Схемы электропитания: Как выбрать другую схему электропитания в Windows 10

Содержание

Как выбрать другую схему электропитания в Windows 10

В Windows по умолчанию установлена “Сбалансированная” схема электропитания и многие пользователи ее используют всё время, никто и ничего не меняет. Если же зайти в настройки электропитания, там есть еще как минимум две схемы – “Экономия энергии” и “Высокая производительность”.  На некоторых компьютерах производители устройства добавляют дополнительную схему электропитания. В сегодняшней статье рассмотрим различные способы выбора другой схемы электропитания.

  • Сбалансированная – данная схема электропитания автоматически повышает быстродействие процессора, когда компьютер нуждается в этом и уменьшает его, когда компьютер бездействует. Эта схема включена по умолчанию и подходит в большинстве случаев всем.
  • Экономия энергии – эта схема пытается всё время экономить энергию, за счет уменьшение яркости экрана, замедления процессора, отключения модулей и т.д. Минусы данной схемы: приложения могут запускаться дольше и работать медленнее, экран может быть недостаточно ярким.   Если ваше устройство работает от батареи, то данная схема поможет увеличить время работы устройства без подзарядки.
  • Высокая производительность – в этой схеме скорость работы вашего процессора всегда на максимуме, даже когда компьютер не используется. Также увеличена яркость экрана и модули (Wi Fi, Bluetooth и т.д.) не переходят в режим энергосбережения.

Выбрать схему электропитания в настройках электропитания

1. Откройте “Электропитание”: один из способов – в строке поиска или в меню “Выполнить” (выполнить вызывается клавишами Win+R) введите команду powercfg.cpl и нажмите клавишу Enter.

2. Напротив нужной схемы электропитания поставьте точку и закройте окно настроек.

Выбрать схему электропитания в Центр мобильности Windows

1. Откройте “Центр мобильности Windows”: один из способов – в строке поиска или в меню “Выполнить” (выполнить вызывается клавишами Win+R) введите команду mblctr. exe и нажмите клавишу Enter.

2. Выберите из меню нужную схему электропитания и закройте окно (смотрите рисунок).

Выбрать схему электропитания в командной строке

1. Откройте командную строку от имени администратора: один из способов – нажать на меню “Пуск” правой клавишей мыши и выбрать из открывшегося меню “Командная строка (администратор)”.

2. Введите команду powercfg /L и нажмите клавишу Enter. Откроется список всех доступных схем электропитания, в средине каждой будет написан ее GUID (смотрите рисунок). Скопируйте GUID той схемы электропитания, которую вы хотите выбрать.

3. Введите команду powercfg /S GUID и нажмите клавишу Enter (в команде нужно заменить GUID на тот, который вы узнали в третьем пункте). К примеру, мы хотим выбрать сбалансированную схему электропитания, в предыдущем пункте мы узнали, что ее GUID 381b4222-f694-41f0-9685-ff5bb260df2e, значит команда будет выглядеть так powercfg /S 381b4222-f694-41f0-9685-ff5bb260df2e

После выполнения команды закройте командную строку.

На сегодня всё, если вы знаете другие способы или у вас есть дополнения – пишите комментарии! Удачи Вам 🙂

Какую схему электропитания лучше использовать в Windows

По умолчанию Windows использует на всех компьютерах сбалансированную схему электропитания (Balanced). Но существуют также схемы «Экономия энергии» (Power saver) и «Высокая производительность» (High performance), а производители компьютеров иногда создают собственные схемы. В чем между ними всеми разница и есть ли смысл менять схему электропитания?

Как посмотреть и изменить схему питания

Сначала давайте посмотрим, какая выбрана схема. В Windows 10 для этого нажмите правой кнопкой мыши на значке батарейки в системном лотке и выберите опцию «Электропитание» (Power Options).

В настройки можно попасть и через Панель управления (Control Panel). Перейдите в категорию «Оборудование и звук» (Hardware and Sound) и нажмите ссылку «Электропитание».

Здесь можно выбрать схему электропитания. По умолчанию предлагаются «Сбалансированная» и «Экономия энергии», а схема «Высокая производительность» спрятана в пункте «Показать дополнительные схемы» (Show additional plans). Производитель компьютера может добавить в список собственные схемы, а кроме того, их можно создавать самостоятельно.

В чем разница?

Каждая из схем, по сути, представляет собой набор параметров. Вместо того чтобы настраивать каждый из них по отдельности, с помощью схем можно легко изменять настройки группой. Например:

Сбалансированная схема автоматически повышает частоту процессора, когда это необходимо, и сокращает, когда нагрузка на процессор уменьшается. Эта схема выбрана по умолчанию и подходит в большинстве случаев.

«Экономия энергии» помогает уменьшить энергопотребление за счет постоянного снижения частоты процессора и яркости экрана, а также сокращения ряда других показателей.

«Высокая производительность» поддерживает частоту процессора на одном и том же уровне даже при простое и повышает яркость экрана, а также отключает режим энергосбережения для других компонентов, включая жесткий диск и адаптер Wi-Fi.

Но полагаться на наши краткие описания необязательно – можно своими глазами увидеть, как работают разные схемы питания. В окне «Электропитание» нажмите ссылку «Настройка схемы электропитания» (Change plan settings) рядом с названием выбранной схемы, а в следующем окне – ссылку «Изменить дополнительные параметры питания» (Change advanced power settings). С помощью выпадающего меню вверху появившегося диалогового окна можно переключаться между разными схемами питания, чтобы посмотреть все настройки в каждой из них.

Имеет ли смысл менять схему питания?

Менять настройки питания совсем не обязательно. Сбалансированная схема подходит в подавляющем большинстве случаев. Даже если требуется продлить работу ноутбука от аккумулятора, достаточно просто вручную снизить яркость экрана. Если на компьютере не используется требовательное к ресурсам программное обеспечение, большинство современных процессоров все равно автоматически переходит в режим энергосбережения при простое.

Ну а при использовании требовательного ПО Windows сама повышает частоту процессора, так что даже если на компьютере предполагается играть в продвинутые игры, можно оставить сбалансированную схему питания. При запуске игры процессор будет работать на полную мощность.

На ноутбуках каждая схема питания предусматривает разные настройки в зависимости от того, работает ли устройство от батареи или подключено к электросети. В сбалансированной схеме настройки при подключении к электросети довольно агрессивные – вентиляторы, например, работают на полную мощность для эффективного охлаждения процессора. Чтобы использовать такие же настройки при работе от батареи, можно выбрать схему «Высокая производительность», но в действительности прирост производительности будет не настолько ощутим.

В Windows 7 и 8 переключаться между схемами «Сбалансированная» и «Экономия энергии» можно по нажатию левой кнопкой мыши на значке батареи в системном лотке. В Windows 10 при нажатии на значке батареи доступны только настройка яркости и режим «Экономия заряда» (Battery Saver). Этот режим – прекрасная альтернатива схеме «Экономия энергии», поскольку в нем снижается яркость экрана, что позволяет заметно снизить энергопотребление даже на современных компьютерах. Также в этом режиме запрещена фоновая работа приложений из магазина Windows 10, но это пригодится, только если вы активно пользуетесь этими приложениями вместо традиционных настольных программ.

Самое замечательное, что режим «Экономия заряда» включается автоматически, когда остается 20% заряда (этот показатель можно отрегулировать вручную). Это избавляет от необходимости переключаться между схемами питания вручную.

В Windows 10 схемы электропитания запрятаны глубоко в Панели управления, поскольку пользоваться ими нет никакой нужны. Более того, на современных компьютерах с технологией InstantGo, которая переводит ПК в спящий режим наподобие смартфона или планшета, по умолчанию вообще есть только сбалансированная схема электропитания. Схем «Экономия энергии» и «Высокая производительность» нет, хотя их можно создать вручную.

Но Microsoft считает, что пользователям нет необходимости возиться с настройками питания на современных компьютерах.

Как создать собственную схему

Хотя особой необходимости переключаться между схемами питания нет, эта возможность все равно может пригодиться. Такие настройки, как яркость экрана, время отключения дисплея и время перехода компьютера в спящий режим, непосредственно связаны со схемами электропитания.

Для изменения параметров схемы откройте в Панели управления раздел «Электропитание» и нажмите ссылку «Настройка схемы электропитания». В открывшемся окне можно изменить яркость экрана, время отключения дисплея и время перехода в спящий режим, причем для работы от сети и от батареи можно выбрать разные настройки.

Дополнительные параметры питания, которые можно изменить по соответствующей ссылке, тоже связаны со схемой электропитания. Здесь есть и простые настройки, такие как действие кнопки питания, и более продвинутые – например, разрешено ли пробуждение компьютера по таймеру.

Также можно настроить перевод жестких дисков, USB-устройств и адаптера Wi-Fi в режим энергосбережения, в котором они потребляют гораздо меньше энергии при простое.

Некоторые из настроек могут пригодиться при диагностике проблем. Например, если подключение по Wi-Fi работает нестабильно, можно отключить режим энергосбережения в пункте «Параметры беспроводного адаптера» (Wireless Adapter Settings), чтобы он не переходил в спящий режим. Аналогичным способом можно решить проблему с нестабильной работой USB-устройств.

Таким образом, настройки сбалансированной схемы электропитания имеет смысл регулировать. Но вот переключаться между схемами совсем не обязательно.

Даже на игровом компьютере нет смысла включать схему «Высокая производительность». Процессор от этого быстрее работать не будет. Он и так автоматически переходит на максимальную частоту при запуске требовательных игр. А при выборе схемы «Высокая производительность» процессор просто будет больше времени работать на этой максимальной частоте и, соответственно, производить больше тепла и шума.

Практически для всех пользователей лучший совет – вообще забыть о существовании схем электропитания. Оставьте сбалансированную схему – этого вполне достаточно.

Автор: Chris Hoffman
Перевод SVET



Оцените статью: Голосов

Настольные компьютеры HP — Управление параметрами электропитания (Windows 8)

Режим гибернации предусматривает сохранение всех открытых документов и программ на жесткий диск с последующим отключением питания. При нажатии кнопки питания, чтобы снова включить компьютер, выполняется быстрый выход компьютера из гибернации и восстановление открытых программ и сохраненных документов.

Чтобы добавить пункт «Гибернация» в меню «Питание», выполните следующие действующее:

  1. Переместите курсор мыши в нижний левый угол экрана, щелкните правой кнопкой мыши и выберите в меню пункт Параметры электропитания.

    Рис. : Параметры электропитания

  2. Щелкните Действие кнопки питания.

    Рис. : Действия кнопок питания

  3. Щелкните пункт Изменение параметров, которые сейчас недоступны.

    Рис. : Изменение параметров, которые сейчас недоступны.

  4. В разделе Параметры завершения работы отметьте флажком пункт Гибернация.

    Рис. : Флажок «Гибернация»

  5. Нажмите кнопку Сохранить изменения. Параметр Гибернация отобразится в меню «Питание».

    Рис. : Параметр «Гибернация» в меню «Питание»

Чтобы настроить временной период, который должен пройти перед тем, как ваш компьютер перейдет в режим «Гибернация», выполните следующие действия:

  1. Переместите курсор мыши в нижний левый угол экрана, щелкните правой кнопкой мыши и выберите в меню пункт Параметры электропитания.

    Рис. : Параметры электропитания

  2. На странице Выбор или настройка схемы управления питанием щелкните пункт Настройка схемы электропитания рядом с планом, который следует изменить.

  3. В окне Настройка плана электропитания щелкните пункт Изменить дополнительные параметры питания.

    Рис. : Изменение дополнительных параметров

  4. Щелкните значок плюс (+) рядом с пунктом Спящий режим, чтобы развернуть список, затем щелкните значок плюс (+) рядом с пунктом Гибернация после.

  5. В раскрывающемся списке Значение задайте время простоя компьютера в минутах, которое должно пройти, прежде чем компьютер перейдет в режим гибернации.

    Рис. : Настройка времени перехода к гибернации

  6. Нажмите кнопку ОК, затем Сохранить изменения. Компьютер перейдет в режим гибернации после простоя в неактивном состоянии указанное количество минут.

ПК HP — Управление параметрами электропитания (Windows 10)

Ознакомьтесь с инструкциями по изменению настроек кнопки питания и кнопки перехода в спящий режим. Вы можете уменьшить энергопотребление, настроив действия, которые будут выполняться компьютером при нажатии кнопок питания и перехода в спящий режим.

Кнопке питания можно назначить одну из следующих функций: «Действие не требуется», «Сон», «Гибернация», «Завершение работы» или «Отключить дисплей».

Кнопке перехода в спящий режим можно назначить одну из следующих функций: «Действие не требуется», «Сон», «Гибернация» или «Отключить дисплей».

Чтобы изменить действие компьютера при нажатии кнопки питания или перехода в спящий режим, выполните следующие действия:

  1. В ОС Windows выполните поиск и откройте Электропитание.

  2. На левой панели нажмите Действия кнопок питания.

  3. Чтобы изменить настройку, назначенную кнопке питания, нажмите на стрелку раскрывающегося списка рядом с пунктом Действие при нажатии кнопки питания, выберите настройку, которую требуется использовать, и нажмите Сохранить изменения.

  4. Чтобы изменить настройку, назначенную кнопке перехода в спящий режим, нажмите на стрелку раскрывающегося списка рядом с пунктом При нажатии кнопки сна, выберите настройку, которую требуется использовать, и нажмите Сохранить изменения.

Настройка схемы электропитания windows 10. Схемы управления питанием — восстановление до значений по умолчанию

Новейшая версия ОС Windows рассчитана не только для стационарных ПК, но и для ноутбуков и планшетов. Соответственно, как никогда становится актуальным вопрос увеличения продолжительности работы устройства от батареи. Чтобы этого достигнуть, необходимо произвести правильные настройки питания в Windows 10.

Чтобы приступить к оптимизации электропитания, откройте «Пуск» и выберите меню «Параметры ». Также к этому меню можно перейти с помощью клавиш быстрого доступа Win+I .

В окне «Параметры» перейдите к разделу «Система ».


В левой области окна перейдите в раздел «Экономия заряда », а в правой откройте ссылку «Использование батареи ».


В этом окне система отобразит статистику использования приложений. На основе этих данных вы сможете выявить, какие приложения тратят большую часть заряда, каким следует запретить активность в фоновом режиме и т.д. Нажмите в верхнем левом углу стрелочку, чтобы вернуться на одну позицию назад.


Теперь в самой нижней части окна перейдите к пункту «Настройки экономии заряда ».


Режим экономии заряда позволяет добиться увеличения времени автономной работы ноутбука или планшета за счет отключения push-уведомлений и прекращения работы программ в фоновом режиме.

Настраивая этот режим, вы сможете указать оставшийся процент заряда, при котором будет включаться экономия энергии, а также добавить в список исключений программы, которые смогут работать в фоновом режиме и присылать push-сообщения вне зависимости от уровня заряда.


Щелкните по кнопке назад. Теперь в левой области окна откройте вкладку «Питание и спящий режим». Для экономии заряда установите минимальное время работы экрана от батареи. Чуть ниже укажите время простоя устройства, по истечении которого оно перейдет в спящий режим.


В этом же разделе щелкните по пункту «Дополнительные параметры питания», чтобы отобразить классическое окно управления электропитанием. Здесь, помимо времени отключения экрана и перехода устройства в спящий режим, вы сможете настроить уровень яркости экрана в зависимости от его работы: от сети и от батареи.

В операционной системе Windows разработчиками по умолчанию предопределено три схемы управления питанием. Это: Сбалансированная, Экономия энергии и Высокая .

Первая позволяет установить определенный баланс между потреблением энергии и производительностью оборудования. Вторая — потреблять минимум энергии, когда это возможно, за счет уменьшения производительности. Третья, соответственно, самая энергопотребляемая, но и позволяет использовать все ресурсы компьютера по максимуму.

Они предназначены для быстрого переключения настроек питания пользователем по мере необходимости, особенно не вникая в подробности. Каждая из этих схем по своему влияет на продолжительность работы устройства от аккумулятора или на количество потребляемой им энергии.

Если пользователя не устраивает ни одна из предопределенных схем, он может создать свою, полностью отвечающую его требованиям. Это легко сделать в окне настроек, задав своё название схемы. Допускается также изменение параметров и уже существующих планов питания.

В случаях, когда необходимо восстановить ранее измененные вами настройки до состояния по умолчанию, это также не трудно сделать. Ведь ситуации бывают различные. Давайте посмотрим, как это можно сделать в .

Новая операционная система постепенно переносит все настройки в приложение «Параметры» из привычной нам в более ранних версиях ОС классической Панели управления. Но получать доступ к некоторым из них пока ещё удобно старым способом.

СХЕМЫ УПРАВЛЕНИЯ ПИТАНИЕМ

Откройте окно дополнительных параметров электропитания. Это можно сделать быстро при помощи системной утилиты «Выполнить», которую легко запустить сочетанием клавиш Win + R на клавиатуре, ввода следующей команды:

Control powercfg.cpl,1

и нажатия клавиши Enter. Из раскрывающегося списка выберите нужную вам схему (будет активна та, что установлена в данный момент) и нажмите кнопку «Восстановить параметры по умолчанию», после чего примените внесенные изменения соответствующей кнопкой.

Как вариант, можете воспользоваться разделом «Питание и спящий режим» в «Параметрах» системы и перейти по ссылке «Дополнительные параметры питания», где восстановите до значений по умолчанию выбранной схемы.

На сегодня всё, спасибо за внимание! Другие интересные и полезные компьютерные советы вы быстро найдете в ! Переместите ссылку на наш ресурс в закладки или станьте посетителем / участником наших страниц в Google+ или в Facebook.

В этой небольшой статье я хочу рассказать о новом функционале операционной системы Windows 10 Creators Update. Об основных возможностях, которые добавили в систему я говорил , но есть пару моментов, которые должны быть разобраны в отдельных материалах. О новых функциях последнего обновления мы еще поговорим, просто еще не всё обнаружили.

Максимальная частота процессора в настройках питания и отключение дисплея

В параметрах электропитания куда можно попасть следующим образом: нажав правой кнопкой мыши по значку батареи на панели задач и выбрав пункт «Электропитание». Потом заходим в настойки нужной .

После открытия окна параметрами схем, вы должны нажать по ссылке . И тут мы начинаем разбираться в новом функционале.

В разделе «Кнопки питания и крышка» и в подразделе «Действие кнопки питания» появился новый пункт «Отключить дисплей» . Таким образом, установив такой параметр, вы будете только отключать дисплей при нажатии на кнопку отключения. Если к компьютеру или ноутбуку подключен не один монитор, то при нажатии кнопки отключения они отключатся все. Хотя, если не ошибаюсь, такая функция была и в предыдущем обновлении, кто помнит, напишите в комментариях.

Чтобы дисплей заново включился вам достаточно нажать какую-нибудь клавишу на клавиатуре или чуть подвинуть мышь.

Следующее дополнение в Creators Update – установка максимальной частоты процессора . Находится этот параметр в разделе «Управление питанием процессора».

Здесь вы можете установить значение в мегагерцах. К примеру, установив 2000 МГц частота процессора не будет пониматься выше этого значения. Таким образом, если вы сильно заботитесь , то можете сохранить немного заряда путем понижения частоты процессора. Наблюдать за изменениями можно в диспетчере задач, если перейти на вкладку «Производительность».

На этом всё. В следующих статьях разберу еще какие-либо функции Windows 10 Creators Update, которых не было в других версиях. Может быть сделаю обзор на новый 3D Paint, если нужно.

Я заметил, что большинство новичков, которые не ещё не особо хорошо шарят в компьютере, работая на ноутбуке не обращают внимания на настройки электропитания в Windows (это касается cистем Windows 7, Windows 8, Windows 10 на сегодняшний день). В операционных системах Windows, начиная с Windows 7, имеется большое количество настроек электропитания для настройки оптимальной работы ноутбука от батареи и от электросети. В чём разница? Логично, что от батареи ноутбук должен работать как можно дольше, а чтобы этого достичь, нужно правильно настроить соответствующий режим электропитания, уменьшив производительность компьютера, например. При работе от электросети, уже, соответственно, не требуется экономить заряд аккумулятора и потому от ноутбука требуется максимальная производительность и максимальный комфорт при работе!

В сегодняшней статье я расскажу вам о настройках электропитания в операционной системе Windows, чтобы каждый новичок мог оптимально настроить свой ноутбук в случае, если работает от аккумулятора и от электросети!

Пользователи часто не обращают внимания, на каких настройках электропитания в Windows они работают из-за того, что это никак не отображается на экране, т.е. никаких уведомлений об этом не приходит. И для того чтобы посмотреть режим, нужно перейти самостоятельно в соответствующие настройки. Причём стандартно, эти настройки электропитания в Windows не всегда могут быть оптимальными.

К примеру, вы купили новенький ноутбук c операционной системой Windows и уже пробуете его в работе. Бывает так, что настройки электропитания в Windows при работе от электросети выставлены не на максимальную производительность и в результате, ваш ноутбук в этом режиме настроек электропитания может работать не на полную катушку и вы, возможно, даже не будете этого замечать! А иногда, по ошибке у вас будет стандартно выбран режим настройки электропитания Windows с низкой производительностью (рассчитанный для работы ноутбука от аккумулятора) и при подключении ноутбука к розетке он не изменит режим электропитания, в результате чего опять же будет работать на низкой производительности.

Стандартно в Windows всегда имеется 3 режима (плана) настройки электропитания компьютера:

    Экономия энергии . Этот режим настроек электропитания Windows рассчитан на работу компьютера от аккумулятора, т.е. для максимально длительно сохранения заряда батареи и, следовательно, чтобы компьютер работал как можно дольше.

  • Сбалансированный . Средний план электропитания, настроенный таким образом, что сохраняется баланс между производительностью и сохранением заряда батареи. Проще говоря, при выборе этого режима, ваш компьютер должен работать на средней мощности.
  • Высокая производительность . Этот режим настроек электропитания Windows рассчитан на работу компьютера от электросети (от розетки) на полную мощность, поскольку не требуется сохранение заряда аккумулятора.

Также, в зависимости от предустановленных на новый компьютер дополнительных программ, могут быть ещё дополнительные режимы настройки электропитания Windows, например:

  • Power4Gear High Performance;
  • Power4Gear Battery Saving.

Такие режимы настройки электропитания Windows есть, например, у меня в Windows и созданы они засчёт предустановленной на ноутбук программы Power4Gear Hybrid, предназначенной для быстрой настройки режимов настройки электропитания и автоматического их переключения при работе ноутбука от батареи и от сети.

Два приведённых выше режима настройки электропитания Windows по своим настройкам совершенно ничем не отличаются от ранее упомянутых режимов «Экономия энергии» и «Высокая производительность». Отличие только одно – режимы настройки электропитания, созданные при помощи специальной программы, позволяют автоматически включаться в нужный момент, при переходе ноутбука на питание от батареи или же от сети. Поэтому, за особой ненадобностью, можно предустановленное приложение для переключения режимов электропитания вообще удалить и пользоваться стандартными 3-мя режимами настройки электропитания Windows.

На каждом из ноутбуков может быть установлена своя дополнительная программа для смены режимов настройки электропитания Windows, подобная той, о которой речь шла выше. Зависит это от производителя компьютера. Например, на компьютеры Asus ставят одну программу, на Acer может стоять другая программа.

Заметьте, что режимы настройки электропитания нужны только если у вас ноутбук, поскольку именно такие компьютеры снабжаются батареей и имеют возможность работать от неё, без подключения к розетке.

Если же у вас стационарный домашний компьютер, то переключать режимы настройки электропитания Windows нет никакого смысла, ведь такой компьютер работает всегда от электросети, а значит всегда должен работать на максимальной производительности!

Рассмотрим, как переключать режимы настройки электропитания в Windows 7,8,10 и настраивать их.

Как переключать режимы настройки электропитания компьютера в Windows 7 / 8 / 10?

Для того, чтобы быстро перейти к режимам настройки электропитания в трее Windows у вас всегда будет отображаться значок батареи.

Для перехода к режимам настройки электропитания, жмём ПКМ (правой кнопкой мыши) по этому значку и выбираем «Электропитание»:

В окне вверху всегда будет отображаться схема «Сбалансированная» и одна из тех, которую вы использовали в последний раз:

Для того, чтобы открыть все доступные схемы настройки электропитания, нажимаем ЛКМ (левой кнопкой мыши) по подразделу «Показать дополнительные схемы»:

В результате отобразятся все схемы настройки электропитания Windows:

Тот режим настройки электропитания, который на данный момент задействован, отмечается кружком:

Следовательно, для того, чтобы переключить режим настройки электропитания Windows, вам нужно просто нажать ЛКМ по кружку напротив нужного режима. Нужный режим сразу же будет задействован.

Стандартная схема настройки электропитания Windows, которая служит для работы компьютер от аккумулятора и позволяет как можно дольше удерживать заряд батареи, называется «Экономия энергии». Следовательно, вам нужно включать этот режим только тогда, когда вы отключаете компьютер от розетки и он начинает работать от батареи. Или же можно использовать в этом случае режим настроек электропитания «Сбалансированная», тогда производительность не упадёт сильно и заряд аккумулятора будет разряжаться средними темпами.

Если же компьютер работает от розетки, то лучше включить режим «Высокая производительность», чтобы компьютер работал на полную мощь.

Однако, для удобства, чтобы не переключать постоянно режимы настройки электропитания Windows, можно просто-напросто использовать один режим, который вы настроите сразу для двух случаев – для работы компьютера от батареи и для работы компьютера от электросети. Каждый из представленных ранее стандартных режимов электропитания содержит в себе настройки для работы компьютера от батареи и от сети.

Но чтобы не лезть в стандартные настройки, можно просто создать свой режим электропитания.

Теперь разберёмся, как оптимально настроить режим работы компьютера от батареи и от электросети.

Настройки работы компьютера от аккумулятора и от электросети!

Для удобства, чтобы не переключаться постоянно между режимами настройки электропитания Windows в зависимости от того, работает компьютер от батареи или от сети, рекомендую создать свой режим электропитания и настроить в нём сразу работу компьютера и от батареи, и от розетки.

Для создания своего режима настроек, в окне «Электропитание» слева нажмите кнопку «Создание схемы управления питанием»:

В окне в первую очередь нужно выбрать одну из стандартных схем настроек электропитания Windows, на основе которых будет создана ваша личная схема (1). Это не важно, поскольку так и так все настройки электропитания я рассмотрю ниже в данной статье. Выберите, например, схему «Экономия энергии». Далее внизу нужно указать название вашей схемы (2). Просто придумайте любое. И затем нажмите кнопку «Далее» (3).

Откроется окно, где будут отображены стандартные настройки электропитания Windows, а именно: через сколько минут отключать экран, через сколько минут переводить компьютер в спящий режим и настройка яркости экрана.

Сразу перейдём к полному списку настроек созданной схемы электропитания, где можно настроить каждый параметр, включая вышеперечисленные. Для этого нажимаем кнопку «Изменить дополнительные параметры питания»:

Откроется окно настроек выбранного режима электропитания. В первую очередь проверьте, чтобы вверху был выбран нужный режим настроек электропитания Windows, т.е. созданный вами. Затем нажмите ЛКМ по кнопке «Изменить параметры, которые сейчас недоступны»:

Это нужно для того, чтобы разблокировать некоторые настройки, которые вы, вероятно, сразу не сможете настроить, при помощи прав администратора компьютера.

Теперь приступаем к настройке режима электропитания.

В центре окна списком отображается несколько разделов настроек выбранного режима электропитания Windows. Каждый из разделов можно раскрыть при помощи кнопки «+» и посмотреть все его настройки.

У каждой настройки есть возможность выбрать вариант для случая работы от батареи и от электросети. Поскольку при работе компьютера от электросети, экономить заряд батареи не нужно, то настраивать вариант «от сети» можно по максимуму – для максимальной производительности компьютера. Таким образом, даже если вы включили режим «Экономия энергии», но подключили компьютер к розетке, то он будет работать на полную мощь. Это позволит вам лишний раз не переключать планы настройки электропитания и не путаться. Ниже будет всё подробно рассмотрено и вам станет понятно.

Настройки электропитания созданного режима по порядку :

    Экономия энергии (вместо этого у вас будет отображаться название созданной вами схемы настроек электропитания!) . Здесь имеется единственная настройка «Требовать введения пароля при пробуждении». Эта опция имеет смысл только тогда, когда для вашего пользователя в Windows установлен пароль. Т.е. когда только зная пароль можно попасть в Windows и работать за компьютером.

    Эта настройка электропитания Windows означает, что вы можете включить или отключить запрос пароля для входа в Windows после того как компьютер «проснулся», т.е. после выхода из режима сна.

    Иначе, если ваш компьютер кто-то посторонний самостоятельно выведет из режима сна, то он сможете сразу же воспользоваться компьютером, поскольку его система пустит без ввода пароля.

    Жёсткий диск . Здесь единственная настройка – через какое время бездействия компьютера отключать жёсткий диск. Это позволит лишний раз не нагружать жёсткий диск компьютера, т.е. не изнашивать его и заодно – экономить заряд батареи. Как только работа за компьютером продолжится, жёсткий диск сразу продолжит работу.

    Если вы не знаете, что такое жёсткий диск, то рекомендую к прочтению мою статью об основных компонентах компьютера:

    Internet Explorer . Здесь тоже имеется только одна настройка электропитания – «Частота таймера JavaScript». Данный раздел вообще имеет смысл настраивать только если вы для просмотра сайтов и интернете используете стандартный браузер Windows «Internet Explorer». В остальных случаях, этот раздел настроек вообще задействован не будет.

    Что значит «Частота таймера JavaScript»? Это значит то, как часто будут исполняться функции в скриптах JavaScript на сайтах в интернете. Чем больше частота, тем плавнее будет воспроизводиться, например, флэш ролик или ещё какая-то программа на сайте. Однако высокая частота будет нагружать процессор и, следовательно, быстрее зажать батарею компьютера.

    Новичку все эти скрипты вообще вряд ли о чём говорят, поэтому я рекомендую поставить здесь для режима «От батареи» значение «Максимальное энергосбережение», а для режима «От сети»: «Максимальная производительность».

    Параметры фона рабочего стола . Единственная настройка электропитания Windows здесь: «Слайд-шоу». Здесь мы можем указать, в каком случае в качестве фона рабочего стола можно использовать слайд-шоу из выбранных вами фотографий и картинок, а в каком случае – нельзя.

    Слайд-шоу в виде меняющихся фоновых картинок рабочего стола быстрее разряжает аккумулятор компьютера, особенно если стоит низкий интервал смены картинок. Поэтому, при работе от батареи, я рекомендую отключить слайд-шоу (поставьте значение «Приостановлено»), а при работе от электросети – разрешить (значение «Доступно»).

    Параметры адаптера беспроводной сети . И единственная настройка электропитания здесь: «Режим энергосбережения».

    Адаптер беспроводной сети – это Wi-Fi адаптер, т.е. устройство при помощи которого компьютер подключается к беспроводной сети, и вы можете выходить в интернет безо всяких проводов.

    Когда Wi-Fi адаптер работает, аккумулятор разряжается быстрее и через настройку электропитания Windows в этом разделе мы можем указать режим работы Wi-Fi для оптимизации работы от батареи и электросети.

    Сон . Это раздел отвечает за настройку перехода компьютера в различные режимы пониженного энергопотребления.

    Подробнее о назначении каждого режима энергосбережения Windows и их отличиях, вы можете прочитать в отдельной статье:

    В этом разделе имеется несколько опций:

  • Параметры USB . Здесь имеется одна настройка электропитания «Параметр временного отключения USB порта». Поскольку устройства, подключенные к компьютеру по USB тоже оказывают влияние на разряд аккумулятора компьютера, то при бездействии компьютера можно настроить отключение USB устройств. Они ведь всё равно не буду в это время задействованы.

    Поэтому для режима «От батареи» выбираем «Разрешено», а для режима «От сети» можно задать любое значение. В принципе, чтобы USB порты не работали зря, лучше задать тоже самое значение – «Разрешено».

    Intel ® Graphics Settings . Этот раздел настроек электропитания Windows будет отображаться только для компьютеров с интегрированной видеокартой от Intel. Параметр в этом разделе будет только один «Intel ® Graphics Power Plan» и позволяет настроить производительность встроенной видеокарты Intel.

    Для режима «От батареи» рекомендую выбрать «Maximum Battery Life», что означает – максимальное сохранение заряда батареи. Таким образом, при работе компьютера от батареи, видеокарта будет работать на минимальную мощь, тем самым сохраняя заряд аккумулятора вашего компьютера.

    Для режима «От сети» выбираем «Maximum Perfomance», т.е. – максимальная производительность встроенной видеокарты.

    Кнопки питания и крышка . Этот раздел настроек электропитания Windows служит для настройки кнопок питания компьютера и действий при закрытии крышки ноутбука.

    Здесь имеется несколько параметров:

  • PCI Express . Здесь можно настроить питание для устройств, подключенных к разъёмам PCI Express компьютера. В качестве устройств PCI Express могут быть, например, звуковые карты, сетевые карты, видеокарты и различные другие устройства.

    Управление питанием процессора . Это довольно важные настройки электропитания Windows, при помощи которых можно скорректировать мощность работы процессора, тем самым, увеличивая или уменьшая производительность компьютера при работе от сети и батареи, а также настроить интенсивность охлаждения.

    Здесь имеется 3 настройки:

  • Экран . Здесь настраиваются параметры яркости экрана и время его отключения при работе компьютера от батареи и от электросети.

    В данном разделе 4 настройки электропитания Windows:

    1. Отключать экран через . Здесь всё просто… Для экономии заряда батареи, можно настроить период бездействия компьютера в минутах, через который монитор будет отключён. Для его включения достаточно сдвинуть мышку или нажать любую кнопку на клавиатуры, т.е. показать, что вы снова садитесь за компьютер.

      Для режима «От батареи» лучше поставить период поменьше, например – 2 минуты. Т.е. если 2 минуты компьютер никто трогать не будет, экран отключится и тем самым будете беречь заряд аккумулятора.

      Для режима «От сети» с одной стороны, можно вообще не ставить отключение экрана (т.е. поставить значение «0», что означает «Никогда») и тогда ваш экран всегда будет включён, даже если за компьютером целый день никто не будет сидеть. Ведь батарею беречь не нужно, компьютер работает от электросети. Но с другой стороны, монитор – тоже устройство, которое и всякие компоненты в нём могут изнашиваться, поэтому я рекомендую всё же установить в данной настройке электропитания Windows период его отключения даже при работе от электросети. Минут 15-20 – самое оно, на мой взгляд.

      Яркость экрана . Здесь мы можем настроить яркость экрана монитора при работе компа от батареи и от электросети.

      Опять же, чем выше яркость экрана в случае работы компьютера от батареи, тем быстрее батарея будет разряжаться. С другой стороны, некоторым людям очень некомфортно работать с низким уровнем яркости и тут уже ничего не поделаешь. Поэтому яркость каждому следует настроить под себя.

      К примеру, я для режима «От батареи» для себя ставлю яркость 30%, для меня это нормально и заряд батареи экономится за одно:) Вы можете поэкспериментировать, посмотреть какая яркость для ваших глаз будет минимальной, чтобы глаза не уставали и комфортно было работать.

      В случае работы компьютера от электросети, экономить заряд аккумулятора не нужно, а значит яркость можно оставить максимальную – 100%.

      Уровень яркости экрана в режиме уменьшенной яркости . Для некоторых моделей компьютеров в основных настройках электропитания Windows () имеется пункт «Затемнить дисплей», позволяющий указать период бездействия компьютера, по прошествии которого экран компьютера затемняется, но не отключается совсем.

      Вот именно на этот режим и влияет данная настройка яркости. Например, у меня на ноутбуке Asus N76VJ экран может только сам отключаться, либо я могу вручную регулировать яркость. А функции автоматического затемнения экрана у меня нет, а значит рассматриваемая сейчас настройка электропитания для меня бесполезна.

      Если же ваша модель поддерживает затемнение экрана, и вы в настройках электропитания Windows задали автоматическое затемнение через какое-то время (например, через 5 минут бездействий компьютера экран затемняется, а через 10 минут – отключается), то в текущей рассматриваемой настройке вы можете указать конкретный процент яркости в режиме затемнения дисплея.

      Если бы мой монитор поддерживал эту особенность, то я бы поставил точно такие же значения, как и в настройках яркости экрана (см. пункт 2 выше), например – 30% от батареи и столько же от сети.

      Включить адаптивную регулировку яркости . Здесь вы можете включить или отключить возможность автоматического изменения яркости экрана в зависимости от внешних источников света и изображений на экране. Например, при ярком освещении вокруг вас, яркость экрана убавится сама, а если будет темно в комнате, то яркость прибавится. Но не все модели мониторов поддерживают такую функцию.

      Лично мне не нравится автоматическая регулировка яркости, потому что я и сам могу быстро изменить яркость тогда, когда мне это нужно. Поэтому у меня данная функция выключена как для режима «От батареи», так и для режима «От сети».

  • Параметры мультимедиа . В этих настройках электропитания Windows задаются параметры воспроизведения видео для оптимизации энергосбережения при работе компьютера от батареи и электросети.

    Здесь 2 настройки электропитания:

  • Батарея . В этом разделе настроек электропитания Windows, регулируется поведение компьютера при различном уровне заряда его аккумулятора.

    В данном разделе 6 настроек электропитания. Для удобства, я рассмотрю настройки не в том порядке, как они указаны в соответствующем окне, а по их логике:

    1. Уведомление о низком заряде батарей . Здесь мы можем включить или отключить предупреждение о том, что батарея скоро разрядится.

      Уровень низкого заряда батарей . В этой настройке электропитания мы указываем степень заряженности аккумулятора, когда у вас на экране появится предупреждение о низком заряде аккумулятора (см. пункт выше). Предупреждение можно включить или отключить и о за это отвечает настройка «Уведомление о низком заряде батарей» (см. пункт выше).

      Если ноутбук более-менее новый и батарея на нём ещё не изношена, то стандартные значения данной настройки будут оптимальными. Они равны 10%.

      Но если батарея уже слабовата (держит заряд заметно ниже, чем это было при покупке), то рекомендую повысить процент где-нибудь до 15%. Иначе может получиться так, что ваш компьютер будет вырубаться ещё до появления этого первого предупреждения из-за сильного износа батареи. Поэтому, если такая проблема наблюдается, повышайте уровень до 15% и, возможно, выше — экспериментальным путём.

      Действие низкого заряда батарей . В этой настройке электропитания Windows можно выбрать, что будет происходить с компьютером, когда уровень заряда батареи будет низким. Уровень низкого заряда батареи устанавливали в соответствующей настройки (см. пункт выше).

      Поскольку низкий заряд батареи – это ещё не лишь первое предупреждение и компьютер можно проработать ещё долго, то рекомендую не настраивать здесь никакие действия. Т.е. ставим «Действие не требуется».

      Уровень резервной батареи . Это второе предупреждение о разрядке батареи, а конкретно – о том, что батарея вот-вот сядет совсем, возможно с минуты на минуту.

      После получения этого предупреждения настоятельно рекомендую сохранить всю работу на компьютере во избежание случайного отключения компьютера из-за изношенной батареи. А лучше перестраховываться и сохранять результаты работы уже после получения первого предупреждения (настройка «Уведомление о низком заряде батарей»).

      Стандартно в данной настройке стоит значение 7% и это нормально, если ваш компьютер новенький и аккумулятор на нём ещё не изношен.

      Но если компьютер уже не новый, например, моему вот 2 года и аккумулятор уже изношен (заметно сразу, поскольку компьютер от батареи будет работать значительно меньше чем раньше), то уровень резервной батареи рекомендую поднять где-нибудь до 10-12% (можно самостоятельно поэкспериментировать). Иначе, если батарея изношена, то она может вырубится даже при 10% заряде (зависит от степени изношенности) и тогда получается, вы получите первое предупреждение о низком заряде батареи (если вы настроили это предупреждение при уровне заряда 10% как описано в шаге №2) и компьютер сразу вырубится, а вы не успеете даже ничего сохранить. А если батарея изношена сильно, то она может отключиться и при 15% заряда, тогда вы даже и первого предупреждения уже не получите:)

      Таким образом, корректируйте появление первого предупреждения и второго в зависимости от степени изношенности вашей батареи. Например, если компьютер неожиданно выключается, когда батарея уже разряжается, а вы ещё не получали ни одного предупреждения о разрядке, то поднимите планку появления обоих предупреждений в процентах (т.е. пункт №2 и 4).

      Уровень почти полной разрядки батарей . Это та степень заряда батареи, при которой компьютер будет выполнять действие, указанное в пункте ниже, т.е. «Действие почти полной разрядки батарей». Например, вы выставили уровень почти полной разрядки равный 5% и это значит, что как только заряд аккумулятора станет равным 5%, компьютер либо выключится, либо перейдёт в спящий режим, либо в режим гибернации, т.е. в зависимости от того, что вы зададите в настройках (см. пункт ниже).

      Если компьютер новенький, значит его батарея ещё не изношена и в таком случае уровень почти полной разрядки можно оставить равным 5% (стандартное значение). Но если компьютер не успевает выполнить нужное действие, например, уйти в режим сна или гибернации, значит батарея разряжается полностью ещё до уровня заряда 5%. Это значит, что вам нужно поднять планку данной настройки на 3-5% и проверить (т.е. чтобы уровень было равен 8-10%), не исчезла ли проблема. Т.е. настраиваем в зависимости от степени изношенности аккумулятора.

      Действие почти полной разрядки батарей . В этой настройке электропитания Windows нам нужно указать, что будет происходить с компьютером, если его аккумулятор будет практически полностью разряжен и вот-вот сядет окончательно.

      Режим «От сети» нас не интересует и там поставьте «Действие не требуется». Нас интересует только режим «От батареи» и там выберите один из вариантов: сон, завершение работы компьютера (выключение) или гибернация.

      В этой настройке электропитания рекомендую выставить значение «Гибернация», потому что при почти полной разрядке аккумулятора, в спящем режиме аккумулятор может разрядиться окончательно и тогда компьютер выключится, а вся работа, которая на нём велась, будет утеряна! А когда компьютер уснёт в режиме гибернации, то вся работа будет восстановлена, как только вы подключите компьютер к розетке и включите его.

Теперь вы знаете, как настроить свой компьютер на максимальную производительность при его работе от электросети, как сохранить заряд батареи как можно дольше при работе компьютера от аккумулятора. При этом, вам не придётся постоянно переключать режимы настройки электропитания Windows с экономичного на высокопроизводительный, поскольку вы сделали свой режим управления питанием, в котором задали настройки сразу для обоих случаев! Это очень удобно.

Но вы также можете настроить и уже один из готовых вариантов схем электропитания Windows, если в этом есть необходимость. Для того, чтобы настроить любой режим электропитания Windows, вам нужно кликнуть ЛКМ по надписи: «Настройка схемы электропитания», расположенной справа от выбранного режима и перейдёте к настройкам, о которых шла речь выше.

Имейте ввиду!
Если вы, к примеру, купили компьютер и ни разу не проверяли, какая схема управления питанием у вас включена, рекомендую, зайти и посмотреть. Иначе может быть так, что ваш компьютер всё время работает, к примеру, на сбалансированной схеме, а это значит, что он не работает на полную мощь даже при подключении к розетке! Обязательно проконтролируйте, чтобы при работе от электросети стоял режим «Высокая производительность», а при работе от аккумулятора включайте «Экономия энергии». Ну а чтобы не переключаться между режимами настроек электропитания Windows, создайте и настройте свой единственный режим, как было рассказано в данной статье.

На этом всё. Всем всего хорошего:) До скорых встреч в следующих статьях!

Для того, чтобы более эффективно использовать ресурсы своего компьютера, необходимо правильно настроить параметры потребления энергии вашим ПК. Windows 10 в плане настроек энергосбережения мало чем отличается от предыдущих версий операционной системы.

Для того, чтобы зайти в необходимый раздел “Электропитание”, нужно попасть в панель управления. Сделать это можно, например, нажав правой кнопкой мыши по кнопке Пуск. И выберите “Панель управления” в контекстном меню или — если у вас ноутбук — нажмите правой кнопкой мыши по значку батарейки в системном трее. После этого найдите пункт “Электропитание”. Чтобы облегчить себе поиск в панели управления, в пункте “Просмотр” переключите вид с категорий на значки.

По умолчанию в Windows три режима производительности. Режим “Максимальная производительность” позволяет наслаждаться системой в полной мере — однако расход энергии в этом случае будет немалым. Напротив, “Экономия энергии” позволяет устройству дольше работать от аккумулятора. Правда, в ущерб мощности. Третий вариант представляет собой компромисс между энергопотреблением и мощностью. Каждый режим можно кастомизировать по собственному усмотрению. Для этого определяете необходимую схему и выбираете “Настройка схемы электропитания”.

В основном настройка параметров электропитания предназначена для настройки перевода компьютера в спящий режим: вы выбираете оптимальный интервал времени для перехода ПК в сон и отключения дисплея для пониженного энергопотребления компьютера.

Дополнительные параметры питания позволяют настроить потребление энергии более тонко. Например, можно уточнить, будет ли требовать ввод пароля ваша система при пробуждении, через какой промежуток времени ПК уйдет в гибернацию, нужно ли оставлять питание USB-портам в спящем режиме, как системе реагировать на нажатие кнопок на системном блоке.

Если вы хотите создать схему электропитания “с нуля”, вам необходимо выбрать пункт “Создание схемы управления электропитанием”. Этот пункт также может помочь в случае, если у вас при загрузке системы “слетают” параметры питания. Мастер настройки предложит вам выбрать один из трех режимов по умолчанию, который вы хотите отредактировать, и позволит выбрать название схемы. Оптимально настроив “под себя” каждый пункт дополнительных настроек системы, вы сможете продлить работу ноутбука от батареи или снизить количество потребляемой энергии мощного настольного ПК.

Настройка элемента «Схема управления электропитанием» (Windows XP)

Элемент предпочтения «Схема управления питанием» настраивает на компьютерах под управлением Windows Server® 2003 или Windows® XP параметры схемы управления электропитанием - группы параметров управления питанием, объединенных под одним названием. Схемы питания определяют способ управления Windows потреблением электроэнергии аппаратными устройствами после периода отсутствия активности. Перед созданием элемента предпочтения «Схема управления питанием» необходимо ознакомиться с возможностями каждого типа действий, доступного из расширения. Настройка схемы электропитания осуществляется так же, как и в компоненте Электропитание на Панель управления.

Примечание

С помощью элементов предпочтения «Электропитание» можно управлять реакциями систем Windows Server 2003 или Windows XP на события, связанные с изменениями электропитания.

Создание элемента «Схема управления питанием» в Windows XP

Чтобы создать новый элемент предпочтения «Схема управления питанием» для Windows XP
  1. Откройте Консоль управления групповыми политиками. Щелкните правой кнопкой объект групповой политики, который должен содержать новый элемент настройки, и щелкните Изменить.

  2. В дереве консоли в разделе Конфигурация компьютера или Конфигурация пользователя разверните папку Настройки, а затем — папку Настройки панели управления.

  3. Правой кнопкой мыши щелкните узел Электропитание и последовательно выберите элементы Создать и Схема управления питанием (Windows XP).

  4. В диалоговом окне Свойства: Новая схема управления питанием, выберите Действие, которое требуется выполнить в групповой политике. (Дополнительные сведения см. в пункте «Действия» этого раздела)

  5. Введите параметры схемы управления электропитанием, которые требуется настроить с помощью групповой политики. (Дополнительные сведения см. в разделе Включение и отключение параметров в элементе предпочтения).

  6. Откройте вкладку Общие, настройте параметры и введите комментарии в поле Описание. (Дополнительные сведения см. в разделе Настройка общих параметров.)

  7. Нажмите кнопку ОК. Новый элемент настройки появится в области сведений.

Действия

Элемент настройки этого типа позволяет выполнять четыре действия: Создать, Заменить, Обновить и Удалить. Поведение элемента предпочтения зависит от выбранного действия и наличия схемы питания.

Создать

Создать настроенную схему электропитания. Если существует схема, имеющая то же имя, что и элемент «Схема управления питанием», то она не будет изменена.

Удалить

Удалить схему управления питанием с именем, совпадающим с именем элемента предпочтения. Расширение не производит никаких действий, если схема питания не существует.

Заменить

Удалить и заново создать указанную схему питания. В результате выполнения действия Заменить перезаписываются все существующие параметры схемы управления питанием. Если схема управления питанием не существует, действие Заменить создает новую схему питания.

Обновить

Изменить схему управления питанием. Это действие отличается от действия Заменить тем, что в результате его выполнения происходит обновление параметров, заданных в элементе предпочтения. Все остальные параметры остаются неизменными. Если схема управления питанием не существует, действие Обновить создает новую схему питания.

Дополнительная информация
  • Если пользовательский элемент «Схема управления питанием» будет обработан после элемента компьютера, то пользовательские настройки заменят действующие параметры, созданные ранее элементом «Схема управления питанием» компьютера или пользователя.
  • В отличие от других пользователей, локальные администраторы и опытные пользователи могут вручную изменять настройки схемы электропитания через панель управления. Вне зависимости от этого, настроенные для пользователей параметры вступают в силу при входе пользователей в систему и продолжают действовать даже после выхода.
  • Примененные к компьютеру настройки вступают в силу при запуске компьютера без входа пользователей в систему. Тем не менее элементы предпочтения «Схема управления питанием», поддерживающие фоновое обновление групповой политики, могут сбросить параметры схемы электропитания, если политика компьютера применяется без входа пользователей в систему.
  • Параметры схемы питания определяют значения, содержащиеся в указанной схеме. При создании новых схем электропитания отключенные значения будут убраны из схемы питания по умолчанию для компьютера или пользователя. Диалоговое окно Свойства: Новая схема управления питанием выбирает стандартные параметры для любой схемы питания, выбранной в списке Схемы управления питанием.
  • Изменить область элементов настройки можно на уровне целевых элементов.
  • Элементы настройки доступны только для объектов групповой политики доменного уровня.
Дополнительные ссылки

Как восстановить отсутствующие параметры плана электропитания в Windows 10 —

В Windows 10 параметры электропитания позволяют настраивать энергопотребление в соответствии с требованиями. Технически, план электропитания — это набор аппаратных и системных настроек, который определяет, как питание используется и сохраняется вашим компьютером. Существует три встроенных схемы питания: сбалансированная, энергосбережение и высокая производительность. Они могут быть настроены для вашей системы, или вы можете создавать новые планы на их основе.

Что приводит к отсутствию параметров питания?

Многие пользователи сообщают о вариациях отсутствующих схем электропитания, например, доступен только балансный план электропитания и отсутствует высокопроизводительный план электропитания. Это может быть связано с повреждением системы или с недавно установленным Центром обновления Windows, который мог изменить реестр или настроить параметры питания.

Мы собрали несколько рабочих решений, поэтому обязательно попробуйте их. Удачи!

Решение 1. Восстановите их вручную

Если Центр обновления Windows или что-то еще, что вы сделали, удалили планы электропитания с вашего компьютера, вы можете получить к ним доступ, запустив команды, которые воссоздадут их и сделают их доступными на вашем компьютере так же, как и раньше. Есть два способа сделать это, и это зависит от того, что вы предпочитаете.

Командная строка:

Вы можете восстановить отсутствующие настройки схемы электропитания, просто запустив несколько команд в командной строке.

  1. Выполните поиск «Командная строка» либо прямо в меню «Пуск», либо нажав кнопку поиска рядом с ним. Щелкните правой кнопкой мыши по первому результату, который появится вверху, и выберите опцию «Запуск от имени администратора».

 

  1. Введите следующий набор команд одну за другой и убедитесь, что вы нажимаете Enter после ввода каждой из них и ждете, пока процесс завершится, и отобразится сообщение «процесс успешен»:

Заметка: Последняя команда может работать только в версиях Windows 10 после сборки 17101, поскольку она связана с восстановлением плана Ultimate Performance Power Plan, доступного для новейших сборок Windows 10 для рабочих станций.

powercfg -duplicatescheme a1841308-3541-4fab-bc81-f71556f20b4a
powercfg -duplicatescheme 381b4222-f694-41f0-9685-ff5bb260df2e
powercfg -duplicatescheme 8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c
powercfg -duplicatescheme e9a42b02-d5df-448d-aa00-03f14749eb61
  1. Перезагрузите компьютер и проверьте, вернулись ли планы электропитания туда, где они находятся.
Загрузите файлы самостоятельно:

Вы можете легко загрузить необходимые файлы из руководства, созданного TenForums, и оно содержит файлы «.pow», которые используются для представления плана электропитания.

  1. Нажмите на эту ссылку, чтобы скачать файл «.zip», содержащий планы электропитания. Найдите файл в папке «Загрузки», щелкните по нему правой кнопкой мыши и выберите «Извлечь в». Извлеките файлы в любое место, но лучше сохранить их простыми, выполнив следующие шаги.
  1. Выполните поиск «Командная строка» либо прямо в меню «Пуск», либо нажав кнопку поиска рядом с ним. Щелкните правой кнопкой мыши по первому результату, который появится вверху, и выберите опцию «Запуск от имени администратора».
  2. Используйте следующую команду для установки требуемой схемы электропитания:
powercfg -import "Полный путь к файлу .pow"
  1. В этом случае вместо «Полный путь к файлу .pow» вам нужно будет вставить правильный путь к файлу в папку, в которую вы распаковали файлы. Допустим, вы хотите установить план «Экономия энергии», который также называется в папке.
  2. Перейдите в папку, в которой находятся файлы, нажмите на панель навигации адреса вверху и скопируйте адрес после того, как он был выбран. Вернитесь в командную строку и вставьте адрес. Если файлы находятся, скажем, в папке «Загрузки» в их собственной папке Default_Power_Plans, команда должна выглядеть следующим образом:
powercfg -import "C: \ Users \ 2570p \ Downloads \ Default_Power_Plans \ Power saver.pow"
  1. Убедитесь, что вы повторили один и тот же процесс для всех планов электропитания, которые вы хотите установить, и проверьте, вернулись ли они в Панель управления.

Решение 2. Используйте следующий взлом реестра

Если Центр обновления Windows действительно скрыл эти параметры, возможно, что Windows пытается заменить эту функцию или вставить ее в историю, заменив ее другими функциями. Если вы все еще используете именно эту опцию, вы можете включить ее с помощью следующего взлома реестра.

Поскольку вам придется редактировать раздел реестра, мы рекомендуем вам ознакомиться с этой статьей, которую мы создали, чтобы вы могли безопасно создавать резервные копии реестра, чтобы избежать нежелательных побочных эффектов, которые не должны возникать, если вы просто тщательно выполните действия.

  1. Откройте окно редактора реестра, набрав «regedit» в строке поиска, меню «Пуск» или в диалоговом окне «Выполнить», доступ к которому можно получить с помощью комбинации клавиш Windows + R. Перейдите к следующему ключу в вашем реестре, перейдя на левую панель:

HKEY_LOCAL_MACHINE \ SYSTEM \ CurrentControlSet \ Control \ Мощность

  1. Нажмите на этот ключ и попробуйте найти запись с именем CsEnabled в правой части окна. Если такая опция существует, щелкните ее правой кнопкой мыши и выберите пункт «Изменить» в контекстном меню.
  1. В окне «Редактировать» в разделе «Значение» измените значение с 1 на 0 и примените внесенные изменения. Подтвердите любые диалоги безопасности, которые могут появиться во время этого процесса.
  2. Теперь вы можете вручную перезагрузить компьютер, щелкнув меню «Пуск» >> «Кнопка питания» >> «Перезагрузить» и проверьте, исчезла ли проблема.

Примечание. Если это не помогло вам, попробуйте добавить опцию, чтобы показать эти схемы электропитания индивидуально для каждой схемы электропитания, о которой знает ваш компьютер.

  1. Перейдите к следующему ключу в вашем реестре, перейдя на левую панель:

HKEY_LOCAL_MACHINE \ SYSTEM \ CurrentControlSet \ Control \ Энергетика \ PowerSettings

  1. Вы сможете увидеть множество ключей со странными именами внутри ключа PowerSettings. Перейдите к каждой из этих клавиш, щелкните правой кнопкой мыши на правой пустой стороне экрана и выберите «Новое» >> «DWORD (32-битное) значение».
  2. Назовите каждое из этих значений «Атрибуты», щелкнув правой кнопкой мыши и выбрав опцию «Переименовать». После этого щелкните правой кнопкой мыши вновь созданное атрибутное значение и выберите параметр «Изменить».
  1. Установите значение 2 под значением data, оставьте основание в шестнадцатеричном формате и нажмите OK. Повторите тот же процесс для каждого ключа в PowerSettings.
  2. Проверьте, исчезла ли проблема сейчас.

Решение 3: полезный обходной путь

Этот обходной путь может быть использован довольно легко, если вы хотите добавить опцию питания, которая отсутствует довольно легко. Так как новая сборка Windows обычно оставляет план сбалансированного питания без изменений, вы можете легко добавить его (или любой другой план по умолчанию), создав новый план, точно такой же, как этот.

  1. Щелкните правой кнопкой мыши значок батареи, расположенный на панели задач или в нижней правой части экрана, рядом со временем и датой, и выберите Параметры питания.
  2. Если вы удалили это из системного трея, нажмите на меню «Пуск» и найдите панель управления. Измените параметр «Просмотр по» на «Большие значки» и нажмите кнопку «Параметры питания».
  1. В левой части окна вы увидите несколько опций, отображаемых одна под другой, поэтому выберите опцию Создать план электропитания. Вы должны увидеть окно «Создание плана электропитания» и список вариантов. Установите переключатель в соответствии с планом питания, который вы хотите вернуть.
  2. Под именем плана вы можете даже назвать его так же, как оно было изначально, прежде чем нажимать кнопку «Далее» в нижней правой части окна.
  1. У вас появятся некоторые дополнительные настройки, такие как выключение дисплея, перевод компьютера в спящий режим и настройка яркости плана. Вы можете настроить их сейчас или позже, прежде чем нажать кнопку «Создать».
  2. Теперь у вас будет доступ к этому плану электропитания, поэтому убедитесь, что вы выбрали его при необходимости.

Решение 4. Проверьте наличие нового ползунка батареи

Из последней сборки Windows видно, что параметры питания теперь начали меняться для пользователей, которые не выполнили описанные выше действия, и каждый увидит новый ползунок, который можно использовать для установки высокой производительности или сохранения срок службы батареи.

Кроме того, этими настройками теперь можно управлять с помощью инструмента «Настройки», а не через панель управления.

Многие идеи схемы двойного источника питания 12 В и 5 В при максимальном токе 3 А

См. Различные концепции принципиальной схемы источника питания 12 В и 5 В. Эта схема может когда-либо вызвать у вас головную боль, потому что недоступна или не подходит для работы.

Но эта статья поможет вам сэкономить. Кроме того, это отличное обучение. Самостоятельно создать схему.
Все цепи регулятора постоянного напряжения. Так что им можно доверять, низкий уровень шума.

Как выбрать подходящую концепцию дизайна

Мы должны ответить себе: для чего построена эта схема?

  • 5 вольт
    Когда ваша нагрузка представляет собой цифровую схему семейства TTL или различные микроконтроллеры.Им нужен только постоянный уровень напряжения 5 В. Итак, мы должны использовать схему регулятора постоянного напряжения.

    Когда ток меньше 100 мА. Мы можем использовать транзистор и стабилитрон. (Легко и экономично). Но больше всего, если ток меньше 1А.
    Часто выбираем регулятор IC-7805. Потому что его легко найти, дешево

  • 12 В
    Когда мы используем обычные нагрузки, такие как микросхемы аудиоусилителей, схемы релейных приводов или даже цифровые микросхемы CMOS.Мы можем использовать схему питания 12 В.

    Мы можем использовать нерегулируемый источник питания в некоторых цепях, не требующих высокой точности. Просто есть небольшие пульсации напряжения, например в цепи управления реле.

    Если в цепи требуется постоянный уровень напряжения, также должен быть регулятор на 12 вольт.

Есть идеи? См. Схему ниже, которую вы четко поймете.

Некоторым нужен источник питания 9V вместо батареи. Это хорошая идея, потому что она подходит для использования с низким током.

Источник питания 12 В и 5 В @ 1 А

Схема источника питания накопителя компакт-дисков

Если у вас старый дисковод компакт-дисков. Он может воспроизводить только аудио компакт-диск, отличный звук. Но для этого нужна схема питания 12В 5В. У нас есть много способов создать источник питания постоянного тока для проигрывателя аудио компакт-дисков.

Что еще? Сделаем блок питания для Нашего Музыкального плеера.

Схема источника питания 12 В 5 В с использованием 7805 и LM7812

Посмотрите на схему ниже.Он может обеспечивать постоянное напряжение 5 В и 12 В, при 1 А.

Поскольку привод CD-ROM представляет собой электронные компоненты, требующие регулируемого источника питания. Итак, мы используем 3-контактную интегральную схему с фиксированным напряжением 1А, 7805 и 7812.

Подробнее: Техническое описание регулятора 7805

Эта схема представляет собой обычную схему источника питания регулятора, которую многие люди, возможно, видели знакомой.

Схема состоит из нерегулируемого и регулируемого источника питания IC7805-7812.

Сначала рассмотрим нерегулируемые поставки.Они состоят из важного оборудования, такого как трансформаторы, диодный выпрямитель и конденсаторный фильтр.

Рекомендуется:

Как это работает

Вот пошаговый процесс.

Сначала сеть переменного тока (230 В / 117 В) проходит в цепь через F1. Это простое устройство. Защищает при отключении электроэнергии.

Затем ступенчатый трансформатор преобразует сеть переменного тока в низкое напряжение 12 В, 6 В с трансформатором тока. Он определяет максимальный требуемый ток. В данном случае нам нужен выходной ток 1А как 5В, так и 12В.Поэтому следует выбирать трансформатор на 2А.

Мы настроили схему как двухполупериодный выпрямитель с помощью четырех дидо.

Если вы новичок, прочтите сначала:
Принцип нерегулируемого источника питания .
Я вам сейчас не объясняю. Из-за этого статья будет слишком длинной.

Посмотрите на сокращенную принципиальную схему.

Есть два раздела.

  • 5V Секция
    При 6V CT 6V, D2 и D3 преобразуют переменный ток 6V в DCV.Затем конденсатор фильтра C1 до чистого постоянного тока. Также важен C1. Мы должны использовать правильную емкость. Если использовать слишком низкое, мы получим низкое напряжение постоянного тока и высокую пульсацию. Теперь напряжение на C1 составляет около 8,4 В.
  • 12 В Секция
    При 12 В CT 12V, D1 и D4 преобразуют переменный ток 12 В в постоянный ток, а C2 также сглаживает его до чистого постоянного тока. Но на С2 он имеет напряжение 17В.

А Затем оба напряжения поступают на регулятор 7805 и 7812. Для поддержания стабильного выходного напряжения — 5 В и 12 В при 1 А.

C3 и C5 тоже фильтры.А C4 и C6 также уменьшают частотные искажения или переходные процессы.

Детали, которые вам понадобятся
D1, D2, D3, D4, D5: 1N4007, 1000V 1A Диоды
IC1: 7805, регуляторы 5V 1A IC
IC2: 7812, регуляторы 12V 1A IC

Электролитические конденсаторы
C1: 2,200 мкФ 25 В
C2: 2200 мкФ 16 В
C3: 100 мкФ 16 В
C5: 100 мкФ 25 В
C4, C6: 0,1 мкФ Керамический конденсатор 50 В
T1: 230 В или 117 (в зависимости от страны) Первичный ток переменного тока до 12 В, 6 В, трансформатор тока при вторичном токе 2 А трансформатор
F1: предохранитель 1A

12V 2A и 5V Схема источника питания

Если вашей нагрузке требуется больше потоков.Например, автомобильные аудиоусилители. Требуется напряжение питания 12 В при 2 А. Мы можем легко изменить схему выше.

Посмотрите новую схему обновления.

Мы все еще обслуживаем цепь питания 5В. Но измените схему питания 12 В, чтобы она стала версией транзистора и стабилитрона.

Даже с большим количеством оборудования. Но понять не так уж и сложно.

Нам тока нужно больше. Приходится менять диоды на 1N5402. Он может подключать максимальный ток до 3А.

И, добавьте еще один конденсатор C2, чтобы увеличить емкость, если ток больше, чем в 2 раза. Это делает более стабильным ток.

Как бы то ни было, мы видим, что схема представляет собой последовательный транзисторный регулятор напряжения.

Подробнее: Фиксированный стабилизатор на транзисторе и стабилитроне

Эта схема требует большего входного напряжения, что увеличивает эффективность. Падение напряжения на C1 и C2 увеличивается до 15Vx1,414 = 21V. Схема преобразователя постоянного тока

12В 3А на транзисторе и стабилитроне

Это лучше, чем раньше.Мы добавляем два транзистора в форме Дарлингтона (Q1, Q2), чтобы увеличить ток до 2A или 3A макс.

Стабилитрон устанавливает постоянное напряжение на 12 В. И мы добавляем два диода, чтобы компенсировать потерю напряжения на выводе BE каждого транзистора (0,6 В + 0,6 В).

Это означает, что выходное напряжение будет точнее 12 В.

Для других устройств Исходная схема — C4: конденсатор фильтрует любой шум. C3 снижает пульсации напряжения.

Детали, которые вам понадобятся
D1, D2, D3, D4, D5: 1N5402, 200V 3A Диоды
IC1: 7805, регуляторы 5V 1A IC
Q1: BC548, 45V 0.1A, транзистор NPN
Q2: TIP3055, 50 В 15A, транзистор NPN

Электролитические конденсаторы
C1, C2: 2200 мкФ 25 В
C5: 2200 мкФ 16 В
C6: 100 мкФ 16 В
C3: 22 мкФ 25 В
C4, 50 V7: 0,1 мкФ Керамический конденсатор
R1: 470 Ом, 0,25 Вт, резисторы, допуск: 5%
T1: 230 В или 117 (в зависимости от страны) Первичная обмотка переменного тока на 12 В, 6 В, вторичный трансформатор CT при 2 А
F1: Предохранитель 1 А

12 В 3 А и 5 В 2 А Схема регулятора

Нашему другу (Суреш) нужен источник питания постоянного тока 12 В и 5 В при 2 А.У нас есть много способов сделать это. Но эта схема, представленная ниже, может быть лучшим выбором.

12V 3A и 5V 2A Схема источника питания

Мы немного изменим схему выше.

  • Измените размер трансформатора на 3А.
  • Уход за оборудованием аналогичен 12В. Но он по-прежнему подает ток до 3А.
  • Добавьте силовой транзистор TIP2955, чтобы увеличить ток.

См. 5 В большой ток до 2 А .

Цифровой CMOS и источник питания TTL

Иногда в наших электронных схемах используются разные уровни напряжения. Например, в цифровых схемах, использующих оба семейства микросхем TTL. Для чего требуется только питание 5 В. Подключается к семейству микросхем CMOS, которые используют питание 12 В.

Подключение CMOS к TTL на разных уровнях питания

Узнайте, как использовать CMOS IC

Мы можем легко подключить оба с помощью схемы транзистора, описанной выше.

И мы можем использовать схему питания для цифровой ИС в соответствии со схемой ниже

12V 5V Схема питания для цифровых CMOS и TTL

Эта схема является модифицированной схемой выше.Есть много моментов, которые следует учитывать.

  • Мы используем трансформатор 15 В только с одной первичной обмоткой и поэтому используем схему мостового выпрямителя.
  • Низкий выходной ток не более 1А, которого достаточно для обычных цифровых схем.
  • Сохраните конденсаторный фильтр, но мы получим стабилизатор 5В с меньшим шумом, потому что он получает напряжение от регулятора 12В.

Рекомендовано: Цепь сдвоенного блока питания 15 В с печатной платой

Необходимые детали
D1, D2, D3, D4, D5: 1N4007, 1000 В 1A Диоды
IC1: 7812, регуляторы постоянного тока 12 В IC
IC2: 7805, регуляторы постоянного тока 5 В IC

Электролитические конденсаторы
C1: 2200 мкФ 25 В
C3: 100 мкФ 25 В
C2, C4: 0.1 мкФ, 63 В, полиэфирный конденсатор
T1: 230 В или 117 В в зависимости от страны, первичный ток переменного тока до 15 В, вторичный трансформатор 1 А

Также цепи питания 5 В, 9 В, 12 В

Что еще? Вы можете посмотреть другие схемы питания: Нажмите здесь

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Основы питания

Детали блока питания

В идеале блок питания постоянного тока (обычно называемый блоком питания), получающий питание от сети переменного тока, выполняет ряд задач:

  • 1.Он изменяет (в большинстве случаев снижает) уровень подачи до значения, подходящего для управления цепью нагрузки.
  • 2. Он вырабатывает постоянный ток от сети (или сети) синусоидального переменного тока.
  • 3. Предотвращает появление переменного тока на выходе источника питания.
  • 4. Это гарантирует, что выходное напряжение поддерживается на постоянном уровне, независимо от изменений:
  • а. Напряжение питания переменного тока на входе питания.
  • г. Ток нагрузки, потребляемый с выхода источника питания.
  • г. Температура.

Для этого базовый блок питания имеет четыре основных этапа, показанных на рис. 1.0.1.

Рис. 1.0.1 Блок-схема источника питания

Источники питания

за последнее время значительно повысили надежность, но, поскольку они должны выдерживать значительно более высокие напряжения и токи, чем любая или большая часть цепей, которые они питают, они часто наиболее подвержены отказу любой части электронной системы.

Современные источники питания также значительно усложнились и могут обеспечивать очень стабильные выходные напряжения, контролируемые системами обратной связи.Многие цепи питания также содержат автоматические цепи безопасности для предотвращения опасного перенапряжения или перегрузки по току.

Силовые модули на Learnabout-electronics поэтому знакомят с многими методами, используемыми в современных источниках питания, изучение которых важно для понимания электронных систем.

Предупреждение

Если вы планируете построить или отремонтировать источник питания, особенно тот, который питается от сети (линейного) напряжения, модули источника питания на этом сайте помогут вам понять, сколько часто встречающихся схем работает.Однако вы должны понимать, что напряжения и токи, присутствующие во многих источниках питания, в лучшем случае опасны и могут присутствовать даже при выключенном источнике питания! В худшем случае высокое напряжение, присутствующее в источниках питания, может, и время от времени, УБИТЬ.

Информация, представленная на этом сайте, не только предоставит вам квалификацию для безопасной работы с источниками питания. Вы также должны обладать навыками и оборудованием для безопасной работы и полностью осознавать местные проблемы здоровья и безопасности.

Пожалуйста, действуйте ответственно, автор этой информации и владельцы этого сайта не несут никакой ответственности или обязательств за любой ущерб или травмы, причиненные людям или любым третьим лицам, имуществу или оборудованию в результате использования или неправильного использования информации, представленной на веб-сайты learnabout-electronics.

Регулируемые блоки питания

Блок регулятора / стабилизатора

Последствия плохого регулирования

Эффект от плохого регулирования (или стабилизации) подачи можно увидеть на рис.1.3.1, где показаны графики выходного напряжения (V DC ) для увеличения тока нагрузки (I) в различных версиях базового блока питания.

Обратите внимание, что выходное напряжение для двухполупериодных схем (красный и желтый) значительно выше, чем для полуволновых (зеленый и фиолетовый). Также обратите внимание на небольшое снижение напряжения при добавлении LC-фильтра из-за падения напряжения на катушке индуктивности. В каждом случае в базовой конструкции выходное напряжение падает почти линейно по мере увеличения тока, потребляемого от источника питания.В дополнение к этому эффекту дополнительный разряд накопительного конденсатора также вызывает увеличение амплитуды пульсаций.

Рис. 1.3.1 Сравнение кривых регулирования

Регулятор (стабилизатор)

Регулятор или стабилизатор?

Строго говоря, компенсация колебаний входного напряжения сети (линии) называется РЕГУЛИРОВАНИЕМ, а компенсация колебаний тока нагрузки — СТАБИЛИЗАЦИЕЙ. На практике вы обнаружите, что эти термины используются довольно свободно для описания компенсации обоих эффектов.Фактически большинство стабилизированных или регулируемых источников питания компенсируют колебания как на входе, так и на выходе, и поэтому являются (по крайней мере, до некоторой степени) стабилизированными и регулируемыми источниками питания.

Как и в большинстве современных случаев, термин «регулятор» будет использоваться здесь для описания как регулирования, так и стабилизации.

Эти проблемы можно в значительной степени решить, включив на выходе источника питания ступень регулятора. Эффект от этой схемы можно увидеть на рис. 1.3.1. как черная линия на графике, где для любого тока примерно до 200 мА выходное напряжение (хотя и ниже абсолютного максимума, обеспечиваемого базовым источником питания) остается постоянным.

Регулятор противодействует влиянию переменного тока нагрузки, автоматически компенсируя снижение выходного напряжения по мере увеличения тока.

В регулируемых источниках питания также часто бывает, что выходное напряжение автоматически и внезапно снижается до нуля в качестве меры безопасности, если потребляемый ток превышает установленный предел. Это называется ограничением тока.

Регулирование требует дополнительных схем на выходе простого источника питания. Используемые схемы сильно различаются как по стоимости, так и по сложности.Используются две основные формы регулирования:

1. Шунтирующий регулятор.

2. Регулятор серии.

Эти два подхода сравниваются на Рис. 1.3.2 и Рис. 1.3.3

Шунтирующий регулятор

Рис. 1.3.2 Шунтирующий регулятор

В шунтирующем регуляторе (рис. 1.3.2) цепь включена параллельно нагрузке. Назначение регулятора — обеспечить постоянное стабильное напряжение на нагрузке; это достигается за счет обеспечения постоянного протекания тока через цепь регулятора.Если ток нагрузки увеличивается, то схема регулятора уменьшает свой ток, так что общий ток питания I T (состоящий из тока нагрузки I L плюс ток регулятора I S ) остается на том же значении. . Аналогично, если ток нагрузки уменьшается, то ток регулятора увеличивается, чтобы поддерживать постоянный общий ток I T . Если общий ток питания останется прежним, то изменится и напряжение питания.

Регулятор серии

Рис.1.3.2 Регулятор серии

В последовательном регуляторе (рис. 1.3.3) регулирующее устройство включено последовательно с нагрузкой. На регуляторе всегда будет падение напряжения. Это падение будет вычтено из напряжения питания, чтобы получить напряжение V L на нагрузке, которое представляет собой напряжение питания V T за вычетом падения напряжения регулятора V S . Следовательно:

V L = V T — V S

Регуляторы серии

обычно управляются выборкой напряжения нагрузки с использованием системы отрицательной обратной связи.Если напряжение нагрузки имеет тенденцию падать, меньшая обратная связь заставляет управляющее устройство уменьшать свое сопротивление, позволяя большему току течь в нагрузку, таким образом увеличивая напряжение нагрузки до исходного значения. Увеличение напряжения нагрузки будет иметь обратный эффект. Как и шунтирующее регулирование, действие последовательного регулятора также компенсирует колебания напряжения питания.

Самая простая схема источника питания

Эта схема источника питания проста в изготовлении и недорого.А для этого требуется всего 5 компонентов.

За свою жизнь я построил много схем, но на самом деле это первый раз, когда я построил схему источника питания с нуля.

Последним проектом, который я хотел создать, был сетевой адаптер с USB-разъемом для зарядки моего iPhone. Но сначала я хотел начать с создания простой схемы, которая преобразует напряжение сети 220 В или 110 В в 5 В.

Поскольку я нахожусь в Австралии, когда пишу это, а напряжение здесь 220 В, я построил его с расчетом на 220 В.Но вместо этого очень легко преобразовать его в 110 В, переключив одно соединение (или один компонент).

Осторожно: НЕ подключайте к электросети все, что вы делаете самостоятельно, если вы не на 100% уверены в том, что делаете. Неправильное действие может привести к серьезным повреждениям, даже к смерти. Используйте предоставленную здесь информацию на свой страх и риск.

Если вам нужна совершенно безопасная и чрезвычайно полезная схема источника питания, вам следует проверить это портативное зарядное устройство USB, которое я построил.Он даже включает в себя загружаемое пошаговое руководство о том, как его собрать самостоятельно.

Проектирование источника питания

Я хочу построить схему источника питания на базе регулятора напряжения LM7805, потому что это простой в использовании чип. Этот компонент даст стабильное выходное напряжение от 5 В до 1,5 А.

Я могу легко понять, как использовать LM7805, посмотрев на его техническое описание.

Из таблицы я нашел эту маленькую схему:

Выбор номиналов конденсатора

На изображении выше показан регулятор напряжения с цифрой 0.Конденсатор 33 мкФ на входе и 0,1 мкФ на выходе. Трудно найти хороший источник информации об этих значениях конденсаторов, но, согласно этим вопросам и ответам, в этих значениях нет ничего волшебного.

В сети есть много мнений по поводу этих конденсаторов. Некоторые предлагают конденсаторы 0,1 мкФ, другие — конденсаторы 100 мкФ. Некоторые предлагают использовать одновременно 0,1 мкФ и 100 мкФ.

Значения, которые вы должны использовать, зависят от множества факторов. Например, какой длины будут провода.Но эта статья о том, как построить простую схему питания, поэтому не будем усложнять. Наверное, подойдет практически любая емкость конденсатора. Возможно, он будет работать даже без конденсаторов.

Чтобы сделать выходное напряжение «немного стабильным», я собираюсь использовать на выходе конденсатор емкостью 1 мкФ. Я пропущу входной конденсатор, потому что конденсатор все равно будет в этом положении — просто продолжайте читать.

Преобразование из 220 В

В таблице данных также указано, что для правильной работы требуется от 7 до 25 В.Итак, мне нужно только добавить несколько компонентов, которые преобразуют 220 В (или 110 В) переменного тока в постоянное напряжение, которое остается между 7 и 25 В.

Это относительно просто. Я просто добавлю трансформатор, который преобразует напряжение, например, примерно до 12 В. Затем я подам это переменное напряжение в мостовой выпрямитель, чтобы его выпрямить.

И я использую большой конденсатор на выходе, чтобы постоянно поддерживать напряжение выше необходимых 7В. Это значение конденсатора не критично. Я видел много схем блоков питания, в которых используется 470 или 1000 мкФ, поэтому сейчас я попробую с 470 мкФ.

Схема блока питания

Итак, итоговая схема выглядит так:

Список деталей

Часть Значение Описание
Т1 220В (или 110В) до 12В Трансформатор
DB1 Выпрямитель с диодным мостом
C1 470 мкФ (20 В и выше) Конденсатор
C2 1 мкФ (10 В и выше) Конденсатор
U1 7805 Регулятор напряжения

Общая стоимость комплектующих около 12-15 $.Самый дорогой компонент — трансформатор (около 10 долларов).

Поиск компонентов для цепи

Когда я не уверен, как выбрать компоненты для схемы, я обычно хожу в интернет-магазины электроники для любителей и смотрю на их варианты. В этих магазинах обычно есть компоненты, которые должны работать от стандартного блока питания без каких-либо особых требований.

В Австралии Jaycar — хороший вариант.

Быстрый поиск «трансформатора» на Jaycar дает мне несколько вариантов.Входное напряжение должно быть около 220 В, а выходное — около 12 В. После быстрого просмотра их вариантов и цен я остановился на этом:
https://www.jaycar.com.au/12-6v-ct-7va-500ma-centre-tapped-type-2853-transformer/p / MM2013

Трансформатор имеет центральный отвод на выходной стороне, который я могу игнорировать.

Это на 220В. Если вы живете в стране с напряжением 110 В, в магазинах вашей страны, вероятно, найдется подходящая версия. Щелкните здесь, чтобы просмотреть мой список интернет-магазинов.

Тогда мне нужен выпрямитель. Мы можем использовать 4 силовых диода (например, 1N4007) или мостовой выпрямитель (который в основном состоит из четырех диодов, встроенных в один компонент). Самый дешевый вариант, который появляется при поиске мостового выпрямителя на Jaycar, — это:
https://www.jaycar.com.au/w04-1-5a-400v-bridge-rectifier/p/ZR1304

Готовая схема

Это простая схема для пайки на макетной плате. Вот прототип, который я построил:

.

Напоминание: не подключайте к электросети все, что вы построили самостоятельно, если вы не уверены на 100% в том, что делаете.Используйте предоставленную здесь информацию на свой страх и риск.

Вы его построили?

Вы построили эту схему? Какой у вас опыт? С чем вы боролись? Расскажите в комментариях ниже, как все прошло.

Учебное пособие по источникам питания

— SMPS

БЛОК-СХЕМА И ОСНОВНАЯ ТЕОРИЯ РАБОТЫ


<------------------------------------------------- -------------------------------------------------- ------------------->


Источник питания в целом представляет собой устройство, которое передает электрическую энергию от источника к нагрузке с помощью электронных схем.В процессе он изменяет энергетические характеристики в соответствии с конкретными требованиями. Практически каждое электронное оборудование требует преобразования энергии в той или иной форме. Типовой блок питания (БП) выполняет следующие основные функции:
  • Изменение вида электроэнергии. Например, электричество из сети передается в виде переменного тока, в то время как электронные схемы нуждаются в постоянном токе низкого уровня;
  • Регламент
  • . Номинальное сетевое напряжение варьируется во всем мире от 100 до 240 В переменного тока и обычно плохо регулируется, в то время как для печатных плат обычно требуются хорошо стабилизированные фиксированные напряжения;
  • Защитная изоляция.В большинстве случаев низковольтные выходы должны быть изолированы от входа.

Кстати, термин «блок питания» не самый адекватный. Блок питания, конечно, не «подает» питание (за исключением коротких периодов времени, когда он работает от внутренней памяти), он только преобразует его. Его типичное применение — преобразование переменного тока электросети в требуемую регулируемую шину (и) постоянного тока. В зависимости от режима работы полупроводников преобразователи могут быть линейными или переключаемыми.

ЧТО ТАКОЕ SMPS


SMPS расшифровывается как импульсный блок питания.В таком устройстве электронные компоненты управления мощностью непрерывно «включаются» и «выключаются» с высокой частотой, чтобы обеспечить передачу электроэнергии через компоненты накопителя энергии (катушки индуктивности и конденсаторы). Изменяя рабочий цикл, частоту или относительную фазу этих переходов, можно управлять средним значением выходного напряжения или тока. Диапазон рабочих частот коммерческих блоков питания обычно варьируется от 50 кГц до нескольких МГц (см. Подробнее о выборе частоты). На рынке имеется множество стандартных источников питания переменного и постоянного тока, которые могут удовлетворить практически любое применение.Существует также множество модулей DC-DC, которые вы можете использовать в качестве строительных блоков для построения архитектуры вашей системы и которые можно рассматривать как компоненты. Поэтому в настоящее время большинство производителей электроники не разрабатывают свои блоки питания самостоятельно — они либо покупают их в готовом виде, либо заказывают услуги по проектированию и производству у ODM.
Ниже представлена ​​принципиальная принципиальная схема типичного автономного ИИП. Это руководство познакомит вас с его основными операциями.

КАК РАБОТАЕТ ИСТОЧНИК ПИТАНИЯ (SMPS)

Электропитание переменного тока сначала проходит через предохранители и сетевой фильтр.Затем он выпрямляется двухполупериодным мостовым выпрямителем. Выпрямленное напряжение затем подается на предварительный регулятор коррекции коэффициента мощности (PFC), за которым следует преобразователь постоянного тока в постоянный ток. Большинство компьютеров и небольших устройств используют входной разъем типа IEC. Что касается выходных разъемов и распиновки, за исключением некоторых отраслей, таких как ПК и CompactPCI, в целом они не стандартизированы и оставляются на усмотрение производителей.

F1 и F2, показанные слева на принципиальной схеме, являются предохранителями.О них знают все, но у некоторых складывается впечатление, что предохранитель срабатывает сразу после того, как приложенный ток превышает его номинал.


Если бы это было так, ни один блок питания не работал бы из-за кратковременных пусковых токов. На самом деле предохранитель предназначен для физического размыкания цепи, когда ток, протекающий через него, превышает его номинал в течение определенного периода времени . Это время очистки зависит от степени перегрузки и является функцией I 2 t .Из-за этой задержки предохранители не всегда защищают электронные компоненты от катастрофического отказа, вызванного некоторыми неисправностями. Их основная цель — защитить входящую линию от перегрузки и перегрева, избежать срабатывания внешнего автоматического выключателя и предотвратить возгорание, которое может быть вызвано компонентами, вышедшими из строя в результате короткого замыкания.
Фильтр нижних частот EMI предназначен для снижения до приемлемого уровня высокочастотных токов, возвращающихся в сеть переменного тока. Это необходимо для предотвращения помех другим устройствам, подключенным к той же электропроводке.Существует ряд стандартов (например, EN55022 для оборудования информационных технологий), которые регулируют максимальный уровень электромагнитных помех.
За фильтром следует выпрямитель, который преобразует биполярные формы сигналов переменного тока в униполярные пульсирующие. Он имеет четыре диода в виде моста для обеспечения одинаковой полярности выхода для обеих полярностей входа.


Предварительный регулятор PFC

. Выпрямленное входное напряжение подается на следующий каскад, основной целью которого является увеличение коэффициента мощности (PF).По определению, коэффициент мощности — это соотношение между ваттами и вольт-амперами. При этом преобразователь PFC обычно повышает напряжение до 370-400 В постоянного тока и обеспечивает регулируемое звено постоянного тока. Существуют также конструкции, в которых «повышающий» выход следует за пиком входного переменного напряжения, а не фиксируется, или где понижающий преобразователь используется вместо повышающего.

Существует два основных типа схем коррекции коэффициента мощности — активные и пассивные. Ниже представлена ​​блок-схема активного каскада PFC. Вот как это работает. Контроллер PFC контролирует как напряжение на измерительном резисторе, так и Vboost .Регулируя «Vboost», он одновременно контролирует форму входного тока, так что он находится в фазе с сетевым переменным током и повторяет свою форму волны. Без этого ток будет подаваться на SMPS короткими импульсами высокого уровня с высоким содержанием гармоник. Гармоники не передают реальной энергии нагрузке, но вызывают дополнительный нагрев в проводке и распределительном оборудовании. Они также снижают максимальную мощность, которую можно получить от стандартной настенной розетки, поскольку автоматические выключатели рассчитываются по электрическому току, а не по ваттам.Существуют различные правила , которые ограничивают содержание входных гармоник, например EN61000-3-2 (для оборудования, подключенного к низковольтным распределительным сетям общего пользования) или DO-160 (для бортового оборудования). Чтобы удовлетворить эти требования, вы должны использовать метод коррекции коэффициента мощности: устройство с высоким коэффициентом мощности потребляет почти синусоидальный ток от источника (на синусоидальном входе). Это автоматически приводит к низкому содержанию гармоник. В настоящее время не существует обязательных международных стандартов, конкретно регулирующих коэффициент мощности электронного оборудования, но существуют различные национальные и отраслевые стандарты, а также программы добровольного стимулирования.Например, программы 80 PLUS® и Energy Star® требовали, чтобы компьютеры демонстрировали коэффициент мощности> 0,9 при номинальной нагрузке. Вы можете узнать больше об активной коррекции коэффициента мощности в этом руководстве по коррекции коэффициента мощности.
Вышеупомянутые стандарты также определяют минимальную эффективность определенных классов электронных устройств. Эффективность блока питания по определению — это соотношение между значениями выходной и входной мощности: КПД = Pout / Pin . Обратите внимание, что поскольку Pin = VA * PF и поскольку у любой реальной активной цепи коэффициент мощности <1, вы не можете просто умножить входные вольты и амперы - для измерения Pin вам понадобится настоящий ваттметр.

Последующий преобразователь постоянного тока в постоянный работает от выхода PFC, генерирует набор шин постоянного тока, необходимых для нагрузки, и обычно также обеспечивает изоляцию входа и выхода. В преобразователях постоянного тока используется ряд топологий. На приведенной выше блок-схеме изображен изолирующий прямой преобразователь. В большинстве низковольтных неизолированных преобразователей используются понижающие стабилизаторы (однофазные или многофазные с чередованием). Также существует большое количество ИС с ШИМ, подходящих для каждой из этих топологий. Выбор правильной топологии питания зависит от конкретных требований к продукту (включая факторы стоимости и времени).

Наконец, вспомогательное питание обеспечивает «смещение» для всех схем управления. Он также может обеспечивать отдельное резервное напряжение (SBV), которое остается активным, когда блок PS выключается по любой причине. В сегодняшних компьютерных источниках питания SBV 5 В постоянного тока является стандартной функцией.

Если вы хотите изучить практическое проектирование блоков питания, вы можете начать с книг для семинаров Unitrode, где вы найдете исчерпывающую коллекцию руководств по источникам питания, практических схематических диаграмм и руководств.


СПРАВОЧНАЯ ИНФОРМАЦИЯ :
Источники питания Spice моделирования и практические разработки;
Справочное руководство по SMPS с указаниями по применению основных регуляторов.

Базовые знания схемы источника питания (1) -Классификация цепей питания- — Промышленные устройства и решения

Продукты, описанные на этом веб-сайте, были разработаны и изготовлены для стандартных приложений, таких как общие электронные устройства, офисное оборудование, оборудование для передачи данных и связи, измерения инструменты, бытовая техника и аудио-видео техника.

Для специальных применений, в которых требуется качество и надежность, или если отказ или неисправность продукции может напрямую угрожать жизни или вызвать угрозу травмы (например, для самолетов и аэрокосмического оборудования, дорожного и транспортного оборудования, оборудования для сжигания, медицинского оборудования , устройства для предотвращения несчастных случаев и защиты от кражи, а также защитное оборудование), пожалуйста, используйте только после того, как ваша компания в достаточной степени проверит пригодность наших продуктов для этого применения.

Независимо от области применения, при использовании наших продуктов в оборудовании, для которого ожидается высокий уровень безопасности и надежности, убедитесь, что схемы защиты, схемы резервирования и другие устройства установлены для обеспечения безопасности оборудования при оценке области применения путем независимой проверки безопасности. тесты.

Обратите внимание, что продукты и технические характеристики, размещенные на этом веб-сайте, могут быть изменены без предварительного уведомления в целях улучшения.Независимо от области применения, пожалуйста, подтвердите последнюю информацию и спецификации до окончательного этапа проектирования, покупки или использования.

Техническая информация на этом веб-сайте содержит примеры типичных операций и схем применения продуктов. Он не предназначен для гарантии ненарушения или предоставления лицензии на права интеллектуальной собственности этой компании или любой третьей стороны.

Если какие-либо продукты, спецификации продуктов и техническая информация на этом веб-сайте подлежат экспорту или предоставлению нерезидентам, необходимо соблюдать законы и правила страны-экспортера, особенно те, которые касаются безопасного экспортного контроля.

Информация, содержащаяся на этом веб-сайте, не может быть перепечатана или воспроизведена полностью или частично без предварительного письменного разрешения Panasonic Corporation.

Инструменты и программы, представленные на этом веб-сайте, должны использоваться по вашему усмотрению. Panasonic не гарантирует каких-либо результатов от использования этих инструментов и программ и не несет ответственности за любые убытки, возникшие в результате использования вами.

<о письме для получения сертификата соответствия директиве ЕС RoHS>
Дата перехода на продукт, соответствующий требованиям RoHS, зависит от номера детали или серии.
При использовании инвентаря, в котором неясно соответствие требованиям RoHS, выберите «Запрос на продажу».
в форме веб-запроса.

Уведомление о передаче полупроводникового бизнеса


Полупроводниковый бизнес Panasonic Corporation (далее именуемой «Компания») будет передан 1 сентября 2020 года Nuvoton Technology Corporation (далее именуемой «Nuvoton»). Соответственно, Panasonic Semiconductor Solutions Co., Ltd., которая управляла полупроводниковым бизнесом Panasonic, войдет в состав Nuvoton Group с новым названием Nuvoton Technology Corporation Japan (далее именуемой «NTCJ»).
В соответствии с этой передачей, полупроводниковая продукция, размещенная на этом веб-сайте, после 1 сентября 2020 года будет считаться продукцией, произведенной NTCJ. Однако такая продукция будет постоянно продаваться через Компанию.
Обратите внимание, что при запросе о полупроводниковой продукции, размещенной на этом веб-сайте, клиенты должны перейти на веб-сайт, управляемый NTCJ (далее «веб-сайт NTCJ»), и подтвердить, что NTCJ является компанией, ответственной за управление личной информацией, предоставляемой клиентами на ее веб-сайте.Мы ценим ваше понимание по этому поводу. Базовая электроника

— различные типы источников питания

В предыдущих статьях мы обсуждали пассивные электронные компоненты, такие как резисторы, конденсаторы, катушки индуктивности и трансформаторы. Пассивные компоненты особенно полезны при разработке различных аналоговых схем.

Настоящее развлечение современной электроники начинается с полупроводников и цифровой электроники. Электроника — это все, что связано с сигналами (в форме напряжения или тока) и обработкой сигналов компонентами и схемами.Полупроводниковая электроника стала возможной благодаря обработке электронных сигналов как двоичных значений (0 и 1 или Low и High). Это применение полупроводниковой электроники для обработки сигналов как двоичных значений приводит к реализации булевой логики в форме цифровой электроники. Так началось использование электроники для «вычислений». Вскоре инженеры и исследователи разработали способы измерения различных физических величин путем преобразования их в аналоговые электрические сигналы и оцифровки этих аналоговых сигналов в цифровые значения.Они также разработали способы преобразования цифровых сигналов в эквивалентные аналоговые электрические сигналы. Теперь компьютеры также могут взаимодействовать и реагировать на физический мир.

Большая часть современной электроники связана с «электронными вычислениями» и их приложениями в реальном мире. Электронные вычисления в сочетании с технологиями отображения и электронными устройствами ввода / вывода приводят к развитию компьютеров общего назначения. Электронные вычисления в сочетании с различными коммуникационными технологиями приводят к развитию телекоммуникационных, телевизионных и интернет-технологий.Электронные вычисления в сочетании с беспроводной связью и датчиками привели к развитию мобильной электроники и носимых устройств. Электронные вычисления в сочетании с датчиками и исполнительными механизмами приводят к развитию таких приложений, как встроенные системы, робототехника и автоматизация.

Но, прежде чем мы начнем нескончаемый путь полупроводников и цифровой электроники, будет лучше иметь некоторое базовое представление об источниках питания. Это источник питания, дающий жизнь любой электронной схеме или устройству.Каждая электронная схема или устройство, по сути, должна иметь секцию источника питания или может потребоваться подключение в качестве нагрузки к внешней цепи источника питания.

Источником электроэнергии могут быть линии электропередачи (электросеть), электромеханические системы (генераторы и генераторы), солнечная энергия или устройства хранения, такие как элементы и батареи. Источники питания — это преобразователи мощности, которые преобразуют электрическую энергию от источника в напряжение, ток и частоту, подходящие для цепи нагрузки.Источником электроэнергии может быть переменный или постоянный ток. Как и генераторы и сеть, электричество обеспечивает питание переменного тока, в то время как батареи и солнечные устройства являются источником постоянного тока. Схема источника питания может вводить мощность от источника переменного или постоянного тока и выводить мощность переменного или постоянного тока, преобразованную в соответствии с нагрузкой. Таким образом, цепи питания можно разделить на блоки питания переменного тока, переменного тока, постоянного тока и постоянного тока.

Различные источники питания переменного тока включают источники переменного тока переменного тока, изолирующие трансформаторы и преобразователи частоты. Источники питания переменного тока в постоянный являются наиболее распространенными.Некоторые из источников питания переменного тока в постоянный включают нерегулируемый линейный источник постоянного тока, линейный регулируемый источник постоянного тока (настольный источник питания), импульсные регулируемые источники питания и источник питания с пульсационной стабилизацией. Источники питания на батарейках, солнечные источники питания и преобразователи постоянного тока в постоянный являются примерами источников питания постоянного тока. Источники питания на основе батарей и солнечные источники питания используются для непосредственного питания электронных схем, в то время как преобразователи постоянного тока в постоянный обычно используются для преобразования входного постоянного тока на разные уровни для питания разных цепей в одном и том же устройстве, а не для использования разных переменного тока. Источники постоянного тока для получения различных уровней напряжения / тока.Инверторы, генераторы и ИБП обычно используются в качестве источников питания постоянного тока.

Источник переменного тока с переменным током
Источник переменного тока с переменным током разработан с использованием трансформаторов или регулируемых автотрансформаторов. Они используются для преобразования уровней напряжения переменного тока в переменный. Для создания такого источника питания можно использовать трансформатор с несколькими обмотками или ответвлениями, в противном случае можно использовать регулируемый автотрансформатор. Эти источники питания преобразуют уровни переменного напряжения и тока, в то время как частота источника питания остается неизменной.

Преобразователи частоты
Преобразователи частоты используются для преобразования частоты переменного тока. Они могут быть спроектированы с использованием электромеханических устройств, таких как мотор-генератор, или с помощью выпрямительно-инверторного комплекта. Выпрямитель сначала преобразует переменный ток в постоянный, а затем инвертор преобразует постоянный ток обратно в переменный ток разных частот.

Разделительные трансформаторы
Разделительные трансформаторы используются для питания переменного тока, когда требуется согласование импеданса между источником питания и цепью нагрузки.Изолирующие трансформаторы обычно не преобразуют уровни напряжения или частоту источника питания. Они полезны при подключении симметричных и несимметричных цепей.

Этот изолирующий трансформатор используется для повышения или понижения напряжения при сохранении изоляции силовых и выходных цепей с помощью усиленной изоляции, сертифицированной CE. (Изображение: преобразователь сигналов)

Нерегулируемый линейный источник питания
Нерегулируемый линейный источник питания — это простые источники питания переменного тока в постоянный.Они разработаны с использованием понижающего трансформатора, выпрямителя, конденсатора фильтра и резистора утечки. Сначала трансформатор преобразует напряжение в сети до необходимого уровня переменного тока. Пониженное напряжение переменного тока затем преобразуется в напряжение постоянного тока с помощью полуволнового или двухполупериодного выпрямителя. Выпрямитель выполнен на диодах. Пульсирующий постоянный ток выпрямителя сглаживается конденсаторами фильтра. Для защиты параллельно конденсатору фильтра может быть подключен резистор утечки.

Нерегулируемые блоки питания просты и надежны.Однако их выходное напряжение может изменяться из-за изменения входного напряжения или тока нагрузки. Так что они не очень надежны. Кроме того, они могут быть предназначены только для вывода фиксированного напряжения и тока.

Линейно-регулируемый источник питания
Линейно-регулируемый источник питания — это источники питания переменного тока в постоянный. Это то же самое, что и нерегулируемые (грубая сила) источники питания, за исключением того, что они используют транзисторную схему, работающую в активной или линейной области, вместо истекающего резистора. Этот активный транзисторный каскад позволяет выводить на разные точные уровни постоянного напряжения.Существует несколько микросхем стабилизаторов напряжения, в которые встроена активная транзисторная схема. Источники питания с линейным регулированием стабильны, безопасны, надежны и бесшумны. Существуют микросхемы регуляторов напряжения, доступные для широкого диапазона входных и выходных напряжений, и они выдают фиксированные напряжения постоянного тока. Основными недостатками этих расходных материалов являются их стоимость, размер и энергоэффективность. Эти блоки питания теряют много энергии из-за рассеивания мощности, и может потребоваться использование радиатора с интегральными схемами регулятора.

Линейный источник питания от Acopian Power Supplies (вверху) в десять раз больше и тяжелее, чем сопоставимый импульсный источник питания (внизу), который также от Acopian, но линейный блок имеет преимущества, которым не может соответствовать источник питания коммутатора.

Импульсный регулируемый источник питания
Импульсный регулируемый источник питания — это комплексные источники питания переменного тока в постоянный, в которых, как правило, сочетаются преимущества нерегулируемых и регулируемых источников питания. В SMPS линейное напряжение выпрямляется в постоянное, а затем снова преобразуется в прямоугольный переменный ток с помощью переключающих транзисторов.Эта высокочастотная прямоугольная волна затем понижается или повышается, а затем снова выпрямляется. Выпрямленное постоянное напряжение фильтруется перед подачей его на нагрузку.

Источник питания с пульсацией
Источник питания с пульсацией — это улучшенная разновидность нерегулируемого источника переменного тока в постоянный. Он разработан путем объединения нерегулируемого источника питания с транзисторной схемой, работающей в области насыщения. Схема транзистора передает мощность постоянного тока на конденсатор для поддержания уровня напряжения.Основным преимуществом пульсирующего источника питания является его энергоэффективность.

Регулируемые регулируемые источники питания
Линейно регулируемые источники питания можно модифицировать для обеспечения диапазона регулируемых напряжений с помощью переменного резистора на оконечном каскаде. Переменный резистор может понижать выходное напряжение до регулируемых значений. Такой регулируемый источник питания может затем подавать напряжения в диапазоне от нуля до максимального напряжения, регулируемого источником. Симметричные линейные регулируемые источники питания также могут быть модифицированы для подачи напряжения отрицательной полярности.

Аккумуляторы и солнечные источники питания
Аккумуляторы, элементы и солнечные панели обеспечивают питание постоянного тока. Энергия от накопителей или солнечных панелей должна быть сначала отфильтрована, чтобы удалить пульсирующую рябь. Затем его можно регулировать до желаемых уровней постоянного напряжения с помощью микросхем регулятора напряжения. Если необходимо увеличить напряжение питания от аккумулятора или солнечной панели, это можно сделать с помощью транзисторов в качестве усилителей.

Преобразователи постоянного тока в постоянный
Преобразователи постоянного тока в постоянный используются для повышения или понижения постоянного напряжения.Преобразователи постоянного тока в постоянный ток могут быть полупроводниковыми, электромеханическими или электрохимическими. ИИП постоянного тока, такие как двухтактный преобразователь, понижающий преобразователь, повышающий преобразователь, понижающий-повышающий преобразователь, являются некоторыми примерами преобразователей постоянного тока полупроводникового типа. Эти источники обычно используются для преобразования постоянного тока (выпрямленного из электросети или другого источника переменного тока) для обеспечения различных уровней постоянного тока вместо использования множества источников переменного тока в постоянный в устройстве.

Пример блока питания постоянного / постоянного тока мощностью 2 Вт в SMD (Изображение: Recom).

Источники питания постоянного тока в переменный ток
Эти типы источников питания обычно используются для резервного питания. Инверторы, ИБП и генераторы являются примерами таких систем электроснабжения.

Инженеры и любители электроники чаще всего используют источники питания с линейным регулированием и аккумуляторные источники питания. Другие типы источников питания обычно разрабатываются и производятся для конкретных приложений или схем. Для некоторых схем может потребоваться проектирование источника питания с использованием солнечных панелей.

Для новичков всегда удобно начать с линейно регулируемого источника питания, обеспечивающего обычно используемые напряжения постоянного тока, такие как 12 В, 9 В, 5 В и 3 В.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *