Схемы самодельных металлоискателей повышенной чувствительности: Схема простого самодельного металлоискателя c повышенной чувствительностью

Содержание

Схема простого самодельного металлоискателя c повышенной чувствительностью

В статье рассмотрена схема простого металлоискателя с повышеной чувствительность. Прибор предназначен для обнаружения металлических крышек кабельных колодцев под слоем грунта, асфальта или снега, а также других металлических предметов. Потребляемый прибором ток от источника питания не превышает 5 мА.

Принципиальная схема

Схема простого металлоискателя состоит из кварцевого генератора на элементах DD1.1, DD1.2, делителя частоты кварцевого генератора DD2.1, генератора на элементе DD1.3. В качестве катушки L1 этого генератора используется рамка металлоискателя.

Частота колебаний генератора 100 Гц, а двадцатая гармоника этого генератора имеет частоту 2000 кГц. При смешивании в элементе DD1.4 этой частоты с частотой кварцевого генератора получаются биения звуковой частоты, которые усиливаются транзистором VT1 и поступают на головные телефоны.

При приближении рамки металлоискателя к металлическому предмету индуктивность катушки изменяется.

Это вызывает изменение частоты генератора, например, при изменении частоты генератора на 10 Гц частота двадцатой гармоники изменится на 200 Гц.

Рис. 1. Принципиальная схема самодельного металлоискателя повышенной чувствительности.

При этом в телефонах слышен тон с частотой 200 Гц. В ближней зоне поиска чувствительность прибора можно уменьшить. Для этого частота кварцевого генератора делится на 10 микросхемой DD2.1. Переключатель S1 при этом находится в нижнем положении.

Детали и конструкция

В металлоискателе можно использовать любые кварцы с частотой от 1 до 5 МГц, а головные телефоны-высокоомные 1600 Ом. Для изготовления рамки нужно из металлической трубки диаметром 12… 16 мм согнуть кольцо диаметром 200 мм. Концы трубок не должны между собой соприкасаться, чтобы не получился короткозамкнутый виток. Между концами трубки следует оставить зазор 10…20 мм.

Таблица 1. Перечень деталей, необходимых для изготовления металлоискателя.

Название, номинал Количество, шт
Микросхема К561ЛА7 1
Микросхема К176ИЕ4 1
Кварц на 2000 КГц (от 1МГц до 5МГц) 1
Головные телефоны (высокоомные), 2 х 1600 Ом 1
Резистор 2,4 МОм 1
Резистор 5,1 КОм 1
Резистор 1 КОм 1
Резистор 680 Ом 1
Конденсатор 100 пФ 1
Конденсатор 3300 пф (3,3 нФ) 1
Конденсатор 5600 пф (5,6 нФ) 2
Конденсатор 300 пФ 1
Конденсатор переменный 12-260 пФ 1
Конденсатор 0,047 мкФ (47 нФ) 1
Конденсатор 0,47 мкФ (470 нФ) 1
Конденсатор электролитический 5 мкФ, 10В
1
Транзистор КТ361 1
Элемент питания 9В (Крона) 1
Разъем на 4 контакта 1

Примечание: также для изготовления поисковой катушки понадобится медный провод ЛЭШО 9×0,11.

По всей длине трубки по наружному диаметру ножовкой для металла делается пропил. Через этот пропил укладывается провод катушки, предварительно покрытый слоем клея БФ-2 или эпоксидной смолы. Количество витков — 36, провод ЛЭШО 9×0,11. Можно использовать и другой тип провода. После укладки провода рамку обматывают лентой из стеклоткани и пропитывают эпоксидной смолой. Рамку крепят к ручке-штанге.

При работе с металлоискателем конденсатором С5 подстраивают частоту до получения в телефонах биений с частотой 10…50 Гц. В этом положении наиболее легко заметить изменение тона. При приближении рамки к цветным металлам частота генератора увеличивается, при приближении к черным (сталь, чугун) — понижается.

В. Петрушенко, RB5EC, г.Днепропетровск.

Схемы самодельных металлоискателей повышенной чувствительности

Среди радиолюбительских конструкций особым интересом пользуются разработки, помогающие обнаруживать скрытые в земле металлические предметы. Особенно если последние – небольшие по величине, залегают на значительной глубине и являются к тому же неферромагнетиками.

Добротных электрических схем подобных устройств, называемых по аналогии с известными военными разработками металлоискателями, и описаний вполне работоспособных конструкций немало опубликовано в различных технических
Изданиях, но рассчитаны они зачастую на подготовленных, опытных самодельщиков, имеющих хорошую материальную базу, дефицитные детали.

А вот предлагаемую нами конструкцию вполне сможет повторить-изготовить даже новичок. Тем более что и детали нужные (включая кварцевый резонатор на 1 МГц) приобрести будет вполне по силам. Ну а чувствительность собранного металлоискателя. О ней можно судить хотя бы по тому факту, что с помощью предлагаемого устройства легко отыскивается, например, медная монета диаметром 20 мм и толщиной 1,5 мм на глубине 0,9 м.

Принцип действия

Он основан на сравнении двух частот. Одна из них эталонная, а другая – изменяющаяся. Причем отклонения ее зависят от появления в поле высокочувствительной поисковой катушки металлических предметов. У современных металлоискателей, к которым можно вполне обоснованно отнести и рассматриваемую конструкцию, эталонный генератор работает на частоте, на целый порядок отличающейся от той, что возникает в поле поисковой катушки. В нашем случае эталонный генератор (см. принципиальную электрическую схему) реализован на двух логических элементах ЗИ-НЕ интегральной DD2. Частота его стабилизирована и определяется кварцевым резонатором ZQ1 (1 МГц). Генератор же с изменяющейся частотой выполнен на первых двух элементах ИС DD1. Колебательный контур здесь образован поисковой катушкой L1, конденсаторами С2 и СЗ, а также варикапом VD1. А для настройки на частоту 100 кГц служит потенциометр R2, задающий требуемое напряжение варикапу VD1.

Рис.1. Принципиальная электрическая схема высокочувствительного самодельного металлоискателя.

В качестве буферных усилителей сигнала используются логические элементы DD1.3 и DD2.3, работающие на смеситель DD1.4. Индикатором является высокоомный телефонный капсюль BF1.

А конденсатор С10 используется как шунт для высокочастотной составляющей, поступающей от смесителя.

Конфигурация печатной платы приведена на соответствующей иллюстрации. А схема расположения радиоэлементов на стороне, обратной печатным проводникам, дана здесь другим цветом.

Рис.2. Печатная плата самодельного металлоискателя, с указанием расположений элементов.

Металлоискатель питается от источника постоянного тока напряжением 9 В. А так как высокая стабилизация здесь не обязательна, используется батарея типа «Крона». В качестве фильтра успешно трудятся конденсаторы С8 и С9.

Поисковая катушка требует особой точности и внимания при изготовлении. Наматывается она на виниловой трубке с внешним диаметром 15 мм и внутренним – 10 мм, согнутой в форме окружности 0 200 мм. Катушка содержит 100 витков провода ПЭВ-0,27. Когда намотка будет выполнена, она обвивается алюминиевой фольгой для создания электростатического экрана (уменьшения влияния емкости между катушкой и землей). При этом важно не допустить электрического контакта между проводом намотки и острыми краями фольги. В частности, поможет здесь «обвивка наискось». А для защиты самого алюминиевого покрытия от механических повреждений катушку дополнительно обвивают изоляционной бандажной лентой.

Диаметр катушки может быть и другим. Но чем он меньше, тем чувствительность всего устройства становится выше, зато площадь поиска скрытых металлических предметов сужается. При увеличении же диаметра катушки эффект наблюдается обратный.

Работают с металлоискателем следующим образом. Расположив поисковую катушку в непосредственной близости от поверхности земли, настраивают генератор потенциометром R2. Причем так, чтобы в телефонном капсюле звук не прослушивался. При движении же катушки над поверхностью земли (почти вплотную к последней) и отыскивается заветное место – по появлению звука в телефонном капсюле.

При использовании рассмотренного выше устройства для отыскания скрытых в земле предметов, представляющих археологическую и национальную культурную ценность, требуется предварительное на то разрешение от соответствующих органов.

Н. Кочетов, по материалам «Млад Конструктор»

Схема металлоискателя обладает очень высокой чувствительностью, так как здесь контролируется расхождение частот — образцового генератора, работающего на частоте 0,5…1 МГц, и 5…10 гармоники поискового генератора. Расстройка последнего, например, лишь на 10 Гц ведет к изменению частоты разностных колебаний на 50… 100 Гц. Металлоискатель «ловит» монету 2 см на глубине до 9 см.

Образцовый генератор металлоискателя выполнен на элементах DD2.1, DD2.2, ZQ1 и др., где ZQ1 — кварцевый резонатор на частоту f0=0,5..1 МГц, обеспечивающий высокую ее стабильность.

Контур перестраиваемого генератора (L1, C2, СЗ, VD1) должен быть настроен на одну из частот fc=к·f0, где кО<1/10, 1/9, 1/8, 1/7, 1/6, 1/5>. Ее подбирают конденсатором C2 (движок резистора R2 — элемент тонкой настройки генератора — должен быть в среднем положении).

Смеситель прибора выполнен на элементе DD1.4. Элементы DD1.3 и DD2.3 — буферные.

Каркасом поисковой катушки L1 служит кольцо диаметром 250 мм, согнутое из винипластовой трубки, имеющей внешний диаметр 15 и внутренний 10 мм. Катушку наматывают проводом ПЭЛШО 0,27. Она имеет 100 витков. Для удобства намотки винипластовая трубка может иметь продольный разрез. После укладки витков катушки трубку обматывают лентой из алюминиевой фольги, которая нужна здесь как электростатический экран. В этом экране обязательно должен быть сделан разрыв длиной 1 см, иначе он станет шунтирующим L1 короткозамкнутым витком. Для защиты поисковой катушки от механических повреждений её обматывают двумя, тремя слоями ленты ПВХ.

Элементы прибора размещают на плате, которую помещают в металлическую коробку-экран. Удлинитель, если он есть, также должен быть металлическим. Его можно изготовить, например, из дюралюминиевой лыжной палки, а если деревянный, то провод к катушке должен быть экранированный.

P.S. При желании можно упростить схему исключив С1, С3, R1, R2, VD1, а вместо ZQ1 поставить переменный конденсатор.

Чертёж печатной платы

Ещё один вариант печатной платы

П О П У Л Я Р Н О Е:

Очень удобно хранить машину в гараже. Особенно зимой — она лучше заводится, меньше происходит износ деталей и т.д. и т.п. Гараж — это хороший домик для вашего любимого авто &#128578; Он охраняет его и от хулиганов, и от угонщиков, и от атмосферного воздействия. Также в гараже можно хранить инструменты, приборы и устройства для ремонта и поддержания автомобиля в исправном состоянии. Конечно, в зимнее время встаёт вопрос об отоплении гаража.

Известно, что осветительная лампа чаще всего выходит из строя а момент включения. Именно в этот момент сопротивление нити лампы мало (при­мерно в 10 раз меньше раскаленной), и на ней рассеивается мощность, значительно превышающая номиналь­ную. Нить не выдерживает и пере­горает. Особенно часто такое случа­ется с дорогостоящими лампами боль­шой мощности (до 500 Вт), используемыми, например, в проекционных аппаратах. Подробнее…

Что делать, если наседка ко времени не подоспела? Да и количество получаемого молодняка не всегда устраивает, а серийные инкубаторы дороговаты.

Выход один: попытаться смонтировать самому.

Камерой для упрощенной модели инкубатора могут по­служить обыкновенные картонные коробки, оклеенные внут­ри и снаружи слоями плотной бумаги, деревянные каркасы, обшитые с обеих сторон фанерой или пластиком, заполнен­ные внутри и между стенками стекловатой, сухими опилка­ми, пенопластом. Подробнее…

КОМПАНИЯ

УСЛУГИ

РЕСУРСЫ И СЕРВИСЫ

Непрерывная работа с максимальными настройками глубины может помочь извлечь глубоко залегающие цели. В другом случае настраивать глубину нецелесообразно. Тестировать увеличение глубины обнаружения лучше всего в специально подготовленном для этого месте в поле или на собственном земельном участке.

Вот 9 советов о том, как добиться максимальной производительности катушки металлоискателя по глубине.

1. Чувствительность

Настройка чувствительности — самый популярный способ увеличить глубину. Обычно, когда повышается чувствительность, увеличивается и глубина. Но имейте в виду, что есть и побочный эффект, поскольку слишком высоко взвинченная чувствительность может снизить вероятность идентификации цели, а также свести вас с ума постоянными хаотично издаваемыми звуками.

2. Баланс грунта

Каждый современный металлоискатель обычно имеет функцию баланса грунта. Правильно определить его и установить — это прямой путь к увеличению глубины. Ведь от минерализации почвы многое зависит, в том числе и то, на какой глубине вы будете обнаруживать цели.

3. Проводите катушкой как можно ближе к земле

Простой расчет: если вы сможете приблизить катушку к земле на 1,5 см, то и глубина обнаружения увеличится на те самые 1,5 см. Иногда этого бывает достаточно, чтобы поймать слабый сигнал от монеты. Иногда трава мешает перемещать катушку ближе к земле. В таком случае берите катушку побольше и потяжелее, ей проще смять растительность. Однако позаботьтесь о ее дополнительной защите.

4. Снижение дискриминации

Очень глубоко залегающие цели часто определяются металлоискателем неправильно. Но вы никогда не засечете эти многочисленные ложные срабатывания, если уровень дискриминации слишком высокий, например, как при программах «Монеты». Уменьшение дискрима до минимума может привести к успеху. Может быть, вы откопаете древний артефакт, а не очередной гвоздь.

5. Устранение помех

Очень много помех идет в цивилизованных местах, а также около линий электропередач и закопанных кабелей. Работающие электроприборы тоже достаточно сильно фонят. Обычно в таких случаях снижают чувствительность, а это уменьшает глубину. Поэтому лучше постарайтесь работать подальше от помех. Также выключите мобильник и уберите из карманов все металлические предметы. Не носите обувь с металлическим элементами. Не складывайте пели кабеля от катушки на саму катушку.

6. Специальные настройки и девайсы

Изучите инструкцию к своему металлоискателю вдоль и поперек. Ваш прибор может иметь некие уникальные параметры, которые могут помочь вам лучше слышать и видеть глубинные цели. Некоторые детекторы бывают специально созданы для того, чтобы усиливать глубокие, но слабые сигналы, например, в последнее время было некоторое оживление среди отечественных поисковиков по поводу глубинной прошивки металлоискателя АКА Signum MFT. Или также хороший результат дает использование глубинных насадок. XP выпустила такую недавно для Deus.

7. Большая катушка

Поисковые катушки больших размеров дают большую глубину обнаружения и более четкие показания от целей. Осторожно! Большая катушка может иметь большой вес. Поэтому к металлоискателю хорошо было бы приобрести специальную разгрузку, которая облегчает ношение прибора. Напомним, что большая катушка не может быть эффективной на сильно замусоренных железом участках и на высокоминерализованных почвах.

8. Экспериментируйте со скоростью проводки

К примеру, быстрое передвижение с Fisher F75 дает больше шансов на обнаружение глубоких целей, чем медленное. Опять же обращайтесь к руководству пользователя и неустанно проводите тесты — какая скорость передвижения для вашего металлоискателя дает более глубоко проникающий сигнал.

9. Носите наушники

Если вы используете обычный динамик металлоискателя, то вы вполне закономерно можете банально не различать сигналы от глубинных целей. В наушниках вы отвлекаетесь от внешних шумов и улавливаете быстрые, слабые сигналы. Если наушники вы использовать по каким-либо причинам вы не хотите, то попробуйте провести серию воздушных тестов и запомнить звуки для наиболее отдаленных целей. Иногда крошечные, незаметные изменения в аудио-тоне не отражаются на дисплее металлоискателя.

Схема простого металлоискателя c повышенной чувствительностью

В статье рассмотрена схема простого металлоискателя с повышеной чувствительность. Прибор предназначен для обнаружения металлических крышек кабельных колодцев под слоем грунта, асфальта или снега, а также других металлических предметов. Потребляемый прибором ток от источника питания не превышает 5 мА.

Принципиальная схема

Схема простого металлоискателя состоит из кварцевого генератора на элементах DD1.1, DD1.2, делителя частоты кварцевого генератора DD2.1, генератора на элементе DD1.3. В качестве катушки L1 этого генератора используется рамка металлоискателя.

Частота колебаний генератора 100 Гц, а двадцатая гармоника этого генератора имеет частоту 2000 кГц. При смешивании в элементе DD1.4 этой частоты с частотой кварцевого генератора получаются биения звуковой частоты, которые усиливаются транзистором VT1 и поступают на головные телефоны.

При приближении рамки металлоискателя к металлическому предмету индуктивность катушки изменяется. Это вызывает изменение частоты генератора, например, при изменении частоты генератора на 10 Гц частота двадцатой гармоники изменится на 200 Гц.

Рис. 1. Принципиальная схема самодельного металлоискателя повышенной чувствительности.

При этом в телефонах слышен тон с частотой 200 Гц. В ближней зоне поиска чувствительность прибора можно уменьшить. Для этого частота кварцевого генератора делится на 10 микросхемой DD2.1. Переключатель S1 при этом находится в нижнем положении.

Детали и конструкция

В металлоискателе можно использовать любые кварцы с частотой от 1 до 5 МГц, а головные телефоны-высокоомные 1600 Ом. Для изготовления рамки нужно из металлической трубки диаметром 12… 16 мм согнуть кольцо диаметром 200 мм. Концы трубок не должны между собой соприкасаться, чтобы не получился короткозамкнутый виток. Между концами трубки следует оставить зазор 10…20 мм.

Таблица 1. Перечень деталей, необходимых для изготовления металлоискателя.

Название, номинал Количество, шт
Микросхема К561ЛА7 1
Микросхема К176ИЕ4 1
Кварц на 2000 КГц (от 1МГц до 5МГц) 1
Головные телефоны (высокоомные), 2 х 1600 Ом 1
Резистор 2,4 МОм 1
Резистор 5,1 КОм 1
Резистор 1 КОм 1
Резистор 680 Ом 1
Конденсатор 100 пФ 1
Конденсатор 3300 пф (3,3 нФ) 1
Конденсатор 5600 пф (5,6 нФ) 2
Конденсатор 300 пФ 1
Конденсатор переменный 12-260 пФ 1
Конденсатор 0,047 мкФ (47 нФ) 1
Конденсатор 0,47 мкФ (470 нФ) 1
Конденсатор электролитический 5 мкФ, 10В 1
Транзистор КТ361 1
Элемент питания 9В (Крона) 1
Разъем на 4 контакта 1

Примечание: также для изготовления поисковой катушки понадобится медный провод ЛЭШО 9×0,11.

По всей длине трубки по наружному диаметру ножовкой для металла делается пропил. Через этот пропил укладывается провод катушки, предварительно покрытый слоем клея БФ-2 или эпоксидной смолы. Количество витков — 36, провод ЛЭШО 9×0,11. Можно использовать и другой тип провода. После укладки провода рамку обматывают лентой из стеклоткани и пропитывают эпоксидной смолой. Рамку крепят к ручке-штанге.

При работе с металлоискателем конденсатором С5 подстраивают частоту до получения в телефонах биений с частотой 10…50 Гц. В этом положении наиболее легко заметить изменение тона. При приближении рамки к цветным металлам частота генератора увеличивается, при приближении к черным (сталь, чугун) — понижается.

В. Петрушенко, RB5EC, г.Днепропетровск.

Металлоискатель повышенной чувствительности своими руками

Схема металлоискателя обладает очень высокой чувствительностью, так как здесь контролируется расхождение частот — образцового генератора, работающего на частоте 0,5…1 МГц, и 5…10 гармоники поискового генератора. Расстройка последнего, например, лишь на 10 Гц ведет к изменению частоты разностных колебаний на 50… 100 Гц. Металлоискатель «ловит» монету 2 см на глубине до 9 см.

Образцовый генератор металлоискателя выполнен на элементах DD2.1, DD2.2, ZQ1 и др., где ZQ1 — кварцевый резонатор на частоту f0=0,5..1 МГц, обеспечивающий высокую ее стабильность.

Контур перестраиваемого генератора (L1, C2, СЗ, VD1) должен быть настроен на одну из частот fc=к·f0, где кО{1/10, 1/9, 1/8, 1/7, 1/6, 1/5}. Ее подбирают конденсатором C2 (движок резистора R2 — элемент тонкой настройки генератора — должен быть в среднем положении).

Смеситель прибора выполнен на элементе DD1.4. Элементы DD1.3 и DD2.3 — буферные.

Каркасом поисковой катушки L1 служит кольцо диаметром 250 мм, согнутое из винипластовой трубки, имеющей внешний диаметр 15 и внутренний 10 мм. Катушку наматывают проводом ПЭЛШО 0,27. Она имеет 100 витков. Для удобства намотки винипластовая трубка может иметь продольный разрез. После укладки витков катушки трубку обматывают лентой из алюминиевой фольги, которая нужна здесь как электростатический экран. В этом экране обязательно должен быть сделан разрыв длиной 1 см, иначе он станет шунтирующим L1 короткозамкнутым витком. Для защиты поисковой катушки от механических повреждений её обматывают двумя, тремя слоями ленты ПВХ.

Элементы прибора размещают на плате, которую помещают в металлическую коробку-экран. Удлинитель, если он есть, также должен быть металлическим. Его можно изготовить, например, из дюралюминиевой лыжной палки, а если деревянный, то провод к катушке должен быть экранированный.

 Источник:ntpo.com

P.S. При желании можно упростить схему исключив С1, С3, R1, R2, VD1,  а вместо ZQ1 поставить переменный конденсатор.

Чертёж печатной платы

 

Ещё один вариант печатной платы

 



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:
  • Разнообразие простых схем на NE555
  • Микросхема NE555 (аналог КР1006ВИ1) — универсальный таймер, предназначена для генерации одиночных и повторяющихся импульсов со стабильными временными характеристиками. Она не дорогая и широко используется в различных радиолюбительских схемах. На ней можно собрать различные генераторы, модуляторы, преобразователи, реле времени, пороговых устройств и прочих узлов электронной аппаратуры…

    Подробнее…

  • Как устроена и работает сплит-система?
  • Принцип работы кондиционера

    Сплит-система (кондиционер) есть сейчас почти в каждом доме. Давайте разберемся — как же работает сплит-система (кондиционер)?

    Подробнее…

  • Схема регулятора тактов стеклоочистителя автомобиля
  • Не все автомобили оборудованы стеклоочистителем, который может работать в непрерывном и пульсирующем режиме движения щеток. Второй режим очень удобен при моросящем дожде и слабом снеге. Некоторые автомобили с базовой комплектацией и автомобили ранних выпусков не имеют пульсирующего режима, что создает определенные неудобства при их эксплуатации.

    Подробнее…


Популярность: 23 277 просм.

Самодельные металлоискатели: простые и посложнее — на золото, черный металл, для стройки

Металлоискатель или металлодетектор предназначен для обнаружения предметов, по своим электрическим и/или магнитным свойствам отличающихся от среды, в которой они находятся. Попросту говоря, он позволяет находить металл в земле. Но не только металл, и не только в грунте. Металлодетекторами пользуются службы досмотра, криминалисты, военные, геологи, строители для поиска профилей под обшивкой, арматуры, сверки планов-схем подземных коммуникаций, и люди многих других специальностей.

Металлоискатели своими руками чаще всего делают любители: кладоискатели, краеведы, члены военно-исторических объединений. Им, начинающим, и предназначена в первую очередь данная статья; описанные в ней устройства позволяют найти монету с советский пятак на глубине до 20-30 см или железяку с канализационный люк примерно в 1-1,5 м под поверхностью. Однако этот самодельный приборчик может пригодиться и на хозяйстве при ремонте или на стройке. Наконец, обнаружив в земле центнер-другой брошенной трубы или металлоконструкций и сдав находку в металлолом, можно выручить приличную сумму. А подобных сокровищ в земле российской точно больше, чем пиратских сундуков с дублонами или боярско-разбойничьих кубышек с ефимками.

Если поиски не увенчаются быстрым успехом, а иметь антиквариат в своей коллекции очень хочется, то его можно приобрести на сайте http://antic-war.ru.

Примечание: если вы не сведущи в электротехнике с радиоэлектроникой, не пугайтесь схем, формул и специальной терминологии в тексте. Самая суть излагается попросту, и в конце будет описание прибора, который можно сделать за 5 мин на столе, не умея не то что паять, а проводки скрутить. Но он позволит «пощупать» особенности поиска металлов, а возникнет интерес – придут и знания с навыками.

металлоискатель Пират

Немного больше внимания по сравнению с остальными будет уделено металлоискателю «Пират», см. рис. Этот прибор достаточно прост для повторения начинающими, но по своим качественным показателям не уступает многим фирменным моделям ценой до $300-400. А главное – он показал отличную повторяемость, т.е. полную работоспособность при изготовлении по описаниям и спецификациям. Схемотехника и принцип действия «Пирата» вполне современны; по его настройке и методике использования имеется достаточно руководств.

Принцип действия

Металлоискатель действует по принципу электромагнитной индукции. В общем схема металлоискателя состоит из передатчика электромагнитных колебаний, передающей катушки, приемной катушки, приемника, схемы выделения полезного сигнала (дискриминатора) и устройства индикации. Отдельные функциональные узлы часто объединяют схемотехнически и конструктивно, напр., приемник и передатчик могут работать на одну катушку, приемная часть сразу выделяет полезный сигнал и т.п.

Принцип действия металлоискателя

Катушка создает в среде электромагнитное поле (ЭМП) определенной структуры. Если в зоне его действия оказывается электропроводящий предмет, поз. А на рис., в нем наводятся вихревые токи или токи Фуко, которые создают его собственное ЭМП. В результате структура поля катушки искажается, поз. Б. Если же предмет не электропроводящий, но обладает ферромагнитными свойствами, то он искажает исходное поле за счет экранирования. В том и другом случае приемник улавливает отличие ЭМП от исходного и преобразует его в акустический и/или оптический сигнал.

Примечание: в принципе для металлоискателя не обязательно, чтобы предмет был электропроводящим, грунт – нет. Главное, чтобы их электрические и/или магнитные свойства отличались.

Детектор или сканер?

В коммерческих источниках дорогие высокочувствительные металлодетекторы, напр. Терра-Н, нередко называют геосканерами. Это неверно. Геосканеры действуют по принципу измерения электропроводности грунта по разным направлениям на разной глубине, эта процедура называется боковым каротажем. По данным каротажа компьютер строит на дисплее картинку всего, что в земле, включая различные по свойствам геологические слои.

Разновидности

Общие параметры

Принцип действия металлодетектора возможно воплотить технически разными способами соответственно назначению прибора. Металлоискатели для пляжного золотоискательства и строительно-ремонтного поиска внешне могут быть похожи, но существенно отличаться по схеме и техническим данным. Чтобы правильно сделать металлоискатель, нужно четко представлять себе, каким требованиям он должен удовлетворять для данного рода работы. Исходя из этого, можно выделить следующие параметры поисковых детекторов металла:

  1. Проницание, или проникающая способность – максимальная глубина, на которую распространяется ЭМП катушки в грунте. Глубже прибор ничего не обнаружит при любом размере и свойствах объекта.
  2. Величина и размеры зоны поиска – воображаемая область в земле, в которой объект будет обнаружен.
  3. Чувствительность – способность обнаруживать более или менее мелкие предметы.
  4. Избирательность – способность сильнее реагировать на желательные находки. Сладкая мечта пляжных старателей – детектор, который пищит только на драгоценные металлы.
  5. Помехоустойчивость – способность не реагировать на ЭМП посторонних источников: радиостанций, грозовых разрядов, ЛЭП, электротранспорта и др. источников помех.
  6. Мобильность и оперативность определяются энергопотреблением (на сколько батареек хватит), массогабаритами прибора и размерами зоны поиска (сколько можно «прощупать» за 1 проход).
  7. Дискриминация, или разрешающая способность – дает оператору или управляющему микроконтроллеру возможность по реакции прибора судить о характере найденного объекта.

Дискриминация, в свою очередь, параметр составной, т.к. на выходе металлоискателя наличествует 1, максимум 2 сигнала, а величин, определяющих свойства и расположение находки, больше. Тем не менее, с учетом изменения реакции прибора во время приближения к объекту, в нем выделяются 3 составляющих:

  • Пространственная – свидетельствует о расположении объекта в зоне поиска и глубине его залегания.
  • Геометрическая – дает возможность судить о форме и размерах объекта.
  • Качественная – позволяет строить предположения о свойствах материала объекта.

Рабочая частота

Все параметры металлоискателя связаны сложным образом и многие взаимосвязи взаимоисключающие. Так, напр., понижение частоты генератора позволяет добиться большего проницания и зоны поиска, но ценой увеличения энергопотребления, и ухудшает чувствительность и мобильность вследствие возрастания размеров катушки. В целом же каждый параметр и их комплексы так или иначе привязаны к частоте генератора. Поэтому первоначальная классификация металлоискателей строится по диапазону рабочих частот:

  1. Сверхнизкочастотные (СНЧ) – до первых сотен Гц. Абсолютно не любительские приборы: энергопотребление от десятков Вт, без компьютерной обработки по сигналу ни о чем судить нельзя, для перемещения нужен автотранспорт.
  2. Низкочастотные (НЧ) – от сотен Гц до нескольких кГц. Просты схемотехнически и конструктивно, помехоустойчивы, но мало чувствительны, дискриминация плохая. Проницание – до 4-5 м при энергопотреблении от 10 Вт (т. наз. глубинные металлодетекторы) или до 1-1,5 м при питании от батареек. Реагируют острее всего на ферромагнитные материалы (черный металл) или большие массы диамагнитных (бетонные и каменные строительные конструкции), поэтому иногда называются магнитодетекторами. К свойствам грунта мало чувствительны.
  3. Повышенной частоты (ПЧ) – до нескольких десятков кГц. Сложнее НЧ, но требования к катушке невысоки. Проницание – до 1-1,5 м, помехоустойчивость на троечку, хорошая чувствительность, удовлетворительная дискриминация. Могут быть универсальными при использовании в импульсном режиме, см. ниже. На обводненных или минерализованных грунтах (с обломками или частицами скальных пород, экранирующих ЭМП) работают плохо или вовсе ничего не чуют.
  4. Высокой, или радиочастоты (ВЧ или РЧ) – типичные металлоискатели «на золото»: отличная дискриминация на глубину до 50-80 см в сухих непроводящих и немагнитных грунтах (пляжный песок и т. п.) Энергопотребление – как в пред. п. Остальное – на грани «неуда». Эффективность прибора во многом зависит от конструкции и качества исполнения катушки (катушек).

Примечание: мобильность металлоискателей по пп. 2-4 хорошая: от одного комплекта солевых элементов («батареек») АА и без переутомления оператора можно работать до 12 час.

Особняком стоят импульсные металлоискатели. У них первичный ток в катушку поступает импульсами. Задав частоту следования импульсов в пределах НЧ, а их длительность, которая определяет спектральный состав сигнала, соответствующей диапазонам ПЧ-ВЧ, можно получить металлодетектор, совмещающий в себе положительные свойства НЧ, ПЧ и ВЧ или перестраиваемый.

Метод поиска

Насчитывается не менее 10 методов поиска предметов с помощью ЭМП. Но такие, как, скажем, метод непосредственной оцифровки ответного сигнала с компьютерной обработкой – удел профессионального применения.

Самодельный металлоискатель схемотехнически строят более всего следующими способами:

  • Параметрическим.
  • Приемо-передающим.
  • С накоплением фазы.
  • На биениях.
Без приемника

Параметрические металлоискатели в некотором роде выпадают из определения принципа действия: в них нет ни приемника, ни приемной катушки. Для детекции используется непосредственно влияние объекта на параметры катушки генератора – индуктивность и добротность, а структура ЭМП значения не имеет. Изменение параметров катушки ведет к изменению частоты и амплитуды вырабатываемых колебаний, что фиксируется разными способами: измерением частоты и амплитуды, по изменению тока потребления генератора, измерением напряжения в петле ФАПЧ (системы фазовой автоподстройки частоты, «подтягивающей» ее к заданному значению) и др.

Параметрические металлоискатели просты, дешевы и помехоустойчивы, но пользование ими требует определенных навыков, т.к. частота «плывет» под влиянием внешних условий. Чувствительность у них слабая; более всего используются как магнитодетекторы.

С приемником и передатчиком

Устройство приемопередающего металлоискателя показано на рис. в начале, к пояснению принципа действия; там же описан и принцип работы. Такие приборы позволяют добиться наилучшей эффективности в своем диапазоне частот, но сложны схемотехнически, требуют особо качественной системы катушек. Приемопередающие металлоискатели с одной катушкой называются индукционными. Их повторяемость лучше, т.к. проблема правильного расположения катушек относительно друг друга отпадает, но схемотехника сложнее – нужно выделить слабый вторичный сигнал на фоне сильного первичного.

Примечание: в импульсных приемопередающих металлоискателях от проблемы выделения также удается избавиться. Объясняется это тем, что в качестве вторичного сигнала «ловят» т. наз. «хвост» переизлученного объектом импульса. Первичный импульс вследствие дисперсии при переизлучении расплывается, и часть вторичного импульса оказывается в промежутке между первичными, откуда ее несложно выделить.

До щелчка

Металлоискатели с накоплением фазы, или фазочувствительные, бывают либо однокатушечными импульсными, либо с 2-мя генераторами, работающими каждый на свою катушку. В первом случае используется тот факт, что импульсы при переизлучении не только расплываются, но и задерживаются. Во времени сдвиг фаз нарастает; когда он достигает определенной величины, дискриминатор срабатывает и в наушниках раздается щелчок. По мере приближения к объекту щелчки становятся чаще и сливаются в звук все более высокого тона. Именно на этом принципе построен «Пират».

Во втором случае техника поиска та же, но работают 2 строго симметричных электрически и геометрически генератора, каждый на свою катушку. При этом вследствие взаимодействия их ЭМП происходит взаимная синхронизация: генераторы работают в такт. При искажении общего ЭМП начинаются срывы синхронизации, слышимые как те же щелчки, а затем тон. Двухкатушечные металлоискатели со срывом синхронизации проще импульсных, но менее чувствительны: проницание их в 1,5-2 раза меньше. Дискриминация в обоих случаях близка к отличной.

Фазочувствительные металлодетекторы – любимые инструменты курортных старателей. Асы поиска настраивают свои приборы так, что точно над объектом звук снова пропадает: частота следования щелчков переходит в ультразвуковую область. Таким способом на ракушечном пляже удается находить золотые серьги размером с ноготь на глубине до 40 см. Однако на грунте с мелкими неоднородностями, обводненном и минерализованном, металлоискатели с накоплением фазы уступают прочим, кроме параметрических.

По писку

Биения 2-х электросигналов – сигнал с частотой, равной сумме или разности основных частот исходных сигналов или кратных им – гармоник. Так, напр., если на входы специального устройства – смесителя – подать сигналы с частотами 1 МГц и 1 000 500 Гц или 1,0005 МГц, а к выходу смесителя подключить наушники или динамик, то услышим чистый тон 500 Гц. А если 2-й сигнал будет 200 100 Гц или 200,1 кГц, случится то же самое, т.к. 200 100 х 5 = 1 000 500; мы «поймали» 5-ю гармонику.

В металлоискателе на биениях действуют 2 генератора: опорный и рабочий. Катушка колебательного контура опорного маленькая, защищенная от посторонних влияний, или его частота стабилизирована кварцевым резонатором (попросту – кварцем). Контурная катушка рабочего (поискового) генератора – поисковая, и его частота зависит от наличия предметов в зоне поиска. Перед поиском рабочий генератор настраивают на нулевые биения, т.е. до совпадения частот. Полного нуля звука как правило не добиваются, а настраивают до очень низкого тона или хрипа, так удобнее искать. По изменению тона биений судят о наличии, величине, свойствах и расположении объекта.

Примечание: чаще всего частоту поискового генератора берут в несколько раз ниже опорной и работают на гармониках. Это позволяет, во-первых, избежать вредного в данном случае взаимного влияния генераторов; во-вторых, точнее настроить прибор, в-третьих, вести поиск на оптимальной в данном случае частоте.

Металлоискатели на гармониках в общем сложнее импульсных, однако работают на любом грунте. Правильно изготовленные и настроенные, они не уступают импульсным. Об этом можно судить хотя бы по тому, что золотоискатели-пляжники никак не сойдутся во мнениях, что же лучше: импульсник или на биениях?

Катушка и прочее

Самое распространенное заблуждение начинающих радиолюбителей – абсолютизация схемотехники. Мол, если схема «крутая», то все будет тип-топ. Относительно металлоискателей это вдвойне неверно, т.к. их эксплуатационные достоинства сильнейшим образом зависят от конструкции и качества изготовления поисковой катушки. Как выразился некий курортный старатель: «Находимость детектора должна тянуть карман, а не ноги».

При разработке прибора его схему и параметры катушки подгоняют друг к другу до получения оптимума. Определенная схема с «чужой» катушкой если и заработает, то до заявленных параметров не дотянет. Поэтому, выбирая прототип для повторения, смотрите прежде всего описание катушки. Если оно неполное или неточное – лучше строить другой прибор.

О размерах катушки

Большая (широкая) катушка эффективнее излучает ЭМП и глубже «просветит» грунт. Ее зона поиска шире, что позволяет уменьшить «находимость ногами». Однако, если в зоне поиска окажется крупный ненужный предмет, его сигнал «забьет» слабый от искомой мелочи. Поэтому желательно брать или делать металлодетектор, рассчитанный на работу с катушками разного размера.

Примечание: типичные диаметры катушек 20-90 мм для поиска арматуры и профилей, 130-150 мм «на пляжное золото» и 200-600 мм «на большое железо».

Монопетля

Традиционный тип катушки детектора металла т. наз. тонкая катушка или Mono Loop (одинарная петля): кольцо из многих витков эмалированного медного провода шириной и толщиной раз в 15-20 меньше среднего диаметра кольца. Достоинства катушки-монопетли – слабая зависимость параметров от типа грунта, сужающаяся книзу зона поиска, что позволяет, двигая детектор, точнее определять глубину и расположение находки, и конструктивная простота. Недостатки – малая добротность, отчего в процессе поиска «плывет» настройка, подверженность помехам и расплывчатая реакция на объект: работа с монопетлей требует значительного опыта пользования данным конкретным экземпляром прибора. Самодельные металлоискатели начинающим рекомендуется делать с монопетлей, чтобы без особых проблем получить работоспособную конструкцию и приобрести с ней поисковый опыт.

Индуктивность

При выборе схемы, чтобы убедиться в достоверности обещаний автора, и тем б
лее при самостоятельном конструировании или доработке, нужно знать индуктивность катушки и уметь ее рассчитывать. Даже если вы делаете металлоискатель из покупного набора, индуктивность все равно нужно проверить измерениями или расчетом, чтобы не ломать потом голову: почему, все вот вроде исправно, а не пищит.

Калькуляторы для расчета индуктивности катушек имеются в интернете, но компьютерная программа все случаи практики предусмотреть не может. Поэтому на рис. дана старая, десятилетиями проверенная номограмма для расчета многослойных катушек; тонкая катушка – частный случай многослойной.

Номограмма для расчета многослойных катушек

Для расчета поисковой монопетли номограммой пользуются следующим образом:

  • Берем величину индуктивности L из описания прибора и размеры петли D, l и t оттуда же или по своему выбору; типичные значения: L = 10 мГн, D = 20 см, l = t = 1 см.
  • По номограмме определяем количество витков w.
  • Задаемся коэффициентом укладки k = 0,5, по размерам l (высота катушки) и t (ширина ее) определяем площадь сечения петли и находим площадь чистой меди в ней как S = klt.
  • Поделив S на w, получим сечение обмоточного провода, а по нему – диаметр провода d.
  • Если получилось d = (0,5…0,8) мм, все ОК. В противном случае увеличиваем l и t при d>0,8 мм или уменьшаем при d<0,5 мм.
Помехоустойчивость

Экран Фарадея

Монопетля хорошо «ловит» помехи, т.к. устроена точно так же, как рамочная антенна. Увеличить ее помехоустойчивость можно, во-первых, поместив обмотку в т. наз. экран Фарадея (Faraday shield): металлическую трубку, оплетку или обмотку из фольги с разрывом, чтобы не образовался короткозамкнутый виток, который «съест» все ЭМП катушки, см. рис. справа. Если на исходной схеме возле обозначения поисковой катушки есть пунктирная линия (см. схемы далее), то это значит, что катушка данного прибора обязательно должна быть помещена в экран Фарадея.

Также обязательно экран соединяется с общим проводом схемы. Тут таится подвох для новичков: заземляющий проводник нужно подключать к экрану строго симметрично разрезу (см. тот же рис.) и подводить его к схеме также симметрично относительно сигнальных проводов, иначе помехи все-таки «пролезут» в катушку.

Экран поглощает и некоторую долю поискового ЭМП, что снижает чувствительность прибора. Особенно этот эффект заметен в импульсных металлоискателях; их катушки вообще нельзя экранировать. В таком случае увеличения помехозащищенности можно добиться, симметрируя обмотку. Суть в том, что для удаленного источника ЭМП катушка – точечный объект, и э.д.с. помех в ее половинах подавят друг друга. Симметричная катушка может понадобиться и схемно, если генератор двухтактный или индуктивная трехточка.

Способы симметрирования катушек индуктивности

Однако симметрировать катушку привычным радиолюбителям бифиллярным способом (см. рис.) в данном случае нельзя: при нахождении в поле бифиллярной катушки проводящих и/или ферромагнитных предметов ее симметрия нарушается. Т.е., помехоустойчивость металлоискателя пропадет как раз тогда, когда она больше всего нужна. Поэтому симметрировать катушку-монопетлю нужно перекрестной намоткой, см. тот же рис. Ее симметрия не нарушается ни при каких обстоятельствах, но мотать тонкую катушку с большим количеством витков перекрестным способом – адский труд, и тогда лучше сделать корзиночную катушку.

Корзинка

Корзиночные катушки имеют все достоинства монопетель в еще большей степени. Вдобавок, катушки-корзинки стабильнее, их добротность выше, а то, что катушка плоская – двойной плюс: чувствительность и дискриминация возрастут. К помехам корзиночные катушки менее восприимчивы: вредные э.д.с. в перекрещивающихся проводах гасят друг друга. Единственный минус – для катушек-корзинок нужна точно сделанная жесткая и прочная оправка: общая сила натяжения многих витков достигает больших величин.

Корзиночная катушка для металлоискателя Пират

Корзиночные катушки конструктивно бывают плоскими и объемными, но электрически объемная «корзинка» эквивалентна плоской, т. е. создает такое же ЭМП. Объемная корзиночная катушка еще менее чувствительна к помехам и, что важно для импульсных металлоискателей, дисперсия импульса в ней минимальна, т.е. легче поймать дисперсию, вызванную объектом. Преимущества оригинального металлоискателя «Пират» во многом обусловлены тем, что его «родная» катушка – объемная корзинка (см. рис.), однако ее намотка сложна и трудоемка.

Новичку самостоятельно лучше мотать плоскую корзинку, см. рис. ниже. Для металлоискателей «на золото» или, скажем, для описанных далее металлоискателя-«бабочки» и простого приемопередающего 2-катушечного хорошей оправкой будут негодные компьютерные диски. Их металлизация не повредит: она очень тонкая и никелевая. Непременное условие: нечетное, и никак иначе, число прорезей. Номограмма для расчета плоской корзинки не требуется; расчет ведут таким образом:

  • Задаются диаметром D2, равным внешнему диаметру оправки минус 2-3 мм, и берут D1 = 0,5D2, это оптимальное соотношение для поисковых катушек.
  • По формуле (2) на рис. вычисляют количество витков.
  • По разности D2 – D1 с учетом коэффициента плоской укладки 0,85 вычисляют диаметр провода в изоляции.

Плоская корзиночная катушка

Как не надо и надо мотать корзинки

Некоторые любители берутся самостоятельно мотать объемные корзинки способом, показанным на рис. ниже: делают оправку из изолированных гвоздей (поз. 1) или саморезов, мотают по схеме, поз. 2 (в данном случае, поз. 3, для количества витков, кратного 8; через каждые 8 витков «узор» повторяется), затем запенивают, поз. 4, оправку вытаскивают, а лишнюю пену обрезают. Но вскоре оказывается, что натянутые витки порезали пену и вся работа пошла всмятку. Т.е., чтобы намотать надежно, нужно отрезки прочного пластика вклеить в отверстия основы, и только тогда мотать. И помните: самостоятельный расчет объемной корзиночной катушки без соответствующих компьютерных программ невозможен; методика для плоской корзинки в данном случае неприменима.

Кустарная намотка корзиночной катушки

ДД катушки

Принцип действия катушек Монопетля и ДД

ДД в данном случае значит не дальнодействие, а двойной или дифферециальный детектор; в оригинале – DD (Double Detector). Это катушка из 2-х одинаковых половин (плеч), сложенных с некоторым пересечением. При точном электрическом и геометрическом балансе плеч ДД поисковое ЭМП стягивается в зону пересечения, справа на рис; слева – катушка-монопетля и ее поле. Малейшая неоднородность пространства в зоне поиска вызывает разбаланс, и появляется резкий сильный сигнал. ДД-катушка позволяет неопытному искателю обнаружить мелкий глубокий хорошо проводящий предмет, когда рядом с ним и выше залегла ржавая банка.

Катушки ДД четко ориентированы «на золото»; все металлоискатели с маркировкой GOLD комплектуются ими. Однако на мелко-неоднородных и/или проводящих грунтах они или вовсе отказывают, или часто дают ложные сигналы. Чувствительность ДД катушки очень высока, но дискриминация близка к нулевой: сигнал или предельный, или его вовсе нет. Поэтому металлодетекторы с ДД катушками предпочитают искатели, которых интересует только «находимость на карман».

Примечание: подробнее о ДД катушках можно будет узнать далее в описании соответствующего металлоискателя. Мотают плечи ДД или внавал, как монопетлю, на специальной оправке, см. далее, или корзинками.

Как крепить катушку

Готовые каркасы и оправки для поисковых катушек продаются в широком ассортименте, но с накрутками продавцы не стесняются. Поэтому многие любители делают основу катушки из фанеры, слева на рис.:

Самодельные оправки для катушек металлоискателей

Однако это не выход: фанера довольно сильно поглощает ЭМП, дает большую паразитную дисперсию импульсов, а намокнув, способна вообще заглушить прибор. Лучший вариант – компьютерный диск либо пластиковая тарелка или блюдце, справа там же. Сложив 2 посудины и склеив, можно получить герметичный корпус катушки. Для катушек сложных (корзинок, ДД) оптимальный материал оправки сотовый поликарбонат. Он прочен, стоек, на влияет на ЭМП, легко обрабатывается.

Несколько конструкций

Параметрические

Самый простой металлоискатель для поиска арматуры, проводки, профилей и коммуникаций в стенах и перекрытиях можно собрать по рис. Древний транзистор МП40 безо всякого меняется на КТ361 или его аналоги; чтобы применить транзисторы pnp, нужно поменять полярность батарейки.

Простейший металлоискатель

Этот металлоискатель – магнитодетектор параметрического типа, работающий на НЧ. Тон звука в наушниках можно менять, подбирая емкость С1. Под влиянием объекта тон понижается, в отличие от всех прочих типов, поэтому изначально нужно добиваться «комариного писка», а не хрипа или ворчания. Прибор отличает проводку под током от «пустой», на тон накладывается гул 50 Гц.

Схема – импульсный генератор с индуктивной обратной связью и стабилизацией частоты LC-контуром. Контурная катушка – выходной трансформатор от старого транзисторного приемника или маломощный «базарно-китайский» низковольтный силовой. Очень хорошо подходит трансформатор от негодного источника питания польской антенны, в его же корпусе, срезав сетевую вилку, можно собрать и все устройство, тогда запитать его лучше от литиевой батарейки-таблетки на 3 В. Обмотка II на рис. – первичная или сетевая; I – вторичная или понижающая на 12 В. Именно так, генератор работает с насыщением транзистора, что обеспечивает ничтожное энергопотребление и широкий спектр импульсов, облегчающий поиск.

Металлоискатель с простым кварцевым фильтром

Чтобы превратить трансформатор в датчик, его магнитопровод нужно разомкнуть: снять каркас с обмотками, убрать прямые перемычки сердечника – ярма – а Ш-образные пластины сложить в одну сторону, как справа на рис., затем надеть обмотки обратно. При исправных деталях прибор начинает работать сразу; если нет – нужно поменять местами концы любой из обмоток.

Параметрическая схема посложнее – на рис. справа. L с конденсаторами С4, С5 и С6 настраивается на 5, 12,5 и 50 кГц, а кварц пропускает на измеритель амплитуды 10-ю, 4-ю гармоники и основной тон соответственно. Схемка более на любителя попаять на столе: возни с настройкой много, а «чутье», как говорят, никакое. Приводится только для примера.

Приемопередающий

Приемопередающий металлоискатель и катушки для него

Гораздо чувствительнее приемопередающий металлоискатель с ДД катушкой, который можно без особого труда сделать в домашних условиях, см. рис. Слева – передатчик; справа – приемник. Там же описаны свойства разных типов ДД.

Этот металлоискатель – НЧ; поисковая частота около 2 кГц. Глубина обнаружения: советский пятак – 9 см, консервная жестянка – 25 см, канализационный люк – 0,6 м. Параметры «троечные», но можно освоить методику работы с ДД, прежде чем переходить к более сложным конструкциям.

Катушки содержат по 80 витков провода ПЭ 0,6-0,8 мм, намотанных внавал на оправку толщиной 12 мм, чертеж которой показан на рис. слева. Вообще прибор к параметрам катушек не критичен, были бы точно одинаковы и расположены строго симметрично. В целом, хороший и дешевый тренажер для тех, кто хочет освоить любую технику поиска, в т. ч. «на золото». Хотя чувствительность этого металлоискателя и невысока, но дискриминация очень хорошая несмотря на использование ДД.

Чертеж оправки для намотки ДД катушек

Для налаживания прибора сначала вместо L1 передатчика включают наушники и по тону в них убеждаются, что генератор работает. Затем закорачивают L1 приемника и подбором R1 и R3 устанавливают на коллекторах VT1 и VT2 соответственно напряжение, равное примерно половине напряжения питания. Далее R5 выставляют ток коллектора VT3 в пределах 5..8 мА, размыкают L1 приемника и все, можно искать.

С накоплением фазы

Конструкции в этом разделе показывают все преимущества метода накопления фазы. Первый металлоискатель преимущественно строительного назначения обойдется очень недорого, т.к. его самые трудоемкие части сделаны… из картона, см. рис.:

Простейший импульсный металлоискатель

Наладки прибор не требует; интегральный таймер 555 – аналог отечественной ИМС (интегральной микросхемы) К1006ВИ1. Все преобразования сигнала происходят в ней; способ поиска – импульсный. Единственное условие – динамик нужен пьезоэлектрический (кристаллический), обычный динамик или наушники перегрузят ИМС и она скоро выйдет из строя.

Индуктивность катушки – около 10 мГн; рабочая частота – в пределах 100-200 кГц. При толщине оправки в 4 мм (1 слой картона) катушка диаметром 90 мм содержит 250 витков провода ПЭ 0,25, а 70-мм – 290 витков.

Металлоискатель Бабочка

Металлоискатель «Бабочка», см. рис. справа, по своим параметрам уже близок к профессиональным приборам: советский пятак находит на глубине 15-22 см в зависимости от грунта; канализационный люк – на глубине до 1 м. Действует на срывах синхронизации; схема, плата и вид монтажа – на рис. ниже. Учтите, здесь 2 отдельные катушки диаметром 120-150 мм, а не ДД! Пересекаться они не должны! Оба динамика – пьезоэлектрические, как и в пред. случае. Конденсаторы – термостабильные, слюдяные или высокочастотные керамические.

Свойства «Бабочки» улучшатся, а настроить ее будет проще, если, во-первых, намотать катушки плоскими корзинками; индуктивность определяется по заданной рабочей частоте (до 200 кГц) и емкостям контурных конденсаторов (по 10 000 пФ на схеме). Диаметр провода – от 0,1 до 1 мм, чем больше, тем лучше. Отвод в каждой катушке делается от трети витков считая от холодного (нижнего по схеме) конца. Во-вторых, если отдельные транзисторы заменить 2-х транзисторной сборкой для схем дифусилителей К159НТ1 или ее аналогами; выращенная на одном кристалле пара транзисторов имеет совершенно одинаковые параметры, что важно для сх
м со срывом синхронизации.

Схема и монтаж металлоискателя Бабочка

Для налаживания «Бабочки» нужно точно подогнать индуктивности катушек. Автор конструкции рекомендует раздвигать-сдвигать витки или подстраивать катушки ферритом, но с точки зрения электромагнитной и геометрической симметрии лучше будет подключить параллельно емкостям по 10 000 пФ подстроечные конденсаторы на 100-150 пФ и крутить их при настройке в разные стороны.

Собственно налаживание несложно: только что собранный прибор пищит. Поочередно подносим к катушкам алюминиевую кастрюльку или пивную банку. К одной – писк становится выше и громче; к другой – ниже и тише или вовсе замолкает. Здесь чуть-чуть добавляем емкости подстроечника, а в противоположном плече убираем. За 3-4 цикла можно добиться полной тишины в динамиках – прибор готов к поиску.

Еще о «Пирате»

Вернемся к прославленному «Пирату»; он импульсный приемопередающий с накоплением фазы. Схема (см. рис.) очень прозрачна и может считаться классикой для данного случая.

Схема металлоискателя Пират

Передатчик состоит из задающего генератора (ЗГ) на том же 555-м таймере и мощного ключа на Т1 и Т2. Слева – вариант ЗГ без ИМС; в нем придется выставить по осциллографу частоту следования импульсов 120-150 Гц R1 и длительность импульса 130-150 мкс R2. Катушка L – общая. Ограничитель на диодах D1 и D2 на ток от 0,5 А спасает усилитель приемника QP1 от перегрузки. На QP2 собран дискриминатор; вместе они составляют сдвоенный операционный усилитель К157УД2. Собственно «хвостики» переизлученных импульсов накапливаются в емкости С5; когда «резервуар переполняется», на выходе QP2 проскакивает импульс, который усиливается Т3 и дает щелчок в динамике. Резистором R13 регулируется скорость заполнения «резервуара» и, следовательно, чувствительность прибора. Еще о «Пирате» можно узнать из видео:

Видео: металлоискатель «Пират»

а об особенностях его настройки – из следующего ролика:

Видео: настройка порога металлоискателя «Пират»

На биениях

Желающие ощутить все прелести процесса поиска на биениях со сменными катушками могут собрать металлоискатель по схеме на рис. Его особенность, во-первых, экономичность: вся схема собрана на КМОП-логике и в отсутствие объекта потребляет очень маленький ток. Второе – прибор работает на гармониках. Опорный генератор на DD2.1-DD2.3 стабилизирован кварцем ZQ1 на 1 МГц, а поисковый на DD1.1-DD1.3 работает на частоте около 200 кГц. При настройке прибора перед поиском нужную гармонику «ловят» варикапом VD1. Смешение рабочего и опорного сигналов происходит в DD1.4. Третье – этот металлоискатель пригоден для работы со сменными катушками.

Металлоискатель на биениях на логических микросхемах

ИМС 176-й серии лучше заменить на такие же 561-й, ток потребления уменьшится, а чувствительность прибора возрастет. Заменять старые советские высокоомные наушники ТОН-1 (лучше ТОН-2) на низкоомные от плеера просто так нельзя: они перегрузят DD1.4. Нужно либо поставить усилитель вроде «пиратского» (C7, R16, R17, T3 и динамик на схеме «Пирата»), либо использовать пьезодинамик.

Настройки после сборки этот металлоискатель не требует. Катушки – монопетли. Их данные на оправке толщиной 10 мм:

  • Диаметр 25 мм – 150 витков ПЭВ-1 0,1 мм.
  • Диаметр 75 мм – 80 витков ПЭВ-1 0,2 мм.
  • Диаметр 200 мм – 50 витков ПЭВ-1 0,3 мм.

Проще не бывает

Теперь выполним данное вначале обещание: расскажем, как сделать, ничегошеньки не смысля в радиотехнике, металлодетектор, который ищет. Металлоискатель «проще простого» собирается из радиоприемника, калькулятора, картонной или пластиковой коробки с откидной крышкой и отрезков двухстороннего скотча.

Металлоискатель «из радио» импульсный, однако для обнаружения объектов используется не дисперсия и не запаздывание с накоплением фазы, а поворот магнитного вектора ЭМП при переизлучении. На форумах об этом устройстве пишут разное, от «супер» до «отстой», «разводка» и слов, которые на письме употреблять не принято. Так вот, чтобы получилось если не «супер», но хотя бы вполне работоспособное устройство, его составные части – приемник и калькулятор – должны удовлетворять определенным требованиям.

Калькулятор нужен самый раздрянной и дешевый, «альтернативный». Делают такие в оффшорных подвальчиках. О нормах на электромагнитную совместимость бытовой техники там понятия не имеют, а если о чем-то таком и слыхали, то чхать хотели от души и свысока. Поэтому тамошние изделия являются довольно мощными источниками импульсных радиопомех; их дает тактовый генератор калькулятора. В данном случае его строб-импульсы в эфире используются для зондирования пространства.

Приемник нужен тоже дешевый, от подобных производителей, без всяких средств повышения помехоустойчивости. В нем должен быть АМ диапазон и, что абсолютно необходимо, магнитная антенна. Поскольку приемники с приемом коротких волн (КВ, SW) на магнитную антенну редко продаются и стоят дорого, придется ограничиться средними волнами (СВ, MW), но зато это облегчит настройку.

Далее делаем следующее:

Металлоискатель из радиоприемника и калькулятора

  1. Разворачиваем коробку с крышкой в книжку.
  2. На тыльные стороны калькулятора и радио наклеиваем полоски скотча и закрепляем оба устройства в коробке, см. рис. справа. Приемник – желательно в крышке, чтобы был доступ к органам управления.
  3. Включаем приемник, ищем настройкой на максимальной громкости вверху АМ диапазона (диапазонов) участок, свободный от радиостанций и как можно более чистый от эфирных шумов. Для СВ это будет в районе 200 м или 1500 кГц (1,5 МГц).
  4. Включаем калькулятор: приемник должен загудеть, захрипеть, зарычать; в общем, дать тон. Громкость не убираем!
  5. Если тона нет, осторожно и плавно подстраиваемся, пока не появится; это мы поймали какую-то из гармоник строб-генератора калькулятора.
  6. Потихоньку складываем «книжку», пока тон не ослабеет, не станет более музыкальным или вовсе не пропадет. Скорее всего это случится при развороте крышки около 90 градусов. Таким образом мы нашли положение, в котором магнитный вектор первичных импульсов ориентирован перпендикулярно оси ферритового стержня магнитной антенны и она их не принимает.
  7. Фиксируем крышку в найденном положении пенопластовым вкладышем и резинкой или подпорками.

Примечание: в зависимости от конструкции приемника возможен обратный вариант – для настройки на гармонику приемник кладут на включенный калькулятор, а затем, раскладывая «книжечку», добиваются смягчения или пропадания тона. В таком случае приемник будет ловить отраженные от объекта импульсы.

А что же дальше? Если вблизи раскрыва «книжки» окажется электропроводящий или ферромагнитный предмет, он станет переизлучать зондирующие импульсы, но их магнитный вектор повернется. Магнитная антенна их «почует», приемник опять даст тон. Т.е., мы уже что-то нашли.

Нечто странное напоследок

Есть сообщения еще об одном металлоискателе «для полных чайников» с калькулятором, только вместо радио нужны якобы 2 компьютерных диска, CD и DVD. Еще – пьезонаушники (именно пьезо, по уверениям авторов) и батарейка «Крона». Откровенно говоря, выглядит данное творение техномифом, вроде приснопамятной ртутной антенны. Но – чем черт не шутит. Вот вам видео:

попробуйте, если желаете, авось что-то там и отыщется, и в предметном и в научно-техническом смысле. Удачи!

В качестве приложения

Схем и конструкций металлоискателей насчитываются сотни, если не тысячи. Поэтому в приложение к материалу даем еще список моделей, кроме упомянутых в тесте, имеющих, как говорится, хождение в РФ, не чрезмерно дорогих и доступных для повторения или самосборки:

  • Клон.
  • Шанс.
  • Кощей.
  • Крот.
  • Volksturm.
  • Малыш ФМ.
  • Анкер.
  • Терминатор.
  • Спектр.
  • СОХА-2Т.
  • TRACKER PI-2.

Глубинный металлоискатель своими руками: схема, инструкция сборки

Глубинный металлоискатель по конструкции напоминает обычный, за исключением некоторых технических деталей. Отличием его также является повышенная чувствительность к металлическим предметам, что дает возможность обнаруживать их на большей глубине по сравнению с простым металлоискателем. Помимо этого, имеется функция избирательного поиска, то есть возможность находить предметы определенного размера, не реагируя на неподходящие по параметрам.

Схема глубинного металлоискателя

Она довольно проста, несмотря на кажущуюся сложность. Состоит металлодетектор из двух частей – принимающей и передающей. Основным устройством является генератор передатчика высокой частоты. Две рамочных антенны, одна из которых служит передатчиком сигнала, вторая приемником. Они должны располагаться строго под углом 90 градусов друг к другу для предотвращения улавливания сигналов генератора приемной антенной. При нахождении предмета из металла, магнитное поле, создаваемое генератором, подвергается искажению, и впоследствии улавливается принимающей антенной. В данном случае масса металлического предмета используется как источник излучения, отправляя производимую энергию на принимающую антенну.

Также читайте: как работает металлоискатель.

Схема приемника металлодетектора

В передающее устройство входит тиристор мощностью от 0,25 до 1 Вт, генератор звука частотой 200 Гц. При нахождении металлического предмета оператор слышит звук частотой 200 Гц, сила которого зависит от величины найденного предмета и расстояния до него.

Детекторный приемник, контур колебаний которого реагирует на частоту 120 кГц, и состоящий из двух диодов. Усилителем может служить абсолютно любой генератор низких частот, которой можно найти в старом радиоприемнике. Достаточно усилителя на транзисторах в количестве 5-6 штук. Также используется транзистор в качестве усилителя тока для стрелочного прибора, позволяющий измерить уровень принимаемого сигнала. То есть, в составе прибора есть два вида индикаторов – визуальный и акустический. Частота работы настроена таким образом, чтобы не мешать работе приемника сигнала.

Схема передатчика

Необходимые детали и инструменты для сборки

Для сборки такого металлоискателя необходимо в первую очередь подготовить набор необходимых деталей и инструментов.

В случае с импульсным металлоискателем примерныйсписок деталей будет выглядеть так:

  1. Электролитные конденсаторы с напряжением минимум 16 В следующих емкостей: 2 конденсатора емкостью 10 мкФ, один емкостью 2200 мкФ, 2 шт – 1 мкФ.
  2. Конденсаторы из керамики: 1 шт емкостью 1 нф.
  3. Пленочные конденсаторы самого минимальное значения напряжения, к примеру, 63 В – 2 шт по 100 нф.
  4. Резисторы по 0, 125 Вт: 1 к — один, 1,6 к – один, 47 к – один, 62к – два, 100 к – один, 120 к – один, 470 к – один, 2 ом – один, 100 ом – один, 470 ом – один, 150 ом – один,
  5. Резисторы по 0,25 Вт: 10 ом – один.
  6. Резисторы по 0,5 Вт: 390 ом – один
  7. Резисторы 1 Вт: 220 ом – один.
  8. Резисторы переменные: 10 к –один, 100 к – один,
  9. Транзисторы: ВС 557 – один, ВС 547 – один, IRF 740 – один,
  10. Диоды: 1N4148 — два, 1N4007 – один.
  11. Микросхемы: К157 УД2, NE555.
  12. Панели для каждой из них.

Детали для металлоискателя

Из инструментов при выполнении работ понадобятся:

  • Паяльник, олово, специальный припой, прочие принадлежности для пайки.
  • Набор отверток, кусачки, плоскогубцы и другой слесарный инструмент.
  • Материалы для производства печатной платы.

Этапы сборки металлоискателя

Процесс сборки глубинного металлоискателя своими руками включает в себя следующие этапы:

На первом этапе необходимо собрать электронную часть, а именно блок управления.

Пошагово процесс выглядит так:

  • Вырезка текстолита необходимого размера.
  • Подготовка рисунка печатной платы и его перенесение непосредственно на плату.
  • Подготовка травильного раствора. В его состав входят соль поваренная, электролит и пероксид водорода.
  • Травление платы и просверливание технологических отверстий.
  • Лужение платы при помощи паяльника.
  • Далее наступает самый важный этап в сборке блока управления. Это подбор, поиск и припаивание деталей непосредственно на плату.
  • Наматывание пробной катушки. Существует несколько вариантов ее намотки. Наиболее простой вариант – использовать провод ПЭВ размером 0,5 и намотать его 25 витков на подходящей оправе с диаметром около 19-20 см.

Это интересно:как собрать дома простой металлоискатель.

Лучшим вариантом будет спаять все напрямую, а уже после окончания наладки подобрать необходимые разъемы и переходники. Скрутки лучше не делать, это оказывает отрицательное влияние на чувствительность прибора.

Вторым неплохим вариантом будет сделать такое кольцо из провода витой пары. Понадобится около 2,5 – 2,7 м провода.

Для достижения максимальной чувствительности необходимо выполнить следующие действия:

  1. Намотать 25 витков провода.
  2. Провести тест, отрезая небольшие куски провода и наблюдая за повышением чувствительности.
  3. Необходимо проделывать это до тех пор, пока чувствительность не начнет снижаться.
  4. Подсчитать число витков, намотать окончательный вариант катушки, добавив 1-2 витка. Таким образом, достигается максимальное значение чувствительности.

По окончании основных работ, блок управления, катушка и остальные детали закрепляются на своих местах на штанге. Металлоискатель можно включать и проверять.

Возможные проблемы при сборке

  • Собранный прибор не дает реакцию на металлические предметы. Причиной может быть поломка диодов, либо транзистора. Требуется заменить неисправные детали.
  • Чрезмерный нагрев транзистора. Следует установить резистор меньшего сопротивления, уменьшая его до прекращения нагрева.

Сборка такого типа металлоискателей не является слишком сложной, при четком соблюдении всех правил и инструкций.

Простой чувствительный металлоискатель | Полезное своими руками

Металл под землей и в пресноводных водоемах, в перекрытиях зданий и в толще бетона, поможет обнаружить специализированный электронный прибор — металлоискатель.

Несложную схему по силам собрать своими руками практически любому, кто хоть раз держал в руках паяльник. Вот как она работает:


Рис. 1 Структурная схема металлоискателя.


Эталонный генератор ЭГ вырабатывает синусоидальное напряжение частотой 50 кГц. Контурная катушка, определяющая частоту генерации, является датчиком Д прибора. Сигнал синусоидальной формы через разделительный конденсатор Ср поступает на кварцевый фильтр КФ.

Если частота генератора и собственная резонансная частота КФ совпадают, сигнал попадает на пороговое устройство ПУ. Оно регистрирует переменное напряжение на входе, выделяет из него постоянную составляющую и подает ее на стрелочный индикатор И.

Приближение к металлическому предмету вызывает изменение частоты ЭГ. Поскольку она теперь отличается от резонансной частоты КФ, напряжение на входе ПУ уменьшается, и стрелка отклоняется к началу шкалы на угол, пропорциональный габаритам предмета и обратно пропорционально расстоянию до него.

У нашего металлоискателя есть особенность — пороговое устройство, благодаря которому чувствительность схемы резко повышается. Вот как оно действует.


Рис.2 Форма сигнала на входе и выходе порогового устройства.


Синусоидальный сигнал, поступающий на вход ПУ, ограничивается снизу (рис. 2), и на индикаторе появляются импульсы напряжения:

Ин = Ио — Ип ,

где Ио—уровень входного сигнала в состоянии покоя, Ип — задаваемое напряжение порога.

Чувствительность прибора выражается отношением:

s=DИ / Ии = DИ / (Ио-Ии),

где DИ — изменение синусоидального напряжения при расстройке ЭГ, зависящее от размеров предмета и расстояния до него. Фактически s показывает, на какую величину отклоняется стрелка индикатора при расстройке датчика-контура.

Следовательно, подбирая величину Ип, можно добиться максимального отклонения стрелки прибора при сколь угодно малом изменении Ио. Но в реальных устройствах приходится учитывать нестабильность элементов схемы и частоты эталонного генератора.

ПРИНЦИПИАЛЬНАЯ СХЕМА

Эталонный генератор собран по схеме емкостной трехточки на транзисторе T1 (рис. 3). Контурная катушка L1 является датчиком прибора. Конденсаторы С3 — С6 предназначены для настройки генератора на частоту 50 кГц.

Рис.3 Принципиальная схема металлоискателя.


Через разделительный конденсатор С7 синусоидальное напряжение с генератора поступает на кварцевый фильтр. Емкость С7 выбрана небольшой — 5 пФ. Тем самым влияние последующих каскадов на работу генератора практически исключено.

Пороговое устройство собрано на полевом транзисторе Т2. Напряжение порога Ип задается делителем R5 — R7.

Конденсатор С8 сглаживает пульсации на индикаторе ИП1. Фильтр R4, С1 осуществляет развязку по переменному току между пороговым и задающим генераторами.

КОНСТРУКЦИЯ

Прибор из двух блоков: измерительного (с датчиком) и питания. Первый включает в себя монтажную плату, индикатор, органы управления и регулировки. Датчик — жесткий кольцевой каркас, выполненный из оргстекла, на котором намотано 65 витков прохода ПЭЛ 0,2. Обмотка заключена в экран из алюминиевой фольги и залита эпоксидной смолой. Датчик связан с измерительным блоком коаксиальным кабелем РК-75.

Блок питания содержит пять серебряно-цинковых аккумуляторов. Напряжение каждого элемента 1,25В, емкость 2А-ч. Особое внимание нужно уделить рамке металлоискателя. Она должна иметь небольшой вес, быть жесткой и упругой. Иначе даже при легких ударах, неизбежных при работе с прибором в полевых условиях, частота генератора «уходит» — металлоискатель расстраивается.

Основанием рамки служит кольцевой каркас из оргстекла или полистирола d=300 мм. Обмотку экранируют алюминиевой фольгой толщиной 0,05 мм. Но соединять между собой концы экрана нельзя (образуется короткозамкнутый виток).

Выводы обмотки подключают к кабелю РК-75 длиной 0,3—1 м (с оплеткой кабеля соединяют также и экран катушки). Это место заливают эпоксидной смолой. Соединение датчика с блоком электроники неразъемное.

Металлоискатель имеет высокую чувствительность. Стрелка индикатора отклоняется на одно деление, когда рамка прибора приближается к диску d=13 см на расстояние 80 см.

Прибор практически одинаково реагирует на любой металл. Так, например, стальной, алюминиевый и латунный диски дают на равных расстояниях одинаковые отклонения стрелки. Они не зависят и от того, сплошной предмет или пустотелый.

При работе с металлоискателем необходимо учитывать фоновые помехи. Песчаный и торфяной грунты, чернозем, дерево, вода фонового сигнала не дают. Поэтому прибор хорошо действует в пресных водоемах, в деревянных зданиях и на не каменистых почвах. Сильный фон дает кирпич (обожженная глина обладает магнитными свойствами) и некоторые минералы.

На показания прибора влияют и изменения температуры. Поэтому рамку лучше поместить в футляр из теплоизолятора, например пенопласта.

Для работы под водой металлоискатель сначала надо подержать 10—15 минут в воде и после этого настроить.

На земле поиски лучше проводить в пасмурную погоду или вечером, чтобы избежать попадания на прибор прямых солнечных лучей.

Amazon.com: Металлоискатель BRESSER ExploreOne Jr 88-20001: Патио, лужайка и сад

Все любят поиски сокровищ, а металлоискатель Explore One прост в использовании и поможет вашему младшему исследователю быстро найти спрятанные ценности. Разные тона позволяют идентифицировать различные драгоценные металлы, находящиеся под землей на глубине до 6 дюймов, а светодиодные фонари позволяют вести поиск при слабом освещении или в ночное время. Металлоискатель содержит катушку с проволокой (обернутую вокруг круглой головки на конце ручки), известную как катушка передатчика.Когда электричество проходит через катушку, вокруг нее создается магнитное поле. Когда вы проводите детектор по земле, вы заставляете двигаться и магнитное поле. Если вы перемещаете детектор над металлическим объектом, движущееся магнитное поле воздействует на атомы внутри металла. Фактически, это меняет способ движения электронов (крошечные частицы, «вращающиеся» вокруг этих атомов). Теперь, если у нас есть изменяющееся магнитное поле в металле, призрак Джеймса Клерка Максвелла говорит нам, что у нас также должен быть электрический ток, движущийся туда.Другими словами, металлоискатель создает (или «индуцирует») некоторую электрическую активность в металле. Но затем Максвелл сообщает нам еще кое-что интересное: если у нас есть электричество, движущееся в куске металла, оно также должно создавать некоторый магнетизм. Итак, когда вы перемещаете металлоискатель по куску металла, магнитное поле, исходящее от детектора, вызывает появление другого магнитного поля вокруг металла. Это второе магнитное поле вокруг металла, которое улавливает детектор. Металлоискатель имеет вторую катушку провода в головке (известную как катушка приемника), которая подключена к цепи, содержащей громкоговоритель.Когда вы перемещаете детектор по куску металла, магнитное поле, создаваемое металлом, прорезает катушку. Теперь, если вы перемещаете кусок металла через магнитное поле, вы заставляете течь через него электричество (помните, так работает генератор). Таким образом, когда вы перемещаете детектор по металлу, электричество проходит через катушку приемника, заставляя громкоговоритель щелкать или издавать звуковой сигнал. Привет, металлоискатель сработал, и ты что-то нашел! Чем ближе вы перемещаете катушку передатчика к металлическому предмету, тем сильнее магнитное поле, создаваемое катушкой передатчика, тем сильнее магнитное поле, которое металл создает в катушке приемника, тем больше тока течет в громкоговорителе и тем громче шум.

Руководство по обнаружению металлов в пищевой промышленности

LOMA SYSTEMS

® предлагает это руководство по обнаружению металлов, чтобы помочь компаниям, производящим продукты питания и упаковочные материалы, создать эффективную программу обнаружения металлов, отвечающую нормативным требованиям.

Как работает металлоискатель

Металлоискатель, наиболее широко используемый в пищевой промышленности, работает по принципу, известному как система «сбалансированной катушки». Этот тип системы был зарегистрирован как патент в 19 веке, но первый промышленный металлоискатель не был выпущен до 1948 года.

Развитие технологий привело к тому, что металлоискатели превратились из ламп в транзисторы, в интегральные схемы, а в последнее время и в микропроцессоры. Естественно, это повысило их производительность, обеспечив большую чувствительность, стабильность и гибкость, а также расширило диапазон выходных сигналов и информации, которую они могут предоставить.

Тем не менее, современные металлоискатели не могут обнаружить каждую частицу металла, проходящую через их апертуру. Физические законы, применяемые в технологии, ограничивают абсолютные возможности системы.Следовательно, как и в случае с любой другой измерительной системой, металлоискатели имеют ограничения по точности. Эти ограничения меняются в зависимости от области применения, но главным критерием является размер обнаруживаемой металлической частицы. Однако, несмотря на это, металлодетекторы играют важную и важную роль в контроле качества процесса.

Две основные категории товаров общего назначения и продуктов в фольге

Современные металлоискатели делятся на две основные категории. К первой категории относятся системы с поисковой головкой общего назначения.Эти системы способны обнаруживать черные и цветные металлы, а также нержавеющую сталь в свежих и замороженных продуктах — как без упаковки, так и в упаковке, даже в металлизированных пленках. Вторая основная категория состоит из систем с головкой для поиска из металлической фольги. Они способны обнаруживать черные металлы в свежих или замороженных продуктах, упакованных в пленку.

Система «сбалансированной катушки»: как это работает

Все металлоискатели общего назначения работают по существу одинаково, хотя для оптимальной работы вы должны выбрать металлоискатель, который был разработан специально для вашего применения.
Конструкционные технологии гарантируют, что независимое механическое движение компонентов поисковой головки, а также попадание воды и грязи предотвращено. Для оптимальной работы вы должны выбрать металлоискатель, который был разработан специально для вашего применения. Как вы увидите на диаграмме 1, типичный извещатель заключен в металлический ящик. В нем размещаются компоненты катушки и обеспечивается защита для их защиты. Отверстие, туннель, через который проходят продукты, облицован неметаллическим материалом (обычно пластиком), который обеспечивает гигиеническую изоляцию внутренних компонентов от воздействия окружающей среды.

Отношение размера апертуры к размеру продукта важно для достижения оптимальной производительности. Чувствительность детектора измеряется в геометрическом центре апертуры, который является наименее чувствительной точкой. Это обратно пропорционально размеру отверстия, в частности, меньшей из двух сторон.

Всего в системе три катушки. Катушка передатчика генерирует поле, как радиопередатчик. Этот процесс, предназначенный для идентификации металлической частицы, называется «освещением» металлической частицы.Вторая и третья катушки — это приемники, соединенные вместе для обнаружения «освещенной» металлической частицы. Отклик связан с проводящими и магнитными свойствами металла.

Управление и сигнальный процессор
Элементы управления

могут быть установлены на самой поисковой головке или удаленно, в зависимости от конструкции и области применения вашей системы. Расположение органов управления не влияет на работу
системы. Сигнальный процессор очень сложен.Когда типичная металлическая частица «светится», значение сигнала приемных катушек составляет одну миллионную вольта. Сначала он усиливается высокопроизводительным усилителем RF, а затем модулируется до низкой частоты. Это дает информацию об амплитуде и фазе. Наконец, сигналы оцифровываются и обрабатываются в цифровом виде для оптимизации чувствительности.

Системы магнитного поля для изделий в фольге

Эти системы работают по совершенно другому принципу обнаружения. Они работают за счет включения туннеля или прохода, который подвергается воздействию сильного магнитного поля, и в результате любой магнитный материал (например, металлический фрагмент с содержанием железа) намагничивается при прохождении через него.В туннель встроена серия катушек. Когда намагниченная частица проходит под ними, генерируется ток, который затем усиливается электроникой системы обнаружения и используется для запуска выхода сигнала обнаружения.

Вторичные эффекты из-за движения любого проводящего материала в магнитном поле также будут генерировать сигналы для немагнитных металлов. Однако они невелики по сравнению с эффектом, создаваемым материалами с магнитным составом. Следовательно, можно обнаружить только самые крупные куски цветных металлов и нержавеющей стали.В большинстве приложений эта технология применима только для обнаружения черных металлов
.

Пользовательский интерфейс

Пользовательский интерфейс обеспечивает средства связи с системой, позволяя настраивать и оптимизировать ее для работы с приложением, средой и системами механического перемещения. Микропроцессоры
позволяют использовать широкий спектр каналов связи, статистический анализ и системную информацию.

В случае металлоискателей LOMA SYSTEMS сетевые модули (Loma eNet) могут быть установлены на каждом из 40 металлоискателей, в конечном итоге все они подключены к принтеру или ПК, обеспечивая скоординированную оперативную и управленческую информацию в течение нескольких секунд.Информационную сеть можно также связать с PVS, системой проверки рабочих характеристик металлоискателей LOMA, которая была разработана в соответствии со строжайшим контролем качества ведущих мировых розничных продавцов. Полученная комбинация пользовательской информации включает данные не только об обнаружении металла, но и о качестве работы металлоискателей.

Поисковые заголовки: конфигурация

Поисковые головки могут использоваться в различных конфигурациях.Самый распространенный, как показано на диаграмме 2, установлен на приводном конвейере, который имеет либо фиксированную, либо регулируемую скорость.

При обнаружении зараженного продукта он автоматически отклоняется. Поисковые головки металлоискателя также могут быть сконфигурированы в компактном корпусе и установлены на конвейере чеквейера. Это создает компактную, экономящую место «комбинированную» систему.

Точно так же поисковая головка может быть сконфигурирована для работы в режиме свободного падения, когда продукт движется вниз через гравитационную систему, как показано на диаграмме 3.

Другие конфигурации поисковых головок включают те, которые используются в системах трубопроводов для перекачиваемых продуктов, таких как мясо и гравитационная подача, системы с маленькими отверстиями для таких предметов, как таблетки.

Как оптимизировать работу металлоискателя
Loma Systems: голос опыта

С момента основания LOMA SYSTEMS в 1969 году компания очень тесно сотрудничает как с производителями продуктов питания, так и с розничными торговцами по всему миру. В результате Loma обладает непревзойденным уровнем опыта и знаний в области эффективного обнаружения металлов на производственных линиях пищевой промышленности.Следующие ниже рекомендации основаны на обширном опыте «лучших практик» LOMA и призваны помочь вам соответствовать самым строгим отраслевым требованиям к контролю качества.

Что должна включать система

Ваша система обнаружения металлов должна быть расположена в соответствии с основным производственным потоком, после или в конце готовой точки упаковки. Система не пострадает, даже если в этой точке будет слишком много воды или пара.

Конвейерные металлоискатели должны включать в себя следующее для наиболее эффективной работы:

  • Эффективная автоматическая система отбраковки
  • Запираемый ящик для забракованного товара
  • Полное ограждение между поисковой головкой и бункером для отбраковки
  • Устройство для подтверждения того, что зараженные продукты были успешно выброшены в бункер
  • Автоматическая отказоустойчивая система остановки ремня, срабатывающая при отказе давления воздуха, неисправности детектора, отказе системы отбраковки или при заполнении бункера для отбракованного продукта

Трубопроводные системы должны включать звуковую и визуальную индикацию отбраковки, а системы свободного падения требуют, чтобы предприятие производило двойную упаковку, если автоматическая система отбраковки невозможна.

Продукция в фольге

В идеале, продукты, которые должны быть упакованы в фольгу, должны быть пропущены через обычную металлоискательскую систему ДО того, как они будут упакованы в фольгу. Когда это невозможно, продукты, упакованные в алюминиевые лотки или завернутые в алюминиевую фольгу, должны проходить через детектор «железо в фольге», такой как система LOMA IQ3 Ferrousin-Foil. В качестве альтернативы, рассмотрите дополнительные преимущества использования рентгеновского контроля на этом этапе.

Для продуктов, завернутых в металлизированную пленку, следует использовать «компенсированные» традиционные детекторы или детекторы свободного падения для обнаружения как черных, так и цветных металлов.

Чувствительность

Для оптимальной чувствительности поисковая головка должна иметь размер, соответствующий указанному пищевому продукту. Важно установить для каждого продукта максимально достижимую чувствительность в зависимости от его размера, типа и упаковки. Этот процесс должен выполняться только после консультации с производителем вашего металлоискателя.

Если вы перемещаете свои системы обнаружения в пределах своего помещения или вводите новые продукты, ваша система должна быть подвергнута повторной оценке.Опять же, это следует делать после консультации с производителем.
Многие ведущие розничные торговцы будут настаивать на том, чтобы их поставщики товаров под частными торговыми марками согласились уточнить любые изменения в настройках чувствительности обнаружения металлов вместе с ними и в письменной форме. Если ваша компания является производителем под частной торговой маркой
, LOMA SYSTEMS настоятельно рекомендует вам уточнить предпочтительную политику с каждым из ваших розничных клиентов.

Элементы управления регулировкой чувствительности не должны быть доступны для неподготовленных сотрудников. Доступ должен предоставляться только назначенному, полностью обученному персоналу, а для дополнительной безопасности элементы управления должны быть защищены паролем или заблокированы.Очевидно, вы захотите максимизировать чувствительность вашей системы обнаружения. Однако вам необходимо принять меры против потенциальной нестабильности, когда воздействие продукта и / или окружающей среды может вызвать ложные браки.

Типы загрязняющих веществ

Есть три основные группы металлических загрязнителей:

  • Черные металлы
  • Цветные металлы
  • Нержавеющая сталь

Черный металл является одновременно магнитным и проводящим, поэтому его легко обнаружить. Цветные металлы немагнитны, но являются хорошими или отличными проводниками, поэтому их относительно легко обнаружить.Нержавеющая сталь — самый трудный для обнаружения загрязнитель, поскольку он обычно немагнитен и имеет плохую проводимость.

Нержавеющая сталь бывает различных сортов, некоторые из которых являются магнитными, а также могут быть полностью немагнитными. Их проводимость также варьируется, но в целом низкая. Оба эти фактора способствуют плохой обнаруживаемости.

Перерабатывающие предприятия в пищевой, упаковочной и фармацевтической промышленности используют два наиболее распространенных сорта, 304 (L) и 316. Обнаружение этих сортов дополнительно затрудняется, когда продукт влажный, содержит высокое содержание соли или и то, и другое, что, таким образом, способствует высокому сигналу продукта.

Поскольку свойства нержавеющей стали можно изменить путем механической обработки (увеличивая магнитный эффект), конкретные значения чувствительности трудно назвать. В общем, это может быть выражено как отношение к железу, в лучшем случае 1: 1,5, увеличиваясь до 1: 2,5.

Дальнейшие осложнения связаны с ориентацией загрязняющих веществ, таких как проволока экрана и тонкие ленты (например, стружка), если наименьший размер меньше размера обнаруживаемой сферы.

Процедуры испытаний оборудования

Процедуры испытаний на обнаружение металлов должны быть четко задокументированы и доведены до сведения всего соответствующего персонала.Тестирование должно проводиться в начале каждой смены, между каждой сменой продукта и в любых обстоятельствах, по крайней мере, ежечасно.

Интервалы между тестами должны быть достаточно короткими, чтобы в случае обнаружения неисправности потенциально затронутые продукты не покинули ваше помещение и могли быть идентифицированы, отозваны и повторно протестированы. Еще раз, если ваша компания является производителем под частной торговой маркой, убедитесь, что вы письменно согласовываете любые изменения, которые вы вносите в процедуры тестирования, с вашими розничными продавцами.

Как упоминалось выше, для облегчения эффективного тестирования все металлоискатели LOMA IQ3 имеют встроенную функцию PVS (Performance Validation System).Эта функция автоматически предлагает оператору провести требуемый тест с предварительно установленным интервалом.

Проведение тестовых программ

При тестировании обычных систем обнаружения металлов необходимо использовать тестовые наборы как для черных, так и для цветных металлов. Они должны быть составлены из упаковок, которые, как доказано, не содержат металла и имеют четкую маркировку и этикетку, чтобы их нельзя было случайно упаковать для отправки. Вам необходимо делать свежие тестовые упаковки с периодичностью, которая отражает характер, долговечность и срок годности соответствующего продукта.Если вы используете «просроченные» тестовые пакеты, они не будут отражать те же свойства, что и продукты, которые проверяет металлоискатель.

В случае металлоискателей LOMA SYSTEMS ваша система поставляется с готовым комплектом пластиковых «палочек», которые содержат куски различных металлов заданных размеров для испытаний. Их удобно и легко поместить в тестовые пакеты, а также сделать процесс тестирования еще более эффективным. Когда вы проверяете готовую упакованную продукцию на конвейерной системе, поместите испытательный кусок металла, где это возможно, в крайний конец упаковки.Если это нецелесообразно, например, если вы проверяете отдельные небольшие упаковки или сэндвич-клинья, поместите испытательный кусок металла в центр продукта.

Затем дважды пропустите тестовые пакеты с черными и цветными металлами по отдельности через поисковую головку. Сначала с металлическим образцом для испытаний на переднем крае упаковки, а затем с образцом для испытаний на заднем крае упаковки. В каждом случае вы должны следить за тем, чтобы образец для испытаний успешно попал в корзину для брака.

В случае неупакованных продуктов сделайте все возможное, чтобы оборудование для обнаружения металла было установлено на вашей производственной линии ПОСЛЕ упаковки продуктов.Если это невозможно и вы производите товары под частной торговой маркой, рекомендуется письменно согласовать процедуру тестирования с соответствующим продавцом.

В системах свободного падения помещайте образцы из черных и цветных металлов независимо в поток продукта и наблюдайте за соответствующей браковкой. Этот принцип так же применяется к трубопроводным системам. Однако, если это нецелесообразно в трубопроводной системе, вставьте контрольный образец между трубой и поисковой головкой, а затем наблюдайте за соответствующим отклонением.Если какая-либо часть вашего теста не пройдена, изолируйте все продукты, произведенные с момента последнего удовлетворительного теста, и повторно просмотрите их, используя другой детектор, работающий в соответствии с тем же стандартом, что и исходная система, выполняющая тест.

Работа с отклоненной продукцией

Излишне говорить, что бракованный продукт никогда не должен возвращаться на производственную линию. Однако сюда не входят продукты, отклоненные в ходе обычных процедур испытаний. Если эти продукты находятся в хорошем состоянии, вы должны заменить их в потоке продуктов, чтобы их можно было повторно обнаружить.

Забракованные упаковки должны быть исследованы подходящим обученным лицом в течение одного часа после отбраковки. Замороженные продукты должны быть заморожены или повторно заморожены. Расследование должно проводиться с использованием системы металлоискателя, которая изначально отклоняла продукцию, но не в то время, когда она используется в реальном производстве. Если вы не можете остановить производственную линию, используйте автономный детектор с такой же, если не более высокой чувствительностью.

Пропустите отбракованные продукты через детектор, расположив его так же, как когда они изначально проходили через поисковую головку.Затем дважды пропустите одни и те же товары через поисковую строку, каждый раз позиционируя их по-разному. Если на каком-либо этапе продукты снова отбраковываются, важно найти загрязнитель и идентифицировать его. Затем примите все необходимые меры, чтобы предотвратить повторение подобного заражения. Серьезную озабоченность вызывает то, что на одной производственной линии за смену было выбраковано более одного продукта с металлическим загрязнением. Необходимо приложить все усилия для выявления и устранения причины.Если вы производите товары под собственной торговой маркой, вы должны письменно проинформировать своих розничных продавцов о происшествии.

Обслуживание оборудования для обнаружения металлов

Как и в случае любого другого высокоточного оборудования, высокая производительность может быть обеспечена только в том случае, если ваш металлоискатель регулярно и надлежащим образом обслуживается. Таким образом, стоит инициировать плановую программу профилактического обслуживания ваших систем, которая будет проводиться через регулярные промежутки времени в соответствии с рекомендациями производителя.Техническое обслуживание должен выполнять оригинальный производитель. Это также могут сделать ваши собственные инженеры при условии, что они прошли обучение у оригинального производителя. После любого ремонта, технического обслуживания или регулировки вам необходимо убедиться, что проведена полная проверка металлоискателя, прежде чем вы снова будете использовать систему.

Обучение персонала

Для максимальной эффективности и безопасности весь соответствующий персонал должен быть надлежащим образом обучен принципам и использованию оборудования для обнаружения металлов, а также использованию процедур тестирования.

Документы и делопроизводство

Важно, чтобы вы вели всю необходимую документацию и записи, охватывающие ряд областей. Эти области включают:

  • Пусконаладочные работы и испытания на чувствительность и записи для нового оборудования, а также тех, которые следуют за перемещением или перемещением оборудования
  • Результаты типовых тестов, показывающие время, результат, чувствительность, продукт и предпринятые действия
  • Количество бракованных упаковок в смену
  • Количество и реквизиты обнаруженных загрязняющих веществ
  • Принятые меры по отслеживанию источника загрязнения
  • Плановая программа профилактического обслуживания и сервисные работы
  • Обучение персонала
Предотвращение загрязнения металлов с помощью работ по техническому обслуживанию и очистке

Весь обслуживающий и клининговый персонал вашей организации должен пройти соответствующее обучение тому, насколько важно предотвращать загрязнение металлами.Техническое обслуживание заводского оборудования следует планировать таким образом, чтобы износ можно было устранить до появления дефектов. Постарайтесь обеспечить, чтобы любые работы по техническому обслуживанию или установке нового оборудования производились в нерабочее время. Если это невозможно, то эта зона должна быть должным образом ограждена от прилегающих участков производства или упаковки сырья.

  • Ремонт производственных линий должен выполняться персоналом с использованием закрытого ящика для своих инструментов. Будет полезно, если они будут использовать небольшую пылесосную щетку и магнит для последующей очистки, если это уместно.
  • Ни при каких обстоятельствах нельзя выполнять сварку, клепку, сверление или пайку системы, используемой для производства, или любой системы, непосредственно примыкающей к ней.
  • Лезвия нарезки или мясорубки, конвейеры из тканой проволоки и сита необходимо проверять каждый день на предмет повреждений. Эта проверка должна быть четко задокументирована.
  • Персонал по техническому обслуживанию и очистке, разбирающий оборудование, должен иметь при себе подходящий, четко обозначенный контейнер для безопасного хранения гаек, болтов, шайб и т. Д.
  • Персонал не должен использовать ленту или проволоку для временного ремонта оборудования. Отсутствующие или ослабленные винты и поврежденные фитинги необходимо незамедлительно и навсегда заменить или отремонтировать, а металлическую стружку, обломки проводов и любые другие потенциальные загрязнения утилизировать безопасно и быстро. Сварка должна быть непрерывной и плавной.

Важно, чтобы все оборудование, отремонтированное в мастерских или на заводе, было очищено и пропущено пылесосом (без продувки сжатым воздухом) перед возвратом в производственную зону.Полы в мастерских необходимо подметать и пылесосить не реже одного раза в день. Там, где мастерские находятся в здании вашего завода, на выходе из мастерской следует оборудовать подходящую ловушку с уведомлением, чтобы персонал соскребал обувь перед уходом.

После завершения ремонта, технического обслуживания и установки член группы контроля качества должен осмотреть завод и прилегающие территории ПЕРЕД возобновлением производства.

Как сделать простой металлоискатель с использованием микросхемы CS209A

Принцип работы предложенной схемы металлоискателя довольно прост, но очень интересен.Функция обнаружения запускается при обнаружении снижения уровня добротности LC-сети, связанной с цепью, в присутствии металла на заданном уровне близости.

Введение

В основном встроенный генератор IC CS209 работает с включением параллельной резонансной LC-настроенной цепи в сочетании с резистором обратной связи, подключенным к выводам OSC и RF.

Полное сопротивление настроенной резонансной сети можно ожидать на максимальном уровне, пока частота источника возбуждения равна резонансной частоте сети LC-контура.

При обнаружении металлического объекта в непосредственной близости от датчика индуктивности, амплитуда напряжения LC-сети постепенно начинает падать в соответствии с приближением металла к индуктору.

Из-за вышеуказанного фактора, когда кадр генерации микросхемы падает и достигает определенного порогового уровня, запускается положение дополнительных выходов, так что они меняют состояния.

Точные технические операции можно понять следующим образом:

Ссылаясь на рисунок, как только металлический объект обнаруживается на входе катушки индуктивности, конденсатор, подключенный к DEMOD, заряжается через встроенный источник тока 30 мкА. .

Однако во время процесса обнаружения вышеупомянутый ток отклоняется от конденсатора пропорционально генерируемому отрицательному смещению в цепи LC.

Таким образом, заряд конденсатора снимается подключенным к DEMOD с каждым отрицательным циклом, генерируемым в сети LC.

Напряжение постоянного тока с пульсациями на конденсаторе DEMOD напрямую соотносится с внутренним фиксированным уровнем напряжения 1,44.

Когда процедура заставляет внутренний компаратор отключиться, он переключает транзистор, который вводит 23.6 кОм параллельно данному резистору 4К8.

Этот результирующий опорный уровень в таком случае равен примерно 1,2 В, что вносит некоторый гистерезис в схему и становится идеально подходящим для предотвращения неправильного или ложного срабатывания.

Потенциал обратной связи, подключенный через OSC и RF, используется для установки диапазона обнаружения схемы.

Увеличение сопротивления потенциометра, конечно, увеличивает диапазон обнаружения и, следовательно, точку срабатывания выходов.

Однако точки обнаружения и срабатывания могут также зависеть от конфигурации LC и Q сети LC.

Как настроить схему металлоискателя

Предлагаемую схему металлоискателя можно изначально настроить, выполнив следующие шаги, описанные ниже:

Поместите металлический объект на относительно большом расстоянии от индуктора, предполагая добротность ЖК быть на максимальной чувствительности, а расстояние должно быть в пределах допустимого диапазона, обеспечиваемого добротностью катушки индуктивности.

С этой настройкой отрегулируйте горшок так, чтобы выходы просто меняли состояния, указывая на обнаружение металлического объекта.

Повторите процедуру настройки, постепенно увеличивая расстояние, пока не будет оптимизирована подходящая максимальная чувствительность цепи.

Удаление или перемещение металла вручную должно привести к тому, что выход схемы вернется в состояние, подтверждающее безупречную работу схемы.

Хотя схема способна обнаруживать металлы в диапазоне 0.3 дюйма, диапазон может быть увеличен путем увеличения добротности катушки индуктивности.

Коэффициент добротности прямо пропорционален чувствительности схемы и степени обнаружения.

Металлоискатель с использованием обычных компонентов

В этом металлоискателе просто используются все стандартные компоненты, как показано ниже. В нем используется транзистор 2N2222 и пара 741 микросхемы.

Даже катушка детектора настолько проста, насколько это возможно! Вам просто нужно намотать 8 витков суперэмалированного медного провода 22 SWG на каркас диаметром 9 дюймов.

После окончания намотки закрепите катушку лентой или прочным клеем, осторожно снимите ее и снимите с формы. Транзистор Q1 работает как основной компонент генератора Колпитца. Диод D1 выпрямляет частоту генератора Колпитца до определенного переменного постоянного тока.

Операционный усилитель U1 работает как дифференциальный усилитель, обнуляя переменный постоянный ток, а U2 используется для усиления сигнала на уровне 200 мкА. Чтобы использовать простую схему металлоискателя, настройте потенциометр до тех пор, пока счетчик M1 не достигнет средней шкалы шкалы.

Как только металлический предмет, такой как золото, зубные пломбы и т. Д., Оказывается в непосредственной близости от поля зрения катушки, небольшие изменения амплитуды частотных волн вызывают изменения показаний измерителя. Переключатель S1 работает как переключатель выбора ослабления или чувствительности.

15 Простой, но мощный Металлоискатель своими руками

Этот пост содержит партнерские ссылки. Если вы нажмете кнопку и купите, мы можем взимать комиссию без дополнительной оплаты. Более подробную информацию см. В нашей политике раскрытия информации .

Вы когда-нибудь смотрели фильмы с пиратами и охотниками за сокровищами, надеясь, что у вас,
, есть металлоискатель, подобный их? Но вы почувствовали, как реальность налетела, когда вы прочитали
о непомерных ценах на металлоискатель.

Однако ваши мечты об охоте за сокровищами могут осуществиться без
полного разрушения вашего банка. Все, что вам нужно, это несколько электрических компонентов и простой план металлоискателя DIY
.

К счастью, одно из этих двух требований выполнено.

Планируется построить 15 простых металлоискателей своими руками

№1. Простой картонный металлоискатель

Сделанный с использованием нескольких электрических компонентов и картона, этот металлоискатель
не только недорогой, но и функциональный. Кроме того,
легко следовать плану с подробным объяснением конструкции каждой части.

Однако сделать катушку детектора не так просто и требует
вычислений. К счастью, делать катушку необязательно.Вы можете
купить один онлайн, если ваш бюджет не слишком ограничен. Вы даже можете сделать ручку
для вашего детектора из картона. Ручка придает приятный вид извещателю
и даже помогает удерживать батарейки и переключатели.

В целом, это отличный план, если вы хотите построить что-то для развлечения. Хотя
не работает идеально снаружи (не всегда), он полностью функционален при использовании
внутри и служит отличным способом скоротать время!

№2.Чувствительный металлоискатель

Это модифицированная версия известного российского импульсного индукционного металлоискателя
«ПИРАТ». Он может обнаруживать металлическую монету на расстоянии 15 см и более крупные объекты на
даже больших расстояниях. Более того, этот детектор прост в изготовлении, несмотря на его чувствительность
к металлическим предметам. Этот детектор
, требующий наличия нескольких компонентов, является подходящим вариантом, если вы ищете чувствительные показания.

Кроме того, этот извещатель имеет несколько особенностей, которые делают его уникальным.Вот несколько из
этих функций:

  • Самокалибровка путем сброса Arduino
  • Детектор времени со световой и звуковой индикацией
  • Повышенная частота при приближении к объекту

Что еще? Видеоурок, прилагаемый к плану, помогает упростить процесс сборки, позволяя работать новичкам.

№ 3. Открытый металлоискатель

Разработанный для работы через телефон, этот металлоискатель может иметь чувствительные или
простых показаний в зависимости от схемы.Для завершения требуется всего три компонента
, помимо телефона. Компоненты — два резистора и цепь
LC. Однако из-за простоты схемы его чувствительность
немного скомпрометирована. Детектор достаточно чувствителен только для того, чтобы найти монету, закопанную в землю
.

Но этот план дает несколько удивительных советов, как сделать детектор без пайки
. Для всех, у кого нет времени учиться паять, это
идеальный вариант.Этот план, сопровождаемый изображениями для каждого шага и инструкциями по переходу от точки к
баллам, является обязательным для всех, кто разбирается в гаджетах.

№4. Металлоискатель Arduino

Изготовлен из игрушечного погонщика сорняков, этот извещатель имеет регулируемые настройки чувствительности.
По мере того, как настройки чувствительности перемещаются от меньшего к большему, он начинает обнаруживать
элементов меньшего размера. Он может улавливать частоты от более крупных предметов, таких как банки с газировкой и сотовые телефоны
, при самой низкой настройке чувствительности.В то же время этого достаточно, чтобы
обнаруживал винты и монеты при максимальной настройке чувствительности.

Более того, даже дальность действия этого детектора может быть расширена за счет увеличения магнитного поля
, создаваемого индуктором.

Это можно сделать двумя способами:

  • Увеличение тока через проводник
  • Увеличение количества витков в катушке индуктивности

Этот металлоискатель своими руками хорошо работает для обнаружения мелких вещей в вашем доме, которые
нельзя увидеть невооруженным глазом.

№ 5. Восстановленный металлоискатель

Если у вас немного ограниченный бюджет, этот план — ответ на ваши проблемы
. Сделанный с использованием AM-радио, ленты и небольшого калькулятора, этот детектор
подходит, если вы пытаетесь просто повеселиться, обнаруживая металл в своем доме.

Не уверены, сработает ли это? Попробуйте поднести свой детектор к ложке
и обратите внимание, как начинает работать ваш калькулятор. Причина, по которой он работает, заключается в том, что
электронная схема калькулятора генерирует радиочастотный сигнал, который
отражается от ложки.Эти отраженные радиоволны — это то, что мы слышим из радиоприемника
.

Создайте свой самый первый металлоискатель из трех основных материалов за пять шагов или
и того меньше!

№ 6. Недорогой металлоискатель

Этот металлоискатель своими руками изготовлен из пяти вещей — дешевого чипа, конденсатора AC
, двух катушек и наушников. Независимо от своей простоты, детектор
работает хорошо и имеет приличный диапазон сканирования от 12,5 см до
15 см.

Некоторые уникальные особенности этого детектора:

  • Заменяет поисковые и модельные генераторы на передатчики.
  • В схеме всего две основные составляющие.
  • Регулируемая громкость звука

Более того, поскольку схема очень детализирована, шансы на ошибку
мизерны, что делает этот план отличным!

Бонусное чтение

: поскольку драйвер необходим во многих планах, просмотрите эти
обзоров
лучших ударных драйверов 2021
, чтобы сделать лучший выбор.

№ 7. Экологичный металлоискатель

Основная проблема при использовании металлоискателя —
сузить место для копания. Однако этот металлоискатель помогает решить эту проблему. Он оснащен четырьмя поисковыми катушками
и цветным сенсорным экраном для определения места раскопок.

Кроме того, с этим детектором
даже ваша поисковая система стала более совершенной и простой. Некоторые новые функции, включенные в поисковую систему:

  • Автокалибровка
  • Аккумулятор USB
  • Четыре различных режима экрана
  • Частота
  • Регулировка ширины импульса

Равномерное копание упрощается благодаря деревянным шпажкам, которые прикреплены к
каждой катушке.Эти шампуры вдавливаются в землю в том месте, которое вы указали
. Это снижает потребность в копании и, следовательно, снижает воздействие
на окружающую среду.

Наконец, этот детектор может определять местоположение на глубине до 7-10 см, что делает его идеальным для
поиска потерянных монет и колец в парке или на пляжах.

№ 8. Металлоискатель VLF

Основанный на металлоискателе Smart Hunter, этот очень низкочастотный (VLF)
металлоискатель использует передающие и приемные катушки в форме двойной D.
Более того, детектор обладает высокой чувствительностью и может обнаруживать монеты на глубине
до 25 см. Иногда более крупные объекты могут быть обнаружены на расстоянии до 1 м
.

Приложение этого детектора запускается через телефон с помощью специального приложения для детектора металла
. Кроме того, он даже имеет аудиоусилитель и динамик, которые подходят для устройства
, чтобы оно работало более эффективно.

№ 9. Четырехтранзисторный металлоискатель

Если вам предстоит серьезная охота за сокровищами, этот план для вас.Благодаря способности
обнаруживать монеты на глубине 3-4 дюйма, банки с газировкой на глубине 6 дюймов и металлические трубы
, даже больше, этот детектор имеет высокую чувствительность.

При изготовлении этого металлоискателя следует учитывать следующие моменты:

  • Используемые наушники должны иметь высокий импеданс.
  • Обратите внимание на контакт заземления на разъемах.
  • Всегда оборачивайте провода изолентой.
  • Отрегулируйте металлический вал для уравновешивания детектора.

Также рекомендуется проверить устройство на наличие каких-либо неисправностей, прежде чем вы начнете его использовать.
После того, как он будет опробован и протестирован, вы можете начать искать монеты и кольца в
своем саду, парке или даже на пляже!

№ 10. Высокочувствительный металлоискатель

Этот металлоискатель обладает высокой чувствительностью и может использоваться для обнаружения монет,
зарытых в почву на глубину 15-20 см. На плане есть подробная схема
схемы и датчика. В первую очередь потому, что важно правильно изготовить датчик
, чтобы ваш детектор работал нормально.

Помните, поскольку этот детектор немного более продвинутый, чем остальные, для работы с ним потребуется
опыта. Однако, как только вы научитесь использовать
, вы даже сможете различать типы металлов, обнаруживаемых
.

№ 11. Металлоискатель

импульсной индукции

Импульсные индукционные системы используют одну катушку как приемник, так и передатчик
. Этот металлоискатель, сделанный своими руками, имеет систему индукции импульсов, и он
может различать черные и цветные металлы.

Кроме того, это симбиоз Arduino и Android, обладающий высокой чувствительностью. Он работает через мобильное приложение, которое можно бесплатно скачать на любой смартфон.

Катушка этого устройства изготовлена ​​из изолированного медного провода диаметром
0,4 мм. Он содержит 25 витков круглой формы диаметром 19
см. Помните, не держите металлические предметы рядом с катушкой.

Несмотря на то, что устройство выглядит базовым, его работа феноменальна.Он
может обнаруживать мелкую металлическую монету на расстоянии 10-15 см, а более крупную
— на расстояние 30-40 см. Если вы не верите результатам, прилагаемое видео
о работе этого устройства должно вас убедить!

Bonus Read: купите набор инструментов сегодня, если вы энтузиаст DIY.

Ознакомьтесь с этими лучшими беспроводными наборами инструментов и комбинированными наборами.

№ 12. Металлоискатель BFO

BFO (генератор частоты биений) работает путем смешивания двух сигналов для получения слышимой частоты биений
.В то время как один осциллятор остается на определенной частоте,
другой слегка изменяет свою частоту вокруг металла. Произведенная замена шага
информирует пользователей о наличии металла поблизости. Следовательно,
изменение частоты должно быть достаточно большим, чтобы быть заметным.

В основном требуется изменение от 200 до 100 Гц. Это означает, что поисковая катушка
должна работать на высокой частоте. Для этого у
предпочтительно должна быть 30-витковая катушка диаметром примерно 15 см.

Кроме того, перед началом работы с детектором важно протестировать его.
К счастью, этот план научит вас, как это делать. Вы можете использовать свой генератор сигналов
для генерации сигнала, близкого к сигналу поисковой катушки. Разница
между ними будет в слышимом диапазоне.

Наконец, вы должны использовать пластиковый столб в качестве ручки для металлоискателя. После
у вас все готово, и вы можете начать охоту за сокровищами!

№ 13.Портативный металлоискатель

Этот план — еще один способ сделать дешевый и простой металлоискатель своими руками. Однако у
есть еще одна особенность: он портативный! Он также предлагает большие возможности
за счет 3-миллиметрового светодиода для сигнализации и потенциометра для регулировки громкости
при поиске.

В плане для изготовления металлоискателя использовались различные материалы. Для примера
катушка детектора была сделана из пустой коробки Pringles.
Это работает хорошо, так как не всегда легко найти катушки с тем же MH, что и для
. Пока схема приклеивается горячим клеем внутри пустой банки из-под зубной пасты.

Еще один совет, которому следует следовать при создании этого детектора, — это проверить схему на макете
, чтобы убедиться, что она работает. Это даже помогло бы сделать выводы о
дальности обнаружения.

Вы можете переработать банки и коробки, чтобы сделать это устройство, поэтому
сэкономите и получите портативный металлоискатель.

№ 14. Металлоискатель Arduino

Металлоискатель не всегда должен выглядеть скучно, и этот план доказывает это.
С пятью отдельными катушками, которые загораются при обнаружении металла, этот самодельный металлоискатель
является отличным вариантом. Особенно если вы ищете что-то из коробки
. Его яркий синий и желтый цвет подчеркивают красоту этого детектора
, что делает его привлекательным выбором для многих домашних мастеров.

Весь мотив этого плана состоял в том, чтобы немного повеселиться и заменить звуковые индикаторы
световыми индикаторами.Даже печатная плата этого устройства на
отличается от большинства других. В то время как большинство устройств обычно имеют простую печатную плату квадратной формы
, это устройство не имеет. Он имеет шестигранную печатную плату
, которая не только соответствует форме внешней крышки, но также позволяет избежать помех поисковым катушкам
.

Наконец, это устройство даже водонепроницаемое. Окрашивание пластиковой крышки сверху и снизу
гарантирует, что устройство не будет повреждено водой, что позволяет использовать
на открытом воздухе на покрытой росой траве.

Дополнительный совет: делайте провода короткими и с минимальным перекрытием. Это гарантирует отсутствие движения кабельной разводки
и поддерживает стабильность цепи.

№ 15. Открытый металлоискатель Arduino

Большинство планов металлоискателей Arduino выглядят устрашающими из-за количества
компонентов, необходимых для их создания. Но не этот. Список требований для построения этого детектора
намного меньше по сравнению с большинством других, и он также работает в
довольно эффективно.

Основные компоненты, необходимые для его создания:

  • Общий конденсатор
  • Резистор и диод
  • Поисковая катушка
  • Светодиоды
  • Динамик / Наушники

Еще одним преимуществом конструкции этого детектора является то, что он может питаться от одиночного источника питания
5 В. Таким образом, этот металлоискатель не требует много ресурсов, но работает с
безупречно. Более того, он может даже различать ферромагнитные и не ферромагнитные металлы марки
.

При использовании этого детектора важно оставлять катушку на расстоянии ~ 5 секунд от металла
. Когда вы начнете приближаться к металлу, вы заметите, что зеленый или синий светодиодный индикатор
мигает, а в наушниках раздается звуковой сигнал.
Цвет огней и высота звуковых сигналов помогают определить, какой тип металла
вы нашли.

Заключение

Изготовление металлоискателей — отличный способ получить практический опыт.
работает с физическими приложениями.Более того, охота с использованием металлоискателей
сама по себе может стать большим хобби.

Несколько советов, которые следует помнить при использовании металлоискателя:

  • Позаботьтесь о том, чтобы заполнить все отверстия и не оставить повреждений.
  • Держите поисковые катушки близко к земле и параллельно ей.
  • Протестируйте его с помощью нескольких предметов домашнего обихода, прежде чем выносить его на улицу.

Будьте внимательны, чтобы не нарушать границу и не допускать обнаружения металлов на участке
, который вы решили сканировать.Но самое главное, получайте удовольствие
и счастливой охоты!

Возможно, вы захотите увидеть здесь другие планы для самостоятельной сборки:

Двухканальный металлоискатель с двумя перпендикулярными антеннами

Предлагается двухканальный металлоискатель с двумя наборами перпендикулярно ориентированных сенсорных антенн для увеличения обнаруживаемого размера металлического сенсора в диапазоне от миллиметров до сантиметров, в то время как обычный металлический сенсор является предназначен для обнаружения только в миллиметрах или сантиметрах. Были исследованы характеристики двух каналов датчиков обнаружения металла, соответственно, и обсуждалось влияние интерференции при одновременной работе между двумя каналами датчиков.Канал обнаружения металлов, имеющий чувствительность в миллиметровой шкале, показал обнаруживаемую чувствительность к движущемуся железному шарику диаметром до 0,7 мм на частоте возбуждения 50 кГц и улучшенное распределение чувствительности. А канал обнаружения металлов, имеющий чувствительность в сантиметровом масштабе, показал более равномерное распределение чувствительности с гибкостью для будущей модульной конструкции. Эффект интерференции при одновременной работе двух датчиков привел к снижению выходной характеристики, но все еще в пределах полезного диапазона обнаружения.Таким образом, можно было одновременно использовать два датчика с разным диапазоном чувствительности и расширить диапазон обнаружения от миллиметрового до сантиметрового масштаба в пределах практически приемлемых помех.

1. Введение

Датчик обнаружения металла в настоящее время широко используется не только в пищевой, но и в оборонной промышленности [1, 2] для обнаружения металлических предметов в окружающем объекте, и значительные усилия были направлены на повышение чувствительности и селективности. Посторонними материалами являются не только металл, но и дерево, керамика [3] и микробы [4], которые не обнаруживаются с помощью металлического датчика.Предусмотрены другие методы для обнаружения этих материалов, которые нельзя обнаружить с помощью металлического датчика. Среди этих посторонних материалов обнаружение металлических предметов важно [5] в пищевой промышленности, и на этом сосредоточены различные исследования. Спрос на обнаружение металлов высок в пищевой промышленности, и в последнее время для этого уже применяются методы обнаружения с использованием рентгеновских лучей [6] и света [7]. Однако метод, использующий электромагнитную волну, является доминирующим, и недавно были предприняты попытки использования метода с использованием сверхпроводящей катушки [8, 9].Теоретический анализ [10, 11] и анализ чувствительности [12, 13] наряду с формой металлического датчика были выполнены для изучения чувствительности электромагнитного металлического датчика. С другой стороны, были попытки [14] улучшить видимость металлической детали за счет обработки сигналов. Материнское тело, содержащее металлическую деталь, важно с точки зрения селективности, и предпринимались попытки обнаружить инородные частицы в порошке [15]. Структура сенсорной головки в металлоискателе играет важную роль с точки зрения чувствительности, и в этом отношении были проведены соответствующие исследования [16].Активные исследования проводились для различных видов и форм металла в металлической головке датчика [17]. Однако одноканальный датчик обнаружения металла не показал разрешающей способности чувствительности в широком диапазоне размеров металла от миллиметров до сантиметрового масштаба. Таким образом, возникла необходимость каскадировать датчики с разным разрешением чувствительности. Датчик обнаружения металла, использующий электромагнитную волну, обычно сильно подвержен влиянию близлежащей электромагнитной волны, которая в несколько раз превышает ширину датчика; таким образом, невозможно разместить второй датчик рядом с первым датчиком.Эта статья посвящена экспериментальной разработке двухканальных металлических датчиков путем каскадирования двух металлических датчиков с разным разрешением чувствительности с минимальными помехами друг другу. Представлена ​​модель с двумя перпендикулярными антеннами, чтобы минимизировать физические помехи, и исследован оптимальный метод обнаружения сигнала, чтобы исключить помехи между металлическими датчиками, имеющими разное разрешение чувствительности.

2. Модель с двумя антеннами
2.1. Одноканальная модель

Обычный датчик обнаружения металла с разрешением чувствительности в миллиметрах имеет набор антенн, одну передающую антенну и две приемные антенны, которые подключены с противоположной полярностью для подавления сигнала приема в установившемся режиме.В случае, когда объект, содержащий несферическую металлическую деталь, проходит через пространство поперечного сечения полой антенны, как показано на Рисунке 1, тогда датчик показывает хорошую чувствительность только для одного направленного положения, между металлической деталью и антенной, где возмущение в электромагнитных потокосцеплениях становится максимальным. В одноканальной модели движущийся объект, содержащий металлическую деталь, постепенно возмущается от первых связей электромагнитного потока между антенной № 1 передачи и антенной № 1 приема до вторых связей электромагнитного потока между антенной № 1 передачи и антенной № 2 приема.Величины этих пространственно изменяющихся электромагнитных потоков наводят токи в приемные антенны №1 и №2, и разница токов между приемными антеннами №1 и №2 становится выходным током, который представляет собой дисбаланс электромагнитного потока антенного набора №1.


Эквивалентная схема набора антенн, одной передающей и двух приемных антенн, показана на рисунке 2. Мгновенное выходное напряжение без нагрузки может быть выражено как разность взаимной индуктивности между передающей и соответствующая приемная антенна, как показано в (1), а также пропорциональна частоте возбуждения, как показано в (3).В этой модели расстояние между передающей антенной и приемной антенной ближе, чем расстояние до проходящего объекта, содержащего металлическую деталь; таким образом, индуктивности антенны больше взаимной индуктивности, и. Если передающая антенна возбуждается синусоидальным сигналом, то ток антенны становится таким, как показано в (2). Рассмотреть возможность

Когда выражение векторного вектора используется для магнитной связи, тогда векторное напряжение из-за магнитной связи может быть выражено как в (4), где обозначает векторный ток:

Следует отметить, что дисперсия взаимной индуктивности играет ключевую роль в определении чувствительности датчика обнаружения металла.Взаимная индуктивность выражается как в (5), где и представляют собой коэффициент связи между передающей и приемной антеннами, соответственно. И эти коэффициенты связи имеют значение:

В установившемся состоянии начального измерения, и настраиваются на, и выходное напряжение становится. Когда они выше и больше для того же размера металлической детали, тогда это выгодно с точки зрения чувствительности.

2.2. Двухканальная модель

В двух наборах антенн, как показано на рисунке 3, движущийся объект после прохождения набора антенн №1 постепенно возмущается от третьей связи электромагнитного потока между антенной №2 TX и антенной №4 к четвертой связи электромагнитного потока между антенной №4. антенна №2 и приемная антенна №3.Также величины пространственно изменяющихся электромагнитных потоков наводят токи в приемные антенны №4 и №3, и разница в токе между приемными антеннами №4 и №3 становится выходным током антенного набора №2.


Трудно вычислить дисперсию взаимной индуктивности для движущегося объекта; таким образом делается попытка экспериментального метода. При использовании модели на рисунке 4 выходное напряжение в каждом наборе антенн становится произведением матрицы взаимной индуктивности и мгновенного тока каждой передающей антенны, как показано на рисунке.


Предположим, что это векторный ток в одном проводе передающей антенны №1, это расстояние, в нижнем индексе — удаленная точка вне антенны, в первом нижнем индексе — передающая антенна, в первом нижнем индексе — приемная антенна, во втором — цифра. Числовой индекс — это номер антенны, номер в третьем цифровом индексе — это номер проводника антенны, а с 4-го по 6-й алфавитные и цифровые обозначения соответствуют тому же соглашению, что и для букв с 1-го по 3-й.Тогда это расстояние между одним проводником приемной антенны №1 и одним проводником передающей антенны №1, а также расстояние между одним проводником передающей антенны №1 и удаленной точкой. Потоковую связь с одним проводником приемной антенны №1 за счет одного проводника передающей антенны №1 можно выразить как

Если мы рассмотрим потокосоединение к одному проводнику приемной антенны №1 от двух передающих антенн, это потокосцепление можно выразить как

В этой конфигурации сумма двух токов в антенне TX №1 равна нулю,; то же самое и для антенны № 2 передатчика.Пусть точка перемещается бесконечно далеко так, чтобы набор членов, содержащий логарифмы отношений расстояний от, стал бесконечно малым; тогда отношение расстояний приближается к 1. Подставляя их в (8) и повторно комбинируя некоторые логарифмические члены, мы получаем (9) с единицей вебер-витков / метр:

Таким образом, потокосцепление в приемной антенне №1 становится суммой и, как показано на

Подобным образом все взаимные индуктивности, включая и выражаются аналогично, как показано на

Когда посторонний объект, например, металлический куб, проходит через указанную выше потокосцепление, вышеупомянутая взаимная индуктивность будет нарушена, и нарушенная магнитная связь преобразуется в напряжение на выходном порте датчика.Для металлической сферы, имеющей радиус в метрах от центра антенного проводника, напряженность поля становится равной, и соответственно плотность потока на расстоянии составляет веберс / м 2 . Таким образом, магнитная связь металлической сферой становится такой, как в (12), и эта величина возмущает взаимные индуктивности в установившемся режиме:

3. Метод обнаружения сигнала
3.1. Подавление шума с использованием BPF

Двухканальный датчик обнаружения металла использует две разные частоты между наборами антенн №1 и №2, чтобы избежать помех.В частотной области эти помехи можно минимизировать, увеличив частотную избирательность приемника. Предположим, что характеристика полосового фильтра (BPF) в приемнике №1 равна и для приемника №2, а спектральная плотность мощности входящего сигнала соответствует приемнику №1 и приемнику №2. Тогда спектральные плотности мощности приемника №1 и приемника №2 станут такими, как в

По мере сужения полосы пропускания BPF система становится более устойчивой к окружающим шумам. Однако это также увеличит нестабильность в поддержании центральной частоты BPF, поскольку значения компонентов могут изменяться вместе с изменением температуры.Итак, существует оптимальное с практической точки зрения значение BPF, которое необходимо определить экспериментально.

3.2. Подавление шума с использованием PSD

Входной сигнал после BPF подается в фазочувствительный детектор (PSD) для повышения избирательности против мешающего шума, как показано на рисунке 5. Во временной области выходной сигнал от двух приемных антенн, которые соединены для подавления друг друга. , поступает на приемник как. После BPF его фильтруют, и продукт с снова фильтруют через LPF, в результате чего получают.Если входной сигнал представляет собой смесь сигналов от передающих антенн №1 и №2 и шума, то он выражается как в (14) и как в (15). Следовательно, В случае, если полосовой фильтр идеально настроен, а фильтр нижних частот идеально отсекает ненужную частотную составляющую, тогда выходной сигнал детектора сигнала датчика будет таким, как в (16). Этот выходной сигнал в (16) показывает уровень сигнала постоянного тока, который пропорционален входному сигналу приемника с минимальными помехами:


В случае, если мешающий сигнал имеет ту же частоту, что и сигнал обнаружения датчика, но с другим соотношением фаз, то выходной сигнал после LPF на рисунке 5 будет сдвинут по уровню постоянного тока, в зависимости от степени помех, в идеале. кейс.

4. Проектирование системы
4.1. Датчик обнаружения металла с чувствительностью в миллиметровом масштабе

Три частоты, такие как 50 кГц, 200 кГц и 400 кГц, были разработаны для ввода в экспериментальную установку датчика, имеющую чувствительность в миллиметровом масштабе, для исследования частотно-зависимой чувствительности при одновременной работе. с чувствительностью датчика в сантиметрах. Антенный набор №1 находился в металлическом корпусе, имеющем внешний размер в см с отверстием и в см для обнаружения входа для защиты внешнего мешающего шума, как показано на рисунке 6.Однооборотные антенны использовались для упрощения балансировки между антеннами.


Выходное напряжение от пары приемных антенн, которая была подключена с противоположной полярностью, было отрегулировано для получения почти нулевого напряжения с помощью двух винтов, как показано на рисунке 7. И степень нулевого выходного сигнала была измерена как CMRR (общий режим коэффициент отклонения). После настройки нулевого положения внутренняя полость антенного комплекта №1 была заполнена эпоксидной смолой для защиты от внешних ударов и вибрации.


Блок-схема передатчика для набора антенн №1 показана на рисунке 8.Для обеспечения температурной стабильности использовался кварцевый генератор 8 МГц, а основная частота была разделена на желаемые частоты. Переключатель с временным разделением был облегчен для выбора одиночных или смешанных частот. Часть этого сигнала передатчика подавалась на фазочувствительный детектор приемника как источник синхронного триггерного сигнала. Схема согласования антенны использовалась для согласования полного сопротивления антенны с сопротивлением передатчика.


Блок-схема приемника для комплекта антенн №1 показана на рисунке 9.Входной сигнал от приемной антенной пары подавался в схему согласования антенн не только для согласования импеданса, но и для повышения напряжения. После усиления в блоке PRE AMP и фильтрации мешающего сигнала в блоке BPF фаза входного сигнала сравнивалась с синхронным сигналом запуска в блоке PSD. Наконец, высокочастотная составляющая была отфильтрована в блоке LPF, и только постоянная составляющая, пропорциональная разности фаз, появилась и усилилась в блоке AMP в качестве выходного сигнала. Микропроцессор использовался для управления выбором частоты и другими параметрами управления в блоке MICOM.


4.2. Датчик обнаружения металла с чувствительностью в сантиметровом масштабе

В экспериментальную установку датчика была введена единичная частота 20 кГц, имеющая чувствительность в сантиметровом масштабе, для исследования мешающего воздействия на прежний датчик, имеющий чувствительность в миллиметровой шкале, при одновременной работе. Расположение комплекта антенн № 2 было разработано перпендикулярно антенне № 1, чтобы избежать помех. Многооборотные антенны использовались для компенсации дефицита чувствительности из-за относительно большого расстояния между передающей и приемной антеннами, как показано на рисунке 10.Передающая антенна была изготовлена ​​с использованием станка с ЧПУ для получения достаточной толщины и уменьшения сопротивления, а приемные антенны были изготовлены путем нанесения рисунка на печатную плату. Пара приемных антенн подключена с противоположной полярностью и настроена на смещение, близкое к нулю.

Блок-схема передатчика показана на рисунке 11. Частота возбуждения регулировалась с помощью потенциометра для выбора частоты для оптимальной работы.


На стороне приемника, как показано на рисунке 12, входной сигнал от пары приемных антенн напрямую усиливался в блоке PRE AMP без схемы согласования антенн.После фильтрации интерференционного сигнала в блоке BPF фаза входного сигнала сравнивалась с синхронным триггерным сигналом от передатчика в блоке PSD. Наконец, высокочастотная составляющая была отфильтрована в блоке LPF и усилена в блоке AMP в качестве выходного сигнала. В качестве выходного сигнала появлялась только составляющая постоянного тока, пропорциональная разности фаз между входным сигналом и синхронным сигналом запуска.


5. Измерение
5.1. Датчик обнаружения металла с чувствительностью в миллиметровом масштабе

Для этого канала обнаружения чувствительность является ключевой частью датчика.Минимальный размер обнаруживаемой металлической детали связан со степенью подавления сигналов от принимающей пары антенн, поскольку это ограничивает максимальный коэффициент усиления. И этот показатель качества (FOM) представлен CMRR, который представляет собой логарифмическое значение дифференциального выхода, 2 мВ pp (до усиления), по одноканальному выходу, 10 В pp . Измеренный CMRR составил -74 дБ, как показано на

Зависимость выходного напряжения от размера черного металла была исследована с использованием испытательных шариков из черных металлов диаметром 0.8 мм, 1,0 мм и 1,2 мм при частоте возбуждения 50 кГц и частоте среза фильтра нижних частот 33 Гц после PSD (фазочувствительный детектор). Данные измерений показали, что выходное напряжение было почти линейно пропорционально объему, как показано на рисунке 13. Минимальный обнаруживаемый размер составлял до диаметра 0,8 мм при использовании частоты среза LPF (фильтра нижних частот) 33 Гц.


Зависимость выходного напряжения от частоты приложения (50 кГц, 200 кГц и 400 кГц) была исследована с использованием шарика Fe 1.2 мм диаметром, как показано на рисунке 14. Данные измерений показали, что выходное напряжение возрастало с увеличением частоты подачи, и это было точно согласовано, если мы умножили частотные характеристики согласующей схемы антенны на теоретически ожидаемое значение.


Датчик обнаружения металла, использующий дифференциальные рамочные антенны, обычно страдает неравномерным распределением чувствительности внутри полой центральной области катушки, которая используется для прохождения образца, из-за природы петлевой катушки.В идеале необходимо поддерживать одинаковую чувствительность по всей зоне чувствительности. В противном случае металлический шар образца не будет обнаруживаться при прохождении центральной области, даже если он был обнаружен при прохождении краевой области. Поэтому необходимо скомпенсировать распределение чувствительности для получения почти равной чувствительности. Распределение чувствительности было измерено для указанного выше входа датчика, мм, с применением 50 кГц и с использованием испытательного шарика из железа диаметром 1,2 мм, как показано на рисунке 15 (а). Две небольшие медные пластины в центре катушки приемной антенны в горизонтальном направлении были исправлены, чтобы компенсировать чувствительность при обнаружении входа за счет обеспечения большего количества связей электромагнитного потока.Данные измерений показали, что чувствительность составляла -6 дБ в центре входа зондирования, как показано на рисунке 15 (b), что на +4 дБ выше по сравнению со случаем без пятен.

Полоса пропускания LPF после PSD имеет решающее значение для повышения чувствительности. В обычном ФНЧ чем уже полоса пропускания, тем ниже уровень шума. Однако для металлического датчика для обнаружения движущегося объекта чувствительность ухудшается, если полоса пропускания LPF слишком узкая, потому что частотная составляющая из-за движущегося объекта ослабляется.Напротив, уровень шума возрастает, если полоса пропускания LPF слишком велика, что приводит к ухудшению отношения сигнал / шум (SNR). Также улучшенное соотношение сигнал / шум за счет сужения полосы пропускания LPF не означает увеличения чувствительности, если оно не усилено. Поэтому сигнал этого сверхчувствительного металлического датчика, работающего близко к пределу обнаружения, можно усилить только после снижения уровня шума без ущерба для полезной частотной составляющей движущегося объекта. Влияние ширины полосы ФНЧ измерялось путем изменения частоты среза, чтобы найти оптимальную чувствительность при применении частоты возбуждения 50 кГц.Во время эксперимента сигнал был усилен до уровня, который был эквивалентен уменьшению минимального уровня шума, при сохранении общего коэффициента усиления системы, поскольку не существовало запаса для усиления сигнала из-за собственного уровня шума для сверхвысокочувствительного металлического датчика, работающего близко к пределу обнаружения. . Были предприняты попытки установить частоты среза LPF от 33 Гц до ниже 11 Гц, а частота ниже 11 Гц привела к более слабому выходному сигналу из-за слишком глубокого затухания частотной составляющей сигнала.Частота среза 11 Гц показала лучшие характеристики для движущегося объекта, что было аналогично практическому применению. Характеристики сигнала при частоте среза 11 Гц вместе с частотой среза 33 Гц показаны на рисунке 16 для сравнения.


Дальнейшее испытание проводится с применением 50 кГц для шарика из черных металлов диаметром 0,8 мм и 0,7 мм с использованием той же частоты LPF для определения предела обнаружения, как показано на рисунке 17. Измерения показали, что этот металлический датчик способен обнаруживать железо. тестовый образец шарика до 0.Диаметр 7 мм. Таким образом, минимальный обнаруживаемый размер шарика Fe был увеличен с 0,8 мм до 0,7 мм за счет оптимизации частоты среза LPF.

5.2. Датчик обнаружения металла, имеющий чувствительность в см шкале

Измеренные данные показали, что предыдущий сверхвысокочувствительный металлический датчик имел линейный диапазон отклика примерно 0,7 мм ~ 4 мм диаметра шарика Fe, когда частота возбуждения составляла 50 кГц, а частота среза LPF составляла 11. Гц. При превышении этого предела размера датчик обнаруживает присутствие металла, но выходной отклик становится насыщенным и не может установить дополнительную пороговую точку для другого размера испытательного шара Fe.Конечно, обнаруживаемый размер может быть изменен путем изменения коэффициента усиления датчика; однако дальность обнаружения остается такой же, как указанная выше. Металлический датчик с чувствительностью в сантиметрах был разработан с возможностью размещения другого датчика на соседней оси для компенсации чувствительности, зависящей от направления. Таким образом, этот датчик позволяет обнаруживать в широком диапазоне размеров металла от миллиметров до сантиметрового масштаба, если он совмещен с предыдущим сверхчувствительным металлическим датчиком.

Одноканальный отклик был измерен с уменьшенным усилением, чтобы охарактеризовать частотные характеристики датчика с использованием антенны TX № 2 и антенны RX № 3, как показано на рисунке 18.В ходе эксперимента была вставлена ​​металлическая пластина, занимающая 66% поверхности антенны, чтобы определить влияние металла на чувствительность в проецируемом частотном диапазоне. Наблюдался высокий пик около 50 кГц, и это рассматривалось как характеристики согласования частот между антенной и передатчиком. Однако влияние металлической детали было аналогичным в диапазоне 40 ~ 60%, который был определен как выходное напряжение после вставки по сравнению с выходным напряжением перед вставкой, как показано на Рисунке 19. Следует отметить, что чувствительность увеличивается вместе с увеличением частоты как ожидается, даже если абсолютное значение выходного напряжения уменьшается в области более высоких частот из-за характеристик согласования частот.



Влияние расстояния «» между передающей антенной и приемной антенной было исследовано путем разделения расстояния в два раза, и было вычислено соотношение, выходное напряжение при превышении выходного напряжения при, как показано на рисунке 20. Измеренный результат показывает тенденцию, близкую к правилу. Расхождение между идеальными данными и данными измерений рассматривается из-за утечки электромагнитных потоков по мере увеличения расстояния.


Распределение чувствительности в горизонтальном направлении было исследовано путем постепенного покрытия антенны вдоль средней линии между передающей и приемной антеннами с помощью испытательной металлической пластины.Измеренные данные показали довольно хорошую горизонтальную линейность, нелинейность всего 6.5%. Изменение чувствительности в вертикальном направлении было измерено как ~ 13% вдоль линии 20 ~ 80%, соединяющей передающую антенну и приемную антенну. Это означает, что конфигурация рамочных антенн, обращенных друг к другу, обеспечивает более равномерное распределение чувствительности.

После одноканального эксперимента две приемные антенны были подключены в дифференциальном режиме, и усиление было соответственно увеличено.CMRR был измерен аналогично предыдущему каналу датчика и был рассчитан как –52 дБ, что меньше 22 дБ по сравнению с первым датчиком. Таким образом, этот канал датчика считается подходящим для металлического объекта, имеющего размер в сантиметровом масштабе. Для определения чувствительности по трем осям были испытаны шарики из тестовых образцов из железа, имеющие размер (мм). Результат представлен в Таблице 1. Если мы расширим концепцию конфигурации антенны в горизонтальном направлении вместо нынешнего вертикального направления, то мы можем получить повернутое распределение чувствительности.Если мы каскадируем эти две конфигурации антенн, то мы сможем получить более равномерное распределение чувствительности, компенсируя чувствительность друг другу.


Чувствительность Направление
направление
(мВ)
направление
(мВ)
направление
(мВ)

Пиковое выходное напряжение (А.U.) 110 80 210

5.3. Одновременная работа двух датчиков

Целью данного исследования является получение широкого диапазона откликов датчиков по всему объекту от миллиметрового до сантиметрового масштаба путем каскадного соединения двух датчиков, имеющих разную чувствительность и распределение. Однако датчик обнаружения металла, работающий в дифференциальном режиме, поддерживает чрезвычайно высокое усиление для повышения чувствительности; таким образом, на него сильно влияют близлежащие электромагнитные волны.Поэтому влияние другого датчика в основном исследуется путем измерения с использованием существующей экспериментальной установки, чтобы проверить осуществимость этой концепции. Поскольку экспериментальная установка была чрезвычайно чувствительна к внешней вибрации и электромагнитным волнам, все антенны были жестко смонтированы, отрегулированы и закреплены с помощью эпоксидной смолы; таким образом, было невозможно изменить такие параметры, как размеры и расстояния. Отклик датчика, имеющего чувствительность в миллиметровой шкале, показал более низкий отклик ~ 30%, как показано на рисунке 21, при одновременной работе с датчиком, имеющим чувствительность в сантиметровой шкале, по сравнению с автономной работой.Это считается из характеристик PSD, потому что выходной сигнал PSD имеет тенденцию к уменьшению вместе с увеличением внешнего шума. Однако невозможно было разделить каждый эффект по отдельности, такой как эффект BPF, эффект экранирования и эффект PSD, из-за тонко интегрированной сенсорной системы.


Напротив, отклик датчика, имеющего чувствительность в сантиметровой шкале, при одновременной работе с датчиком, имеющим чувствительность в миллиметровой шкале, был немного меньше, ~ 85%, по сравнению с автономной работой.Это также учитывается в характеристиках PSD, но с меньшим эффектом из-за более низкого уровня усиления датчика, имеющего чувствительность в сантиметровом масштабе.

6. Заключение

Были исследованы характеристики датчика обнаружения металла, имеющего два набора перпендикулярно ориентированных сенсорных антенн, с целью расширения диапазона обнаружения от миллиметрового до сантиметрового масштаба с меньшими помехами за счет каскадного соединения двух датчиков. Металлоискатель с чувствительностью в миллиметровой шкале имел более высокую чувствительность к железным сферам диаметром до 0.7 мм при частоте возбуждения 50 кГц в автономном режиме. Отклик датчика был пропорционален частоте возбуждения и объему исследуемого образца железа, как и ожидалось. Распределение чувствительности в проходе объекта показало повышенную однородность за счет прикрепления медной накладки к катушке обмотки. Полоса пропускания ФНЧ после фазочувствительного детектора около 11 Гц оказалась оптимальной для повышения чувствительности. Датчик обнаружения металла, имеющий чувствительность в сантиметровой шкале, показал более равномерное распределение чувствительности, но с более низкой чувствительностью, что подходило для расширения диапазона зондирования до сантиметровой шкалы с минимальными помехами.Эта антенная структура, обращенная друг к другу, имеет преимущество простого добавления дополнительных осей; таким образом, он позволяет модульной конструкции достичь почти равномерного распределения чувствительности без чувствительности, зависящей от направления. Было исследовано влияние помех при одновременной работе двух датчиков, и результат измерения показал пониженный выходной отклик, но все еще в пределах полезного диапазона обнаружения. Таким образом, можно было одновременно использовать два датчика с разным диапазоном чувствительности и расширить диапазон обнаружения от миллиметрового до сантиметрового масштаба в пределах практически приемлемых помех.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов относительно публикации данной статьи.

Благодарность

Эта работа была поддержана исследовательским грантом Инчхонского национального университета в 2013 году.

DIY-чувствительный металлоискатель Arduino IB

Чувствительность удовлетворительная, учитывая, что это относительно простое устройство. Это продолжение проекта Дэвида Крокера, представленного на Arduino CC Forum в 2013 году.Я решил протестировать его код, потому что не нашел никаких доказательств (фото или видео), что этот металлоискатель был кем-то сделан и работает хорошо.

Этот проект спонсируется PCBgogo:

www.pcbgogo.com

Сначала я сделал базовую версию с кодом, представленным на GitHub, чтобы убедиться в функциональности устройства, а затем обновил код, чтобы он имел звуковой сигнал, а на ЖК-дисплее 16 на 2 отображается визуальная информация о типе обнаруженного объекта (железорудный или цветной материал) и гистограмма ЖК-дисплея для близости обнаруженных объектов.
Устройство очень простое в сборке и состоит всего из нескольких компонентов:
— нано-микроконтроллер Arduino
— Операционный усилитель (в моем случае LT1677, но вы можете использовать TL081 или 741)
— Мало резисторов и конденсаторов
— Маленький транзистор и динамик
— ЖК-дисплей
— 3 переключателя
— Потенциометр
— Батарейки
— И поисковые катушки

Это технология индукционного балансного детектора СНЧ (очень низкой частоты), содержащая две идентичные катушки: передающую и приемную.2 эмалированных медных провода в форме буквы D, обернутые изолентой, экранированы алюминиевой фольгой, перевязанной луженой медной проволокой (оставив небольшой зазор, чтобы экран не вел себя как закороченный виток), и закреплены стяжкой их на пластиковую тарелку.

Сначала нам нужно определить параллельную резонансную частоту первичной цепи катушка-конденсатор с помощью одного из многих онлайн-калькуляторов. Я измерил его осциллографом, но если придерживаться размеров, указанных выше, то будет ровно 7.64 кГц, поэтому вы можете напрямую ввести значение, указанное в коде. В случае другого значения резонансной частоты нам необходимо внести соответствующее изменение в код в очереди:
#define TIMER1_TOP (249) // точная настройка частоты
Как вы можете видеть на видео, результаты следующие: на удивление хорошо. Без наличия металла устройство отлично работает. Дальность действия относительно велика, например, металлическая крышка диаметром 15 см обнаруживается на расстоянии более 30 см.Более крупные металлические предметы обнаруживаются на расстоянии более 40-50 см. Мы можем обнаружить мелкую монету на расстоянии 15 см в воздухе. Я использую две литиевые батареи для питания, которые соединены последовательно (7,4 В), и это напряжение подключается к входу Vin Arduino. Потребление не превышает 20 мА, поэтому батарейки работают очень долго. На видео подробно описана конструкция всего устройства.
Это только предварительные результаты. Существует возможность значительно улучшить чувствительность, вставив силовой МОП-транзистор для управления катушкой Tx, но я протестирую и представлю его в одном из следующих видео.

Насколько глубоко может зайти металлоискатель? (Обновлено 2021 г.) — Металлоискатели метро

В этой статье есть партнерские ссылки, а это означает, что мы можем получать небольшую комиссию, если вы совершаете покупки по этим ссылкам.

Вам интересно узнать об обнаружении металлов и узнать, на какую глубину может заходить металлоискатель?

Большинство металлоискателей могут обнаруживать объекты глубиной около 4–8ʺ (10–20 см). В идеальных условиях металлоискатель среднего радиуса действия может достигать глубины 12–18ʺ (30–45 см) под землей. Некоторые специализированные детекторы могут работать на глубине до 65 футов (20 м).

Конкретная глубина зависит от типа детектора, который вы используете, и типа объекта, который вы пытаетесь обнаружить. И другие факторы, такие как минералы в почве.

В этой статье мы рассмотрим, насколько глубоко может обнаруживать металлоискатель. По теме много противоречивой информации и неясных объяснений. Мы здесь, чтобы помочь во всем этом разобраться.

Сначала мы объясним, как размер, форма и ориентация предмета, который вы ищете, влияют на то, насколько глубоко вы можете его обнаружить.Далее мы рассмотрим различные типы доступных металлоискателей. Мы расскажем все, что вам нужно знать, от частот до поисковых катушек. Наконец, мы рассмотрим, как минералы в земле могут влиять на глубину поиска. Давайте копаться.

Металлический объект: ваша цель

Металлоискатели могут обнаруживать только металлические предметы. Если вы ищете бриллианты или дерево, вам не повезло. На языке металлоискателя любой металлический объект, который вы ищете, является целью.

Не путать с универмагом, такой целью может быть потерянное кольцо или набор ключей.Это может быть клад, знаки собственности или крышка отстойника. Как бы то ни было, это металлическая вещь, которую вы хотите найти.

Чем больше вы знаете о своей цели, тем лучше вы подготовитесь к ее поиску. Металлический состав, размер, форма и ориентация цели влияют на глубину погружения металлоискателя.

Размер цели
Металлоискатель может обнаруживать большие цели на большей глубине, чем меньшие. Это связано с тем, что более крупные объекты имеют большую площадь поверхности, что создает большее нарушение электромагнитного (ЭМ) поля, создаваемого металлоискателем.

Форма цели
Круглые цели, такие как монеты или кольца, и плоские прямоугольные объекты, такие как металлические коробки или сундуки, легче обнаружить на большей глубине из-за большей обнаруживаемой площади поверхности. Длинные или тонкие формы, такие как гвозди или проволока, труднее обнаружить в глубине почвы.

Ориентация цели
Плоскую (горизонтальную) цель легче обнаружить на глубине, чем вертикальную цель. Это связано с тем, что существует большая площадь поверхности, которая может нарушить электромагнитное поле детектора.Вертикальная цель обеспечивает меньшую площадь поверхности для работы и, следовательно, ее труднее обнаружить.

Целевой состав
Тип металла, который вы ищете, влияет на то, насколько глубоко вы его найдете. Вы можете обнаружить металлы с высокой проводимостью электричества (например, серебро) на большей глубине, чем металлы с меньшей проводимостью, такие как золото, свинец или нержавеющая сталь.

Далее мы обсудим различные типы доступных металлоискателей и то, насколько глубоко они могут работать.

Металлоискатели стандартные

Модель
Garrett ACE Apex
  • Частота:
    Multi-Flex (от 5 кГц до 20 кГц)
  • Поисковая катушка:
    11ʺ x 6ʺ (Double-D)
  • Глубина:
    4 — 8ʺ (10 см — 20 см)
Купить на Amazon
Garrett AT Pro
  • Частота:
    Одинарный (15 кГц)
  • Поисковая катушка:
    11ʺ x 8.5ʺ Двойной-D
  • Глубина:
    6-10ʺ (15 см — 25 см)
Купить на Amazon
Минелаб Ванкуиш 540
  • Частота:
    Multi-IQ (от 5 кГц до 40 кГц)
  • Поисковая катушка:
    12ʺ x 9ʺ Double-D
  • Глубина:
    4 — 8ʺ (10 см — 20 см)
Купить на Amazon
Minelab Equinox 800
  • Частота:
    Multi-IQ (от 5 кГц до 40 кГц)
  • Поисковая катушка:
    11ʺ (Double-D)
  • Глубина:
    6-10ʺ (15 см — 25 см)
Купить на Amazon

Так что же отличает эти металлоискатели друг от друга по глубине? Три вещи: частота, на которой они работают, программное обеспечение, которое они используют, а также размер и форма поисковой катушки детектора.

Частоты

Первое различие между металлоискателями — это частота, на которой они работают. Но что это значит?

Рабочая частота металлоискателя — это количество проникающих через землю электромагнитных (ЭМ) волн, которые он может передавать в секунду. Мы измеряем эти частоты в килогерцах (кГц). Например, частота 7 кГц может передавать 7000 электромагнитных волн в секунду. С другой стороны, частота 40 кГц может передавать 40 000 волн в секунду.

Большинство металлоискателей работают на частоте от 7 кГц до 25 кГц.Существует два основных типа частотных технологий: одночастотные и многочастотные.

Одночастотный

В большинстве металлоискателей начального уровня используется одночастотная технология, называемая VLF. VLF означает очень низкая частота. Он непрерывно передает одночастотную электромагнитную волну в землю.

Низкие частоты (менее 8 кГц) лучше всего подходят для глубоких, больших или высокопроводящих целей, таких как серебро и медь. Высокие частоты (около 40 кГц) чувствительны к мелким золотым самородкам и другим менее проводящим металлам.Но они не реагируют на более проводящие металлы, которые можно легко обнаружить на низких частотах.

Некоторые низкие частоты подвержены помехам от электроники и линий электропередач. Это, как мы упоминали ранее, электромагнитные помехи или EMI.

Многочастотный

В металлоискателях высшего класса используется многочастотная система передачи. Многочастотная технология позволяет одновременно передавать несколько частот по спектру. Это делает металлоискатель чувствительным как к малым, так и к большим или глубоким целям одновременно.

Garrett Multi-Flex — это многочастотная система передачи и обработки сигналов, используемая в его детекторе ACE Apex. Он использует частотный диапазон от 5 кГц до 20 кГц.

Система передачи и обработки Minelab Multi-IQ широко признана лучшей в отрасли. Multi-IQ работает в диапазоне частот от 5 кГц до 40 кГц. Он отличается тем, как программное обеспечение детектора обрабатывает получаемые сигналы.

Функции программного обеспечения

Помимо частоты, есть программные функции, которые влияют на глубину обнаружения металлоискателем.

Балансировка грунта — это функция, доступная на многих металлоискателях. Он работает, чтобы свести к минимуму влияние минералов в земле. Мы подробно рассмотрим минерализацию грунта позже в этой статье, но давайте кратко рассмотрим его.

Минерализация грунта может давать ложные сигналы. Это когда металлоискатель издает звуковой сигнал, как будто цель находится в земле, но он просто обнаруживает частицы железа или соли в почве.

Чтобы смягчить это, функции балансировки грунта отключают сигналы, получаемые от минералов в земле.Это оставляет только сигналы от реальных целей.

Влияет ли балансировка грунта на глубину?

Эффекты минерализации грунта могут маскировать небольшие цели под поверхностью. Используя балансировку грунта, вы можете обнаруживать драгоценности или монеты, спрятанные в высокоминерализованной почве.

Дискриминация означает способность металлоискателя точно различать металлические предметы. Это основано на их электропроводности и / или магнитных свойствах.

Некоторые металлы, например серебро, обладают высокой проводимостью электричества.Их можно разделить на основе их проводимости по сравнению с менее проводящими металлами, такими как золото или сталь. Другие металлы, такие как железо, являются магнитными и могут быть идентифицированы таким образом.

Влияет ли дискриминация на глубину?

Когда вы обнаруживаете нежелательные цели, такие как гвозди или винты, вы можете обнаруживать более глубокие цели, такие как монеты, спрятанные под другими.

Поисковые катушки

Поисковая катушка — это круглый предмет на конце стержня металлоискателя.Судя по названию, он состоит из двух наборов спиральных проводов. Один комплект, передающая катушка, генерирует электромагнитное (ЭМ) поле. Другой набор, приемная катушка, обнаруживает нарушения в этом поле.

Эти нарушения указывают на то, что металлический предмет может быть в земле. Есть много размеров, форм и конфигураций поисковых катушек. Каждый предназначен для разных целей, областей поиска и уровней минерализации.

Размеры поисковой катушки

Размер поисковой катушки определяет, какую площадь может покрыть металлоискатель.При перемещении катушки по земле поисковая катушка среднего размера может проходить от 2 футов до 3 футов (от 0,61 до 0,91 м) каждые 3-4 секунды.

Насколько глубоко поисковая катушка может обнаружить?

Как правило, глубина обнаружения поисковой катушки равна ее диаметру.

Чем больше катушка, тем глубже она может обнаружить цель. Но есть точка, в которой генерируемое электромагнитное поле настолько велико, что детектор не может обнаруживать мелкие объекты. Для монет и колец этот порог представляет собой поисковую катушку диаметром более 14-15ʺ (35-38 см).

Маленькие поисковые катушки (также называемые снайперскими катушками) имеют размер 4–7ʺ (10–18 см) и могут обнаруживать почти такую ​​же глубину, как и стандартные катушки 9–10ʺ (22–25 см). Как мы отмечали в предыдущем разделе, это от 6 до 8ʺ (15–20 см) в глубину.

Эти маленькие катушки полезны в «захламленных местах», таких как приусадебные участки и заваленные мусором парки. Они генерируют концентрированные электромагнитные поля и лучше всего подходят для обнаружения крошечных объектов, таких как серьги или золотые самородки. А небольшие катушки менее восприимчивы к электромагнитным помехам (EMI) от линий электропередач, сотовых телефонов, микроволн и другой электроники.

Поисковые катушки среднего размера входят в стандартную комплектацию большинства металлоискателей. Обычно они имеют диаметр 9–10 дюймов (22–25 см) и создают поле поиска шириной и глубиной около 8 дюймов (20 см).

Поисковые катушки среднего размера хорошо работают в различных областях поиска. Они подходят для обычных целей, таких как монеты, кольца и другие украшения.

Большие поисковые катушки имеют диаметр 10–15ʺ (25–38 см) и обеспечивают максимальную глубину обнаружения и зону охвата.

Они идеально подходят для поиска реликвий или разведки в отдаленных районах. Но есть компромиссы. В частности, они затрудняют обнаружение небольших целей. Большое электромагнитное поле, создаваемое этими катушками, может сделать металлоискатель «слепым» для серег, крошечных золотых самородков и тонких украшений. И они более восприимчивы к электромагнитным помехам, чем катушки других размеров.

Форма поисковой катушки

Поисковые катушки для металлоискателей бывают двух основных форм: кругов и эллипсов.

Круглые поисковые катушки являются наиболее распространенной формой.

Они обеспечивают баланс стабильности, площади покрытия и точности на различных типах почв. Круглые катушки могут обнаруживать немного глубже, чем эллиптические катушки.

Эллиптические поисковые катушки узкие и легче маневрируют в ограниченном пространстве.

Их более длинная форма обеспечивает такую ​​же зону покрытия, как и круглые катушки, но они не могут обнаруживать на такой глубине.

Конфигурации поисковой катушки

Наиболее распространенными типами поисковых катушек являются концентрические катушки, катушки с двойным d и моноконтурные катушки.

Концентрические катушки состоят из большей внешней катушки, которая генерирует электромагнитное поле (передающая катушка), и меньшей внутренней катушки, которая принимает сигналы (приемная катушка).

В сочетании эти катушки проникают в землю с конусообразным полем поиска. Концентрические поисковые катушки являются наиболее точными, но они более восприимчивы к электромагнитным помехам и минералам в земле.

Двойные D-образные катушки имеют передающую и принимающую катушки, расположенные в перекрывающейся D-образной форме.

Эта конфигурация обеспечивает стабильность сигнала, снижает помехи от электромагнитных помех и минерализации грунта, а также возможность обнаружения на больших глубинах, чем концентрические катушки.

Катушки

Double-D генерируют два поля поиска для компенсации минерализации грунта. Первый — это узкое и глубокое поле обнаружения положительных результатов. Во-вторых, широкое отрицательное поле обнаружения, которое работает, чтобы подавить большую часть помех от земли.

Катушки Monoloop похожи на концентрические поисковые катушки.Вместо нескольких намоток проводов у них есть одна намотка, которая передает и принимает сигналы. Эта конфигурация проникает в землю глубже, чем большинство концентрических катушек. Однако компромисс за эту увеличенную глубину заключается в большем вмешательстве со стороны минерализованных почв.

Специализированные металлоискатели

Помимо стандартных металлоискателей, существуют и другие типы специализированных металлоискателей для промышленного и профессионального использования.

Магнитный локатор

Магнитный локатор — это тип металлоискателя, который обнаруживает только железо и сталь.Их используют для нахождения указателей, чугунных труб, крышек водяных клапанов, крышек септиков и других закопанных железных предметов.

Насколько глубоко он может обнаруживать?

Магнитные локаторы могут обнаруживать железные объекты глубиной от 4ʺ (10 см) до 16ʹ (4,8 м), в зависимости от размера объекта.

Schonstedt GA-92xtd — универсальный портативный магнитный локатор.

Двухкамерный извещатель

В отличие от металлоискателя с одной поисковой катушкой, двухкамерные детекторы используют пару прямоугольных поисковых катушек.Эта установка может обнаруживать большие и глубокие цели, такие как тайники и реликвии. Компромисс такой глубины заключается в том, что они не могут обнаруживать объекты меньше 3ʺ (7,5 см).

Насколько глубоко он может обнаруживать?

Детекторы с двумя ящиками могут работать на глубине до 20ʹ (6,1 м). Это зависит от размера цели поиска и минералов в почве.

Двухкорпусный металлоискатель Fisher Gemini-3.

3D наземный сканер

3D сканер грунта — это особый тип металлоискателя с глубоким поиском.Он может обнаруживать захороненные туннели, артефакты, сокровища и подземные аномалии.

Археологи исследуют исторические поселения, руины и поля сражений, не трогая землю. Золотоискатели используют эти сканеры для поиска залежей полезных ископаемых перед копанием. Охотники за сокровищами ищут артефакты из золота, серебра, бронзы и других металлов. И другие люди используют их, чтобы найти туннели, фундаменты и скрытые камеры.

Насколько глубоко он может обнаруживать?

Трехмерный наземный сканер, такой как OKM eXP 6000, может обнаруживать объекты на глубине до 65ʹ (20 м) под поверхностью.

OKM eXp 6000 3D сканер грунта.

Радиочастотный локатор

Радиочастотный локатор — это инструмент, используемый для поиска подземных пластиковых труб. Как для полива или водопровода. Автономный радиопередатчик, называемый зондом, прикрепляется к концу рыбной ленты и вводится в трубу. Зонд передает определенную частоту, которую принимает локатор, позволяя проследить трубу.

Насколько глубоко он может обнаруживать?

В зависимости от типа используемого зонда радиолокатор может обнаруживать зонд до 9ʹ (2.75 м) ниже поверхности.

Радиочастотный локатор.

Минерализация грунта

Эта карта минерализации грунта, адаптированная из отчета Геологической службы США, упомянутого ниже, показывает уровни концентрации минералов в различных почвах на территории Соединенных Штатов.

До сих пор мы несколько раз снижали минерализацию грунта, но что это такое?

Начнем с почвы. Почва состоит из песка, животных и растений и микроэлементов, таких как цинк, магний и железо.Высокий уровень этих микроэлементов в почве известен как минерализация почвы.

Почвы с высоким уровнем минерализации мешают электромагнитному полю, создаваемому металлоискателем. Это вмешательство влияет на то, насколько глубоко вы можете дотянуться.

По мере увеличения уровня минерализации глубина, на которой вы можете обнаружить металлический объект, уменьшается. Металлоискатели без функций балансировки грунта и дискриминации для уменьшения минерализации грунта мало пригодны в наиболее минерализованных областях.

Более минерализованный грунт увеличивает вероятность ложных сигналов. Это когда детектор издает звуковой сигнал, как будто там есть металлический предмет, но он просто улавливает следы минералов в почве.

Что вызывает минерализацию грунта?

Минерализация грунта — естественный процесс. Новые почвы, например, в парках и садах, имеют низкий уровень минеральных веществ. Со временем из-за дождя железо и другие минеральные частицы глубоко в почве мигрируют на поверхность. Они накапливаются, обеспечивая более высокий уровень минерализации почвы.

Насколько минерализована земля, где я живу?

Состав почвы сильно различается от места к месту. Но вы можете оценить уровни минерализации почвы в том месте, где вы живете, посмотрев на ее цвет. От пурпурно-красного до красновато-коричневого, богатая железом земля встречается по всему миру.

На юго-востоке и юго-западе США это почва называется красной глиной. Он встречается в южной и восточной Индии, Австралии, Южной Америке, а также в центральной и южной Африке.В 2007 году Геологическая служба США (USGS) опубликовала отчет о концентрациях микроэлементов в почвах на прилегающих территориях Соединенных Штатов. Отчет включает карты, которые иллюстрируют поверхностные концентрации многих из этих минералов.

Давайте рассмотрим

Большинство металлоискателей в среднем могут достигать глубины 6–8ʺ (15–20 см). Некоторые специальные металлоискатели могут достигать глубины 65ʹ (20 м). Но конкретная глубина, которую вы можете достичь, зависит от других факторов, например, перечисленных ниже.

  • Частота, на которой работает ваш металлоискатель.
  • Такие функции, как дискриминация и балансировка по грунту.
  • Размер, форма и конфигурация поисковой катушки вашего детектора.
  • Размер, форма, ориентация и металлический состав мишени.
  • Уровни минерализации вашей почвы.

Насколько глубоко вы освоили свой металлоискатель? Расскажите об этом в комментариях ниже.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *