VD3 для установки пределов изменения выходного напряжения. Конденсаторы С1 и С2 помогут снизить пульсации на выходе.

Вторая схема, а именно: стабилизатор напряжения 7В-7В с максимальным током 2А и защитой от короткого замыкания, выглядит так. Последняя схема представляет собой стабилизированный источник питания с минимальным напряжением 7 В и максимальным током 2 А с защитой, но с максимальным напряжением в зависимости от типа используемого стабилитрона, т.е.e ..

Давайте посмотрим сегодня, чтобы реализовать нашу первую схему. В этой статье мы видели, что его можно сравнить с легким, который заряжает и разряжает, и мы видели, что эту функцию можно использовать для выравнивания напряжения. Посмотрим подробно, что происходит.

Теперь позвольте мне пройти второй круг с пояснениями (см. Первую диаграмму). Когда на входе Х1 относительно общего провода отрицательное постоянное напряжение в пределах 9 … 15В, в цепи R2-VD2-R6-VD1 появится ток.На стабилитроне VD1 появится стабильное напряжение. Часть этого напряжения подается на базу VT4, которая в результате откроется. Его коллекторный ток откроет VT3. Коллекторный ток VT3 заряжает C2, и через делитель R9, R10 часть напряжения C2 (это выход) пойдет на эмиттер VT4. Это не позволит вырасти выходному напряжению более чем вдвое (Ubase VT4 — 0,6V). Вдвое потому что делитель R9, R10 на два. Поскольку напряжение на базе VT4 стабильно, выход также будет стабильным.Это рабочий режим. Транзисторы VT1, VT2 закрыты и не действуют.

Красный график — это выходное напряжение выпрямительного моста, а синий график — напряжение на конденсаторах, это то, что мы находим после конденсатора. Как только начинается первая полуволна, конденсатор заряжается сам с собой, что приводит к максимальному напряжению, когда полуволна падает, конденсатор начинает медленно разряжаться, но он может разряжаться очень мало, потому что снова есть другая половина волна, которая полностью перезаряжает конденсатор, доводя напряжение до максимального значения.

На практике переменное напряжение 12 В достигает пика, который достигает примерно 17 В, и это именно то значение, которое напряжение примет при настройке. Компонент имеет 3-контактный входной контакт 1, где всегда должно быть более высокое напряжение, чем выходное напряжение, заземляющий контакт 2, всегда соединенный с землей, то есть отрицательный, и выходной контакт 3, от которого должно быть отведено наше напряжение. желаемое значение.

Подключите нагрузку. Появится ток нагрузки. Он будет течь по цепочке R2, EQ VT3 и далее в нагрузку.R2 здесь работает как датчик тока. Пропорционально действующему на нем появляется напряжение. Это напряжение суммируется с частью напряжения, снимаемого R5 с VD2, и присоединяется к базовому переходу VT1 (R3 предназначен исключительно для ограничения базового тока VT1 во время перенапряжения и защиты, таким образом, VT1), и когда его становится достаточно для размыкания VT1, устройство переходит в режим ограничения выходного тока. Часть токоприемника VT4, ранее входившего в базу VT3, теперь проходит через переход база-эмиттер VT2 на коллектор VT1.
Из-за большого усиления транзисторов напряжение база-эмиттер VT1 будет поддерживаться на уровне 0,6 В. Это означает, что напряжение на R2 не изменится, следовательно, и ток через него, а затем через нагрузку тоже. Для двигателя R5 можно выбрать ограничение по току от минимального до почти 3А.
Если режим ограничения тока открыт, VT2 также открыт, и он будет светить светодиод HL1 своим током коллектора. Следует понимать, что ограничение тока «имеет приоритет» над «стабильностью» выходного напряжения.

Этот контроллер является частью семейства контроллеров, где последние две цифры кода определяют выходное напряжение. Этот последний предел может быть значительно ниже, поскольку он зависит от различных факторов. Простой рассеивается в тепле, и мы уже видели в статье, что можем рассчитать это значение.

Следовательно, чтобы предотвратить слишком много тепла, в дополнение к радиатору, упомянутому ранее, мы можем уменьшить его мощность, и для этого у нас есть 2 альтернативы, или мы уменьшаем блок питания, или мы должны довольствоваться потреблением меньшего Текущий.Это объясняет, почему декларируются эти 2А-максимы, они теоретические, то на практике они также зависят от того, сколько входного напряжения и насколько хорошо стабилизатор охлаждается.

На выходе прибора ставлю вольтметр, но когда мне нужно ограничение по определенному току, просто замыкаю вывод тестером в режиме амперметра и с помощью R5 добиваюсь желаемого.

Детали

Схема простая но все хорошее основано на транзисторах с большим коэффициентом усиления (более 500). А VT3 вообще составной.Букв в названиях транзисторов нет, но все должно подходить. У меня все на «Г». Главное — усиление и небольшая утечка. В справочнике пишут, что некоторые буквы «Ку» от 200, а у меня их всего больше 600. Изменения попали в группу А. Для VT3 нужен радиатор. Поставил то, что было и полез в футляр. Максимальную надежность обеспечивает только радиатор, рассчитанный на рассеивание мощности, равной входной U, умноженной на 3А, то есть 30 … 50Вт.
Думаю мало кому понадобится 1В на 3А в течение длительного времени, так что можете смело ставить радиатор на 2… в 3 раза меньше.

VD2 и VD3 служат источниками напряжения 0,6 В. Могут использоваться другие кремниевые диоды. R4 — немного сдвигает порог при загорании светодиода. Если он горит, это означает, что выходной ток ограничен. R1 просто ограничивает ток светодиода. Возможны потенциометры с большим номиналом (2 … 3 раза). R8 можно уменьшить (где-то до 4к), если транзистору VT3 не хватает усиления.

Очевидно, что эта схема должна быть запитана переменным напряжением от 12 до 24 В, следовательно, очевидно, что она не может быть напрямую подключена к 220 В, а должна быть подключена через трансформатор.Благодаря трансформатору мы можем подключить нашу схему к сетевому напряжению, очевидно, подключив источник 220 В к домашней розетке, а выход 12 В — на входе нашей схемы. Затем мы можем добавить светодиод, указывающий, что наш блок питания включен и может быть подключен, и, возможно, вставить 2 винтовые клеммы, чтобы упростить подключение нашей схемы.

С печатной платой — как обычно в простых схемах, изготавливаемых в единственном экземпляре. Была плата за еще один регулируемый стабилизатор напряжения, параметры которого не устраивали.Ее превратили в макет и собрали на нем. эта схема. Резисторы использовал на 0,25 Вт (может и 0,125) — особых требований не вижу. На 3А (если их дает выпрямитель) — заводской провод R2 (2 Вт-а) будет на пределе и, вероятно, стоит поставить более мощный (5Вт). Электролиты — К50-16 на 16В.

Качественная электроэнергия может повлиять на работу системы, поэтому ее необходимо регулировать и стабилизировать, чтобы устранить все дефекты, которые могут повредить батареи. Мощность имеет решающее значение для максимизации производительности системы и устранения дефектов, которые могут распространяться в сетях, таких как задержки, гармоники, импульсы и перегрузки.Во всех схемах на печатных платах на самом деле есть конденсаторы, вносящие фазовые сдвиги, и индуктивности, которые вносят фазовые задержки, и есть вкладки, которые содержат их сотни.

Если нет составного транзистора — «сделайте» его из того, что есть. Начните с KT817 + KT315, с букв «B» и далее. (Если усиления VT3 недостаточно, я бы уменьшил R9 и R10 до 200 Ом, а R8 до 2 кОм).

Трансформатор, выпрямитель и конденсатор фильтра — ваши. Они не менее важны, но я хотел рассказать только о таком более-менее универсальном стабилизаторе.(У меня есть 10-ваттный трансформатор при переменном токе 10 В / 1 А, откуда-то блокирующий мост, снятый на 1 А, и электролитный фильтр 4000 мкФ / 16 В. Обидно, но все влезает в корпус.

Если все было хорошо спроектировано, меняются в фазе напряжение и ток должны компенсировать цепь, но на самом деле тепловые колебания могут создавать электромагнитные муфты, которые уходят от конструкторов и создают шум и шум в виде пиков напряжения и тока, которые могут перемещаться друг с другом.

По этой причине мы пытаемся отрегулировать коэффициент мощности или фазовый угол между двумя носителями напряжения и тока, чтобы минимизировать его. Цепи коррекции коэффициента мощности являются фундаментальными, так как питание часто подается из общедоступной сети с уже высоким напряжением и током, а также имеет нарушения.

Следует отметить, что индикатор часового типа (на схеме не показан) с использованием переключателя может использоваться как вольтметр и как амперметр. В первом случае мы видим выходное напряжение, во втором — выходной ток.

Итого

Вышерасписанное устройство у меня работает в режиме «все в одном»: развитый (пусть и униполярный) блок питания, частотомер и генератор звуковой частоты (синус, квадрат, треугольник). Схемы взяты из журнала «Радио». (Они работают не совсем так, как хотелось бы. Во-первых, из-за того, что я сделал слишком много «несанкционированных» изменений — особенно в элементной базе — я поставил то, что у меня было.) Конечно, головка вольтметра может работать как индикатор частоты в частотомер. При использовании генератора — частотомер показывает частоту.Есть выходное переменное напряжение 6,3В и 10В, на всякий случай.

Тело, которое видно на фото, не ахти, повторюсь. И вообще: там все задумано как зеркальное отражение, но лицевую панель по ошибке гнули не в ту сторону. Расстроился и никак не украсил.

Следовательно, необходимо фильтровать и регулировать мощность перед ее использованием для регенерации литий-ионных аккумуляторных батарей, которые используются в самых современных электронных продуктах.Вокруг аккумуляторов имеется множество схем управления, которые сначала защищают их от чрезмерных значений напряжения и тока, а затем предотвращают сбои в работе, предотвращая дальнейшее распространение дефектов.

Аналоговый подход снижает энергоэффективность на 90% намного больше, чем цифровые контроллеры. На практике первая микросхема содержит усилитель с высоким входным сопротивлением, который измеряет разряд батареи и зарядный ток, а затем дифференциальный усилитель, измеряющий его мгновенное напряжение.

Файлы

Виктор Бабешко повторил дизайн, прислал свой вариант печатки и фото.
Файл в LayOut: ▼

Заметным недостатком предохранителей является их одноразовость, необходимость последующей ручной замены другим предохранителем, рассчитанным на такой же ток защиты. Часто, когда под рукой нет подходящего, используют предохранители на другой ток или тем более ставят самодельные (суррогатные) предохранители или просто массивные перемычки, что крайне негативно сказывается на надежности техники и небезопасно с точки зрения возгорания.
Обеспечивает автоматическую многоразовую защиту устройства и в то же время улучшает его работу с помощью электронных предохранителей. Эти устройства можно разделить на два основных класса: первые из них самостоятельно ремонтируют цепь питания после устранения причин аварии, вторые — только после вмешательства человека. Известны также устройства с пассивной защитой — в аварийном режиме они лишь сигнализируют световым или звуковым сигналом о наличии опасной ситуации.
Для защиты электронных устройств от перегрузки по току, резистивные или полупроводниковые датчики тока обычно используются последовательно в цепи нагрузки.Как только падение напряжения на датчике тока превышает заданный уровень, срабатывает устройство безопасности, отключающее нагрузку от источника питания. Преимущество этого метода защиты в том, что величину срабатывания защиты по току можно легко изменить. Чаще всего это достигается с помощью датчика тока.
Еще один эффективный метод защиты нагрузки — ограничение тока через нее. Даже в случае короткого замыкания в цепи нагрузки, ни при каких обстоятельствах ток не может превышать указанный уровень и повреждать нагрузку.Для ограничения максимальной токовой нагрузки используют генераторы стабильного тока.
Простые схемы автоматической защиты Электронные устройства от сверхтоков показаны на рис. 5.1 и 5.2. Работа этого типа устройства (стабилизатор тока на основе полевого транзистора) подробно обсуждалась ранее в главе 5 (книга 2). Ток нагрузки при использовании такого ограничителя не может превышать начальный ток, протекающий через полевой транзистор. Величину этого тока можно установить подбором типа транзистора, например, для показанного в схеме транзистора типа КП302В максимальный ток через нагрузку не превышает 30… 50 мА. Увеличить значение этого тока можно при параллельном включении нескольких транзисторов.

Модуль принимает входное напряжение ± 25 В и может выдавать до 25 А благодаря сцене, образованной двумя моссетами в качестве защитного диода между коллектором и эмиттером.

Тема курса: Устройство стабилизатора напряжения. НАВИГАЦИОННЫЙ СТАБИЛИЗАТОР ОБРАБОТКИ ЛЕЧЕНИЯ. Измените напряжение питания.

Введение Источники питания, использующие распределительную сеть для. Источником питания электронного оборудования являются электронные преобразователи переменного напряжения постоянного тока.Помимо конвертации они почти всегда выполняются. стабилизация напряжения и защита от экстремальных значений токов и напряжений. Преобразование переменного напряжения постоянно осуществляется выпрямителями, стабилизаторами, схемами стабилизации и защиты и элементами защиты.

Рис. 5.1. Ограничение максимального тока нагрузки с помощью полевого транзистора

Рис. 5.6. Схема стабилизатора напряжения со звуковой индикацией перегрузки

Когда стабилизатор работает, ток нагрузки проходит через датчик тока R1, создавая на нем падение напряжения.Пока ток небольшой (при указанном значении этого резистора не более 0,3 А) транзистор VT1 закрыт. По мере увеличения потребления тока и, соответственно, напряжения на резисторе, транзистор приближается к порогу открытия. Когда напряжение между базой и эмиттером транзистора VT1 достигает 0,7 В, он открывается и при дальнейшем увеличении тока переходит в состояние насыщения. Когда транзистор открыт, выпрямленное напряжение подается на устройство звуковой сигнализации и приводит его в действие.
Зуммер перегрузки на транзисторе VT1 можно встроить в любой другой источник питания.
Электронный предохранитель для цепей постоянного тока и одновременно стабилизатор напряжения могут быть выполнены по схеме, изображенной на рис. 5.7. На первых двух транзисторах (VT1 и VT2) собран стабилизатор напряжения по традиционной схеме, но параллельно стабилитрону VD1
Релейный каскад включения / выключения на транзисторах VT3 — VT5 с текущей датой на резисторе Rx. При превышении заданного значения тока emy в нагрузке этот каскад сработает и шунтирует степрон.Напряжение на выходе стабилизатора падает до незначительной величины.

Один блок питания обычно включает в себя все три типа узлов, некоторые из которых могут. повторить несколько раз. Возможны варианты с несколькими схемами питания. переменный ток. На рисунке 1 показаны два наиболее распространенных. ИНЖИР. 1а показана электросеть. трансформаторное и единичное преобразование энергии. В данном случае напряжение сети.

В области здоровья и питания 2. В обоих вариантах помимо схемы питания присутствуют схемы управления, защиты и сигнализации.которые имеют разную сложность в зависимости от их назначения и требований. Во всех силовых устройствах в этом и заключается направление энергии от источника к потребителю. разъясняется и изучается последовательность дидактических размышлений. Однако, когда они разрабатываются, на выходе получаются данные и настроение потребителей. Это делается в обратном порядке — от потребителя к сети.


5.7. Электронный предохранитель — регулятор напряжения постоянного тока

Для разблокировки схемы защиты достаточно кратковременно нажать кнопку SB1.
Использование автоматических выключателей нагрузки может предотвратить разряд аккумуляторов или защитить источник питания от перегрузки. Для выполнения функций таймера и автоматического отключения нагрузки при коротком замыкании. Устройство показано на рис. 5.8.
Автоматический выключатель нагрузки работает следующим образом: при кратковременном нажатии кнопки SB1 конденсатор С1 заряжается от источника питания через резистор R1. В то же время к нему присоединяется ключ (ы) / SHO / 7 переключатель (DA1), обеспечивая тем самым включение силового транзистора VT1.Если переключатель SA1 разомкнут, устройство работает по схеме эпохи. Конденсатор С1 разряжается по цепи на -1 параллельных ему резисторов R3 и R2. При освобождении конденсатора С1 устройство автоматически отключится от источника. Когда переключатель SA1 замкнут, таймер не работает. Переключатель 7 блокируется подачей напряжения высокого уровня на управляющий вход (входы) через диод VD2 и резисторы R4, R5. Схема защиты источника питания от короткого замыкания в нагрузке выполнена на транзисторе VT2 и работает следующим образом.При работе устройства в штатном режиме транзистор VT2 закрыт и не влияет на работу других элементов схемы. При коротком замыкании в нагрузке ток через диод VD2 не протекает, транзистор VT2 подключается к конденсатору С1, на его базе происходит отпирающее смещение через резисторы R5 и R6. Конденсатор С1 разряжается, и прибор отключается. Резистор R4 ограничивает начальный импульсный ток, когда конденсатор C1 разряжен.

Например, для схемы рис.Дизайн должен быть в следующем порядке: — конструкция выходного фильтра; — конструкция стабилизатора; — Проектирование группы клапанов и сетевого фильтра. — трансформаторная конструкция; — Разработка схем управления, защиты и сигнализации. В свою очередь, каждый отдельный узел интегрированного блока питания выполнен в определенной последовательности: — индикация выходных данных, которые определяются потребителем, соседними узлами, источником питания. источник и окружающая среда; — выбор схематического решения; — Определяет режим работы элементов схемы и их расчет или выбор по каталогу.- Проверьте устойчивость к экстремальным условиям и разработайте соответствующую защиту.


Рис. 5.8. Схема выключателя автозагрузки — таймера

При общем сопротивлении резисторов R2 и R3 100 кОм таймер обеспечивает выдержку 1 с, при общем сопротивлении 200 кОм — 2 с, 300 кОм — 3 с и т. Д. До 33 секунд Увеличьте время воздействия на на один-два порядка за счет увеличения значений R2, R3 и C1.
Максимальный ток нагрузки определяется типом используемого транзистора VT1 и наличием радиатора.Неиспользуемые переключатели могут быть подключены параллельно с DA1.1 или использоваться в таких взаимно независимых схемах автоматического отключения нагрузки. Такое включение можно использовать в схемах резервирования функций для обеспечения повышенной надежности работы устройства: выход из строя одного из сопротивлений нагрузки не приведет к отключению или повреждению других каналов. Переключатель SA2 можно включить при малых (до 10 мА на ключ) токах нагрузки
. Для токов нагрузки до 40 мА можно исключить из схемы транзистор VT1.В этом случае все переключатели / SHO / 7-переключатель DA1 должны быть подключены параллельно.
Устройство работает в диапазоне питающих напряжений 5 … 15 В и даже при 4 В. Выключить устройство можно, нажав кнопку SB2. В выключенном состоянии он потребляет ток до долей-единиц мкА.
Известно, что в последовательно соединенной цепи элементы батареи, разряженные до напряжения ниже 1,1 В, превращаются от источника напряжения в своего рода дополнительную нагрузку для неразрядных элементов, вызывая резкое падение напряжения на выводах батареи.Помимо снижения энергоемкости аккумуляторной батареи в целом, это также может привести к «повреждению отдельных ее элементов».

Проектирование регуляторов напряжения со встроенными. Максимальный ток, который может потреблять эталонный источник выходной составляет 15 мА. Максимальная тепловая мощность всей интегральной схемы составляет 800 мВт. В соответствии с относительными относительными изменениями входного напряжения и его коэффициента пульсации определяется входное напряжение стабилизатора. Рассчитайте максимальную тепловую мощность в управляющий транзистор и установите его.выбирает его тип и способ охлаждения. Наконец, окончательный вариант схемы.

Цепи рассчитаны на схему защиты по току. Размеры цепей обратной связи по напряжению. Рассчитайте коэффициент стабилизатора напряжения стабилизатора. формула. Рассчитайте эффективность стабилизатора. Рассчитайте ток короткого замыкания. Рассчитайте средний коэффициент передачи входного делителя.


Рис. 5.9. Схема устройства автоматического отключения АКБ

Устройство, схема которого представлена ​​на рис.5.9, предотвращает слишком глубокую разрядку элементов в аккумуляторе. Он переключается между аккумулятором и нагрузкой. Принцип работы основан на управляющем напряжении на нагрузке. При его снижении до уровня 1,1 x pV (где n — количество ячеек в батарее), нагрузка и само устройство отключаются контактной группой реле, и ток через элементы батареи прекращается (если есть нет батареи в самой батарее). При нажатии кнопки SB1 к источнику тока подключаются и нагрузка, и само контрольное устройство.Напряжение на инвертирующем входе микросхемы DA1 (вывод 2)
определяется стабилитроном VD1 и составляет 3,9 В, а на неинвертирующем (вывод 3) — делителем напряжения на резисторах R1 и R2, а на нормальном Напряжение источника у него немного выше, чем на инвертирующем входе. В этом состоянии на выходе микросхемы присутствует высокий уровень напряжения — реле К1 включено, а его контакты К1.1 выходят из нагрузки, а контрольное устройство включено даже при отпускании кнопки включения.
Когда напряжение на аккумуляторе падает до такой степени, что его значение на неинвертирующем входе становится меньше 3.9 6, напряжение на выходе микросхемы станет низким, и реле будет обесточено путем разрыва цепи питания. Момент переключения зависит от напряжения на АКБ и сопротивления резистора R1, которое следует выбирать в соответствии с таблицей 5.1. Для ограничения тока базы транзистора между выводом микросхемы и базой следует включить резистор 1 … 10 / U / I.

Таблица 5.1. Сопротивление резистора R1 при разном напряжении АКБ

Данное устройство может давать ложные срабатывания при подключении к источнику питания чрезмерно высокой нагрузки, при которой напряжение аккумулятора моментально «садится».В этом случае отключение нагрузки не означает, что элемент (ы) батареи разряжен до нижнего допустимого предела. Повышение помехозащищенности
/ устройство позволит подключать конденсаторы параллельно компаратору.
Зарядные устройства (зарядные устройства) обычно снабжены электронной защитой от короткого замыкания на выходе. Однако простые устройства памяти, состоящие из понижающего трансформатора и выпрямителя, все же годятся! В этом случае можно применить непринудительную электромеханическую защиту с помощью реле 1 или автоматических выключателей многократного действия (например, автоматические предохранители или АВМ в квартирных> электросчетчиках).Скорость срабатывания релейной защиты составляет примерно 0,1 секунды, а при использовании АВМ — 1 … 3 секунды.
Когда аккумулятор (или аккумулятор) подключается к выходу устройства, реле K1 активируется, и его контакты 11.1 подключают зарядное устройство (рис. 5.10).


Рис. 5.10. Схема устройства защиты зарядного устройства

В случае короткого замыкания выходное напряжение резко упадет, обмотка реле обесточится, что приведет к размыканию контактов и отключению аккумулятора от зарядного устройства.Повторное включение после устранения неполадок выполняется нажатием кнопки SB1. Конденсатор С1, заряженный до выходного напряжения зольного экрана, подключен к катушке реле. Резистор R1 ограничивает импульс тока при ошибочном включении, когда еще не устранен короткий тычок на выходе.
Резистор R2 ограничивает ток короткого замыкания. Его нельзя устанавливать, если диоды имеют запас по току. Следует помнить, что в этом случае выходное напряжение зарядного устройства должно быть больше на величину падения напряжения на резисторе 2 при номинальном токе зарядки.АВМ защищает при сверх-> узком токе, что не может выполнить релейная защита.
Автоматический предохранитель (или выключатель) включен последовательно с контактами реле. Сопротивление АВМ около 0,4 Ом. В этом случае резистор R2 включить нельзя.
Для автомобильного зарядного устройства необходимо подобрать реле на номинальное напряжение 12 В с допустимым током через контакты не менее 20 А. Этим условиям удовлетворяет реле РЭН-34 ХП4.500.030-01, контакты которых следует соединить параллельно.Для памяти с номинальным током до 1 А можно использовать реле РЭС-22 РФ4.523.023-05.
Схема тиристорно-транзисторной защиты источника питания от короткого замыкания представлена ​​на рис. 5.11. Схема работает следующим образом. В штатном режиме тиристор выключен, транзисторы устройства, подключенные по схеме Дарлингтона, находятся в состоянии насыщения, падение напряжения на них минимально (обычно несколько вольт). При возникновении короткого замыкания в нагрузке через управляющий переход тиристора VS1 начинает течь ток, он включается.Открытый тиристор шунтирует цепь управления составным транзистором, ток через который снижается до минимума.


Рис. 5.11. Схема защиты источника питания от короткого замыкания

Светодиод HL1 указывает на наличие короткого замыкания в нагрузке.
Схема предназначена для работы на больших токах; поэтому на самой схеме защиты падает довольно значительная часть питающего напряжения и, соответственно, рассеивается больше мощности.
Описанное ниже устройство может одновременно выполнять роль стабилизатора постоянного и переменного тока большой величины, защищать цепь нагрузки от короткого замыкания, играть роль регулируемой активной нагрузки с максимальным разбросом в сотни ГГ.
Основой стабилизатора тока является стабилизированная по току (двухполюсная) схема, представленная на рис. 5.12. Это модифицированный источник тока, описанный в работе. Ток через канал полевого транзистора VT1 определяется в основном напряжением U1 (рис. 5.12) и может быть вычислен из выражения: I = U1 / RM. Напряжение U1 составляет одну сотую напряжения + E, приложенного к двухполюсному контакту, и, поскольку резистивный делитель R1 / R2 обеспечивает прямо пропорциональную зависимость между значениями U1 и + E, такое же соотношение будет наблюдаться между током Ом I и напряжение + E.


Рис. 5.12. Стабилизатор тока двухполюсный на основе дифференциального усилителя и полевого транзистора

Эквивалентное сопротивление двухпортовой сети может быть предварительно записано как: R3 = E / l = ExRM / U1. В свою очередь, U1 = E * RM / (R1 + R2).
Следовательно, R3 = RM + (R1XRM / R2) или R3 = R | /, «Практическая схема узла активной нагрузки — стабилизированного постоянного тока — приведена в статье, а ниже на п. 5.13 показана возможность использования этой схемы для стабилизации переменного тока.


Рис. 5.13. Стабилизатор переменного (и постоянного) тока с регулируемым током нагрузки от мА до 8 А

Ток в цепи стабилизатора можно плавно регулировать поворотом ручки потенциометра R2 от нескольких мА до 8 А, а максимальный ток нагрузки можно дополнительно увеличить на порядок, используя вентиляторы и радиаторы, увеличивая количество параллельные полевые транзисторы.

Работа стабилизатора напряжения

и его важность

Стабилизатор напряжения очень распространен в холодильниках, кондиционерах, телевизорах, печном оборудовании, микропечи, музыкальных системах, стиральных машинах и т. Д.Основная цель использования стабилизаторов напряжения — защитить устройства от колебаний напряжения.

Это связано с тем, что каждый электроприбор предназначен для работы под определенным напряжением для обеспечения желаемой производительности.

Если это напряжение ниже или выше определенного значения, прибор может работать неправильно, работать в худшем состоянии или даже выйти из строя.

В домашних и промышленных применениях обычно используются автоматические регуляторы напряжения для поддержания постоянного напряжения для конкретного оборудования.Сообщите нам подробнее об этих стабилизаторах напряжения.

Что такое стабилизаторы напряжения?

Как следует из названия, стабилизатор напряжения стабилизирует или регулирует напряжение, если напряжение питания изменяется или колеблется в заданном диапазоне.

Это электрический прибор, который подает постоянное напряжение на нагрузку в условиях повышенного и пониженного напряжения. Это устройство определяет эти условия напряжения и, соответственно, доводит напряжение до желаемого диапазона.

Стабилизатор напряжения для холодильника

Стабилизатор напряжения позволяет регулировать напряжение питания нагрузки.Они не предназначены для обеспечения постоянного выходного напряжения; вместо этого он управляет нагрузкой или системой в допустимом диапазоне напряжений.

Внутренняя схема стабилизатора показана на рисунке ниже. Он состоит из автотрансформатора / трансформатора, выпрямительного блока, компараторов, схемы переключения и реле.

В современных стабилизаторах цифрового типа в качестве центрального блока управления используется микроконтроллер или микропроцессор.

Внутренняя схема стабилизатора

На современном рынке доступны различные типы стабилизаторов напряжения от различных производителей.Стабилизаторы поставляются с различным номиналом кВА для нормального диапазона (для получения выходного сигнала 200-240 В с повышением 20-35 В для входного диапазона 180-270 В), а также с широким диапазоном (для получения выходного сигнала 190-240 В с повышением 50-55 В -бук для входного диапазона 140-300В) приложений.

Они доступны в виде специальных стабилизаторов для различных домов, а также для промышленного оборудования, такого как кондиционеры, ЖК-телевизоры, холодильники, музыкальные системы, стиральные машины, а также доступны как единый большой блок для всех устройств.

Стабилизаторы потребляют очень мало энергии, обычно от 2 до 5% максимальной нагрузки (т. Е. Номинальной мощности стабилизатора). Это устройства с высоким КПД, обычно от 95 до 98%.

Трехфазный стабилизатор

Это могут быть однофазные или трехфазные стабилизаторы напряжения. Как нецифровые, так и цифровые автоматические стабилизаторы напряжения доступны от известных производителей.

Некоторые дополнительные функции доступны в современных стабилизаторах, включая защиту от высокого напряжения, защиту от перегрузки, переключение при нулевом напряжении, защиту от изменения частоты, отображение отключения напряжения и т. Д.

Необходимость в стабилизаторах напряжения

Колебания напряжения — это не что иное, как изменение величины напряжения, которое обычно превышает или ниже диапазона установившегося напряжения, предписанного некоторыми стандартами.

В некоторых странах распределение электроэнергии составляет 230 вольт для однофазной сети и 415 вольт для трехфазной. В таком случае все электроприборы (особенно однофазные) рассчитаны на работу в диапазоне напряжений от 220 до 240В.

Допустимый диапазон напряжения в некоторых странах (также в Индии) составляет 220 ± 10 В в соответствии с электрическими стандартами.Кроме того, многие приборы могут выдерживать этот диапазон колебаний напряжения.

Но в большинстве случаев колебания напряжения довольно распространены и обычно находятся в диапазоне от 170 до 270 В. Эти колебания напряжения могут иметь серьезные отрицательные последствия для бытовых приборов.

  • В случае осветительного оборудования низкое падение напряжения снижает световой поток (освещенность), что еще больше сокращает срок службы лампы.
  • Двигатель переменного тока вырабатывает меньший крутящий момент и, следовательно, меньшую скорость при низком напряжении, и они развивают большую скорость, чем желательно, при перенапряжении.Это снижает срок службы двигателя, а также вызывает повреждение изоляции под высоким напряжением.
  • В случае индукционного нагрева низкое напряжение снижает тепловую мощность, что приводит к работе нагрузки при неподходящих температурах, чем желательно.
  • При передаче по телевидению и радио падение напряжения снижает качество передачи, а также вызывает неисправность других электронных компонентов.
  • Холодильники — это приборы с приводом от электродвигателя переменного тока, которые потребляют большие токи в условиях падения напряжения, что может привести к перегреву обмоток.

Чтобы преодолеть вышеупомянутые эффекты колебаний напряжения, необходимы стабилизаторы напряжения.

Основной принцип работы стабилизатора напряжения

Регулировка напряжения требуется для двух различных целей; повышенное напряжение и пониженное напряжение. Процесс увеличения напряжения из состояния пониженного напряжения называется операцией повышения напряжения, тогда как снижение напряжения из состояния повышенного напряжения называется операцией понижения.

Эти две основные операции необходимы для каждого стабилизатора напряжения.

Как обсуждалось выше, компоненты стабилизатора напряжения включают в себя трансформатор, реле и электронные схемы. Если стабилизатор определяет падение входящего напряжения, он включает электромагнитное реле, чтобы добавить больше напряжения от трансформатора, чтобы компенсировать потерю напряжения.

Когда входящее напряжение превышает нормальное значение, стабилизатор активирует другое электромагнитное реле, так что оно вычитает напряжение для поддержания нормального значения напряжения.

Boost Operation

Принцип работы Boost стабилизатора напряжения показан на рисунке ниже.

Здесь напряжение питания подается на трансформатор, который обычно является понижающим трансформатором. Этот трансформатор подключен таким образом, что вторичный выход добавляется к первичному питающему напряжению.

В случае низкого напряжения электронная схема в стабилизаторе переключает соответствующее реле, так что это дополнительное питание (входящее питание + вторичный выход трансформатора) подается на нагрузку.

Понижающий режим

Принцип понижающего действия стабилизатора напряжения показан на рисунке ниже.

В понижающем режиме вторичная обмотка понижающего трансформатора подключается таким образом, что вторичное выходное напряжение вычитается из входящего напряжения.

Таким образом, в случае повышения входящего напряжения электронная схема переключает реле, которое переключает вычитаемое напряжение питания (т.е. входящее напряжение — вторичное напряжение трансформатора) на цепь нагрузки.

В случае нормального рабочего состояния напряжения электронная схема полностью переключает нагрузку на входящее питание без напряжения трансформатора.

Эти понижающие, повышающие и нормальные операции одинаковы для всех стабилизаторов, независимо от того, являются ли они стабилизаторами нормального типа или с сервомеханизмом. Помимо этих двух основных операций, стабилизатор напряжения также выполняет операции отключения при понижении и повышении напряжения.

Работа стабилизатора напряжения

На рисунке ниже показана рабочая модель стабилизатора напряжения, которая содержит понижающий трансформатор (обычно с отводами на вторичной обмотке), выпрямитель, операционный усилитель / блок микроконтроллера и набор реле.

В этом случае операционные усилители настроены таким образом, чтобы они могли воспринимать различные заданные напряжения, такие как более низкое напряжение отключения, напряжение условия повышения, нормальное рабочее напряжение, более высокое напряжение отключения и рабочее напряжение понижающего напряжения.

Набор реле подключаются таким образом, что они отключают цепь нагрузки при повышении и понижении напряжения отключения, а также переключают понижающее и повышающее напряжения в цепи нагрузки.

Понижающий трансформатор с переключением ответвлений имеет разные ответвления вторичного напряжения, которые полезны для операционного усилителя для различных напряжений, а также для суммирования и вычитания напряжений для операций повышения и понижения соответственно.

Схема выпрямителя преобразует переменный ток в постоянный для питания всей электронной схемы управления, а также катушек реле.
Предположим, что это однофазный стабилизатор мощностью 1 кВА, который обеспечивает стабилизацию для диапазона напряжений от 200 до 245 с повышающим-понижающим напряжением 20-35 В для входного напряжения от 180 до 270 В.

Если входное питание, скажем, 195 В, тогда операционный усилитель подает питание на катушку реле повышения, так что на нагрузку подается 195 + 25 = 220 В. Если входное напряжение составляет 260 В, соответствующий операционный усилитель запитывает катушку понижающего реле, так что на нагрузку подается 260-30 = 225 В.

Если входное напряжение ниже 180 В, соответствующий операционный усилитель переключает нижнюю обмотку реле отключения, так что нагрузка отключается от источника питания.

И если напряжение питания превышает 270 В, соответствующий операционный усилитель запитывает катушку реле с отсечкой более высокого уровня, и, следовательно, нагрузка отключается от источника питания.

Все эти значения являются приблизительными; он может отличаться в зависимости от приложения. Таким образом, стабилизатор работает при разных напряжениях.

Сервоуправляемые стабилизаторы напряжения

В случае автоматических стабилизаторов напряжения скорость коррекции напряжения очень низкая.Скоростная коррекция напряжения с большей точностью достигается с помощью сервоуправляемых стабилизаторов.

В стабилизаторах с сервоуправлением коррекция напряжения выполняется очень точно, т.е. ближе к значению базового напряжения.

Основные компоненты сервостабилизатора включают в себя бесступенчатый автотрансформатор с приводом от серводвигателя, повышающий трансформатор и полупроводниковую схему управления, как показано на рисунке ниже.

Стабилизатор с сервоуправлением

В этом стабилизаторе полупроводниковая схема управления определяет падение и повышение напряжения от заданного значения и, соответственно, управляет серводвигателем.

Первичная обмотка повышающего преобразователя подключена к моторизованному автотрансформатору, а вторичная обмотка последовательно подключена к входящему источнику питания.

Когда двигатель управляет автотрансформатором, соответствующее напряжение подается на первичную обмотку повышающего трансформатора, и, следовательно, соответствующее вторичное напряжение корректирует напряжение питания нагрузки.

Здесь компараторы (не что иное, как операционные усилители) в полупроводниковой цепи управления определяют изменения напряжения и активируют серводвигатель в желаемом месте, чтобы регулируемый трансформатор увеличивал или уменьшал выходное напряжение нагрузки.

Когда схема управления обнаруживает, что выходное напряжение выше опорного напряжения, она подает положительный сигнал на контроллер серводвигателя, и, следовательно, рычаг вращается до тех пор, пока два напряжения не станут равными.

Если выходное напряжение падает ниже опорного значения, отрицательный сигнал поступает на серводвигатель, так что рычаг поворачивает контакт в другую сторону, чтобы уменьшить напряжение. Сервостабилизаторы могут производить регулировку мощности ± 0,5% с высоким КПД около 98%.

Как выбрать подходящий стабилизатор для домашних нужд?

Типоразмер стабилизатора напряжения зависит от номинальной мощности оборудования, для которого будет применяться стабилизация.Таким образом, при покупке стабилизатора напряжения в первую очередь следует учитывать мощность всех приборов (или конкретного прибора), на которые он будет подаваться. Такие номинальные мощности обычно указываются в ВА или кВА. А также нужно учитывать, одно это или трехфазное питание.

Номинальная мощность приборов обычно указывается на заводской табличке этого прибора; если номинальная мощность недоступна, просто рассчитайте произведение напряжения и тока этого оборудования, чтобы получить номинальную мощность.

Всегда рекомендуется учитывать истинное среднеквадратичное значение напряжения нагрузки.

Еще одним важным фактором является увеличение нагрузки в будущем. Таким образом, определение общей номинальной мощности требует возможного расширения в будущем, как правило, на 20% больше, чем фактическая потребляемая мощность, чтобы подключать нагрузки в течение длительного времени.

Для домашних нужд подходят стабилизаторы номинального напряжения 200 ВА, 300 ВА, 500 ВА, 1 КВА, 2 КВА, 3 КВА, 4 КВА, 5 КВА, 8 КВА и 10 КВА. Для промышленных и коммерческих целей требуются сервостабилизаторы высокой мощности.

Слово от Electronics Hub Team

Существует общее мнение, что современные светодиодные телевизоры, холодильники, кондиционеры и другие приборы имеют встроенную функцию стабилизации и, следовательно, не нуждаются в дополнительных стабилизаторах напряжения.

Однако они не могут повышать или понижать напряжение такого диапазона, как это могут сделать отдельные стабилизаторы напряжения. Поэтому команда Electronics Hub всегда рекомендует вам иметь стабилизатор напряжения для домашних или промышленных нужд, если у вас частые колебания напряжения в электричестве.

Авторы изображений

Стабилизатор напряжения | Enerdoor | Фильтры электромагнитных помех и фильтры радиопомех

Стабилизатор напряжения — это электрическое устройство, которое подает постоянное напряжение на нагрузку на своих выходных клеммах, независимо от изменений входного или входящего напряжения питания. Он защищает оборудование или механизмы от перенапряжения, пониженного напряжения и других скачков напряжения. Они часто используются для дорогостоящего и дорогостоящего электрического оборудования, чтобы защитить его от вредных колебаний высокого / низкого напряжения и идеально подходят для промышленного и автоматизированного оборудования.

Электрооборудование рассчитано на широкий диапазон входных напряжений. В зависимости от чувствительности рабочий диапазон оборудования ограничен определенным значением, например, одно оборудование может выдерживать ± 10 процентов номинального напряжения, а другое — только ± 5 процентов или меньше.

Enerdoor специализируется на одно- и трехфазных стабилизаторах напряжения, которые регулируют напряжение через серию трансформаторов. Схема статического управления приводит в действие регулируемый автотрансформатор, который подает необходимое напряжение на последовательный трансформатор, чтобы довести напряжение сети до номинального значения.

Трехфазные стабилизаторы доступны в двух версиях:
Модели FINSTT и FINSTC выполняют регулировку напряжения в среднем по трем фазам и подходят для линий со сбалансированным напряжением и для несимметрии между фазами до 50%. Эти модели оснащены одной стабилизирующей схемой для обеспечения общего регулирования трехфазного тока и могут быть подключены к входной сети без нейтрали.

Модели FINSTTY и FINSTCY оснащены одной схемой стабилизации для каждой фазы и подходят для несимметричных сетей с максимальным дисбалансом между фазами до 100%.Для правильной работы входная линия должна быть трехфазной + нейтраль. Стабилизаторы напряжения не преобразуют напряжение и поэтому имеют то же выходное напряжение, что и входное. Если входное и выходное напряжения различаются, требуется дополнительный изолирующий трансформатор или автотрансформатор.

Преимущества стабилизаторов напряжения Enerdoor:

  • Защищает электрооборудование от вредных колебаний высокого / низкого напряжения
  • При полной нагрузке КПД составляет от 96% для небольших моделей до 98% для более крупных
  • Усовершенствованная электронная схема управления обеспечивает быстрый отклик от 11 до 50 мс / вольт
  • Обеспечивает истинное среднеквадратичное значение напряжения даже при сильных гармонических искажениях.
  • Правильно работает при максимальной температуре окружающей среды 40 ° C
  • При установке в уже существующие системы не требует новых расчетов по защите

Чтобы загрузить каталог стабилизаторов напряжения, щелкните здесь.

Сделайте эту схему стабилизатора напряжения для вашего автомобиля

В этом посте мы узнаем о автомобильной схеме стабилизатора напряжения, которую можно изготовить и установить во всех автомобилях для обеспечения идеально контролируемого и стабилизированного питания для соответствующей чувствительной электроники и гаджетов.

Общие сведения об электрооборудовании автомобиля

Электрооборудование автомобиля, вероятно, более изменчиво, чем электрическое в нашем доме, просто потому, что оно генерируется источником, называемым генератором переменного тока, мощность которого значительно зависит от скорости автомобиля.

Это означает, что если вы управляете автомобилем с резкими изменениями скорости или если вы часто используете тормоза, то, следовательно, на выходах генератора будут генерироваться переменные напряжения.

Поскольку в наши дни наши автомобили и другие автомобильные интерьеры в значительной степени включают сложные электронные устройства, нестабильное напряжение может серьезно повлиять на их работу и срок службы.

Идея схемы была запрошена г-ном Хазиком, давайте узнаем больше о создании предлагаемой схемы (разработанной мной для приложения).

Сегодня в нашем распоряжении несколько замечательных микросхем, специально разработанных для приложений регулирования напряжения.

LM317 и LM338 — это пара из них, которые универсальны с их функциями регулирования напряжения, я подробно обсуждал их в некоторых моих предыдущих сообщениях.

LM317 может выдерживать до 1,5 ампер, в то время как его старший брат LM338 может выдерживать не более 5 ампер.

Однако эти значения довольно скудны по сравнению с огромными запросами на автомобили.

Тем не менее, изменяя конфигурации соответствующим образом, можно сделать так, чтобы ИС регулировала любые желаемые уровни токов.

В предлагаемую схему стабилизатора напряжения автомобиля мы включаем микросхему LM317 и модифицируем ее стандартную конструкцию таким образом, чтобы она обеспечивала электрическую сеть автомобиля с достаточной мощностью и в то же время ограничивала ее от всех возможных опасностей, таких как перегрузки, перегрузки по току, колебания напряжения и короткие замыкания, обеспечивая идеальные условия напряжения для салона автомобиля.

Работа схемы

На принципиальной схеме показана довольно простая конфигурация, в которой микросхема IC 317 была подключена в стандартном режиме регулятора напряжения.

R1 ограничивает импульсный ток, в то время как R2 определяет напряжение срабатывания для T1, если потребление тока пересекает отметку 1,5 А, T1 проводит и поддерживает IC, распределяя через нее избыточный ток.

P1 настроен на достижение около 13 вольт на C3.

R5 контролирует условия перегрузки и коротких замыканий, если ток превышает 12 ампер, через R5 возникает достаточный ток, чтобы вызвать T2, который мгновенно отключает ИС, так что выходное напряжение падает и ограничивает ток ниже 12 ампер.

Ideal Технические характеристики:
  1. Постоянное напряжение = 13 В
  2. Предел тока = 12 А
  3. Защита от перегрузки = отключение более 12 А
  4. Тепловая защита (если транзистор и ИС установлены на одном радиаторе со слюдяной изоляцией)
  5. Защита от короткого замыкания (защита от пожара)
Список деталей
  • R1 = 0,1 Ом, 100 Вт, изготовлен из железной проволоки 1 мм.
  • R2 = 2 Ом, 1 Вт,
  • R3 = 120 Ом, 1/4 Вт,
  • R4 = 0.1 Ом, 20 Вт, как объяснено для R1 (этот резистор на самом деле не требуется, его можно заменить коротким проводом.)
  • R5 = 0,05 Ом, 20 Вт, сделать как R1
  • T1 = MJ2955, установленный на большом ребристом типе радиатор
  • T2 = BC547,
  • C1 = 10,000 мкФ, 35 В
  • C2 = 1 мкФ / 50 В
  • C3 = 100 мкФ / 25 В
  • P1 = 4k7 по умолчанию,
  • IC1 = LM317 диод
  • D (3 шт. Диодов по 6 ампер, подключенных параллельно)
Упрощенная версия

При использовании микросхемы LM196 приведенная выше конфигурация становится чрезвычайно простой, вы можете обратиться к следующей схеме, которая иллюстрирует упрощенную версию предлагаемой схемы стабилизатора напряжения автомобильного генератора без минимум компонентов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *