Стабилизатор микросхема 5 вольт: Малогабаритные микросхемы стабилизаторы напряжения на 5 вольт. Интегральные стабилизаторы для микроконтроллеров – 7805 стабилизатор — трехвыводные стабилизаторы напряжения

Малогабаритные микросхемы стабилизаторы напряжения на 5 вольт. Интегральные стабилизаторы для микроконтроллеров

Согласитесь, бывают случаи, когда для питания электронных безделушек требуется стабильное напряжение, которое не зависит от нагрузки, например, 5 Вольт для питания схемы на микроконтроллере или скажем 12 Вольт для питания автомагнитолы. Чтобы не переворачивать весь инет и собирать сложные схемы на транзисторах, инженеры-конструктора придумали так называемые стабилизаторы напряжения . Это словосочетание говорит само за себя. На выходе такого элемента мы получим напряжение, на которое спроектирован этот стабилизатор.

В нашей статье мы рассмотрим трехвыводные стабилизаторы напряжения семейства LM78ХХ . Серия 78ХХ выпускаются в металлических корпусах ТО-3 (слева) и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо «ХХ» изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 — 15 Вольт. Все очень просто. А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

Думаю, можно подробнее объяснить что есть что. На рисунке мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения кондеров, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью Как получить из переменного напряжения постоянное. Какое же напряжение подавать, чтобы стабилизатор работал чики-пуки? Для этого ищем даташит на стабилизаторы и внимательно изучаем. А вот собственно и он . Смотрите, из скольки транзисторов, резисторов и диодов Шотки и даже конденсатора состоит один стабилизатор! А прикиньте, если бы мы эту схемку собирали из элементов? =)

Идем дальше. Нас интересуют вот эти характеристики. Output voltage — выходное напряжение. Input voltage — входное напряжение. Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено. Для электронных безделушек доли вольт не ощущаются, но для презеционной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 — 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может «колыхаться» в диапазоне от 7,5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт. В этом то и заключается вся прелесть стабилизаторов.

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт — это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался кулером, как проц в компе.

Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как Вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.

Соберем его по схеме

Берем нашу Макетную плату и быстренько собираем вышепредложенную схемку подключения. Два желтеньких — это кондерчики.

Итак, провода 1,2 — сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.

На Блоке питания мы ставим напругу в диапазоне 7.5 Вольт и до 20 Вольт. В данном случае я поставил напругу 8.52 Вольта.

И что же у нас получилось на выходе данного стабилизатора? Опаньки — 5.04 Вольта! Вот такое значение мы получим на выходе этого стабилизатора, если будем подавать напругу в диапазоне от 7.5 и до 20 Вольт. Работает великолепно!

Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.

Собираем его по схеме выше и замеряем входящую напругу. По даташиту можно подавать на него входную напругу от 14.5 и до 27 Вольт. Задаем 15 Вольт с копейками.

А вот и напруга на выходе. Блин, каких то 0.3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.

Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт? Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:

Два электролитических кондера-фильтра, для устранения пульсаций, и высокостабильный блок питания на 5 Вольт к Вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе транса тоже получить большее напряжение. Стремитесь, чтобы на кондере С1 напруга была не меньше, чем в даташите на описываемый стабилизатор.

Для того, чтобы стабилизатор не перегревался и не надо было бы ставить большие радиаторы с обдувом, если у Вас есть возможность, заводите на вход минимальное напряжение, написанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт, а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем, что излишнюю мощность стабилизатор будет рассеивать на себе. Как вы помните, формула мощности P=IU , где U — напряжение, а I — сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность — это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается.

Все большему числу электронных устройств требуется качественное стабильное питание без всяких скачков напряжения. Сбой того или иного модуля электронной аппаратуры может привести к неожиданныи и не очень приятным последствиям. Используйте же на здоровье достижения электроники, и не замарачивайтесь по поводу питания своих электронных безделушек. И не забывайте про радиаторы;-).

Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке.

Один из важных узлов радиоэлектронной аппаратуры — стабилизатор напряжения в блоке питания. Еще совсем недавно такие узлы строили на стабилитронах и транзисторах. Общее число элементов стабилизатора было довольно большим, особенно если от него требовались функции регулирования выходного напряжения, защиты от перегрузки и замыкания выхода, ограничения выходного тока на заданном уровне. С появлением специализированных микросхем ситуация изменилась. Микросхемные стабилизаторы напряжения способны работать в широких пределах выходных напряжения и тока, часто имеют встроенную систему защиты от перегрузки по току и от перегревания — как толькс лгемпе- ратура кристалла микросхемы превысит допустимое значение, происходит ограничение выходного тока. В настоящее время ассортимент отечественных и зарубежных стабилизаторов напряжения настолько широк, что ориентироваться в нем стало уже довольно трудно. Помещенные ниже табл. призваны облегчить предварительный выбор микросхемного стабилизатора

7805 стабилизатор — трехвыводные стабилизаторы напряжения

Устройства, которые входят в схему блока питания, и поддерживают стабильное выходное напряжение, называются стабилизаторами напряжения. Эти устройства рассчитаны на фиксированные значения напряжения выхода: 5, 9 или 12 вольт. Но существуют устройства с наличием регулировки. В них можно установить желаемое напряжение в определенных доступных пределах.

Большинство стабилизаторов предназначены на определенный наибольший ток, который они выдерживают. Если превысить эту величину, то стабилизатор выйдет из строя. Инновационные стабилизаторы оснащены блокировкой по току, обеспечивающей выключение устройства при достижении наибольшего тока в нагрузке и защищены от перегрева. Вместе со стабилизаторами, которые поддерживают положительное значение напряжения, есть и устройства, действующие с отрицательным напряжением. Они применяются в двухполярных блоках питания.

Стабилизатор 7805 изготовлен в корпусе, подобном транзистору. На рисунке видны три вывода. Он рассчитан на напряжение 5 вольт и ток 1 ампер. В корпусе есть отверстие для фиксации стабилизатора к радиатору. Модель 7805 является устройством положительного напряжения.

Зеркальное отображение этого стабилизатора — это его аналог 7905, предназначенный для отрицательного напряжения. На корпусе будет положительное напряжение, на вход поступит отрицательное значение. С выхода снимается -5 В. Чтобы стабилизаторы работали в нормальном режиме, нужно подавать на вход 10 вольт.

Распиновка

Стабилизатор 7805 имеет распиновку, которая показана на рисунке. Общий вывод соединен с корпусом. Во время установки устройства это играет важную роль. Две последние цифры обозначают выдаваемое микросхемой напряжение.

Стабилизаторы для питания микросхем

Рассмотрим методы подключения к питанию цифровых приборов, сделанных самостоятельно, на микроконтроллерах. Любое электронное устройство требует для нормальной работы правильное подключение питания. Блок питания рассчитывается на определенную мощность. На его выходе устанавливается конденсатор значительной величины емкости для выравнивания импульсов напряжения.

Блоки питания без стабилизации, применяемые для роутеров, сотовых телефонов и другой техники, не сочетаются с питанием микроконтроллеров напрямую. Выходное напряжение этих блоков изменяется, и зависит от подключенной мощности. Исключением из этого правила являются зарядные блоки для смартфонов с USB портом, на котором выходит 5 В.

Схема работы стабилизатора, сочетающаяся со всеми микросхемами этого типа:

Если разобрать стабилизатор и посмотреть его внутренности, то схема выглядела бы следующим образом:

Для электронных устройств не чувствительных к точности напряжения, такой прибор подойдет. Но для точной аппаратуры нужна качественная схема. В нашем случае стабилизатор 7805 выдает напряжение в интервале 4,75-5,25 В, но нагрузка по току не должна быть больше 1 А. Нестабильное входное напряжение колеблется в интервале 7,5-20 В. При этом выходное значение будет постоянно равно 5 В. Это является достоинством стабилизаторов.

При возрастании нагрузки, которую может выдать микросхема (до 15 Вт), прибор лучше обеспечить охлаждением вентилятором с установленным радиатором.

Работоспособная схема стабилизатора:

Технические данные:

  • Наибольший ток 1,5 А.
  • Интервал входного напряжения – до 40 вольт.
  • Выход – 5 В.

Во избежание перегрева стабилизатора, необходимо поддерживать наименьшее входное напряжение микросхемы. В нашем случае входное напряжение 7 вольт.

Лишнюю величину мощности микросхема рассеивает на себе. Чем выше входное напряжение на микросхеме, тем выше потребляемая мощность, которая преобразуется в нагревание корпуса. В итоге микросхема перегреется и сработает защита, устройство отключится.

Стабилизатор напряжения 5 вольт

Такое устройство имеет отличие от аналогичных приборов в своей простоте и приемлемой стабилизации. В нем использована микросхема К155J1А3. Этот стабилизатор использовался для цифровых устройств.

Устройство состоит из рабочих узлов: запуска, источника образцового напряжения, схемы сравнения, усилителя тока, ключа на транзисторах, накопителя индуктивной энергии с коммутатором на диодах, фильтров входа и выхода.

После подключения питания начинает действовать узел запуска, который выполнен в виде стабилизатора напряжения. На эмиттере транзистора возникает напряжение 4 В. Диод VD3 закрыт. В итоге включается образцовое напряжение и усилитель тока.

Ключ на транзисторах закрыт. На выходе усилителя образуется импульс напряжения, который открывает ключ, пропускающий ток на накопитель энергии. В стабилизаторе включается схема отрицательной связи, устройство переходит в режим работы.

Все применяемые детали тщательно проверяются. Перед установкой на плату резистора, его значение делают равным 3,3 кОм. Стабилизатор вначале подключают на 8 вольт с нагрузкой 10 Ом, далее, при необходимости устанавливают его на 5 вольт.

Микросхемы стабилизаторы напряжения. Главная ошибка при использовании.

В данной статье рассказано как правильно использовать характеристики микросхем линейных стабилизаторов напряжения 7805,7808,7812 и аналогичных КР142ЕН5,8,12.

Самые распространенные микросхемы, которые применяются в блоках питания различных устройств. Такое широкое распространение получили ввиду предельно простой схемы подключения и довольно хороших параметров при правильном использовании. Основная схема подключения выглядит так:

Микросхемы стабилизаторы напряжения выпускаются разной мощности:

Обозначения на микросхеме:

Корпуса микросхем в зависимости от мощности тоже разные:

Микросхемы стабилизаторы напряжения большой мощности выпускают на выходные напряжения от 5В до 24В:

При этом входные напряжения и температурные характеристики такие:

Характеристики для микросхем средней мощности такие:

И для микросхем малой мощности соответственно такие:

 

 

При этом ряд напряжений на выходе для микросхем малой мощности выглядит так:

3.3; 5; 6; 8; 9; 10; 12; 15; 18; 24 Вольта

Какие же параметры для микросхем стабилизаторов напряжения в основном приводят в интернете? Рассмотрим наиболее распространенные случаи на конкретном примере:

При нагрузке свыше 14 Вт, стабилизатор желательно установить на алюминиевый теплоотвод, чем больше нагрузка, тем больше нужна площадь охлаждаемой поверхности.
Производят в основном в корпусе ТО-220
Максимальный ток нагрузки: 1.5 В
Допустимое входное напряжение: 35 В
Выходное напряжение: 5 В
Число регуляторов в корпусе: 1
Ток потребления: 6 мА
Погрешность: 4 %
Диапазон рабочих температур: 0 C … +140 C
Отечественный аналог КР142ЕН5А

 

Казалось, бы, все выписано из документации (DataSheet). Как человек воспринимает такую информацию. Наибольшее напряжение 35 В, хорошо, я не буду брать предел, возьму 30В. Максимальный ток нагрузки 1,5 А. Не буду брать предельное значение, возьму 1 А. Собирает схему по этим данным, а она, проработав некоторое время выходит из строя. Некоторые не понимают, грешат на качество микросхем. Ведь не заставлял работать микросхему на предельных значениях напряжения и тока, а она вышла из строя.

А все дело в том, что многие забывают о главном параметре, который указан в документации, но как-то не привлекает внимание так как напряжение и ток. Это максимальная мощность, которую может рассеивать микросхема стабилизатор. Как правило ее указывают прямо. Например, для мощных микросхем это 1,5 Вт без радиатора и 15 Вт с радиатором.

Что же получается при выбранном токе 1А и максимальном напряжении 30В, например, для микросхемы с выходным напряжением 5В. Поскольку стабилизатор линейный то на микросхеме упадет 30 – 5 = 25 В. При токе 1А мощность, рассеиваемая на микросхеме, составит 1А × 25В = 25Вт. Это почти в два раза больше допустимой мощности с радиатором. Вот она и выходит из строя. Получается, что при входном напряжении 30 В максимальный ток в нагрузке не может превышать 15 Вт : 25 В = 0,6 А.

В таблицах, приведенных выше в этой статье, для микросхем средней мощности без радиатора предельная мощность 1,2 Вт, а с радиатором, 12 Вт. Для микросхем малой мощности установка радиаторов не предусмотрена и максимальная рассеиваемая мощность составляет 0,625 Вт.

Именно мощность является определяющей при выборе предельных значений тока и напряжения.

Для наглядности предельные значения мощности, напряжения и тока для микросхем стабилизаторов напряжения разной мощности сведены в одну таблицу:

Минимальное падение напряжения на микросхеме 2,5В.

Если руководствоваться этим правилом, микросхемы будут работать надежно.

Материал статьи продублирован на видео:

Стабилизатор напряжения на 5 в — две схемы | РадиоДом

Представлены две принципиальные схемы простых стабилизаторов на 5 вольт. Напряжение переменной сети 220 вольт пониженное трансформатором Т1 до 9…10 вольт через выпрямительный диодный мост подается на стабилизатор напряжения.
  В первом стабилизаторе транзистор V6 включен по схеме эмиттерного повторителя, напряжение на выходе стабилизатора на 0,6…1 вольт меньше чем напряжение на стабилитроне.
 
По такой схеме можно построить простые стабилизаторы для разных напряжений, для этого необходимо подобрать соответствующий стабилитрон и сопротивление R1. Для самостоятельного подбора выходного тока стабилизатора можно воспользоваться формулой: I вых max=h31Э*I ст max
где h31Э статический коэффициент передачи по току, а I ст max выходной ток стабилитрона.
Второй стабилизатор основан на Операционном Усилителе, особенность таких стабилизаторов в том что, выходное напряжение сравнивается с образцовым и таким образом поддерживается на заданном уровне.
  Выходное напряжение с делителя R2R3 подается на инвертирующий вход ОУ, а образцовое напряжение снимаемое с V1 подается на не инвертирующий вход. При появлении сигнала рассогласования, который многократно усиливается ОУ, происходит изменение напряжения на регулирующем R2, таким образом что напряжение на выходе стабилизатора практически не меняется. Этот процесс длится очень мало, всего несколько микросекунд.
Для адаптации данного стабилизатора под другие напряжения стабилизации можно воспользоваться формулой : Uвых=Uст(R2+R3)/R3.
Изменяя положения резисторов R2 R3 в не больших диапазонах можно изменить выходное напряжение стабилизатора.
  R4 в схеме ограничивает выходной ток стабилизатора, конденсатор С1 предотвращает самовозбуждение прибора. Коэффициент стабилизации напряжения примерно 200…400. Максимальный выходной ток равен произведению допустимого тока ОУ на коэффициент h31Э V2 и для данной схемы составляет 0,5…0,6 ампер. Для увеличения выходного тока необходимо применить составной транзистор помощнее установленный на алюминиевый теплоотвод.
Все радиокомпоненты применённые в обоих блоках отечественные, но могут быть заменены на соответствующие зарубежные аналоги:
1 схема.
Диодный мост — из четырёх диодов Д226Д
C1 — 500 мкФ х 15 вольт
C2 — 100 мкФ х 6 вольт
R1 — 300 Ом
V5 — стабилитрон — КС156А
Транзистор — КТ801Б
2 схема.
C1 — 0,033 мкФ
C2 — 100 мкФ х 6 вольт
ОУ — К140УД1А
V1 — cтабилитрон — КС156А
Транзистор — КТ801Б
R1 — 150 Ом
R2 — 150 Ом
R3 — 1,2 кОм
R4 — 510 Ом

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *