Симистор схема: Симисторы: принцип работы, проверка и включение, схемы

Содержание

что это такое, принип работы, ВАХ, маркировка и разновидности

Симистор – электронная деталь, основанная на принципах полупроводимости.. В американской терминологии электроники они называются триаками. Главной особенностью этих радиодеталей является способность проводить ток в оба направления. Симистор выполняет роль ключа-регулятора, который используется для создания цепей и является двунаправленным транзистором. Состоят они из силовых электродов. Один из находится на стороне электрода управления, а другого в его основе.

Свой термин они получили при использовании двух параллельных тиристоров и управляющего электрода. Статья содержит материал по тому как они используются, как и где используются, какую структуру имеют, а также где их можно использовать. В качестве дополнения, статья содержит два видеоматериала, а также научную статью.

Симистор: вид с двух сторон.

Симистор: вид с двух сторон.

Как он работает и для чего нужен

Симистор является полупроводниковым прибором. Его полное название – симметричный триодный тиристор. Его особенность – возможно проводить ток в обе стороны. Данный элемент цепи имеет три вывода: один является управляющим, а два других силовыми. В этой статье мы рассмотрим принцип работы, устройство и назначение симистора в различных схемах электроприборов. В таблице ниже представлены характеристики популярных симисторов:

характеристики популярных симисторов

Таблица характеристик популярных симисторов.

Конструкция и принцип действия

Особенность симистора является двунаправленной проводимости идущего через прибор электрического тока. Конструкция устройства строится на использовании двух встречно-параллельных тиристоров с общим управлением. Такой принцип работы дал название от сокращенного «симметрические тиристоры». Поскольку электроток может протекать в обе стороны, нет смысла обозначать силовые выводы как анод и катод. Дополняет общую картину управляющий электрод. В симисторе есть пять переходов, позволяющих организовать две структуры. Какая из них будет использоваться зависит от места образования (конкретный силовой вывод) отрицательной полярности.

Симистор.

Симистор.

Как работает устройство

Исходно полупроводниковый прибор находится в запертом состоянии и ток по нему не проходит. При подаче тока на управляющий электрод, последний переходит в открытое состояние и симистор начинает пропускать через себя ток. При работе от сети переменного тока полярность на контактах постоянно меняется. Схема, где используется рассматриваемый элемент, при этом будет работать без проблем. Ведь ток пропускается в обоих направлениях. Чтобы симистор выполнял свои функции, на управляющий электрод подают импульс тока, после снятия импульса ток через условные анод и катод продолжает протекать до тех пор, пока цепь не будет разорвана или они не будут находится под напряжением обратной полярности.

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. 

При использовании в цепи переменного тока симистор закрывается на обратной полуволне синусоиды, тогда нужно подавать импульс противоположной полярности (той же, под которой находятся «силовые» электроды элемента).

Что такое симистор (триак)

Принцип действия системы управления может корректироваться в зависимости от конкретного случая и применения. После открытия и начала протекания подавать ток на управляющий электрод не нужно. Цепь питания разрываться не будет. При надобности отключить питание следует понизить ток в цепи ниже уровня величины удержания или кратковременно разорвать цепь питания.

Управляющие сигналы

Чтобы добиться желаемого результата с симистором используют не напряжение, а ток. Чтобы прибор открылся, он должен быть на определённом небольшом уровне. Для каждого симистора сила управляющего тока может быть разной, её можно узнать из даташита на конкретный элемент. Например, для симистора КУ208 этот ток должен быть больше 160 мА, а для КУ201 —не менее 70 мА.

Симистор иностранного производства.

Симистор иностранного производства.

Полярность управляющего сигнала должна совпадать с полярностью условного анода. Для управления симистором часто используют выключатель и токоограничительный резистор, если он управляется микроконтроллером – может понадобиться дополнительная установка транзистора, чтобы не сжечь выход МК, или использовать симисторный оптодрайвер, типа MOC3041 и подобных. Четырёхквадрантные симисторы могут отпираться сигналом с любой полярностью. В этом преимуществе есть и недостаток – может потребоваться увеличенный управляющий ток. При отсутствии прибор заменяется двумя тиристорами. При этом следует правильно подбирать их параметры и переделывать схему управления. Ведь сигнал будет подаваться на два управляющих вывода.

Интересно по теме: Как проверить стабилитрон.

Достоинства и недостатки

Для чего нужен рассматриваемый полупроводниковый прибор? Самый популярный вариант использования – коммутация в цепях переменного тока. В этом плане симистор очень удобен – используя небольшой элемент можно обеспечить управление высоковольтного питания. Популярны решения, когда им заменяют обычное электромеханическое реле. Плюс такого решения – отсутствует физический контакт, благодаря чему включение питания становится надежнее, переключение бесшумным, ресурс на порядки больше, быстродействие выше. Еще одно достоинство симистора – относительно невысокая цена, что вместе с высокой надёжностью схемы и временем наработки на отказ выглядит привлекательно.

Симистр на 0,6А.

Полностью избежать минусов разработчикам не удалось. Так, приборы сильно нагреваются под нагрузкой. Приходится обеспечивать отвод тепла. Мощные (или «силовые») симисторы устанавливают на радиаторы. Ещё один недостаток, влияющий на использование, это создание гармонических помех в электросети некоторыми схемами симисторных регуляторов (например, бытовой диммер для регулировки освещенности).

Что такое симистор (триак)

Отметим, что напряжение на нагрузки будет отличаться от синусоиды, что связано с минимальным напряжением и током, при которых возможно включение. Из-за этого подключать следует только нагрузку, не предъявляющую высоких требований к электропитанию. При постановке задачи добиться синусоиды такой способ коммутации не подойдёт. Симисторы сильно подвержены влиянию шумов, переходных процессов и помех. Также не поддерживаются высокие частоты переключения.

Область применения

Характеристики, небольшая стоимость и простота устройства позволяет успешно применять симисторы в промышленности и быту. Их можно найти:

  • В стиральной машине.
  • В печи.
  • В духовках.
  • В электродвигателе.
  • В перфораторах и дрелях.
  • В посудомоечной машине.
  • В регуляторах освещения.
  • В пылесосе.

На этом перечень, где используется этот полупроводниковый прибор, не ограничивается. Применение рассматриваемого проводникового прибора осуществляется практически во всех электроприборах, что только есть в доме. На него возложена функция управления вращением приводного двигателя в стиральных машинках, они используются на плате управления для запуска работы всевозможных устройств – легче сказать, где их нет.

Основные характеристики

Рассматриваемый полупроводниковый прибор предназначен для управления схемами. Независимо от того, где в схеме он применяется, важны следующие характеристики симисторов:

  1. Максимальное напряжение. Показатель, который будучи достигнут на силовых электродах не вызовет, в теории, выхода из строя. Фактически является максимально допустимым значением при условии соблюдения диапазона температур. Будьте осторожны – даже кратковременное превышение может обернуться уничтожением данного элемента цепи.
  2. Максимальный кратковременный импульсный ток в открытом состоянии. Пиковое значение и допустимый для него период, указываемый в миллисекундах.
  3. Рабочий диапазон температур.
  4. Отпирающее напряжение управления (соответствует минимальному постоянному отпирающему току).
  5. Время включения.
  6. Минимальный постоянный ток управления, нужный для включения прибора.
  7. Максимальное повторяющееся импульсное напряжение в закрытом состоянии. Этот параметр всегда указывают в сопроводительной документации. Обозначает критическую величину напряжения, предельную для данного прибора.
  8. Максимальное падение уровня напряжения на симисторе в открытом состоянии. Указывает предельное напряжение, которое может устанавливаться между силовыми электродами в открытом состоянии.
  9. Критическая скорость нарастания тока в открытом состоянии и напряжения в закрытом. Указываются соответственно в амперах и вольтах за секунду. Превышение рекомендованных значений может привести к пробою или ошибочному открытию не к месту. Следует обеспечивать рабочие условия для соблюдения рекомендованных норм и исключить помехи, у которых динамика превышает заданный параметр.
  10. Корпус симистора. Важен для проведения тепловых расчетов и влияет на рассеиваемую мощность.

Вот мы и рассмотрели, что такое симистор, за что он отвечает, где применяется и какими характеристиками обладает. Рассмотренные простым языком теоретические азы позволят заложить основу для будущей результативной деятельности. Надеемся, предоставленная информация была для вас полезной и интересной!

Полупроводниковая структура симистора

Структура симистора состоит из пластины, состоящей из чередующихся слоев с электропроводностями p- и n- типа и из контактов электродов основного и управляющего действия. Всего в структуре полупроводника содержится пять слоев p- и n-типа. Область между слоями называется p-n-переходом, который обладает нелинейной ВАХ с небольшим сопротивлением в обратном направлении, где минус – это n-слой, а плюс – p-слой и высокое значение сопротивления в обратном направлении. Пробой p-n-перехода происходит при напряжении равном несколько тысяч вольт.

Во время включения симистора в прямом направлении в работу вступает правая половина структуры. Левая область структуры выключена, она считается для тока, с обладанием очень высоким сопротивлением. Характеристики симистора динамического и статического плана при его действии в прямом направлении, при поступлении положительного управляющего сигнала соответствуют аналогичным характеристикам тиристора, работающего в прямом направлении.

По этой схеме к СЭУ прилагается напряжение со знаком плюс, относительно СЭ, а p—n-переходы j2  и j подключаются в прямом, а p—n-переходы j1  и j– в обратную сторону. Благодаря этому структура может рассматриваться, как структура тиристора, подключенная в обратном направлении, не принимающая участие в работе по пропусканию тока. В этом случае действие прибора определяется при помощи левой части структуры и представляет собой обратно ориентированную p—n—p—n структуру с добавочным пятым слоем n, который граничит со слоем p1.

Использование симистора

Симистор представляется настолько гибким и универсальным устройством, что благодаря его свойству переключения в проводящее состояние запускаемым импульсом с положительным или отрицательным знаком, который не зависит от источника  проявляющего свойства мгновенной полярности. По сути названия анод и катод для прибора не имеют большой актуальности.

  • Одно из популярных и простейших сфер использования симистора может считаться его применение в качестветвердотельного реле. Для него характерно малое значение пускового тока достаточного для нагрузки с большими токами. Функцию ключа в таком устройстве может играть геркон, или обладающее большой чувствительностью термореле и прочие контактные пары с током до 50мА, при этом величина тока нагрузки может ограничиваться исключительно показателями, на которые рассчитан симистор.
  • 2Не менее широко использование симистора в качестве регулятора интенсивности освещения и управления скоростью вращения электромотора. Схема построена на спользовании запускающих элементов, которые устанавливаются RC-фазовращателем, такой элемент, как потенциометр регулирует интенсивность освещения, а резистор служит для ограничения тока нагрузки. Формирование импульсов выполняется с помощью динистора. После пробоя в динисторе, который происходит в результате разности потенциалов на конденсаторе, импульс разряда конденсатора, возникающий мгновенно включает симистор.
  • Управление мощностью в нагрузке с использованием в схеме добавочной RC-цепочки, что дает большой фазовый сдвиг, который облегчает задачу по управлению мощности.
Обозначение симистора на схеме.

Обозначение симистора на схеме.

Преимущества использования симисторов

  • Увеличение разрешенной критической величины напряжения коммутации, что разрешает управления большими реактивными нагрузками без существенных сбоев в коммутации. Это позволяет уменьшить число компонентов, размеры печатной платы, снизить цену и убрать потери на рассеивание энергии демпфером.
  • Повышение критической величины изменения тока коммутации, что повышает качество работы на высокой частоте для несинусоидального напряжения.
  • Большая чувствительность к высокой температуре рабочего процесса.
  • Высокое значение допустимого напряжения снижает стремление к самовключению из состояния отсутствия проводимости при большой температуре, что разрешает их использование для резистивных нагрузок по управлению бытовой и нагревательной техникой.
  • Долговечность симистора, обусловленная рабочими температурными перепадами, отличается практически неограниченным ресурсом.
  • Отсутствие искрообразования и возможность управления в момент нулевого тока в сети, что снижает электромагнитные помехи.

Основные достоинства симистора:

  1. большая частота срабатывания для высокой точности управления;
  2. высокий ресурс по сравнению с релейными электромеханическими устройствами;
  3. возможность добиться небольших размеров приборов;
  4. отсутствие шума при включении и отключении электроцепей.

Силовая электроника, с использованием  симисторов, разработанная отечественными производителями благодаря своим качественным показателям может составить западным фирмам высокую конкуренцию.

Материал по теме: Как подключить конденсатор

Виды симисторов

Говоря о видах симисторов, следует принять тот факт, что это симистор является одним из видов тиристоров.  Когда имеются в виду различия по работе, то и тиристор можно представить своего рода разновидностью симистора. Различия касаются лишь по управляющему катоду и в разных принципах работы этих тиристоров. Читайте что такое импульсный блок питания.

Поврежденные симисторы.

Поврежденные симисторы.

Импортные симисторы широко представлены на отечественном рынке. Их основное отличие от отечественных  симисторов заключается в том, что они не требуют предварительной настройки в самой схеме, что позволяет экономить  детали и место на печатной плате. Как правило, они начинают работать сразу после включения в схему. Следует лишь точно подобрать необходимый симистор по всем требуемым характеристикам.

  • На замену Z00607 хорошо подходят ы BT131-600, только они максимально подходят по всем характеристикам
  • Полностью аналогичный у Z7M является МАС97А8.
  • z3m . Такой же , как и чуть выше.  Различия в токе по управляющему ключу и в максимальном напряжении. Полностью аналогичен по замене на  MAC97A8
  • ВТА 16 600 — импортный , рассчитанный на использование в цепях до 16 ампер и напряжением до 600 вольт
  • Этот очень часто используется концерном Samsung в производстве бытовых приборов.  Аналогом этого полупроводника и, несомненно, более лучшим, является BT 134-800. ы m2lz47 являются не самыми надежными с точки зрения условий эксплуатации в приборах с нестабильными параметрами питающей сети.
  • тс122 25. Данный симистор очень часто называют силовым тиристором, так как он используется в электроприборах или электроинструменте в механизмах плавного пуска.  Отличительной особенность данного а является его большая надежность на протяжении большого срока работы.
  • 131 6 , другое название данного а  ВТ 131-600, но есть и упрощенное  название, и на многих деталях имеется именно упрощенная маркировка. С этим моментом очень часто связано то, что по оригинальной или упрощенной маркировке не всегда можно найти именно ту информацию, которая нужна.

Схемы управления

Схемы управления симистором отличаются простотой и надежностью. Там, где без применения симисторов требовалось большое количество деталей, и производилась тщательная подгонка по параметрам – симисторы значительно упростили всю принципиальную схему.  Включение в схему только основных элементов позволяет миниатюризировать не только саму печатную плату, но и весь прибор в целом. Читайте принцип работы индикаторной отвертки.

Что такое симистор (триак)

Схема диммера на симисторе позволяет создать компактное дополнение к выключателю освещения, для плавной регулировки уровня освещения. При необходимости схему можно дополнить компонентами для плавного изменения освещения в зависимости от яркости внешнего фона.

Схема регулятора на симисторе включает в себя непосредственно сам датчик температуры, питающую сеть, и прибор нагрузки. Изменение показаний датчика температуры приводит к изменени показателей тока на ключе симистора, что приводит либо к увеличению напряжения, либо к уменьшению. Забудьте о сложных механических устройствах с биметаллическими пластинами и выгорающих контактах. Схемы управления скоростью вращения двигателя принципиально ничем не отличаются по принципу построения от других аналогичных. Нюансы касаются только параметров тока и напряжения на двигатель.

Симистр на электронной схеме.

Симистр на электронной схеме.

Управление симистором через оптопару позволяет подключать электрооборудование, которым нужно управлять. Непосредственно к компьютеру через порт LPT. Оптопара в данном примере позволяет защитить непосредственно материнскую плату компьютера от перегрузки и выхода из строя.  Своего рода умны предохранитель с функцией управления. Управление симистором с микроконтроллера позволяет добиться очень точных показателей по току и напряжению, при которых происходит управление самим симистором и распределению питающего напряжения на различные устройства нагрузки.

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Написано статей

В статье описаны все особенности строения и работы симистора. Более подробно о них можно узнать из статьи Работа симистора. В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.elektronchic.ru

www.samelectrik.ru

www.howelektrik.com

www.principraboty.ru

Предыдущая

ПолупроводникиЧто такое динистор?

Следующая

ПолупроводникиЧто такое тиристоры?

Что такое симистор, как он работает и для чего нужен

Симисторы — это полупроводниковые ключи, которые используют для коммутации цепей сетевого напряжения. Узнайте, как работает симистор и для чего он нужен в цепи.

Симистор является полупроводниковым прибором. Его полное название – симметричный триодный тиристор. Его особенность – возможно проводить ток в обе стороны. Данный элемент цепи имеет три вывода: один является управляющим, а два других силовыми. В этой статье мы рассмотрим принцип работы, устройство и назначение симистора в различных схемах электроприборов.

Содержание:

Конструкция и принцип действия

Особенность симистора является двунаправленной проводимости идущего через прибор электрического тока. Конструкция устройства строится на использовании двух встречно-параллельных тиристоров с общим управлением. Такой принцип работы дал название от сокращенного «симметрические тиристоры». Поскольку электроток может протекать в обе стороны, нет смысла обозначать силовые выводы как анод и катод. Дополняет общую картину управляющий электрод.

Условное обозначение на схеме по ГОСТ:

Что такое симистор, как он работает и для чего нужен

Внешний вид следующий:

Что такое симистор, как он работает и для чего нужен

В симисторе есть пять переходов, позволяющих организовать две структуры. Какая из них будет использоваться зависит от места образования (конкретный силовой вывод) отрицательной полярности.

Что такое симистор, как он работает и для чего нужен

Как работает симистор? Исходно полупроводниковый прибор находится в запертом состоянии и ток по нему не проходит. При подаче тока на управляющий электрод, последний переходит в открытое состояние и симистор начинает пропускать через себя ток. При работе от сети переменного тока полярность на контактах постоянно меняется. Схема, где используется рассматриваемый элемент, при этом будет работать без проблем. Ведь ток пропускается в обоих направлениях. Чтобы симистор выполнял свои функции, на управляющий электрод подают импульс тока, после снятия импульса ток через условные анод и катод продолжает протекать до тех пор, пока цепь не будет разорвана или они не будут находится под напряжением обратной полярности.

При использовании в цепи переменного тока симистор закрывается на обратной полуволне синусоиды, тогда нужно подавать импульс противоположной полярности (той же, под которой находятся «силовые» электроды элемента).

Принцип действия системы управления может корректироваться в зависимости от конкретного случая и применения. После открытия и начала протекания подавать ток на управляющий электрод не нужно. Цепь питания разрываться не будет. При надобности отключить питание следует понизить ток в цепи ниже уровня величины удержания или кратковременно разорвать цепь питания.

Управляющие сигналы

Чтобы добиться желаемого результата с симистором используют не напряжение, а ток. Чтобы прибор открылся, он должен быть на определённом небольшом уровне. Для каждого симистора сила управляющего тока может быть разной, её можно узнать из даташита на конкретный элемент. Например, для симистора КУ208 этот ток должен быть больше 160 мА, а для КУ201 —не менее 70 мА.

Полярность управляющего сигнала должна совпадать с полярностью условного анода. Для управления симистором часто используют выключатель и токоограничительный резистор, если он управляется микроконтроллером – может понадобиться дополнительная установка транзистора, чтобы не сжечь выход МК, или использовать симисторный оптодрайвер, типа MOC3041 и подобных.

Что такое симистор, как он работает и для чего нужен

Четырёхквадрантные симисторы могут отпираться сигналом с любой полярностью. В этом преимуществе есть и недостаток – может потребоваться увеличенный управляющий ток.

При отсутствии прибор заменяется двумя тиристорами. При этом следует правильно подбирать их параметры и переделывать схему управления. Ведь сигнал будет подаваться на два управляющих вывода.

Достоинства и недостатки

Для чего нужен рассматриваемый полупроводниковый прибор? Самый популярный вариант использования – коммутация в цепях переменного тока. В этом плане симистор очень удобен – используя небольшой элемент можно обеспечить управление высоковольтного питания.

Популярны решения, когда им заменяют обычное электромеханическое реле. Плюс такого решения – отсутствует физический контакт, благодаря чему включение питания становится надежнее, переключение бесшумным, ресурс на порядки больше, быстродействие выше. Еще одно достоинство симистора – относительно невысокая цена, что вместе с высокой надёжностью схемы и временем наработки на отказ выглядит привлекательно.

Что такое симистор, как он работает и для чего нужен

Полностью избежать минусов разработчикам не удалось. Так, приборы сильно нагреваются под нагрузкой. Приходится обеспечивать отвод тепла. Мощные (или «силовые») симисторы устанавливают на радиаторы. Ещё один недостаток, влияющий на использование, это создание гармонических помех в электросети некоторыми схемами симисторных регуляторов (например, бытовой диммер для регулировки освещенности).

Отметим, что напряжение на нагрузки будет отличаться от синусоиды, что связано с минимальным напряжением и током, при которых возможно включение. Из-за этого подключать следует только нагрузку, не предъявляющую высоких требований к электропитанию. При постановке задачи добиться синусоиды такой способ коммутации не подойдёт. Симисторы сильно подвержены влиянию шумов, переходных процессов и помех. Также не поддерживаются высокие частоты переключения.

Область применения

Характеристики, небольшая стоимость и простота устройства позволяет успешно применять симисторы в промышленности и быту. Их можно найти:

  1. В стиральной машине.
  2. В печи.
  3. В духовках.
  4. В электродвигателе.
  5. В перфораторах и дрелях.
  6. В посудомоечной машине.
  7. В регуляторах освещения.
  8. В пылесосе.

На этом перечень, где используется этот полупроводниковый прибор, не ограничивается. Применение рассматриваемого проводникового прибора осуществляется практически во всех электроприборах, что только есть в доме. На него возложена функция управления вращением приводного двигателя в стиральных машинках, они используются на плате управления для запуска работы всевозможных устройств – легче сказать, где их нет.

Основные характеристики

Рассматриваемый полупроводниковый прибор предназначен для управления схемами. Независимо от того, где в схеме он применяется, важны следующие характеристики симисторов:

  1. Максимальное напряжение. Показатель, который будучи достигнут на силовых электродах не вызовет, в теории, выхода из строя. Фактически является максимально допустимым значением при условии соблюдения диапазона температур. Будьте осторожны – даже кратковременное превышение может обернуться уничтожением данного элемента цепи.
  2. Максимальный кратковременный импульсный ток в открытом состоянии. Пиковое значение и допустимый для него период, указываемый в миллисекундах.
  3. Рабочий диапазон температур.
  4. Отпирающее напряжение управления (соответствует минимальному постоянному отпирающему току).
  5. Время включения.
  6. Минимальный постоянный ток управления, нужный для включения прибора.
  7. Максимальное повторяющееся импульсное напряжение в закрытом состоянии. Этот параметр всегда указывают в сопроводительной документации. Обозначает критическую величину напряжения, предельную для данного прибора.
  8. Максимальное падение уровня напряжения на симисторе в открытом состоянии. Указывает предельное напряжение, которое может устанавливаться между силовыми электродами в открытом состоянии.
  9. Критическая скорость нарастания тока в открытом состоянии и напряжения в закрытом. Указываются соответственно в амперах и вольтах за секунду. Превышение рекомендованных значений может привести к пробою или ошибочному открытию не к месту. Следует обеспечивать рабочие условия для соблюдения рекомендованных норм и исключить помехи, у которых динамика превышает заданный параметр.
  10. Корпус симистора. Важен для проведения тепловых расчетов и влияет на рассеиваемую мощность.

Вот мы и рассмотрели, что такое симистор, за что он отвечает, где применяется и какими характеристиками обладает. Рассмотренные простым языком теоретические азы позволят заложить основу для будущей результативной деятельности. Надеемся, предоставленная информация была для вас полезной и интересной!

Опубликовано: 03.07.2019 Обновлено: 03.07.2019 нет комментариев

Симистор принцип работы

Симисторы: принцип работы

 

Симистор —  один из видов тиристоров, отличающийся от базового типа большим числом p-n переходови  принципом работы.

Использование симистора

Симистор наиболее часто используется в полупроводниковых устройствах для коммутации и управления мощностью систем переменного тока.

Схема переключения симистора

Приведенная выше схема показывает простую схему переключения симистора с триггером постоянного тока. При разомкнутом переключателе SW1 ток не поступает в затвор симистора, и поэтому лампа выключена. Когда SW1 замкнут, ток затвора подается на триак от батареи V G через резистор R, и триак приводится в полную проводимость, действуя как замкнутый переключатель, и полная мощность потребляется лампой от синусоидального источника питания.

Поскольку батарея подает положительный ток затвора на триак всякий раз, когда переключатель 

SW1 замкнут, триак постоянно находится в режимах g + и ΙΙΙ + независимо от полярности клеммы MT 2 .

Конечно, проблема с этой простой схемой переключения симистора состоит в том, что нам потребовался бы дополнительный положительный или отрицательный источник питания затвора, чтобы запустить триак в проводимость. Но мы также можем активировать триак, используя фактическое напряжение питания переменного тока в качестве напряжения срабатывания затвора. Рассмотрим схему ниже.

Схема показывает триак, используемый как простой статический выключатель питания переменного тока, обеспечивающий функцию «ВКЛ» — «ВЫКЛ», аналогичную в работе предыдущей схеме постоянного тока. Когда переключатель 

SW1 разомкнут, триак действует как разомкнутый переключатель, и лампа пропускает нулевой ток. Когда SW1 замкнут, триак отключается от «ВКЛ» через токоограничивающий резистор R и самоблокируется вскоре после начала каждого полупериода, таким образом переключая полную мощность на нагрузку лампы.

Поскольку источник питания является синусоидальным переменным током, триак автоматически отключается в конце каждого полупериода переменного тока в качестве мгновенного напряжения питания, и, таким образом, ток нагрузки кратковременно падает до нуля, но повторно фиксируется снова, используя противоположную половину тиристора в следующем полупериоде, пока выключатель остается замкнутым. Этот тип управления переключением обычно называется

двухполупериодным управлением, поскольку контролируются обе половины синусоидальной волны.

Поскольку симистор фактически представляет собой две SCR, подключенные друг к другу, мы можем продолжить эту схему переключения симистора, изменив способ срабатывания затвора, как показано ниже.

Модифицированная цепь переключения симистора

Как и выше, если переключатель SW1 разомкнут в положении A, то ток затвора отсутствует, а лампа выключена. Если переключатель находится в положении B, то ток затвора протекает в каждом полупериоде так же, как и раньше, и лампа получает полную мощность, когда триак работает в режимах Ι + и ΙΙΙ–.

Однако на этот раз, когда переключатель подключен к положению C, диод предотвратит срабатывание затвора, когда MT 2 будет отрицательным, так как диод имеет обратное смещение. Таким образом, симистор работает только в положительных полупериодах, работающих только в режиме I +, и лампа загорается при половине мощности. Затем, в зависимости от положения переключателя, нагрузка выключена при половине мощности или полностью включена .

Фазовый контроль симистора

Другой распространенный тип схемы симистической коммутации использует управление фазой для изменения величины напряжения и, следовательно, мощности, подаваемой на нагрузку, в данном случае на двигатель, как для положительной, так и для отрицательной половин входного сигнала. Этот тип управления скоростью двигателя переменного тока обеспечивает полностью переменное и линейное управление, поскольку напряжение можно регулировать от нуля до полного приложенного напряжения, как показано на рисунке.

Эта базовая схема запуска фазы использует триак последовательно с двигателем через синусоидальный источник переменного тока. Переменный резистор VR1 используется для управления величиной фазового сдвига на затворе симистора, который, в свою очередь, управляет величиной напряжения, подаваемого на двигатель, путем его включения в разное время в течение цикла переменного тока.

Вызывание напряжение симистора является производным от VR1 — C1 комбинации через Диак (Диак является двунаправленным полупроводниковым устройством , которое помогает обеспечить резкий триггер импульс тока, чтобы полностью включение симистора).

В начале каждого цикла C1 заряжается через переменный резистор VR1. Это продолжается до тех пор, пока напряжение на С1 не станет достаточным для запуска диака в проводимость, что, в свою очередь, позволяет конденсатору С1 разрядиться в затвор симистора, включив его.

Как только триак запускается в проводимость и насыщается, он эффективно замыкает цепь управления фазой затвора, подключенную параллельно ему, и триак берет на себя управление оставшейся частью полупериода.

Как мы видели выше, триак автоматически отключается в конце полупериода, и процесс запуска VR1-C1 снова запускается в следующем полупериоде.

Однако, поскольку для триака требуются разные величины тока затвора в каждом режиме переключения, например, Ι + и ΙΙΙ–, поэтому триак является асимметричным, что означает, что он не может запускаться в одной и той же точке для каждого положительного и отрицательного полупериода.

Эта простая схема управления скоростью симистора подходит не только для управления скоростью двигателя переменного тока, но и для диммеров ламп и управления электронагревателем, и на самом деле очень похожа на регулятор симистора, используемый во многих домах. Однако коммерческий симисторный диммер не должен использоваться в качестве регулятора скорости двигателя, так как, как правило, симисторные диммеры предназначены для использования только с резистивными нагрузками, такими как лампы накаливания.

Принцип работы симистора

Давайте разберем, как работает симистор на примере простой схемы, в которой переменное напряжение подается на нагрузку через электронный ключ на базе этого элемента. В качестве нагрузки представим лампочку — так удобнее будет объяснять принцип работы.

Схема реле на симисторе (триаке)

В исходном положении прибор находится в запертом состоянии, ток не проходит, лампочка не горит. При замыкании ключа SW1 питание подается на на затвор G. Симистор переходит в открытое состояние, пропускает через себя ток, лампочка загорается. Поскольку схема работает от сети переменного напряжения, полярность на контактах симистора постоянно меняется. Вне зависимости от этого, лампочка горит, так как прибор пропускает ток в обоих направлениях.

При использовании в качестве питания источника переменного напряжения, ключ SW1 должен быть замкнуть все время, пока необходимо чтобы нагрузка была в работе. При размыкании контакта во время очередной смены полярности цепь разрывается, лампочка гаснет. Зажжется она снова только после замыкания ключа.

Если в той же схеме использовать источник постоянного тока, картина изменится. После того как ключ SW1 замкнется, симистор откроется, потечет ток, лампочка загорится. Дальше этот ключ может возвращаться в разомкнутое состояние. При этом цепь питания нагрузки (лампочки) не разрывается, так как симистор остается в открытом состоянии. Чтобы отключить питание, надо либо понизить ток ниже величины удержания (одна из технических характеристик), либо кратковременно разорвать цепь питания.

Сигналы управления

Управляется симистор не напряжением, а током.

Для открытия на затвор надо подать ток определенного уровня. В характеристиках указан минимальный ток открывания — вот это и есть нужная величина. Обычно ток открывания совсем небольшой. Например, для коммутации нагрузки на 25 А, подается управляющий сигнал порядка 2,5 мА. При этом, чем выше напряжение, подаваемое на затвор, тем быстрее открывается переход.

Схема подачи напряжения для управления симистором

Чтобы перевести симистор в открытое состояние, напряжение должно подаваться между затвором и условным катодом. Условным, потому что в разные моменты времени, катодом является то один силовой выход, то другой.

Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель.

Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания.

Некоторые типы симисторов (так называемые четырёхквадрантные симисторы) могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток.

Как отпирается симистор

При питании от сети переменного тока происходит смена режимов работы за счет изменения полярности у напряжения на рабочих электродах. По этой причине в зависимости от того, какая полярность у тока управления, можно выделить 4 типа проведения этой процедуры.

Допустим, между рабочими электродами приложено напряжение. А на электроде управления напряжение по знаку противоположно тому, которое приложено к цепи анода. В этом случае сместится по квадранту симистор — принцип работы, как можно увидеть, довольно простой.

Существует 4 квадранта, и для каждого из них определен ток отпирания, удерживающий, включения. Отпирающий ток необходимо сохранять до той поры, покуда не превысит в несколько раз (в 2-3) он значение удерживающего тока. Именно это и есть ток включения симистора – минимально необходимый ток отпирания. Если же избавиться от тока в цепи управления, симистор будет находиться в проводящем состоянии. Причем он в таком режиме будет работать до той поры, покуда ток в цепи анода будет больше тока удержания.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Схема симисторного регулятора мощности для трансформатора

Симисторы и тиристоры используются во многих электросхемах, в быту и на производстве. Ниже описано, что из себя представляет регулятор мощности, каковы его разновидности и где они применяются. Также будет дана инструкция, как собрать стабилизатор напряжения своими руками.

Что такое регулятор мощности

Самые первые прототипы устройств, позволяющих уменьшать проводимую к нагрузке мощность, были разработаны с учетом закона Ома. На этом принципе и основано функционирование реостата. Его можно подключать последовательно и параллельно нагрузке. При изменении сопротивления реостата можно регулировать его мощность.

 Что собой представляет регулятор мощности

При подключении реостата к нагрузке ток распределяется между ними. В зависимости от способа подключения можно контролировать разные параметры: при параллельном — разницу потенциалов, а при последовательном — напряжение и силу тока. Реостаты различаются в зависимости от использованного в их конструкции материала: металла, керамики, угля или жидкости.

При использовании реостата поглощенная им энергия никуда не исчезает, а преобразуется в тепло. При большом количестве энергии целесообразно использовать системы охлаждения, чтобы температура устройства не была слишком высокой. Отводят тепло обычно с помощью обдува или погружая резистор в масло.

Такие простейшие реостаты широко применяются, но есть один значимый недостаток — невозможность использовать его в мощных электрических цепях. Поэтому резисторы применяются только в бытовых целях (к примеру, такие есть в конструкции радио).

Обратите внимание! Обычный реостат можно сделать и самому, для этого понадобится только проволока из нихрома или константана. Ее необходимо намотать на оправку, при этом изменение проходящей мощности происходит за счет регулировки длины проволоки.

Все полупроводниковые устройства сделаны на переходах или слоях (n-p, p-n). Простой диод — 1 переход и 2 слоя. Биполярный транзистор — 2 перехода и 3 слоя (трехфазный). А при добавлении четвертого слоя как раз и образуется стабилизатор мощности — тиристор. При соединении 2 тиристоров встречно-параллельно получается симистор.

Как работает регулятор мощности в трансформаторе

В трансформаторе обычно используется симисторный регулятор мощности для индуктивной нагрузки. Он работает как электронный ключ, раскрываясь и запираясь, причем частота задается схемой управления. Ток по симистору проводится в 2 направлениях, поэтому его часто используют для сетей переменного тока.

 Схема регулятора напряжения на симисторе для трансформатора

При подключении к трансформатору на один из электродов стабилизатора подается переменный ток, на управляющий электрод — отрицательное управляющее напряжение (с диодного моста). Когда порог включения повысится, симистор раскроется и пустится ток. В момент смены полярности на входе симистор закроется.

Важно! Вся последовательность действий повторяется неоднократно.

Разновидности регуляторов мощности

Для разных целей используются различные регуляторы мощности.

Тиристорный прибор управления

Конструкция устройства довольно простая. Обычно тиристоры применяются в маломощных приборах. Тиристорный терморегулятор состоит из биполярных транзисторов, самого тиристора, конденсатора и нескольких резисторов.

 Тиристорный транзисторный регулятор

Транзисторы образуют импульсный сигнал, когда конденсаторное напряжение уравнивается с рабочим, они открываются. Электросигнал передается на вывод тиристора, после чего происходит разрядка конденсатора и запирание ключа. Вся последовательность действий повторяется циклически.

Обратите внимание! Величина задержки обратно пропорциональна мощности, которая поступает в нагрузку.

Симисторный преобразователь мощности

Симистор — подвид тиристора, в котором несколько больше переходов p-n, из-за чего его принцип работы несколько иной. Но часто симистор считают отдельным видом стабилизатора мощности. Конструкция представляет собой 2 тиристора, подключенных параллельно и имеющих общее управление.

К сведению! Отсюда и происходит название «симистор» — «симметричные тиристоры». Иногда он еще называется ТРИАК (TRIAC).

 Схема 2 параллельно подключенных тиристоров (слева) и симистора (справа)

На схеме видно, что у симистора вместо анода и катода указаны обозначения Т1 и Т2. Все потому, что понятия «катод» и «анод» в данном случае не имеют смысла, так как электроток может выходить через оба вывода.

Симисторные универсальные регуляторы имеют ряд плюсов, в их числе небольшая цена, долгий срок службы и отсутствие подвижных контактов, которые могут быть источниками помех. Но есть и недостатки: подверженность помехам и шумам, отсутствие поддержки высоких частот переключения.

Важно! Их не применяют в мощных промышленных установках, вместо этого там используют тиристоры или IGBT транзисторы.

Фазовый способ трансформации

Фазовая трансформация происходит в так называемых диммерах. Используются такие приборы, к примеру, для изменения интенсивности освещения галогенных ламп или лампочек накаливания. Электросхема обычно воплощается на специальных микроконтроллерах, в которых используется своя интегрированная электросхема снижения напряжения. Благодаря своей конструкции диммеры могут плавно снижать мощность.

 Светодиодный диммер

Из минусов таких устройств высокая чувствительность к помехам, высокий коэффициент пульсаций и маленький коэффициент мощности сигнала на выходе. Чтобы стабилизировать диммер, используются сдвоенные тиристоры.

Как сделать регулятор мощности своими руками

Для сборки стабилизатора напряжения на симисторе для трансформатора понадобятся следующие компоненты:

  • сам симистор и электронные компоненты: динистор, потенциометр, диоды, конденсатор и сопротивления;
  • радиатор;
  • изолирующая теплопередающая прокладка;
  • пластиковый корпус;
  • печатная плата;
  • мультиметр;
  • паяльник.
 Стабилизатор-самоделка

Пошаговая инструкция, как собрать самодельный регулятор мощности:

  1. Сперва необходимо определить некоторые характеристики устройства, для которого нужен регулятор: входное напряжение, силу тока, сколько фаз (3 или 1), а также, есть ли необходимость в точной настройке мощности на выходе.
  2. Нужно определиться с типом прибора — цифровое или аналоговое. Можно смоделировать электрическую цепь посредством скачиваемых утилит, таких как CircuitMaker или Workbench, чтобы проверить, насколько выбранный тип будет подходить конкретной электросети. Также это можно сделать и онлайн.
  3. После можно приступить к расчетам тепловыделения с использованием формулы: спад напряжения в регуляторе помножить на силу тока. Оба параметра должны быть указаны в спецификациях симистора. Ориентируясь на полученную с помощью формулы мощность, нужно выбрать радиатор.
  4. Купить радиатор, электронные компоненты и печатную плату.
  5. Осуществить разводку дорожек контактов и приготовить места, куда нужно устанавливать электронные компоненты, симистор и радиатор.
  6. Закрепить при помощи паяльника все компоненты на печатной плате. В качестве альтернативы плате можно воспользоваться навесным монтажом с короткими проводами. Нужно внимательно следить за полярностью подключаемых компонентов: симистора и диодов.
  7. Взять мультиметр и проверить сопротивление получившейся схемы. Полученное значение не должно отличаться от теоретического.
  8. Скрепить симистор и радиатор, проложив между ними прокладку и заизолировав винт, которым они соединяются.
  9. Полученную микросхему нужно поместить в корпус из пластика.
  10. Поставить потенциометр на минимальное значение и попробовать включить. С помощью мультиметра замерить напряжение на выходе. Медленно поворачивать регулируемую ручку потенциометра, наблюдая за переменой напряжения.
  11. Если схема будет работать так, как было задумано, то можно подсоединять нагрузку. В ином случае нужно отрегулировать мощность по-другому.

Схемы регуляторов мощности напряжения

 Схема работы симистора

В некоторых бытовых приборах, к примеру, используются тиристорные стабилизаторы напряжения — в паяльниках, электронагревателях и т. д.

 Схема тиристорного регулятора напряжения в паяльнике

Для регулирования напряжения применяют и индукционные приборы.

 Схема индукционного стабилизатора

Регуляторы мощности используются практически во всех бытовых электроприборах, а также на производстве. При желании такое устройство можно собрать и самому. Главное — найти подходящую схему из множества существующих и строго следовать инструкции.

Что такое TRIAC: схема переключения и приложения

Силовые электронные переключатели, такие как BJT, SCR, IGBT, MOSFET и TRIAC, являются очень важными компонентами, когда дело доходит до схем переключения, таких как преобразователи постоянного тока в постоянный ток , Контроллеры скорости двигателя , Драйверы двигателей и , контроллеры частоты и т. Д. Каждое устройство имеет свои уникальные свойства и, следовательно, они имеют свои собственные специфические применения. В этом руководстве мы узнаем о TRIAC , которое является двунаправленным устройством, что означает, что оно может вести себя в обоих направлениях.Благодаря этому свойству TRIAC используется исключительно там, где используется синусоидальный переменный ток.

Введение в TRIAC

Термин TRIAC обозначает TRI или A альтернативный C текущий. Это трехконтактное переключающее устройство, подобное тиристору (тиристору), но оно может работать в обоих направлениях, поскольку оно создается путем объединения двух тиристоров в антипараллельном состоянии. Символ и вывод TRIAC показаны ниже.

TRIAC Pinout

Поскольку TRIAC является двунаправленным устройством, ток может течь либо от MT1 к MT2, либо от MT2 к MT1, когда терминал затвора срабатывает. Для TRIAC это напряжение запуска, которое должно быть приложено к клемме затвора, может быть положительным или отрицательным по отношению к клемме MT2. Таким образом, это переводит TRIAC в четыре рабочих режима , как указано ниже

  • Положительное напряжение на MT2 и положительный импульс на затвор (квадрант 1)
  • Положительное напряжение на MT2 и отрицательный импульс на затвор (квадрант 2)
  • Отрицательное напряжение на MT2 и положительный импульс на затворе (квадрант 3)
  • Отрицательное напряжение на MT2 и отрицательный импульс на затворе (квадрант 4)

Характеристики V-I TRIAC

На рисунке ниже показано состояние TRIAC в каждом квадранте.

V-I Characteristics of TRIAC

Характеристики включения и выключения TRIAC можно понять, посмотрев на график характеристик VI для TRIAC, который также показан на рисунке выше. Поскольку TRIAC — это просто комбинация двух SCR в антипараллельном направлении, график характеристик V-I похож на график SCR. Как вы можете видеть, TRIAC в основном работает в квадранте 1 и 3 квадранте .

Характеристики включения

Чтобы включить TRIAC, положительное или отрицательное напряжение затвора / импульс должно быть подано на вывод затвора TRIAC.При срабатывании одного из двух SCR внутри, TRIAC начинает проводить в зависимости от полярности выводов MT1 и MT2. Если MT2 положительный, а MT1 отрицательный, первый SCR проводит, а если вывод MT2 отрицательный, а MT1 положительный, то второй SCR проводит. Таким образом, любой из SCR всегда остается включенным, что делает TRIAC идеальным для приложений переменного тока.

Минимальное напряжение, которое должно быть приложено к выводу затвора для включения симистора, называется пороговым напряжением затвора (V GT ) , а результирующий ток через вывод затвора называется пороговым током затвора (I GT ). Как только это напряжение подается на вывод затвора, TRIAC смещается в прямом направлении и начинает проводить, время, необходимое для перехода TRIAC из выключенного состояния в состояние включения, называется временем включения (t на ).

Точно так же, как SCR, TRIAC после включения останется включенным, пока он не будет переключен. Но для этого условия ток нагрузки через TRIAC должен быть больше или равен току фиксации (I L ) TRIAC. Таким образом, можно заключить, что TRIAC будет оставаться включенным даже после удаления стробирующего импульса, пока ток нагрузки превышает значение тока фиксации.

Подобно току фиксации, существует еще одно важное значение тока, называемое током удержания. Минимальное значение тока для поддержания TRIAC в режиме прямой проводимости называется удерживающим током (I H ). TRIAC войдет в режим непрерывной проводимости только после прохождения через ток удержания и ток фиксации, как показано на графике выше. Также значение тока фиксации любого TRIAC всегда будет больше, чем значение тока удержания.

Характеристики отключения

Процесс выключения TRIAC или любого другого устройства питания называется коммутацией , а связанная с ним схема для выполнения задачи называется коммутационной схемой. Наиболее распространенный метод, используемый для отключения TRIAC, — это уменьшение тока нагрузки через TRIAC до тех пор, пока он не станет ниже значения тока удержания (I H ). Такой вид коммутации называется принудительной коммутацией в цепях постоянного тока.Мы узнаем больше о том, как TRIAC включается и выключается через его прикладные схемы.

Приложения TRIAC

TRIAC очень часто используется в местах, где необходимо управлять мощностью переменного тока, например, он используется в регуляторах скорости потолочных вентиляторов, схемах диммера ламп переменного тока и т. Д. Давайте рассмотрим простую схему переключения TRIAC, чтобы понять, как она работает на практике ,

Simple TRIAC Switching Circuit Diagram

Здесь мы использовали TRIAC для включения и выключения нагрузки переменного тока с помощью кнопки .Затем сетевой источник питания подключается к маленькой лампочке через TRIAC, как показано выше. Когда переключатель замкнут, фазное напряжение подается на вывод затвора симистора через резистор R1. Если это напряжение затвора выше порогового напряжения затвора, то через вывод затвора протекает ток, который будет больше, чем пороговый ток затвора.

В этом состоянии TRIAC входит в прямое смещение, и ток нагрузки будет проходить через лампу. Если нагрузка потребляет достаточно тока, TRIAC переходит в состояние фиксации.Но поскольку это источник питания переменного тока, напряжение будет достигать нуля в течение каждого полупериода, и, следовательно, ток также мгновенно достигнет нуля. Следовательно, фиксация в этой схеме невозможна, и TRIAC выключится, как только выключатель откроется, и здесь не требуется никакой схемы коммутации. Этот тип коммутации TRIAC называется естественной коммутацией . Теперь давайте соберем эту схему на макетной плате с использованием BT136 TRIAC и проверим, как она работает.

При работе с источниками питания переменного тока необходимо соблюдать особую осторожность. В целях безопасности снижается рабочее напряжение. Стандартное напряжение переменного тока 230 В 50 Гц (в Индии) понижается до 12 В 50 Гц с помощью трансформатора.Маленькая лампочка подключена как нагрузка. После завершения экспериментальная установка выглядит так, как показано ниже.

Simple TRIAC Switching Circuit Hardware

Когда кнопка нажата, контакт затвора получает напряжение затвора и, таким образом, TRIAC включается. Лампа будет светиться, пока кнопка удерживается нажатой. Как только кнопка будет отпущена, TRIAC перейдет в фиксированное состояние, но поскольку входное напряжение переменного тока, ток, хотя TRIAC будет ниже удерживающего тока, и, таким образом, TRIAC выключится, полную работу можно также найти в . видео приведено в конце этого руководства.

Управление TRIAC с помощью микроконтроллеров

Когда TRIAC используются в качестве регуляторов света или для управления фазой, импульс затвора, который подается на вывод затвора, должен управляться с помощью микроконтроллера. В этом случае штифт затвора также будет изолирован с помощью оптрона. Принципиальная схема для этого же показана ниже.

Circuit Diagram for TRIAC Control using Microcontrollers

Для управления TRIAC с помощью сигнала 5V / 3.3V мы будем использовать оптопару , такую ​​как MOC3021 , внутри которой есть TRIAC.Этот TRIAC может быть активирован 5 В / 3,3 В через светоизлучающий диод. Обычно сигнал ШИМ подается на вывод 1 st MOC3021, а частота и рабочий цикл сигнала ШИМ будут изменяться для получения желаемого выхода. Этот тип цепи обычно используется для регулировки яркости лампы или управления скоростью двигателя.

Эффект скорости — демпфирующие цепи

Все TRIAC страдают от проблемы, называемой эффектом скорости. То есть, когда клемма MT1 подвергается резкому увеличению напряжения из-за шума переключения, переходных процессов или скачков, TRIAC прерывает его в качестве сигнала переключения и автоматически включается.Это связано с наличием внутренней емкости между клеммами MT1 и MT2.

Самый простой способ решить эту проблему — использовать демпферную цепь. В приведенной выше схеме резистор R2 (50R) и конденсатор C1 (10 нФ) вместе образуют RC-цепь, которая действует как цепь демпфера. Любые пиковые напряжения, подаваемые на MT1, будут наблюдаться этой RC-цепью.

Эффект люфта

Другой распространенной проблемой, с которой столкнутся дизайнеры при использовании TRIAC, является эффект люфта.Эта проблема возникает, когда потенциометр используется для управления напряжением на затворе TRIAC. Когда POT установлен на минимальное значение, на вывод затвора не будет подаваться напряжение, и, таким образом, нагрузка будет отключена. Но когда POT установлен на максимальное значение, TRIAC не включится из-за эффекта емкости между выводами MT1 и MT2, этот конденсатор должен найти путь для разряда, иначе он не позволит TRIAC включиться. Этот эффект называется эффектом люфта. Эту проблему можно решить, просто включив резистор последовательно со схемой переключения, чтобы обеспечить путь для разряда конденсатора.

Радиочастотные помехи (RFI) и TRIAC

Цепи переключения

TRIAC более подвержены радиочастотным помехам (EFI), потому что при включении нагрузки ток внезапно повышается с 0А до максимального значения, создавая, таким образом, всплеск электрических импульсов, который вызывает радиочастотный интерфейс. Чем больше ток нагрузки, тем хуже будут помехи. Использование схем подавления, таких как LC-подавитель, решит эту проблему.

TRIAC — Ограничения

Когда требуется переключать формы сигналов переменного тока в обоих направлениях, очевидно, что TRIAC будет первым выбором, поскольку это единственный двунаправленный силовой электронный переключатель.Он действует так же, как два SCR, подключенных вплотную друг к другу, а также имеют одинаковые свойства. Хотя при разработке схем с использованием TRIAC необходимо учитывать следующие ограничения.

  • TRIAC имеет внутри две структуры SCR: одна проводит в течение положительной половины, а другая — во время отрицательной. Но они не срабатывают симметрично, вызывая разницу в положительном и отрицательном полупериоде выхода
  • .
  • Кроме того, поскольку переключение не является симметричным, оно приводит к высокоуровневым гармоникам, которые вызывают шум в цепи.
  • Эта проблема гармоник также приведет к электромагнитным помехам (EMI).
  • При использовании индуктивных нагрузок существует огромный риск протекания пускового тока к источнику, поэтому необходимо убедиться, что TRIAC полностью отключен, а индуктивная нагрузка безопасно разряжается по альтернативному пути

,Схема симистора

и схемотехника »Электроника

В отличие от тиристоров или тиристоров, симисторные схемы могут переключать обе половины переменного сигнала, что делает их идеальными для многих приложений управления и переключения переменного тока.


Конструкция схемы тиристора Включает:
Праймер для разработки схемы тиристора Схема работы Конструкция цепи запуска / запуска Лом перенапряжения Цепи симистора


Существует множество схем, в которых можно использовать симисторы — часто они используются для коммутации и управления с относительно низким энергопотреблением в таких ситуациях, как диммеры домашнего освещения, небольшие регуляторы нагрева и т.п.

В схемах такого типа симистор является очень полезным устройством, позволяющим разрабатывать схемы с использованием минимального количества компонентов.

Цепи симистора

могут быть очень простыми, требующими всего нескольких компонентов, и они способны обеспечить хорошую степень управления и переключения, хотя они, как правило, не используются для высоких уровней мощности, когда два дискретных тиристора, расположенных напротив друг друга, обеспечивают лучшую производительность.

A typical triac and triac circuit circuits

Технология симистора

Симистор можно рассматривать как два тиристора или тиристора, расположенные вплотную друг к другу, чтобы приспособить обе половины цикла формы волны переменного тока.Будучи единым устройством, это дает значительные преимущества, особенно для бытовых товаров, где стоимость имеет первостепенное значение.

Симистор обладает тем свойством, что при подаче триггера на затвор устройство включается и остается проводящим до тех пор, пока напряжение на анодах или основных выводах устройства не упадет ниже определенного значения — номинально, когда напряжение питания падает почти до нуля. , Это состояние возникает, когда переменная форма волны пересекает линию нулевого напряжения, и таким образом симистор может управлять каждой половиной сигнала.

Triac switching waveform – control on both halves of cycle Форма волны переключения симистора
Примечание по технологии компонентов симистора:
Симисторы

можно рассматривать как встречные тиристоры, но, будучи заключенными в одно устройство, их технология и работа немного сложнее.

Подробнее о Технология компонентов симистора

Схема простого симисторного переключателя

Симистор может функционировать как переключатель — он может позволить запускающему импульсу переключателя малой мощности включить симистор для управления гораздо более высокими уровнями мощности, что возможно с помощью простого переключателя.

Simple triac switch circuit Схема простого симисторного переключателя

В этой схеме резистор R1 может быть 100R или более в зависимости от рассматриваемого симистора.

Симистор с регулируемой мощностью или диммерная цепь

Одна из самых популярных схем симистора изменяет фазу на входе симистора для управления мощностью, которая может рассеиваться в нагрузке. Это форма схемы, которая широко используется в схемах для диммеров лампы накаливания в домашних условиях. К сожалению, эта простая схема не подходит для светодиодов, поскольку она ограничивает передний фронт формы волны, а для светодиодов обычно требуется обрезка заднего фронта.

Эта схема работает, потому что цепи конденсатора и резистора требуется время для зарядки конденсатора — форма волны на стыке конденсатора и резистора эффективно задерживается, и это задерживает включение симистора в цепи. Поскольку симистор включается частично в половине каждого цикла, это означает, что общая мощность в цепи снижается.

A basic triac phase control dimmer circuit Базовая схема симистора, использующая фазу входного сигнала для управления рассеиваемой мощностью в нагрузке

Обратите внимание на диак, расположенный в цепи рядом с затвором симистора.Это необходимо, потому что характеристики переключения симисторов не особенно симметричны от одной полуволны к следующей половине, как подробно описано ниже. Это результат структуры симистора.

Проблемы с цепями симистора

Симисторы

не являются полным решением для всех требований коммутации переменного тока. При использовании симисторов в различных схемах возникают некоторые проблемы, и их необходимо учитывать при проектировании схем.

Некоторые из эффектов, которые должны быть включены в схему, указаны ниже:

  • Эффект dV / dt: Симисторы страдают от проблемы, иногда называемой эффектом скорости или эффектом dV / dt.Если на какой-либо из основных клемм произойдет резкое изменение напряжения, превышающее номинальное значение dV / dt, это может вызвать прорыв в затвор, достаточный для включения симистора. Эти переходные процессы могут возникать в результате всплесков переключения или электрических разрядов, переносимых по линиям электропередачи. Другая причина переходных процессов может возникнуть при возбуждении индуктивных нагрузок, таких как двигатели. Здесь линейные токи и напряжения могут быть не в фазе, и в этих обстоятельствах могут внезапно появиться большие напряжения, которых достаточно, чтобы превысить номинальное значение dV / dt симистора.Это возникает из-за того, что симистор размыкается, когда ток на его основном выводе падает почти до нуля в течение каждого рабочего полупериода.

    A basic triac circuit with transient snubber to ensure no spurious firing from the dV/dt effect Базовая схема симистора с переходным демпфером Эту проблему можно в значительной степени решить, добавив к линии ограничитель переходных процессов — резистор R1, возможно, около 100R и последовательный конденсатор, C2, возможно, около 10 нФ или 100 нФ в зависимости от установки. Помните, что конденсатор должен выдерживать напряжение (и ток), а резистор должен быть достаточно большим, чтобы рассеивать требуемую энергию, особенно пик напряжения.Для обычных линий электропередачи на 240 вольт конденсатор должен иметь рабочее напряжение не менее 400 вольт, а желательно больше.

  • Эффект люфта: Этот эффект, встречающийся в некоторых схемах симистора, возникает, когда потенциометр и конденсатор используются для управления напряжением затвора.

    Было обнаружено, что если потенциометр повернут для обеспечения минимального значения, то отсутствует путь утечки для разряда емкости симистора MT1 — MT2, препятствующий включению симистора.Решение состоит в том, чтобы установить резистор высокого номинала, чтобы позволить этой емкости разряжаться.

  • Несимметричный обжиг: Из-за внутренней конструкции испытаний есть небольшие различия между секциями для покрытия различных полупериодов. Это приводит к несимметричному срабатыванию симистора, что, в свою очередь, приводит к генерации высоких уровней гармоник, которые могут быть плохими для характеристик ЭМС и т. Д. Хотя действие симистора, даже симметричное переключение, будет генерировать гармоники, асимметрия вызовет должны быть созданы гораздо более высокие уровни, вызывающие более высокие уровни помех.Чтобы помочь преодолеть эту проблему и обеспечить гораздо более определенный сигнал запуска затвора для схемы симистора, диак обычно включается последовательно с затвором.

    Диак может улучшить характеристики схемы симистора, потому что его коммутационная характеристика намного лучше, чем у симистора. Так как диак предотвращает протекание тока затвора до тех пор, пока не будет достигнуто триггерное напряжение диака около 35 вольт, это делает точку срабатывания симистора более равной для обеих полярностей.

    Несколько лет назад были разработаны и проданы пробные версии, в которых диски включались в комплект.Однако по какой-то причине они не имели коммерческого успеха и были прекращены.

  • Фильтрация гармоник: Любая переключающая цепь, которая переключается во время сигнала, например, симистор, будет генерировать гармоники. Это еще хуже, если срабатывание несимметрично. Эти гармоники могут вызвать помехи, которые могут повлиять на поглощение другого электронного оборудования поблизости, особенно при использовании беспроводной связи.Хотя для ЭМС лучше всего удалить любые гармоники в источнике, даже если установлен диак, вероятно, потребуется некоторая фильтрация для удаления гармоник.

    A basic triac phase control dimmer circuit including harmonic filtering Базовая схема симистора с фильтром гармоник / помех Для большинства схем симистора простой LC-фильтр обеспечит достаточно хорошую фильтрацию. Индуктор небольшой серии RFC1 и конденсатор C2 на симисторе обычно обеспечивают достаточное затухание для многих приложений. Дроссель около 100 мкГн вместе с 0.Конденсатор 1 мкФ, как правило, работает нормально. Дроссель должен выдерживать ток, а конденсатор — напряжение. Если напряжение сети / линии электропередачи переключается, как в случае с диммером, конденсатор должен выдерживать пиковое линейное напряжение, которое в √2 раза больше среднеквадратичного напряжения, плюс хороший запас для компенсации любых переходных процессов, которые могут возникнуть. линия. Конденсаторы с номинальным напряжением 400 В часто используются для сетей с напряжением 240 В.

Существует множество схем симистора, которые можно использовать.Базовые схемы очень просты и обеспечивают хорошую производительность там, где требуется такой уровень функциональности. Функцией переключения также можно управлять с помощью процессора, что позволяет разрабатывать очень интеллектуальные формы схемы забастовки.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы»., ,

.

Что такое симистор — переключатель симистора »Электроника

Симисторы — это полупроводниковые устройства, которые широко используются для коммутации переменного тока средней мощности — их преимущество в том, что они могут переключать обе половины переменного цикла.


Triac, Diac, SCR Учебное пособие Включает:
Основы тиристоров Конструкция тиристорного устройства Работа тиристора Затвор отключающий тиристор, ГТО Характеристики тиристора Что такое симистор Технические характеристики симистора Обзор Diac


Симисторы — это электронные компоненты, которые широко используются в системах управления питанием переменного тока.Они могут переключать высокие напряжения и высокие уровни тока и по обеим частям сигнала переменного тока. Это делает схемы симисторов идеальными для использования в различных приложениях, где требуется переключение мощности.

В частности, симисторные схемы используются в регуляторах освещенности для домашнего освещения, а также во многих других ситуациях управления мощностью, включая управление двигателем и электронные переключатели.

Благодаря своим характеристикам симисторы, как правило, используются для электронных коммутационных устройств малой и средней мощности, оставляя тиристоры для использования в коммутационных устройствах переменного тока с очень высокими температурами.

A medium current triac Среднетоковый симистор

Основы симистора

Симистор представляет собой развитие тиристора. В то время как тиристор может управлять током только в течение одной половины цикла, симистор управляет им в течение двух половин сигнала переменного тока.

Таким образом, симистор можно рассматривать как пару параллельных, но противоположных тиристоров с двумя вентилями, соединенными вместе, и анодом одного устройства, соединенным с катодом другого, и т. Д.

Triac switching waveform – control on both halves of cycle Форма волны переключения симистора

Тот факт, что переключение симистора происходит на обеих половинах сигнала переменного тока, означает, что для приложений электронного переключения переменного тока можно использовать полный цикл.Для базовых схем с тиристорами используется только половина формы волны, а это означает, что в базовых схемах, в которых используются тиристоры, не будут использоваться обе половины цикла. Для использования обеих половин требуются два устройства. Однако для симистора требуется только одно устройство для управления обеими половинами формы волны переменного тока, и во многих отношениях это идеальное решение для электронного переключателя переменного тока.

Символ симистора

Как и другие электронные компоненты, симистор имеет собственный символ схемы, который используется на принципиальных схемах, и это указывает на его двунаправленные свойства.Символ симистора можно рассматривать как пару символов тиристоров в противоположных смыслах, объединенных вместе.

Triac circuit symbol Обозначение схемы симистора

Как и тиристор, симистор имеет три вывода. Однако их названия немного сложнее присвоить, потому что основные токоведущие выводы подключены к тому, что фактически является катодом одного тиристора, а анодом другого в пределах всего устройства.

Есть вентиль, который действует как спусковой крючок для включения устройства.В дополнение к этому, другие клеммы оба называются анодами или главными клеммами. Обычно они обозначаются как анод 1 и анод 2 или основной терминал 1 и главный терминал 2 (MT1 и MT2). При использовании симисторов МТ1 и МТ2 имеют очень похожие свойства.

Как работает симистор?

Прежде чем рассматривать, как работает симистор, полезно понять, как работает тиристор. Таким образом, можно понять основные концепции более простого полупроводникового прибора, а затем применить их к более сложному симистору.

Что касается работы симистора, то из условного обозначения схемы можно представить, что симистор состоит из двух тиристоров, включенных параллельно, но по-разному. Таким образом можно рассматривать работу симистора, хотя реальная работа на полупроводниковом уровне гораздо сложнее.

Equivalent circuit of a triac Эквивалентная схема симистора

Структура симистора показана ниже, и можно увидеть, что есть несколько областей материала N-типа и P-типа, которые образуют фактически пару встречных тиристоров.

Basic structure of a triac Базовая структура симистора

Симистор может вести себя разными способами — больше, чем тиристор. Он может проводить ток независимо от полярности напряжения на клеммах MT1 и MT2. Он также может запускаться как положительными, так и отрицательными токами затвора, независимо от полярности тока MT2. Это означает, что существует четыре режима или квадранта запуска:

  • I + Mode Ток MT2 равен + ve, ток затвора + ve
  • I- Mode Ток MT2 + ve, ток затвора -ve
  • III + Mode: Ток MT2 -ve, ток затвора + ve
  • III- Режим: Ток MT2 -ve, ток затвора -ve

Установлено, что чувствительность триггерного триггера по току максимальна, когда токи MT2 и затвора имеют одинаковую полярность, т.е.е. оба положительные или оба отрицательные. Если токи затвора и МТ2 имеют противоположную полярность, тогда чувствительность обычно составляет примерно половину значения, когда они одинаковы.

Типичную ВАХ симистора можно увидеть на диаграмме ниже, где отмечены четыре различных квадранта.

IV characteristic of a triac Характеристики симистора IV

Применение симистора

Симисторы

используются во многих приложениях. Эти электронные компоненты часто используются при коммутации переменного тока малой и средней мощности.Там, где требуется переключение больших уровней мощности, обычно используются два тиристора / тиристора, поскольку ими легче управлять.

Тем не менее симисторы широко используются во многих приложениях:

  • Управление освещением — особенно бытовые диммеры.
  • Управление вентиляторами и небольшими двигателями.
  • Электронные переключатели для общего переключения и управления переменным током

Естественно, существует много других применений симисторов, но это одни из самых распространенных.

В одном конкретном приложении симисторы могут быть включены в модули, называемые твердотельными реле. Здесь оптическая версия этого полупроводникового устройства активируется светодиодным источником света, включающим твердотельное реле в соответствии с входным сигналом.

Обычно в твердотельных реле светодиодный источник света или инфракрасного излучения и оптический симистор содержатся в одном корпусе, при этом обеспечивается достаточная изоляция, чтобы выдерживать высокие напряжения, которые могут достигать сотен вольт или, возможно, даже больше.

Твердотельные реле бывают разных форм, но те, которые используются для переключения переменного тока, могут использовать симистор.

Использование симисторов

При использовании симисторов следует учитывать ряд моментов. Хотя эти полупроводниковые устройства работают очень хорошо, чтобы добиться от них максимальной производительности, необходимо понять несколько советов по использованию симисторов.

Было обнаружено, что из-за их внутренней конструкции и небольших различий между двумя половинами эти электронные компоненты не срабатывают симметрично.Это приводит к генерации гармоник: чем менее симметрично срабатывает симистор, тем выше уровень генерируемых гармоник. Обычно нежелательно иметь высокие уровни гармоник в энергосистеме, и, как следствие, симисторы не подходят для систем большой мощности. Вместо этого для этих систем можно использовать два тиристора, так как их срабатывание легче контролировать.

Чтобы помочь в решении проблемы несимметричного срабатывания симистора и возникающих в результате гармоник, другое полупроводниковое устройство, известное как диак (диодный переключатель переменного тока), часто подключается последовательно с затвором симистора.Включение этого полупроводникового устройства помогает сделать переключение более равномерным для обеих половин цикла и тем самым создать более эффективный электронный переключатель.

Это происходит из-за того, что характеристика переключения диакритического сигнала намного лучше, чем у симистора. Поскольку диак предотвращает протекание любого тока затвора до тех пор, пока напряжение срабатывания триггера не достигнет определенного значения в любом направлении, это делает точку срабатывания симистора более равномерной в обоих направлениях.

Internal circuitry of triac light dimmer Внутренняя схема симисторного регулятора яркости света

Примеры схем симистора

Есть много способов использования симисторов.Два приведенных ниже примера дают представление о том, что можно сделать с этими полупроводниковыми устройствами.

  • Простая схема электронного переключателя симистора: Симистор может функционировать как электронный переключатель — он может активировать пусковой импульс переключателя малой мощности, чтобы включить симистор для управления гораздо более высокими уровнями мощности, что было бы возможно с помощью простого переключатель. Simple triac switch circuit Схема простого симисторного переключателя
  • Схема регулируемой мощности симистора или диммера: Одна из самых популярных схем симистора изменяет фазу на входе симистора для управления мощностью, которая может рассеиваться в нагрузке.
    A basic triac phase control dimmer circuit Базовая схема симистора, использующая фазу входного сигнала для управления рассеиваемой мощностью в нагрузке

Можно использовать намного больше схем симистора. Устройство очень универсально и может использоваться в различных схемах, обычно для обеспечения различных форм переключения переменного тока.

Примечание по схемам и конструкции симистора:
Цепи симистора

могут переключать обе половины на переменную форму волны с помощью одного устройства, что делает их очень привлекательными для использования во многих коммутационных схемах переменного тока малой и средней мощности.

Подробнее о Симисторные схемы и конструкция

Характеристики симистора

Симисторы

имеют много характеристик, которые очень похожи на характеристики тиристоров, хотя, очевидно, они предназначены для работы симистора на обеих половинах цикла и должны интерпретироваться как таковые.

Однако их работа очень похожа, как и основные типы спецификаций. При проектировании схемы симистора требуются такие параметры, как ток срабатывания затвора, повторяющееся пиковое напряжение в закрытом состоянии и т.п., что обеспечивает достаточный запас для надежной работы схемы.

Симисторы

— идеальные устройства для использования во многих приложениях переменного тока малой мощности. Цепи симисторов для использования в качестве диммеров и небольших электронных переключателей широко распространены, и их легко и просто реализовать. При использовании симисторов диаки часто включаются в схему, как упоминалось выше, чтобы помочь снизить уровень генерируемых гармоник.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды транзистор Фототранзистор FET Типы памяти тиристор Соединители Разъемы RF Клапаны / трубки батареи Выключатели Реле
Вернуться в меню «Компоненты»., ,

.

Симисторы — Рабочие и прикладные схемы

Симистор можно сравнить с реле с фиксацией. Он мгновенно включится и закроется, как только сработает, и останется закрытым, пока напряжение питания остается выше нуля вольт или полярность питания не изменяется.

Если питание переменного тока (переменного тока), симистор будет размыкаться в течение периодов, когда цикл переменного тока пересекает нулевую линию, но закрывается и включается при повторном срабатывании.

Преимущества симистора в качестве статических переключателей

  • Симисторы можно эффективно заменить механическими переключателями или реле для управления нагрузками в цепях переменного тока.
  • Симисторы можно сконфигурировать для переключения относительно более тяжелых нагрузок за счет срабатывания минимального тока.
  • Когда симисторы проводят (замыкаются), они не создают эффекта дребезга, как в механических переключателях.
  • Когда симисторы выключаются (при переходе через нуль переменного тока), это происходит без каких-либо переходных процессов из-за противо-ЭДС и т. Д.
  • Симисторы также устраняют проблемы с плавлением контактов или дугового разряда, а также другие формы износа, которые обычно встречаются. наблюдается в механических электрических переключателях.Симисторы
  • обладают гибким запуском, который позволяет им переключаться в любой заданной точке входного цикла переменного тока через положительный сигнал низкого напряжения на затворе и общей земле.
  • Это напряжение запуска может быть от любого источника постоянного тока, такого как батарея, или выпрямленный сигнал от самого источника переменного тока. В любом случае симистор будет проходить периоды выключения всякий раз, когда форма сигнала переменного тока полупериода перемещается через линию пересечения нуля (тока), как показано ниже:

Как включить симистор

Симистор состоит из трех клемм : Затвор, A1, A2, как показано ниже:

Чтобы включить симистор, на его вывод затвора (G) должен быть подан ток триггера затвора.Это заставляет ток затвора течь через затвор и клемму A1. Ток затвора может быть положительным или отрицательным по отношению к выводу A1 симистора. Клемма A1 может быть подключена совместно к отрицательной линии VSS или положительной линии VDD источника питания управления затвором.

Следующая диаграмма показывает упрощенную схему симистора, а также его внутреннюю кремниевую структуру.

Когда триггерный ток подается на затвор симистора, он включается с помощью встроенных диодов, встроенных последовательно между клеммой G и клеммой A1.Эти 2 диода установлены на переходах P1-N1 и P1-N2 симистора.

Квадранты запуска симистора

Запуск симистора осуществляется через четыре квадранта в зависимости от полярности тока затвора, как показано ниже:

Эти квадранты запуска могут применяться на практике в зависимости от семейства и класса симистора, так как приведено ниже:

Q2 и Q3 — рекомендуемые квадранты запуска для симисторов, поскольку они обеспечивают минимальное потребление и надежный запуск.

Квадрант запуска Q4 не рекомендуется, так как он требует более высокого тока затвора.

Важные параметры запуска для симисторов

Мы знаем, что симистор можно использовать для переключения мощной нагрузки переменного тока через его клеммы A1 / A2 через относительно небольшой источник запуска постоянного тока на клемме затвора.

При проектировании схемы управления симистором решающее значение приобретают параметры срабатывания затвора. Параметры запуска: ток срабатывания затвора симистора IGT, напряжение срабатывания затвора VGT и ток фиксации затвора IL.

  • Минимальный ток затвора, необходимый для включения симистора, называется током запуска затвора IGT. Это необходимо подать на затвор и вывод A1 симистора, который является общим для источника питания триггера затвора.
  • Ток затвора должен быть выше номинального значения для самой низкой указанной рабочей температуры. Это обеспечивает оптимальное срабатывание симистора при любых обстоятельствах. В идеале значение IGT должно в 2 раза превышать номинальное значение в таблице данных.
  • Триггерное напряжение, приложенное к затвору и клемме A1 симистора, называется VGT.Он применяется через резистор, о котором мы вскоре поговорим.
  • Ток затвора, который эффективно фиксирует симистор, является током фиксации и обозначается как LT. Фиксация может произойти, когда ток нагрузки достигнет значения LT, только после этого фиксация будет разрешена, даже если ток затвора снят.
  • Вышеуказанные параметры указаны для температуры окружающей среды 25 ° C и могут иметь отклонения при изменении этой температуры.

Неизолированный запуск симистора может выполняться в двух основных режимах, первый метод показан ниже:

Здесь положительное напряжение, равное VDD, прикладывается к затвору и выводу A1 симистора.В этом co

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *