Схема включения варистор: обозначение и основные характеристики, маркировка и принцип действия, сферы применения и проверка

Содержание

обозначение и основные характеристики, маркировка и принцип действия, сферы применения и проверка

Варисторы: как работают, основные характеристики и параметры, схема подключения

Варистором называется нелинейный резистор, который применяется в радиоэлектронных цепях и обеспечивает защиту включенных в сеть приборов от перенапряжения. Его отличительной чертой является нелинейная вольт-амперная характеристика. В зависимости от величины воздействующего на деталь напряжения ее сопротивление может колебаться в значительных пределах – от нескольких десятков до сотен миллионов Ом. В этой статье мы поговорим о том, для чего нужен варистор, каков его принцип действия и как производится его подключение и проверка детали на исправность.

Описание и принцип работы

В отличие от плавкого предохранителя или автоматического выключателя, который обеспечивает защиту от перегрузки по току, варистор обеспечивает защиту от перенапряжения посредством фиксации напряжения аналогично стабилитрону. Купить варистор на Алиэкспресс:

Слово «варистор» представляет собой сочетание слов VARI-able resi-STOR, используемыми для описания их режима работы еще в первые дни развития, который является немного неверным, так как варистор не может вручную изменять как, например потенциометр или реостат.

Но в отличие от переменного резистора, значение сопротивления которого можно вручную изменять между его минимальным и максимальным значениями, варистор автоматически изменяет значение своего сопротивления при изменении напряжения на нем, что делает его нелинейным резистором, зависящим от напряжения, или сокращенно VDR.

В настоящее время резистивный корпус варистора изготовлен из полупроводникового материала, что делает его типом полупроводникового резистора с неомическими симметричными характеристиками напряжения и тока, подходящими как для переменного, так и для постоянного напряжения.

Во многих отношениях варистор по размеру и конструкции похож на конденсатор, и его часто путают с ним. Однако конденсатор не может подавить скачки напряжения так же, как варистор. Когда к цепи прикладывается скачок высокого напряжения, результат обычно катастрофичен для цепи, поэтому варистор играет важную роль в защите чувствительных электронных схем от пиков переключения и перенапряжений.

Переходные скачки происходят из множества электрических цепей и источников независимо от того, работают ли они от источника переменного или постоянного тока, поскольку они часто генерируются в самой цепи или передаются в цепь от внешних источников. Переходные процессы в цепи могут быстро возрастать, увеличивая напряжение до нескольких тысяч вольт, и именно эти скачки напряжения должны быть предотвращены в чувствительных электронных схемах и компонентах.

Одним из наиболее распространенных источников переходных напряжений является эффект L (di / dt), вызываемый переключением индуктивных катушек и намагничивающими токами трансформатора, приложениями переключения двигателей постоянного тока и скачками напряжения при включении цепей флуоресцентного освещения или других скачков напряжения питания.

Литература

  1. https://www.littelfuse.com/.
  2. Electronics Circuit Protection Product Selection Guide.
  3. https://www.littelfuse.com/~/media/electronics/product_catalogs/littelfuse_product_selection_guide.pdf.pdf.
  4. Metal-Oxide Varistors (MOVs).
  5. https://www.littelfuse.com/~/media/electronics/product_catalogs/littelfuse_varistor_catalog.pdf.pdf.

Получение технической информации, заказ образцов, заказ и доставка.

•••

Переходные формы волны переменного тока

Варисторы подключены в цепях через сеть питания либо между фазой и нейтралью, либо между фазами для работы от переменного тока, либо с положительного на отрицательный для работы от постоянного тока, и имеют номинальное напряжение, соответствующее их применению. Варистор также можно использовать для стабилизации напряжения постоянного тока и особенно для защиты электронных цепей от импульсов перенапряжения.

Изготовление [ править | править код ]

Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника, преимущественно порошкообразного карбида кремния (SiC) или оксида цинка (ZnO), и связующего вещества (например, глина, жидкое стекло, лаки, смолы). Далее две поверхности полученного элемента металлизируют (обычно электроды имеют форму дисков) и припаивают к ним металлические проволочные выводы.

Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.

Варистор статического сопротивления

При нормальной работе варистор имеет очень высокое сопротивление, отсюда и его название, и работает аналогично стабилитрону, позволяя более низким пороговым напряжениям проходить без изменений.

Однако, когда напряжение на варисторе (любой полярности) превышает номинальное значение варисторов, его эффективное сопротивление сильно уменьшается с ростом напряжения, как показано выше.

Из закона Ома мы знаем, что вольт-амперные характеристики (IV) фиксированного резистора являются прямой линией при условии, что R поддерживается постоянным. Тогда ток прямо пропорционален разности потенциалов на концах резистора.

Но кривые IV варистора не являются прямой линией, так как небольшое изменение напряжения вызывает значительное изменение тока. Типичная нормализованная кривая зависимости напряжения от тока для стандартного варистора приведена ниже.

Диагностика

Чтобы проверить данное электронное устройство, используют специальное оборудование, которое называется тестером. Итак, для проведения испытания понадобится варистор, принцип работы которого заключается в изменении параметров сопротивления, и тестирующее устройство. Перед его началом необходимо включить устройство и переключить в режим сопротивления. Только тогда аппарат будет отвечать всем необходимым техническим требованиям, и величина сопротивления будет огромной.

Перед началом проведения испытаний необходимо проверить техническое состояние прибора. В первую очередь следует посмотреть на его внешний вид. На приборе не должно быть трещин, а также признаков того, что он сгорел. Не стоит относиться к осмотру аппарата халатно, так как любая небольшая поломка может привести к возникновению неприятных обстоятельств.

Кривая характеристик варистора

Из вышесказанного видно, что варистор обладает симметричными двунаправленными характеристиками, то есть варистор работает в обоих направлениях (квадрант Ι и ΙΙΙ) синусоидальной формы волны, действуя аналогично двум стабилитронам, подключенным вплотную. Если не проводящая, кривая IV показывает линейную зависимость, так как ток, протекающий через варистор, остается постоянным и низким только при нескольких микроамперах тока утечки. Это связано с его высоким сопротивлением, действующим в качестве разомкнутой цепи, и остается постоянным до тех пор, пока напряжение на варисторе (любой полярности) не достигнет определенного «номинального напряжения».

Это номинальное или зажимное напряжение — это напряжение на варисторе, измеренное с указанным постоянным током 1 мА. То есть уровень постоянного напряжения, приложенного к его клеммам, который позволяет току 1 мА течь через резистивный корпус варисторов, который сам зависит от материалов, используемых в его конструкции. На этом уровне напряжения варистор начинает переходить из своего изоляционного состояния в проводящее состояние.

Когда переходное напряжение на варисторе равно или превышает номинальное значение, сопротивление устройства внезапно становится очень малым, превращая варистор в проводник из-за лавинного эффекта его полупроводникового материала. Ток небольшой утечки, протекающий через варистор, быстро возрастает, но напряжение на нем ограничено уровнем чуть выше напряжения варистора.

Другими словами, варистор саморегулирует переходное напряжение через него, позволяя большему току течь через него, и из-за его крутой нелинейной кривой IV он может пропускать широко варьирующиеся токи в узком диапазоне напряжений, срезая любые скачки напряжения.

Пример реализации защиты

На рисунке 4 показан фрагмент принципиальной схемы БП компьютера, на котором наглядно показано типовое подключение варистора (выделено красным).


Рисунок 4. Варистор в блоке питания АТХ

Судя по рисунку, в схеме используется элемент TVR 10471К, используем его в качестве примера расшифровки маркировки:

  • первые три буквы обозначают тип, в нашем случае это серия TVR;
  • последующие две цифры указывают диаметр корпуса в миллиметрах, соответственно, у нашей детали диаметр 10 мм;
  • далее идут три цифры, которые указывают действующее напряжение для данного элемента. Расшифровывается следующим образом: XXY = XX*10y, в нашем случае это 47*101, то есть 470 вольт;
  • последняя буква указывает класс точности, «К» соответствует 10%.

Можно встретить и более простую маркировку, например, К275, в этом случае К – это класс точности (10%), последующие три цифры обозначают величину действующего напряжения, то есть, 275 вольт.

Значения емкостного сопротивления

Поскольку основная проводящая область варистора между двумя его выводами ведет себя как диэлектрик, ниже его напряжения зажима варистор действует как конденсатор, а не как резистор. Каждый полупроводниковый варистор имеет значение емкости, которое напрямую зависит от его площади и обратно пропорционально его толщине.

При использовании в цепях постоянного тока емкость варистора остается более или менее постоянной при условии, что приложенное напряжение не увеличивается выше уровня напряжения зажима и резко падает вблизи своего максимального номинального постоянного напряжения постоянного тока.

Однако в цепях переменного тока эта емкость может влиять на сопротивление корпуса устройства в области непроводящей утечки его характеристик IV. Поскольку они обычно соединены параллельно с электрическим устройством для защиты от перенапряжения, сопротивление утечки варисторов быстро падает с увеличением частоты.

Это соотношение приблизительно линейно с частотой, и полученное в результате параллельное сопротивление, его реактивное сопротивление переменного тока Xc может быть рассчитано с использованием обычного 1 / (2πƒC), как для обычного конденсатора. Затем, когда частота увеличивается, увеличивается и ток утечки.

Но наряду с варисторами на основе кремниевых полупроводников были разработаны варисторы на основе оксидов металлов, чтобы преодолеть некоторые ограничения, связанные с их кузенами из карбида кремния.

Основные параметры

Варистор – это резистор-полупроводник, его основополагающим принципом действия является снижение сопротивления материала полупроводника при повышении напряжения, благодаря этому его признают одним из самых работоспособных и недорогих средств защиты от напряжений импульсов разного вида.

Основные характеристики и параметры варисторов, которые могут помочь при выборе:

  • Un – классификационное напряжение с силой тока в 1 мА;
  • P – мощность, отвечает за силу рассеивания элемента;
  • W – наибольшая энергетическая сила импульса;
  • Ipp – наибольшее количество тока с импульса;
  • Co –размеры в закрытом виде.

Металлооксидный варистор

Металл — оксид варистор или MOV для краткости, это резистор, зависящий от напряжения, в котором материал сопротивления представляет собой оксид металла, в первую очередь оксид цинка (ZnO), прессуют в керамики подобного материала. Металлооксидные варисторы состоят из приблизительно 90% оксида цинка в качестве керамического основного материала плюс другие наполнители для образования соединений между зернами оксида цинка.

Металлооксидные варисторы в настоящее время являются наиболее распространенным типом устройства ограничения напряжения и доступны для использования в широком диапазоне напряжений и токов. Использование металлического оксида в их конструкции означает, что MOV чрезвычайно эффективны в поглощении кратковременных переходных напряжений и имеют более высокие возможности обработки энергии.

Как и в случае обычного варистора, металлооксидный варистор запускает проводимость при определенном напряжении и прекращает проводимость, когда напряжение падает ниже порогового напряжения. Основное различие между стандартным варистором из карбида кремния (SiC) и варистором типа MOV состоит в том, что ток утечки через материал из оксида цинка MOV очень мал, а при нормальных условиях эксплуатации его скорость срабатывания при переходных процессах зажима намного выше.

MOV обычно имеют радиальные выводы и твердое внешнее синее или черное эпоксидное покрытие, которое очень похоже на дисковые керамические конденсаторы и может быть физически установлено на печатных платах. Конструкция типичного металлооксидного варистора имеет вид:

Конструкция металлического оксидного варистора

Чтобы выбрать правильное значение MOV для конкретного применения, желательно иметь некоторые знания об импедансе источника и возможной импульсной мощности переходных процессов. Для переходных процессов на входящей линии или фазе выбор правильного MOV немного сложнее, так как обычно характеристики источника питания неизвестны. В общем, выбор MOV для электрической защиты цепей от переходных процессов и скачков напряжения в сети часто не более чем обоснованное предположение.

Тем не менее, металлооксидные варисторы доступны в широком диапазоне напряжений варистора, от около 10 В до более 1000 В переменного или постоянного тока, поэтому выбор может быть полезен при знании напряжения питания. Например, при выборе MOV или кремниевого варистора в этом отношении его максимальное номинальное постоянное среднеквадратичное напряжение должно быть чуть выше максимального ожидаемого напряжения питания, скажем, 130 вольт среднеквадратичного значения для источника питания 120 вольт, и 260 вольт среднеквадратичного значения для напряжения 230 вольт.

Максимальное значение импульсного тока, которое будет принимать варистор, зависит от длительности переходного импульса и количества повторений импульсов. Можно предположить ширину переходного импульса, которая обычно составляет от 20 до 50 микросекунд (мкс). Если пиковый импульсный ток недостаточен, варистор может перегреться и повредиться. Таким образом, чтобы варистор работал без сбоев или ухудшений, он должен иметь возможность быстро рассеивать поглощенную энергию переходного импульса и безопасно вернуться в свое предимпульсное состояние.

Рекомендации к установке

Если появилась необходимость во включении варистора в электрическую сеть, необходимо помнить о таких важных моментах:

  • Всегда следует иметь в виду, что данный прибор не вечен, и наступят такие условия, которые приведут к его взрыву. Чтобы этого не произошло, необходимо использовать специальные защитные экраны, в которые можно поместить весь варистор.
  • Следует отметить, что кремневые технические приспособления существенно уступают по своим характеристикам оксидным аналогам. Поэтому лучше всего использовать именно этот вид варистора.

Применение варистора на схеме

Варисторы имеют много преимуществ и могут использоваться во многих различных типах устройств для подавления переходных процессов в сети от бытовых приборов и освещения до промышленного оборудования на линиях электропередач переменного или постоянного тока. Варисторы могут быть подключены непосредственно к электросети и к полупроводниковым переключателям для защиты транзисторов, полевых МОП-транзисторов и тиристорных мостов.

Теперь, когда мы разобрались с основами, можно перейти к проверке варистора

Определяем работоспособность элемента (пошаговая инструкция)

Для данной операции нам потребуются следующие инструменты:

  • Отвертка (как правило, крестовая). Чтобы добраться до платы блока питания, потребуется разобрать корпус электронного устройства, тут без отвертки не обойтись.
  • Щетка, для очистки печатной платы. Как показывает практика, в БП накапливается много пыли. Особенно это характерно для устройств с принудительным охлаждением, типичный пример, – блок питания компьютера.
  • Паяльник. В силовой части БП на плате большие дорожки и нет мелких элементов, поэтому допустимо использовать устройства мощностью до 75 Вт.
  • Канифоль и припой.
  • Мультиметр или другой прибор, позволяющий измерить сопротивление.

Когда все инструменты готовы, можно приступать к процедуре. Действуем по следующему алгоритму:

  1. Разбираем корпус устройства. В данном случае дать детальную инструкцию как это сделать затруднительно, поскольку конструкции приборов существенно отличаются друг от друга. Эту информацию можно найти в инструкции к оборудованию или на сайте производителя, также поможет поиск на тематических форумах и блогах.
  2. Добравшись до печатной платы БП, следует очистить ее от пыли. Делать это нужно аккуратно, чтобы не повредить радиодетали. Бывали случаи, когда от чрезмерного усилия, в процессе чистки, щетка повреждала транзистор, тиристор или другой компанент.
  3. Когда пыль удалена, находим варистор, он имеет характерный вид, поэтому спутать его можно разве что с конденсатором, но последний отличается маркировкой.


    Варистор в силовой части БП

  4. Найдя элемент, тщательно осматриваем его на предмет повреждений. Это могут быть трещины, сколы и другие нарушения целостности корпуса. В большинстве случаев, определить неисправность можно на этом этапе. При обнаружении повреждений элемент выпаиваем и меняем на такой же или аналог. Подобрать его можно самостоятельно (расшифровка маркировки приводилась выше) или посоветовавшись с продавцом радиодеталей.


    Варистор со следами повреждений

  5. Если визуальный осмотр не дал результатов, следует проверить варистор мультиметром, для этого выпаиваем деталь.
  6. Для проведения измерения подключаем щупы к мультиметру (на рисунке 7 гнезда показаны зеленым цветом) и переводим его в режим измерения максимального сопротивления (красный круг на рис. 7). Если у вас мультиметр другого типа, воспользуйтесь инструкцией к прибору.


    Рисунок 7. Установка режима отмечена красным, гнезда для щупов – зеленым

  7. Касаемся щупами выводов и измеряем сопротивление варистора. Оно должно быть бесконечно большим. Иное значение указывает на неисправность варистора, следовательно, его необходимо заменить.

Использование


Давайте рассмотрим, к примеру, сеть на 220 Вольт. Для неё оптимальными будут устройства, у которых напряжение срабатывания находится в диапазоне 275-420В (но здесь есть некоторые технические нюансы, которые мы трогать не будем). В качестве сетевого фильтра используется три варистора. Они блокируют проникновение импульсов по цепи фазы и нуля. А почему их три? Бывает иногда такое, что в новостях проскакивают сообщения о проблемах, вследствие которых электроники лишились тысячи людей. Такое бывает, когда вместо нуля и фазы по проводам идёт только последняя. Для аппаратуры это почти всегда верная смерть. Но наличие варистора на нуле позволяет успешно защищать от таких ситуаций. В качестве показательного примера можно привести мобильные телефоны. Чтобы они не перегорели, используют миниатюрные многослойные варисторы. Кроме этого, их можно встретить в телекоммуникационном оборудовании и автомобильной электронике.

Самые популярные образцы

Говоря про варистор, что это такое, нельзя обойти стороной материалы, из которых он изготавливается. Наибольшее распространение получили те устройства, которые сделаны с использованием оксида цинка. Это обусловлено несколькими причинами:

  1. Простота изготовления.
  2. Цинк имеет хорошую способность к поглощению высокоэнергетических импульсов напряжения.

Создаются они по «керамической» технологии, которая включает в себя прессование, обжиг, нанесение электродов и электроизоляции, пайку выводов и монтаж влагозащитных покрытий. Благодаря простоте изготовления они могут создаваться даже под индивидуальные заказы.

Маркировка

Мы уже достаточно внимания уделили изучению того, чем является варистор. Маркировка этого прибора сложна, и поэтому при приобретении устройства о нём нельзя судить по данным, размещенным на корпусе. Рассмотрим на вот таком примере: есть CNR-06D400K. CNR – это название типа, в данном случае перед нами металлооксидный варистор. 06 – он имеет диаметр в 6 миллиметров. D – перед нами дисковый варистор. 400 – напряжение срабатывания. K – эта буква говорит о том, что допуск возможного отклонения имеет погрешность в 10%. Если говорить о компьютерной технике, то у них варисторы рассчитаны на 470В. Согласитесь, немало. Но ведь существует не один варистор! Маркировка этих деталей проводится каждым крупным производителем по-своему, поэтому универсальных и стандартизированных правил распознавания нет. Поэтому нужно пользоваться или помощью продавцов, или прибегать к услугам справочников.

Проверка работоспособности элемента

Вот у нас в руках есть варистор. Как проверить его работоспособность? Начинать всегда необходимо с внешнего осмотра устройства. Необходимо внимательно поискать на корпусе сколы, трещины, почернения или следы нагара. Если есть внешние дефекты, то уже одно это говорит о том, что элемент необходимо заменить или не использовать вообще. Если при осмотре не было выявлено проблем, то можно приступать к проверке мультиметром. В этом случае тестер необходимо переключить на режим замера максимального сопротивления. Вот самый простой способ узнать, рабочий ли варистор. Как проверить его работоспособность, мы уже рассмотрели, теперь давайте обсудим, как же подбирать необходимые элементы.

Замена и проверка варистора на плате + видео

Если при ремонте кондиционера вы обнаружили на плате сгоревший предохранитель не спешите его тут же менять, вначале выясните причину по которой он сгорел.

Скорее всего это произошло из-за скачков напряжения в сети.

При измерении в сети напряжение питания оно постоянно колеблется,причём не всегда в пределах безопасных для кондиционеров.

Плюс к этому в сети всегда присутствуют короткие импульсы напряжением в несколько киловольт. Происходит это из-за постоянного отключения и включения индуктивной и ёмкостной нагрузки (электродвигатели,трансформаторы и т. д.), а также из-за атмосферного электричества.

Кондиционеры, как и любую другую электронную технику защищают на этот случай варисторами. Точнее электронную начинку кондиционера-плату управления.


 

Стандартная схема подключения варистора

 

параллельно защищаемой нагрузке подключают варистор VA1, а перед ним ставят предохранитель F1:

 

Принцип действия варистора

 

По сути варистор представляет собой нелинейный полупроводниковый резистор, проводимость которого зависит от приложенного к нему напряжения. При нормальном напряжении варистор пропускает через себя пренебрежительно малый ток, а при определённом пороговом напряжении он открывается и пропускает через себя весь ток.
Таким образом он фильтрует короткие импульсы, если же импульс будет более длинным, и ток идущий через варистор превысит номинальный ток срабатывания предохранителя, то он попросту сгорит, обесточив и защитив нагрузку.

Маркировка варисторов

 

Существует огромное количество варисторов разных производителей, с разным пороговым напряжение срабатывания и рассчитанные на разный ток. Узнать какой стоял варистор можно по его маркировке.
Например маркировка варисторов CNR:

 

CNR-07D390K, где:

  • CNR-серия, полное название CeNtRa металлоксидные варисторы
  • 07- диаметр 7мм
  • D — дисковый
  • 390 — напряжение срабатывания, рассчитываются умножением первых двух цифр на 10 в степени равной третьей цифре, то есть 39 умножаем на 10 в нулевой степени получатся 39 В, 271-270 В и т. д.
  • K — допуск 10 %, то есть разброс напряжения может колебаться от номинального на 10 % в любую сторону.

 

Как же найти на плате варистор?

 

По схеме приведённой выше, видно что этот элемент находится рядом с предохранителем в месте прихода на плату проводов питания. Обычно это диск жёлтого или тёмно-зелёного цвета.


 

На фото варистор указан красной стрелкой. Можно было подумать что варистор это синяя деталь, покрытая чёрной копотью, но на увеличении видно трещины на корпусе варистора, от которого покрылись нагаром расположенные рядом детали.Хорошо это видно и с обратной стороны, где написаны условные обозначения. Даже если их не будет, распознать варистор можно, зная что он подсоединён параллельно нагрузке или по маркировке на его корпусе.

VA1- это варистор, а синяя деталь рядом это конденсатор-С70.

Не путайте их, по форме они одинаковые, так что ориентируйтесь на маркировку и условные обозначения на плате.

После того как вы нашли варистор, его нужно выпаять, чтобы потом на его место установить новый.Для выпаивания варисторов я обычно использую газовый паяльник, потому что не всегда в месте ремонта есть электропитание — на строящемся объекте, на крыше, например. Ещё очень удобно пользоваться оловоотсосом -разогреть место пайки и оловоотсосом удалить расплавившийся припой.

Но для этих целей вполне подойдёт пинцет или обычные плоскогубцы-нужно захватить ножку детали и вытянуть когда припой расплавится.Если у вас плохо плавится припой, то скорее всего он на плате высокотемпературный-так называемый бессвинцовый (может заметили на моей плате надпись PbF — плюмбум фри). В этом случае нужно или увеличить температуру жала паяльника или же капнуть сверху другого более низкотемпературного, место пайки расплавится и можно будет удалить деталь. После этого вставляем новый варистор и припаиваем его.

Для пайки очень удобно пользоваться припоем в виде проволоки у которого внутри уже есть флюс.

Ещё обратите внимание, что большинство плат — двусторонние, поэтому припаивать ножки детали нужно с обеих сторон платы, так как нередко бывает что ножка детали выполняет роль перемычки между дорожками с разных сторон платы.

После замены варистора остаётся только поставить новый предохранитель и установить плату на место.

 

Обычно в платах кондиционера стоят варисторы на напряжение 470 В, и предохранители номиналом от 0.5 А до 5 А. Поэтому рекомендую всегда иметь при себе небольшой запас этих деталей.

 

Для тех, кто хочет нагляднее увидеть процесс , выкладываю видео урок:

 

Для тех кому требуется отремонтировать плату, путём замены варистора, помогут наши сервисные специалисты, цены смотрите здесь.

Варистор принцип работы и устройство, проверить варистор

Как работает варистор?

Принцип работы варистора достаточно прост. Рассмотрим ситуацию, когда варистор защищает от перенапряжения. В схему он включается параллельно защищаемой цепи. При нормальном режиме работы он имеет высокое сопротивление и протекающий через него ток очень мал. Он имеется свойства диэлектрика и не оказывает никакого влияния на работу схемы. При возникновении перенапряжения, варистор моментально меняет свое сопротивление с очень высокого, до очень низкого и шунтирует нагрузку. Известно, что ток идет по пути наименьшего сопротивления, поэтому варистор поглощает это перенапряжение и рассеивает эту энергию в атмосферу, в виде тепла. После того, как напряжение стабилизируется, сопротивление снова возрастает и варистор “запирается”. Надеюсь даже чайник понял принцип работы. Если что-то не ясно, рекомендуется ознакомиться с видео.

Если напряжение будет выше того, которое может выдержать и рассеять варистор, то он выйдет из строя. Корпус его треснет либо развалиться на части. В некоторых случаях он может взорваться. Поэтому, в целях защиты основной схемы, рекомендуется ограждать его от основных компонентов защитным экраном либо монтировать его вне корпуса, особенно для высоковольтных схем. Как проверить варистор мультиметром – узнаете тут.

Как говорилось выше, варистор подключается параллельно нагрузке:

  • В цепях переменного тока – фаза – фаза, фаза – ноль;
  • В цепях постоянного тока – плюс и минус.

Так как варистор закорачивает цепь питания, перед ним всегда монтируется плавкий предохранитель. Несколько примеров схем включения варистора:

Назначение и характеристики

Варистор — это электронный прибор, имеющий два контакта и обладающий нелинейно-симметричной вольт-амперной характеристикой. Термин «варистор» произошёл от латинских слов variable — «изменяемый» и resisto — «резистор». По своей сути он является полупроводниковым резистором, способным изменять своё сопротивление в зависимости от приложенного к его выводам напряжения.

Изготавливаются такого типа резисторы путём спекания при высокой температуре полупроводника и связующего материала. В качестве полупроводника используется карбид кремния, находящийся в порошкообразном состоянии, или оксид цинка, а связующего вещества — стекло, лак, смола. Полученный после спекания элемент подвергается металлизации с дальнейшим формированием выводов. По своей конструкции приборы выполняются в форме, похожей на диск, таблетку, цилиндр, или плёночного вида.

Обладая свойством резко уменьшать своё сопротивление при возникновении на его выводах определённого напряжения, варистор применяется в электронных схемах в качестве защитного элемента. При возникновении броска напряжения определённой величины полупроводниковый прибор мгновенно снижает своё внутреннее сопротивление до десятков Ом, тем самым практически закорачивая цепь, не давая импульсу повредить остальные элементы схемы. Поэтому важным параметром варистора является значение напряжения, при котором наступает пробой устройства.

Основные параметры

Перед тем как проверить варистор на исправность, необходимо понимать не только принцип его действия, но и знать, какими характеристиками он обладает. Как и любой электронный элемент, варистор имеет ряд характеристик, которые позволяют его использовать в различных схемах. Основным параметром является вольт-амперная характеристика (ВАХ). Она наглядно показывает, как меняется ток при той или иной величине напряжения. Изучая ВАХ, можно увидеть что варистор, обладая симметрично-двунаправленной характеристикой, работает как в прямой, так и обратной зоне синусоиды, напоминая стабилитрон.

Кроме ВАХ, при исследовании варистора отмечаются следующие характеристики:

  • Um — наибольшее допустимое рабочее напряжение для тока переменной или постоянной величины.
  • P — мощность, которую может рассеять на себе элемент без ухудшения своих параметров.
  • W — допустимая энергия в джоулях, которую может поглотить радиоэлемент при воздействии одиночного импульса.
  • Ipp — наибольшее значение импульсного тока, для которого определена форма импульса.
  • Co — ёмкость, значение которой измеряется у варистора в нормальном состоянии.

Виды устройств

Разнообразие встречаемых видов варисторов обусловлено тем, что производители стремятся в первую очередь повысить их быстродействие. Поэтому и используются SMD технологии безвыводного монтажа, что позволяет добиваться малого времени срабатывания при скачке входного напряжения. Типовое время срабатывания элементов с выводами находится в пределе 15−25 наносекунд, а SMD — 0,5 наносекунд.

Существует класс низковольтных варисторов и высоковольтных. Первые выпускаются с рабочим напряжением до двухсот вольт и силой тока до одного ампера. Вторые же имеют рабочее напряжение до двадцати киловольт. Маломощные элементы используются в качестве защиты от скачка напряжения, возникающего в бытовой сети, а мощные применяются на трансформаторных подстанциях и в системах защиты от грозы.

Маркировка элементов

Независимо от производителя существует стандарт маркировки варисторов. На сам элемент принято наносить цифробуквенный код, в котором зашифровываются основные параметры. Например, для дискового типа это обозначение выглядит как S6K210, где:

  • S — материал, из которого изготовлен варистор;
  • 6 — диаметр корпуса элемента, указывается в миллиметрах;
  • K — величина допуска отклонения;
  • 210 — значение рабочего напряжения, выраженное в вольтах.

На схемах радиоэлемент графически обозначается как перечёркнутый прямоугольник. На перечёркивающей палочке делается полочка, над которой ставится буква U. Подписывается на схемах элемент латинскими буквами RU.

NTC

Терморезисторы NTC — изделия, имеющие отрицательный температурный коэффициент. Их особенность — повышенная чувствительность, высокий температурный коэффициент (на один или два порядка выше, чем у металла), небольшие габариты и широкий температурный диапазон.

Полупроводники NTC удобны в применении, стабильны в работе и способны выдерживать большую перегрузку.

Особенность NTC в том, что их сопротивление увеличивается при снижении температуры. И наоборот, если t снижается, параметр R растет. При изготовлении таких деталей применяются полупроводники.

Принцип действия прост. При повышении температуры число носителей заряда резко растет, и электроны направляются в зону проводимости. При изготовлении детали, кроме полупроводников, могут применяться и переходные металлы.

При анализе NTC нужно учесть бета-коэффициент. Он важен в случае, если изделие применяется при измерении температуры, для усреднения графика и вычислений с помощью микроконтроллеров.

Как правило, термисторы NTC применяются в температурном диапазоне от 25 до 200 градусов. Следовательно, их можно использовать для измерений в указанном пределе.

Отдельного нужно рассмотреть сфера их использования. Такие детали имеют небольшую цену и полезны для ограничения пусковых токов при старте электрических двигателей, для защиты Li аккумуляторов, снижения зарядных токов блока питания.

Терморезистор NTC также используется в автомобиле — датчик, применяемый для определения точки отключения и включения климат-контроля в машине.

Еще один способ применения — контроль температуры двигателя. В случае превышения безопасного предела, подается команда на реле, а дальше двигатель глушится.

Не менее важный элемент — датчик пожара, определяющий рост температуры и запускающий сигнализацию.

Терморезисторы NTC обозначаются буквами или имеют цветную маркировку в виде полос, колец или других обозначений. Варианты маркировки зависят от производителя, типа изделия и других параметров.

Пример обозначения 5D-20, где первая цифра показывает сопротивление терморезистора при 25 градусах Цельсия, а расположенная рядом с ней цифра (20) — диаметр.

Чем выше этот параметр, тем большую мощность рассеивания имеет изделие. Чтобы не ошибиться в маркировке, рекомендуется использовать официальную документацию.

Что такое варистор и где применяется

Варистор –  это выполненный из полупроводникового материала переменный резистор, который способен изменять свое электрическое сопротивление в зависимости от приложенного к нему напряжения.

Принцип действия у такого электронного компонента отличается от обычного резистора и потенциометра. Стандартный резистор имеет постоянное во величине сопротивление в любой промежуток времени вне зависимости от напряжения в цепи, потенциометр позволяет менять сопротивление вручную, поворачивая ручку управления. А вот варистор обладает нелинейной симметричной вольтамперной характеристикой и его сопротивление полностью зависит от напряжения в цепи.

Благодаря этому свойству, варисторы широко и эффективно применяют для защиты электрических сетей, машин и оборудования, а также радиоэлектронных компонентов, плат и микросхем вне зависимости от вида напряжения. Они имеют невысокую цену изготовления, надежны в использовании и способны выдерживать высокие нагрузки.

Варисторы применяются, как в высоковольтных установках до 20 кВ, так и в низковольтных от 3 до 200 В в качестве ограничителя напряжения. При этом они могут работать, как в сетях с переменным, так и с постоянным током. Их используют для регулировки и стабилизации тока и напряжения, а также в защитных устройствах от перенапряжения. Используются в конструкции сетевых фильтров, блоков питания, мобильных телефонов, УЗИП и других ОИН.

Отрицательные стороны

Вместе с таким большим количеством преимуществ перед другими приборами, есть также и существенные недостатки, среди которых можно выделить такие.

  1. Варисторы имеют огромной размер собственной емкости, что сказывается на работе электрической сети. Такой показатель может находиться в пределах от 80 до 3000 пФ. Он зависит от многих моментов: конструкция и вид варистора, а также максимальное значение уровня напряжения. Стоит отметить, что в некоторых случаях такой существенный недостаток может превратиться в главное достоинство. Но такое возможно довольно редко, например, если использовать варистор в фильтрах. В такой ситуации большая емкость будет служить в качестве ограничителя напряжения в сети.
  2. По сравнению с разрядниками, варисторы не способны рассеивать мощность при максимальных показателях напряжения.

Чтобы увеличить показатель рассеянности необходимо увеличивать размер элементов, чем и занимаются многие производители.

Маркировка

Мы уже достаточно внимания уделили изучению того, чем является варистор. Маркировка этого прибора сложна, и поэтому при приобретении устройства о нём нельзя судить по данным, размещенным на корпусе. Рассмотрим на вот таком примере: есть CNR-06D400K. CNR – это название типа, в данном случае перед нами металлооксидный варистор. 06 – он имеет диаметр в 6 миллиметров. D – перед нами дисковый варистор. 400 – напряжение срабатывания. K – эта буква говорит о том, что допуск возможного отклонения имеет погрешность в 10%. Если говорить о компьютерной технике, то у них варисторы рассчитаны на 470В. Согласитесь, немало. Но ведь существует не один варистор! Маркировка этих деталей проводится каждым крупным производителем по-своему, поэтому универсальных и стандартизированных правил распознавания нет. Поэтому нужно пользоваться или помощью продавцов, или прибегать к услугам справочников.

Справочник и маркировка варисторов

Если необходима замена, на помощь придет справочник варисторов. Для начала нам потребуется маркировка варистора, она находится на самом корпусе в виде латинских букв и цифр. Хотя этот элемент производится во многих странах, маркировка не имеет принципиальных отличий.

Разные изготовители и маркировка разная 14d471k и znr v14471u. Однако параметры одни и те же. Первые цифры «14» это диаметр в мм., второе число 471 — напряжение при котором происходит срабатывание (открытие). Отдельно про маркировку. Первые две цифры (47) это напряжение, следующая — коэффициент (1). Он показывает сколько нулей нужно ставить после числа 47, в этом случае 1. Получается что испытуемый прибор будет срабатывать при 470 В, плюс — минус погрешность, которая ставится рядом с этим числом. В нашем случае это буква «к» находится после и обозначает 10% т. е. 47 В.

Другая маркировка s10k275. Показатель погрешности стоит перед напряжением, само напряжение показано без коэффициента — 275 В. Из рассмотренных примеров видим, как можно определить маркировку: измеряем диаметр прибора, находим эти размеры на варисторе, другие цифры покажут напряжение. Если определить маркировку не удается, например, kl472m, нужно будет посмотреть в интернете.

Диаметр. Импортные tvr 10471 можно заменить на 10d471k, но быть осторожным с 7d471k, у последнего размер меньше. Чем больше значение, тем, грубо говоря, больше рассеиваемая мощность. Поставив прибор меньшего диаметра, рискуем его спалить. К примеру, серия 10d имеет рабочий ток 25А, а k1472m 50А.

Чтобы правильно выбрать нужный элемент необходимо учитывать не только напряжение питания. Производят множество расчетов, например, выходя из нужного быстродействия (срабатывания), или малое рабочее напряжение. В этом случае используют так называемые защитные диоды. К ним можно отнести bzw04

При его применении важно соблюдать полярность

Помехоустойчивость. Одним из недостатков является создание помех. Для борьбы с ними используют конденсаторы, например, ac472m Подключают параллельно варистору.

На схеме варистор обозначается как резистор, пустой прямоугольник с перечеркивающей под 45 градусов линией и имеет букву u.

Варисторы: применение

Такие приборы играют важную роль в жизни человека. Из всего вышеперечисленного можно сказать, что варистор, принцип работы которого заключается в защите электроники от высокого напряжения в сети, помогает предотвратить поломку многих электрических приборов и сохранить проводку в целостности. Основным местом являются электрические цепи в различном оборудовании. Например, они встречаются в пусковых элементах освещения, которые еще называются балластами. Также устанавливаются в электрических схемах специальные варисторы, применение которых необходимо для стабилизации напряжения и тока. Такие устройства используются еще в линиях электропередач. Но там они называются разрядниками, рабочее напряжение которых составляет более двадцати тысяч вольт.

Варисторы могут работать в большом диапазоне напряжения, который начинается с совсем маленького значения в 3 В, и заканчивается 200 В. Что касается силы тока элемента, то здесь диапазон составляет от 0,1 до 1 А. Такие показатели тока действительны только для низковольтного технического оборудования.

Урок 1. Назначение и принцип действия ОПН

Ограничители перенапряжений нелинейные (ОПН)-электрические аппараты, предназначенные для защиты оборудования систем электроснабжения от коммутационных и грозовых перенапряжений. Основным элементом ОПН является нелинейный резистор – варистор ( varistor, от англ. Vari(able) (Resi)stor – переменное, изменяющееся сопротивление).

Основное отличие материала нелинейных резисторов ограничителей от материала резисторов вентильных разрядников состоит в резко нелинейной вольт-амперной характеристики (ВАХ) и повышенной пропускной способности. Применение в ОПН высоконелинейных резисторов позволило исключить из конструкции аппарата искровые промежутки, что устраняет целый ряд недостатков, присущих вентильным разрядникам.

Основной компонент материала резисторов ОПН – оксид (окись) цинка ZnO. Оксид цинка смешивают с оксидами других металлов – закисью и окисью кобальта, окисью висмута и др. Технология изготовления оксидно-цинковых резисторов весьма сложна и трудоёмка и близка к требованиям при производстве полупроводников – применение химически чистого исходного материала, выполнение требований по чистоте и т. д. Основные операции при изготовлении – перемешивание и измельчение компонентов, формовка ( прессование) и обжиг. Микроструктура варисторов включает в себя кристаллы оксида цинка (полупроводник n – типа) и междукристаллической прослойки ( полупроводник p – типа). Таким образом, варисторы на основе оксида цинка ZnO являются системой последовательно – параллельно включённых p – n переходов. Эти p – n переходы и определяют нелинейные свойства варисторов, то есть нелинейную зависимость величины тока, протекающего через варистор, от приложенного к нему напряжения.

В настоящее время варисторы для ограничителей изготовляются как цилиндрические диски диаметром 28 – 150 мм, высотой 5 – 60 мм (рис 1). На торцевой части дисков методом металлизации наносятся алюминиевые электроды толщиной 0.05-0.30 мм. Боковые поверхности диска покрывают глифталевой эмалью, что повышает пропускную способность при импульсах тока с крутым фронтом.

Рис. 1. Нелинейный резистор – варистор

Диаметр варистора ( точнее — площадь поперечного сечения ) определяет пропускную способность варистора по току, а его высота — параметры по напряжению.

При изготовлении ОПН то или иное количество варисторов соединяют последовательно в так называемую колонку. В зависимости от требуемых характеристик ОПН и его конструкции и имеющихся на предприятии варисторов ограничитель может состоять из одной колонки (состоящей даже из одного варистора) или из ряда колонок, соединённых между собой последовательно/ параллельно.

Для защиты электрооборудования от грозовых или коммутационных перенапряжений ОПН включается параллельно оборудованию (рис. 2 ).

Рис.2

Защитные свойства ОПН объясняются вольт–амперная характеристикой варистора.

Вольт – амперная характеристика конкретного варистора зависит от многих факторов, в том числе от технологии изготовления, рода напряжения — постоянного или переменного, частоты переменного напряжения, параметров импульсов тока, температуры и др.

Типовая вольт- амперная характеристика варистора с наибольшим длительно допустимым напряжением 0.4 кВ в линейном масштабе приведена на рис. 3.

Рис. 3. Вольт – амперная характеристика варистора

На вольт – амперной характеристике варистора можно выделить три характерных участка: 1) область малых токов; 2) средних токов и 3) больших токов. Область малых токов – это работа варистора под рабочим напряжением, не превышающим наибольшее допустимое рабочее напряжение. В данной области сопротивление варистора весьма значительно. В силу неидеальности варистора сопротивление хотя и велико, но не бесконечно. поэтому через варистор протекает ток, называемый током проводимости. Этот ток мал — десятые доли миллиамперметра.

При возникновении грозовых или коммутационных импульсов перенапряжений в сети варистор переходит в режим средних токов. На границе первой и второй областей происходит перегиб вольт – амперной характеристики, при этом сопротивление варистора резко уменьшается (до долей Ома). Через варистор кратковременно протекает импульс тока, который может достигать десятков тысяч ампер. Варистор поглощает энергию импульса перенапряжения, выделяя затем её в виде тепла, рассеивая в окружающее пространство. Импульс перенапряжения сети “ срезается” (рис. 4).

Рис. 4

В третьей области ( больших токов) сопротивление варистора снова резко увеличивается. Эта область для варистора является аварийной.

Характеристики и параметры варисторов

  • Классификационное напряжение (Varistor Voltage) – это величина напряжения, при котором ток в 1 мА протекает через варистор;
  • Максимально допустимое переменное напряжение (Maximum Allowable Voltage – ACrms) – Это среднеквадратичное значение переменного напряжения (rms) в вольтах. Это та величина, при которой варистор “открывается” и понижается его сопротивление, тем самым он начинает выполнять свою задачу;
  • Максимально допустимое постоянное напряжение (Maximum Allowable Voltage – DC) – Варистор можно использовать в цепях постоянного тока, этот параметр показывает напряжение “открытия”, но уже для постоянного напряжения. Указывается в вольтах. Обычно выше, чем величина для переменных цепей;
  • Максимальное напряжение ограничения (Maximum Clamping Voltage) – максимальное напряжение в вольтах, которое может выдержать корпус варистора без выхода из строя. Обычно указывается для конкретной величины тока;
  • Максимальная поглощаемая энергия – указывается в джоулях (Дж). Величина импульса, которую может рассеять варистор, не выходя из строя;
  • Время срабатывания – обычны указывается в наносекундах (нс). Это время, которое требуется варистору для изменения величины сопротивления от очень высокого, до очень низкого;
  • Допустимое отклонение (Varistor Voltage Tolerance) – это допустимое отклонение квалификационного напряжения варистора, указывается оно в процентах (%). Это фиксированные величины ±5%, ±10%, ±20% и т.д. В импортных варисторах величина отклонения, зашифрованна в определенную букву и указывается в маркировке варистора, каждая фирма может использовать свои маркировки. К примеру, для варисторов фирмы Joyin принято такое обозначение: K – ±10%, L – ±15%, M – ±20%, P – ±25%.

Подбор варисторов осуществляется по специальным справочникам на основе вышеописанных параметров. Узнаем значения своей цепи и защищаемого оборудования. На основе этого выбираем варистор, который нужно ставить.

Теперь, когда мы разобрались с основами, можно перейти к проверке варистора

Определяем работоспособность элемента (пошаговая инструкция)

Для данной операции нам потребуются следующие инструменты:

  • Отвертка (как правило, крестовая). Чтобы добраться до платы блока питания, потребуется разобрать корпус электронного устройства, тут без отвертки не обойтись.
  • Щетка, для очистки печатной платы. Как показывает практика, в БП накапливается много пыли. Особенно это характерно для устройств с принудительным охлаждением, типичный пример, – блок питания компьютера.
  • Паяльник. В силовой части БП на плате большие дорожки и нет мелких элементов, поэтому допустимо использовать устройства мощностью до 75 Вт.
  • Канифоль и припой.
  • Мультиметр или другой прибор, позволяющий измерить сопротивление.

Когда все инструменты готовы, можно приступать к процедуре. Действуем по следующему алгоритму:

  1. Разбираем корпус устройства. В данном случае дать детальную инструкцию как это сделать затруднительно, поскольку конструкции приборов существенно отличаются друг от друга. Эту информацию можно найти в инструкции к оборудованию или на сайте производителя, также поможет поиск на тематических форумах и блогах.
  2. Добравшись до печатной платы БП, следует очистить ее от пыли. Делать это нужно аккуратно, чтобы не повредить радиодетали. Бывали случаи, когда от чрезмерного усилия, в процессе чистки, щетка повреждала транзистор, тиристор или другой компанент.
  3. Когда пыль удалена, находим варистор, он имеет характерный вид, поэтому спутать его можно разве что с конденсатором, но последний отличается маркировкой.

    Варистор в силовой части БП

  4. Найдя элемент, тщательно осматриваем его на предмет повреждений. Это могут быть трещины, сколы и другие нарушения целостности корпуса. В большинстве случаев, определить неисправность можно на этом этапе. При обнаружении повреждений элемент выпаиваем и меняем на такой же или аналог. Подобрать его можно самостоятельно (расшифровка маркировки приводилась выше) или посоветовавшись с продавцом радиодеталей.

    Варистор со следами повреждений

  5. Если визуальный осмотр не дал результатов, следует проверить варистор мультиметром, для этого выпаиваем деталь.
  6. Для проведения измерения подключаем щупы к мультиметру (на рисунке 7 гнезда показаны зеленым цветом) и переводим его в режим измерения максимального сопротивления (красный круг на рис. 7). Если у вас мультиметр другого типа, воспользуйтесь инструкцией к прибору.

    Рисунок 7. Установка режима отмечена красным, гнезда для щупов – зеленым

  7. Касаемся щупами выводов и измеряем сопротивление варистора. Оно должно быть бесконечно большим. Иное значение указывает на неисправность варистора, следовательно, его необходимо заменить.

Использование

Давайте рассмотрим, к примеру, сеть на 220 Вольт. Для неё оптимальными будут устройства, у которых напряжение срабатывания находится в диапазоне 275-420В (но здесь есть некоторые технические нюансы, которые мы трогать не будем). В качестве сетевого фильтра используется три варистора. Они блокируют проникновение импульсов по цепи фазы и нуля. А почему их три? Бывает иногда такое, что в новостях проскакивают сообщения о проблемах, вследствие которых электроники лишились тысячи людей. Такое бывает, когда вместо нуля и фазы по проводам идёт только последняя. Для аппаратуры это почти всегда верная смерть. Но наличие варистора на нуле позволяет успешно защищать от таких ситуаций. В качестве показательного примера можно привести мобильные телефоны. Чтобы они не перегорели, используют миниатюрные многослойные варисторы. Кроме этого, их можно встретить в телекоммуникационном оборудовании и автомобильной электронике.

Варисторная защита, искрогасящие цепи, назначение, технические характеристики, схемы применения.

Назначение. Для защиты электрической сети от перенапряжения существуют различные приборы, выпускаемые промышленностью в разных странах. А для защиты от кратковременных бросков элементов схем, которые происходят в сети по различным причинам, применяют так называемые варисторы, у которых вольт-амперная характеристика резко меняется при прикладывании к нему величины напряжения, свыше определенного значения на которой рассчитан прибор.

 В повседневной жизни обычно мы не обращаем внимания, какие проблемы испытывает наше современное электронное оборудование, включенное в электрическую сеть. Для нормального функционирования приборов необходимо качественное напряжение, как по величине, частоте, так и по форме напряжения. Наше современная электронное оборудование стоит достаточно дорого, оно не всегда может противостоять скачкам напряжения, помехам возникающим в сети, поэтому вопросу защиты оборудование от подобного рода воздействий необходимо уделять внимание. Для защиты электронной техники применяются, ограничители перенапряжения, сетевые фильтры, стабилизаторы напряжения.

Из статьи авторы: Трегубов С.В., к.т.н.Пантелеев В.А., к.т.н.Фрезе О.Г

Применение варисторной защиты, искрогасящие цепи

..Причиной возникновения грозовых импульсов напряжения являются удары молнии в электроустановку или вблизи нее.
По данным материалов полученных в США значения напряжения коммутационных импульсов даже в бытовых сетях могут достигать 20 кВ. Примерно такие же данные приводят японские, французские и другие исследователи. Исследования, проведенные нами по эксплуатации промышленного электрооборудования в сетях 0.4 кВ, позволяют утверждать, что, например, при тяжелых условиях коммутации силовых электродвигателей значение напряжения коммутационных импульсов может превышать 70 кВ. Нет необходимости говорить о последствиях такого воздействия на электрооборудование. Положение часто осложняется тем, что во многих случаях эксплуатация электрических машин производится в тяжелых условиях (загрязнение, увлажнение изоляции, частые пуски и остановки агрегатов), что обуславливает особую уязвимость изоляции электрооборудования из-за ее ускоренного износа и уменьшения электрической прочности.
Для защиты оборудования от импульсных напряжений в разных странах применяются вентильные разрядники, RC-цепочки, LC-фильтры и т.д. Однако в последние десятилетия во всем мире наиболее эффективным (и дешевым) средством защиты от импульсных напряжений любого вида признано использование нелинейных полупроводниковых резисторов, называемых варисторами. Отличительной чертой варистора является симметричная и резко выраженная нелинейная вольтамперная характеристика (ВАХ — см. рис.1).

За счет этого варисторы позволяют просто и эффективно решать задачи защиты различных устройств от импульсных напряжений. Основной принцип действия варистора весьма прост. Варистор включается параллельно защищаемому оборудованию, т.е. при нормальной эксплуатации он находится под действием рабочего напряжения защищаемого устройства. В рабочем режиме (при отсутствии импульсных напряжений) ток через варистор пренебрежимо мал, и поэтому варистор в этих условиях представляет собой изолятор.
При возникновении импульса напряжения варистор в силу нелинейности своей характеристики резко уменьшает свое сопротивление до долей Ома и шунтирует нагрузку, защищая ее, и рассеивая поглощенную энергию в виде тепла. В этом случае через варистор кратковременно может протекать ток, достигающий нескольких тысяч ампер. Так как варистор практически безынерционен, то после гашения импульса напряжения он вновь приобретает очень большое сопротивление. Таким образом, включение варистора параллельно электрооборудованию не влияет на его работу в нормальных условиях, но «срезает» импульсы опасного напряжения, что полностью обеспечивает сохранность даже ослабленной изоляции (см. рис 2).

Наиболее широкое применение находят варисторы на основе оксида цинка, что обусловлено, во-первых, относительной простотой их изготовления и, во-вторых, хорошей способностью оксида цинка поглощать высокоэнергетические импульсы напряжения. Варисторы изготавливают по обычной «керамической» технологии, включающей в себя прессование варисторов (чаще всего имеющих форму диска или шайбы), их обжиг, нанесение электродов, пайку выводов и нанесение электроизоляционных и влагозащитных покрытий. Такая технология в ряде случаев позволяет предприятиям-изготовителям выпускать варисторы по индивидуальным заказам…

Технические характеристики

Для получения информации о характеристиках используемых варисторных защит, приводим данные выпускаемых изделий промышленностью.
Устройством защиты от импульсного перенапряжения АЛЬБАТРОС-220/500 АС обеспечивается:

  • Защита от импульсного, быстротекущего перенапряжения амплитудой до 10 кВ без перегорания предохранителя;
  • Защита от импульсного аварийного значительного превышения напряжения, в этом случае происходит перегорание одного или обоих предохранителей.
Номинальное напряжение питания нагрузки, В220 (+10/-15%)
Номинальная мощность нагрузки, Вт500
Наибольший импульсный разрядный ток (импульс 8/20 мкс)*, кА10
Скорость срабатывания защиты, нс, не более25
Температурный диапазон эксплуатации, °C-40… +40
Габаритные размеры, мм, не более50х44х30
Масса, кг, не более0,02

* 8 мкс — длительность нарастания импульса; 20 мкс — длительность спада импульса.

По теме полезное. Схема подключения варистора в сетевом фильтре. Советы: Схемы подключения

Варистор. Что это такое? Принцип работы

Резистор можно охарактеризовать как пассивный элемент электрической цепи. Резисторы используются в основном для контроля электрических параметров (напряжения и тока) в электроцепи, используя физическое свойство резистора, называемое сопротивлением.

Существуют различные типы резисторов:

  • резисторы с постоянным сопротивлением (углеродные, пленочные, металлопленочные, проволочные)
  • резисторы с переменным сопротивлением (проволочные переменные резисторы, потенциометры, металлокерамические переменные резисторы, реостаты)
  • особый тип резисторов, например, фоторезистор, варистор и так далее.

В этой статье подробно обсудим принцип работы варистора, схема подключения  и применение варистора на практике. Но, в первую очередь мы должны знать, что же такое варистор.

Варистор. Что это такое?

Варистор — это особый тип резистора, сопротивление которого изменяется под действием приложенного к нему напряжения. Поэтому его еще называют вольта зависимый резистор (VDR).  Это нелинейный полупроводниковый элемент получил свое название от слова переменный резистор (VARiable resistor)

Эти варисторы используются в качестве защитного устройства для предотвращения кратковременных всплесков напряжения переходных процессов в электроцепи. По внешнему виду и размеру варистор схож с конденсатором, поэтому его часто путают с ним.

Принцип работы варистора

В обычном рабочем состоянии варистор имеет высокое сопротивление. Всякий раз, когда переходное напряжение резко возрастает, сопротивление варистора тут же уменьшаться. Таким образом, он начитает проводить через себя ток, снижая тем самым напряжение до безопасного уровня.

Существуют различные типы исполнения, однако варистор на основе окиси металла является наиболее часто используемым в электронных устройствах. Как было сказано выше, основное назначение варистора в электронных схемах — защита цепи от чрезмерного всплеска напряжения переходных процессов. Эти переходные процессы обычно происходят из-за разряда статического электричества и грозовых перенапряжений.

Принцип работы варистора можно легко понять, взглянув на кривую зависимости сопротивления от приложенного напряжения.

Блок питания 0…30 В / 3A

Набор для сборки регулируемого блока питания…

На графике  выше видно, что во время нормального рабочего напряжения (скажем низкого напряжения) сопротивление его очень высоко  и если напряжение превышает номинальное значение варистора, то его сопротивление начинает уменьшаться.

Вольт-амперная характеристика (ВАХ) варистора  показанная на рисунке выше. Из рисунка видно, небольшое изменение напряжения вызывает значительное изменение тока.

Уровень напряжения (классификационное напряжение), при котором ток, протекающий через варистор составляет 1 мА, является уровнем, при котором варистор переходит из непроводящего состояния в проводящее. Это происходит потому, что, всякий раз, когда приложенное напряжение превышает или равно номинальному напряжению, происходит лавинный эффект, переводящий варистор в состояние электропроводности в результате снижения сопротивления.

Таким образом, даже, несмотря на быстрый рост малого тока утечки, напряжение будет чуть выше номинального значения. Следовательно, варистор будет регулировать напряжение переходных процессов относительно приложенного напряжения.

Применение варистора

На рисунке выше показаны примеры применения варистора в различных системах защиты электроснабжения. Рассмотрим каждый случай по отдельности.

Данная схема представляет собой защиту однофазной линии питания. Если напряжение переходных процессов поступает из сети на клеммы питания устройства, то данный всплеск уменьшит сопротивление варистора и таким образом произойдет защита электрической цепи.

Следующая схема представляет собой защиту однофазной линии с заземлением. В этом случае варистор подключен аналогично предыдущей схеме с дополнительным включением варисторов по линии заземления.

Третья схема предназначена для защиты полупроводниковых переключателей (транзистор, тиристор, симистор), которые коммутируют индуктивную нагрузку.

И последняя схема предназначена для защиты переключателя (контактов) от искрения   при включении электродвигателя.

Справочник по варисторам — скачать (10,0 MiB, скачано: 1 711)

Модуль варисторов МВ-3М | Электротехническая Компания Меандр

 

  • Применяется для защиты трёхфазного электрооборудования от коммутационных перенапряжений

  • Максимальная энергия поглощения 190Дж (импульс 8/20мкс)

  • Максимальный ток 6,5кА

  • Корпус шириной 13мм

  • В модуле используются варисторы типа 20D681К (680В)

 

НАЗНАЧЕНИЕ МОДУЛЯ

 Модуль варисторов МВ-3М предназначен для обеспечения качественного электропитания в трёхфазных сетях с высоким уровнем импульсных помех индустриального и атмосферного характера.
 

КОНСТРУКЦИЯ МОДУЛЯ

 Модуль выпускается в унифицированном пластмассовом корпусе с передним присоединением проводов питания и коммутируемых электрических цепей. Крепление осуществляется на монтажную рейку-DIN шириной 35мм (ГОСТ Р МЭК 60715-2003) или на ровную поверхность. Для установки модуля на ровную поверхность замки необходимо раздвинуть. Конструкция клемм обеспечивает надёжный зажим проводов сечением до 2,5мм2.

 

РАБОТА МОДУЛЯ

 Каждая из фаз сетевого напряжения подключается к соответствующим клеммам модуля варисторов — L1, L2, L3. К клемме N подключается нулевой провод. В случае трёхпроводной сети нулевой провод не подключается.При подключении проверить затяжку винтов крепления клемм и надёжность фиксации корпуса модуля на рейке. В модуле используются варисторы типа 20D681К (680В)

 

ВНИМАНИЕ: Не заменяют УЗИП!

 

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ МВ-3М

Параметр

Ед.изм.

МВ-3М

Количество защищаемых цепей   3
Класиификационное напряжение В 680 (612-748)
Максимальное напряжение ограничения (при токе 100А) В 1120
Среднеквадратичное значение напряжения, URMC В 420
Максимальное постоянное напряжение В 560

Максимальный ток разряда (импульс 8/20мкс)

кА 6,5

Максимальный разрядный ток (импульс 8/20мкс)

кА

3,0
Энергия поглощения (импульс 10/1000 мкс) Дж 230

Максимальная рассеиваемая мощность

Вт

1,0

Степень защиты по корпусу/по клеммам в соответствии с ГОСТ 14254-96

 

IP40/IP20

Климатическое исполнение и категория размещения по ГОСТ 15150-69 (без образования конденсата)  

 

УХЛ4

Диапазон рабочих температур

0C

-25…+55

Степень загрязнения в соответствии с ГОСТ 9920-89

 

2

Монтажное положение

 

произвольное

Габаритные размеры

мм

13х93х62

Масса, не более

кг

0,12

 

СХЕМА ПОДКЛЮЧЕНИЯ МОДУЛЯ

 

Вариант защиты до IP40

 

ГАБАРИТНЫЕ РАЗМЕРЫ

 

Изделия соответствуют требованиям ГОСТ IEC 61051-2-2013

Форум и обсуждения  —  здесь

 

Наименование

Заказной код

(артикул)

Файл для скачивания

(паспорт)

Дата файла

МВ-ЗМ УХЛ4

4640016937028

v17.01.19

 

новое предложение от компании Bourns

Для некоторых приложений нужен определенный подход к подавлению электромагнитных помех (ЭМП), при котором требуется как собственно подавление ЭМП, так и защита от скачков напряжения, а точнее — поглощение их энергии. Обычно эту проблему решает использование двух компонентов — конденсатора для подавления излучаемой ЭМП и металлооксидного варистора для поглощения энергии броска напряжения. В настоящее время в портфеле предложений компании Bourns, широко известной на рынке дискретных компонентов для защиты цепей и решения проблем электромагнитной совместимости (ЭМС), появились уникальные компоненты — вариконы, в которых сочетаются преимущества варисторов (вари-) и конденсаторов (-кон). Эти компоненты типа «2 в 1» защищают приложения от скачков напряжения (варистор), решая вопросы ЭМС (конденсатор) и делая их отвечающими требованиям стандарта CISPR, при этом сокращаются габариты печатной платы. Статья знакомит читателей с двумя сериями вариконов: автомобильного (серия OV) и общего (серия MV) назначения.

Введение

Задача защиты — предотвращать или сводить к минимуму ущерб, вызванный скачком напряжения, при этом сама система защиты или защитный элемент должны срабатывать безопасным способом, а после снятия воздействия защищаемое оборудование, в свою очередь, должно вернуться в штатное рабочее состояние с минимальным перерывом по времени. К тому же при отсутствии возмущающих воздействий защита или используемые для ее реализации элемент (элементы) не должна мешать нормальному функционированию оборудования — другими словами, должно сохраняться то, что мы называем «целостность сигнала». Это может быть электропитание или линии передачи/приема данных.

Для целей защиты могут использоваться различные компоненты или их совокупности. До недавнего времени компания Bourns предлагала и предлагает [1]:

  • Семейства газовых разрядников (Gas Discharge Tubes, GDT), которые создают квазикороткое замыкание, когда при перенапряжении достигается ионизация наполняющего их газа, потом они опять возвращаются к состоянию высокого импеданса.
  • Семейство устройств защиты на основе тиристоров TISP, которые сначала ограничивают напряжение в линии, а затем переключаются в проводящее состояние при низком напряжении. После скачка напряжения, когда ток падает ниже тока удержания, устройство возвращается в исходное состояние высокого импеданса.
  • Семейство диодов подавления переходных напряжений (Transient Voltage Suppressor, TVS), которые работают за счет быстрого перехода от высокого импеданса к нелинейной характеристике сопротивления, ограничивающей скачки напряжения.
  • Семейство защитных устройств в виде многослойных варисторов (multilayer varistor, MLV). Эту серию отличают низкие токи утечки, которые делают устройства незаметными при нормальной работе.
  • Объемные силовые металлооксидные (Metal Oxide Varistor MOV) варисторы.

Основные характеристики защитных устройств можно оценить по таблице 1.

Таблица 1. Сравнительный анализ защитных ограничителей напряжения

Параметр Газовые разрядники Защитные тиристоры Варисторы объемные Обычные TVS-диоды Специальные TVS-диоды
Уровень пиковых токов высокий средний высокий средний средний
Минимальное напряжение включения, В 75 8 6 6 ~3
Точность напряжения включения низкая высокая низкая высокая высокая
Эффективность ограничения выбросов напряжения средняя высокая средняя высокая высокая
Типовая емкость, пФ ~1,5 ~30 ~1400 ~100 0,2
Соотношение «пиковый ток/габариты» низкое среднее высокое среднее высокое
Время срабатывания большое среднее большое малое сверхмалое

Рис. 1. Типовой металлооксидный варистор и его вольтамперная характеристика

Как можно видеть из таблицы 1, наиболее простым и экономически эффективным решением, если дело не касается высокоскоростных линий передачи данных, требующих минимальной емкости, здесь являются варисторы.

Что такое варистор? Название «варистор» (от англ. Varistor) составлено из двух частей VARI-able и resi-STOR (буквально: резистор с изменяемым сопротивлением, или, что более правильно, нелинейный резистор). Варисторы могут быть выполнены на основе карбида кремния (красные) и металлооксидные (синие), которые более распространены, конструкция типового варистора в общем виде и его вольтамперная характеристика показаны на рис. 1.

Металлооксидные варисторы (Metal Oxide Varistor, MOV) выполнены на основе оксида цинка (ZnO) с небольшим содержанием висмута, кобальта, магния и других элементов, образующих микрогранулы. В местах соприкосновения микрогранул варистора возникает эффект проводимости. Так как количество гранул в объеме варистора очень велико, абсорбируемая варистором энергия значительно превышает энергию, которая может пройти через единичный p-n-переход в диодах. В процессе протекания тока через варистор весь проходящий заряд равномерно распределяется по всему объему. Таким образом, количество энергии, которую может абсорбировать варистор, напрямую зависит от его объема и может достигать больших величин.

Кроме единичных, скажем так — самодостаточных устройств защиты, компания Bourns имеет в своем портфеле и комбинированные устройства. Инженерам Bourns удалось соединить в одном устройстве положительные свойства газового разрядника и объемного варистора. Это проприетарное решение было представлено в апреле 2019 года в виде инновационной линейки гибридных двунаправленных компонентов защиты от перенапряжения под торговым названием GMOV. В данном продукте инженеры компании объединили инновационную и компактную газоразрядную трубку (GDT) Bourns с технологией FLAT с MOV [2]. Не так давно портфель компании Bourns пополнился еще одними интересными гибридными устройствами — вариконами.

Вариконы — симбиоз варистора и конденсатора

Вариконы — это наследие от приобретенной компанией Bourns компании KEKO-Varicon d.o.o. Zuzemberk (Словения). За счет данного приобретения Bourns существенно расширил свое портфолио в сегменте металлооксидных и многослойных варисторов (MOV, MLV) и укрепил позиции в качестве одного из крупнейших производителей защитных компонентов.

Компания KEKO-Varicon — один из ведущих мировых производителей компонентов защиты от перенапряжения и подавления электромагнитных помех. Продукция компании разработана для широкого спектра применений в низковольтных приложениях, телекоммуникации, автомобильной электронике, линиях переменного тока и промышленного оборудования. Сочетание обширных технических знаний и современного оборудования позволяет KEKO-Varicon производить продукцию с высочайшим уровнем и почти 100%-ным выходом готовой продукции. Примеры продукции компании KEKO-Varicon, которые теперь доступны в портфеле заказов компании Bourns можно увидеть на рис. 2.

Компания KEKO-Varicon выпускала как стандартные радиальные дисковые варисто-ры общего применения, так и их специализированные серии [3]: многослойные SMD-варисторы для низковольтных применений, варисторы для автомобильной промышленности и медицинской техники, силовые ва-ристоры с высоким уровнем рассеиваемой энергии, а также интересующие нас в рамках данной статьи вариконы.

В технике иногда недостаток может оказаться или использоваться как несомненное достоинство. Если посмотреть на сравнительные данные, приведенные в таблице 1, то можно видеть, что варисторы имеют самою большую поглощаемую мощность импульса напряжения, но и самую большую собственную емкость, которая ограничивает их применение. Инженеры тогда еще самостоятельной компании KEKO-Varicon посмотрели на это под другим углом — а что если эту емкость увеличить и нормировать? В таком случае мы получим новый двухфункциональный элемент, который будет решать проблемы защиты от импульсов напряжения и подавления ЭМП. Так получился варикон (Varicon, VARI (stor) — варистор + COND (enser) — конденсатор), давший наименование компании. Для этого им потребовалось ни много ни мало соединить в одном корпусе варистор и многослойный керамический конденсатор, на первый взгляд — это просто, однако по факту — сложно. Кроме того, здесь необходимо уточнение: варикон не надо путать с созвучным ему варикон-дом — сегнетоэлектрическим конденсатором, емкость которого изменяется нелинейно в зависимости от приложенного напряжения, это совершенно разные компоненты и для разных целей.

Рис. 2. Внешний вид отдельных серий варисторов KEKO-Varicon, доступных ныне от компании Bourns

Рис. 3. Примеры типового использования вариконов серии MV компании Bourns: а) недопущение дуги при замыкании и размыкании контактов реле; б) защита полупроводниковых компонентов схемы — транзисторов и диодов; в) устранение помех от электродвигателей; г) подавление переходных процессов при выключении тиристора; д) стабилизация напряжения и поглощение бросков напряжения; е) защита транзисторов от подачи недопустимо высокого напряжения; ж) предотвращение акустического удара и защита пьезоизлучателя; з) защита от накопления статического электричества

Комбинированные варисторы со встроенным конденсатором применяются не только для поглощения энергии всплесков напряжения, но и для подавления сопутствующих им высокочастотных шумов и помех, как следствие, переходных процессов. Кроме того, они в определенной мере решают и вопросы электромагнитной совместимости (ЭМС), подавляя электромагнитные помехи (ЭМП) непосредственно самого приложения, например, коллекторного двигателя. Схемы включения вариконов, на примере использования вари-кона серии MV, общего назначения, показаны на рис. 3 [4] (кстати, обращаю ваше внимание, что в оригинале допущены ошибки!), а пример практического применения на рис. 4.

Рис. 4. Пример практического применения вариконов серии OV на щеточной плате двигателя постоянного тока и схема для управления привода сиденья автомобиля

Серии MV/OV

Вариконы серий MV и OV представляют собой защитные устройства двойного действия, которые защищают от бросков напряжения и от высокочастотного шума, заменяя два компонента — варистор низкого напряжения и конденсатор. Вариконы серии MV предназначены для широкого применения, работают в диапазоне постоянного напряжения 3-125 В (до 170 В по запросу) и как высокочастотные шунтирующие конденсаторы выполнены на основе диэлектрика X7R, имея диапазон емкостей 10 нФ — 1 мкФ. Также доступны более низкие значения емкости. Они предназначены для защиты самой различной радиоэлектронной аппаратуры электронных устройств, чувствительной к броскам напряжения и высокочастотным шумам, производимых электромеханическими устройствами, такими как зуммеры, реле, щеточные электродвигатели и т. п. (примеры на рис. 3).

Вариконы серии OV предназначены в первую очередь для применения в автомобильном оборудовании (пример на рис. 4).

Вариконы серии OV включают варистор, предназначенный для работы на автомобильных шинах напряжения постоянного тока 12, 24 и 42 В и имеют диапазон напряжений 16, 20, 26, 38 и 56 В. Встроенный в ва-риконды серии OV конденсатор фильтрации радиочастотных помех с емкостью на основе диэлектрика X7R имеет емкость в диапазоне 0,47-1,5 мкФ (более высокие значения емкости доступны по запросу), что делает их оптимальными для защиты и обеспечения требований в части ЭМС в целом ряде приложений автомобильной электроники.

Серии MV и OV представляет собой компоненты квадратной формы. Для серии MV доступны компоненты размером 6×8 мм с линейными выводами для монтажа в отверстия. Для серии OV доступны два стандартных размера 7,5×9 мм и 8×12 мм (меньшие размеры доступны по запросу). Они требуют очень небольшого пространства для установки, как правило, занимая площадь на 30% меньше, чем два отдельных компонента. По запросу вариконы этих серий также доступны в SMD-исполнении для поверхностного монтажа (рис. 5). Обе серии могут поставляться с классификацией согласно AEC-Q200 Grade 1 (-40___+ 125 °C) для использования в автомобильной индустрии, а серия OV способна выдерживать мощные импульсы при сбросе нагрузки в соответствии с требованиями SAE J1113. Основные технические характеристики вариконов серий MV и OV компании Bourns приведены в таблице 2. Полные технических характеристики вариконов серий MV и OV компании Bourns доступны в спецификациях [4, 5].

Полная номенклатура защитных компонентов, которой владела компания KEKO-Varicon и которая перешла к Bourns, приведена в каталоге [6]. К сожалению, каталог не обновлялся с 2015 года и в нем допущены ошибки, поэтому для уточнения следует обращаться либо напрямую к службе поддержки компании Bourns, либо к ее авторизованному дилеру. В любом случае отказываться от использования таких компонентов, как вариконы, не стоит, а объединение компаний KEKO-Varicon и Bourns несомненно даст новый толчок к развитию этого перспективного направления защитных элементов. Полная номенклатура защитных компонентов компании доступна по ссылке [7].

Рис. 5. Варианты исполнения вариконов серий MV и OV компании Bourns и их графический символ

Таблица 2. Основные технические характеристики коммерчески доступных вариконов серий MV и OV

Параметр Серия MV Серия OV
Непрерывный режим Приложенное установившееся напряжение
Диапазон напряжения постоянного тока (Vdc), В 3-170 16-56
Диапазон переменного напряжения (Vrms), В 2-130* 14-40
Импульсный режим Энергия сброса нагрузки (WLD), Дж - 6-12
Возможность запуска от внешнего источника — 5 мин (Vjump). В - 24-65
Непериодический импульсный ток, форма волны 8/20 мкс (Imax), А 150 800-1200
Энергия неповторяющихся всплесков напряжения, форма волны 10/1000 мкс (Wmax), Дж 0,1-2,5 2,4-10,5
Номинальная емкость конденсатора, нФ 10-1000 470-4700
ТКЕ конденсатора X7R
Рабочая температура окружающей среды, °С -40…+125
Температур хранения, °С -40…+150
Температурный коэффициент порогового напряжения, не более, %/°С +0,5
Сопротивление изоляции, не менее, ГОм 1
Допустимое напряжение изоляции, кВ, не менее 1,25
Время отклика, не более нс 25
Климатическая категория 40/125/56

Примечание. * Вариконы с номинальным напряжением 2—8 В являются нестандартными и доступны только по запросу.

Литература

1. Рентюк В. Элементы BOURNS для защиты от статического электричества и переходных процессов. В сб. «Электромагнитная совместимость в электронике». 2019.

2. Рентюк В. Комбинированный варистор компании BOURNS — эффективное решение проблемы защиты оборудования. В сб. «Электромагнитная совместимость в электронике». 2019.

3. Верхулевский К. Варисторы и конденсаторы Keko Varicon для автомобильных и промышленных применений // Компоненты и технологии. 2015. № 7.

4. MV Series — Low Voltage Dual Function Varicons. REV. A 01/20. https://www.bourns.com/docs/product-datasheets/mv_series.pdf?sfvrsn=22ed46f6_6

5. OV Series — Automotive Grade Dual Function Varicons. REV. A 01/20. https://www.bourns.com/docs/product-datasheets/ov_series.pdf?sfvrsn=eed46f6_6

6. Catalogue PROTECTIVE DEVICES. Edition 2015. http://www.keko-varicon.si/application/keko/upload/files/KEKO_OV.pdf 

7. www.bourns.com/products/circuit-protection/varistor-products

Опубликовано в сборнике «Электромагнитная совместимость в электронике» 2020 г. http://emc-e.ru


Учебный курс Фрэнка

Варисторы (MOV)

Варистор или металл оксидный варистор (MOV) — специальный резистор, который используется для защиты цепи от высокого переходного (кратковременного) напряжения. Эти скачки и шипы атакуют оборудование у линии электропередачи и разрушают питание оборудования. Варистор способен сократить эти скачки и шипов и держите их подальше от следующего приложения.
Варистор также известен как резистор, зависимый от напряжения, или VDR.


Варисторы разные.
Напряжение короткого замыкания указано на корпусе.

Схема варистора.
Скачки и скачки
Скачок или скачок напряжения — это повышение напряжения, значительно превышающее стандартное. напряжение 230 вольт. Точное определение:

Когда увеличение длится 3 нс или более, это называется всплеском.
Когда он длится 1-2 нс, это называется всплеском.

Однако, если выброс или всплеск достаточно высок, это приведет к повреждению устройства или машина. И действительно, скачки напряжения в сети могут легко достигать 6000 вольт.
Даже если повышенное напряжение не сразу сломает вашу машину, это может подвергать компоненты дополнительной нагрузке и изнашивать их со временем.

Скачки переменного напряжения.
Скачок переменного напряжения.

Причиной скачков и скачков напряжения в ЛЭП является работа мощных электрических устройств, например, кондиционеров, холодильники и лифты. Это мощное оборудование требует много энергии для включения и выключения двигателей и компрессоров. Этот переключение создает внезапные кратковременные потребности в мощности, которые нарушают постоянный поток напряжения в электрической системе.
Эти скачки и шипы могут немедленно или постепенно повредить электронные компоненты и являются общей проблемой в электрических системах большинства зданий.
Помимо линий электропередач, также страдают телефонные линии и антенные кабели. импульсами высокого напряжения, вызванными ударами молнии.
Рекомендуется использовать фильтры для защиты от перенапряжения для всех сложных электронных устройств, электронного оборудования, такого как компьютеры, компоненты развлекательных центров и, конечно, биомедицинское оборудование. Сетевой фильтр обычно продлевает срок службы этих устройств.
Функция
В нормальных условиях сопротивление варистора очень велико.Когда подключенное напряжение становится выше, чем указано в спецификации варистора сопротивление сразу становится крайне низким. Это обстоятельство используется для защиты электронных приложений от перенапряжения. Варисторы есть просто добавляется ко входу блока питания. При скачках высокого напряжения и появляются шипы, варистор закоротит их и защитит следующие заявление.


Характеристическая кривая MOV.
Низкое напряжение и низкий ток (высокое сопротивление).
Когда напряжение достигает напряжения варистора, ток становится высоким очень быстро (резистор очень низкий. Разъемы короткие.
Технические характеристики
Варисторы — это вид резисторов, но их характеристики не являются сопротивлением ῼ и мощность Вт. Для варисторов наиболее важными характеристиками являются напряжение зажима.

Напряжение зажима
Это напряжение короткого замыкания варистора. Нижний зажим напряжение указывает на лучшую защиту.Но с другой стороны напряжение не должно быть настолько низким, чтобы меньшие изменения мощности разрушили варистор. Для сети 230 В хорошим выбором будет варистор с ограничивающим напряжением 275 В.

Энергия поглощение / рассеяние
Это рейтинг дан в джоулях и показывает, сколько энергии варистор может впитывать. Более высокое число указывает на большую защиту. Варисторы с От 200 до 400 джоулей обеспечивают хорошую защиту, обеспечивается лучшая защита с устройствами на 600 джоулей и более.
Для увеличения поглощения энергии можно поставить два или три варистора. параллельно.

Время отклика
Варисторы переключаться быстро, но не сразу. Всегда есть очень небольшая задержка, так как они реагируют на скачок напряжения. Чем больше время отклика, тем дольше подключенное приложение подвергается скачкам напряжения. Ответ время 1 нс или быстрее вполне нормально.

Заявка


Варистор на входе источника питания.

Варистор просто подключается между линией и нейтраль но после предохранителя.В случае короткого замыкания варисторов предохранитель перегорит и отключит сеть от следующего приложения.

Простое решение для эффективной защиты.
Оригинальный сильноточный предохранитель следует заменить одним подходящим. с оборудованием.


Лучшая защита содержит три варистора: по одному на каждый из три пары проводов (линия, нейтраль и земля).
Проблемы
Варисторы могут быть разрушен слишком большим количеством скачков. Они немного изнашиваются с каждым всплеском выше порога, и когда-нибудь они будут полностью разрушены.
Перенапряжение также является распространенной проблемой. Варисторы сгорели но тоже дайте предохранителю перегореть и таким образом сохраните подключенное оборудование.


Неисправный варистор. Слишком большое количество скачков напряжения в течение длительного времени разрушает варисторы.

Обычная неисправность MOV — это перегрев.Это может вызвать возгорание.
Альтернативы
Газоразрядная трубка или газовая трубка — это своего рода искровой разрядник, который содержит воздух или газовая смесь.
Когда скачки напряжения достигают определенного уровня, газ ионизирует газа, что делает его очень эффективным проводником. Он передает ток на линия заземления, пока напряжение не достигнет нормального уровня.
Сравнить с газовые лампы варисторов имеют более высокое напряжение пробоя. Они могут справиться значительно более высокие токи короткого замыкания и выдерживают многократное высокое напряжение удары без самоуничтожения.С другой стороны, время отклика составляет дольше.
Газоуловители обычно используются в телекоммуникационном оборудовании для защитить от ударов молнии.

Источники и дополнительная информация
http://en.wikipedia.org/wiki/Varistor
http://en.wikipedia.org/wiki/Surge_Protector
http://www.nteinc.com/Web_pgs/MOV.html

Роль варистора в импульсном блоке питания

Варистор — это компонент с подавлением переходных напряжений.Он обычно используется в схемах импульсной защиты от импульсных перенапряжений и переходных процессов. Его можно использовать для замены диодов подавления переходных процессов, стабилитронов и конденсаторов. комбинация. Варистор защищает критически важные компоненты, такие как интегральные схемы и другие схемы и устройства, от повреждений, вызванных электростатическими разрядами, скачками и другими переходными токами, такими как удары молнии. При использовании необходимо только подключить варистор к защищаемой цепи. Когда напряжение выше определенного значения, сопротивление варистора быстро падает, включая большой ток, предотвращая мгновенное перенапряжение и защищая.Функция, когда напряжение ниже рабочего напряжения варистора, варистор имеет очень высокое значение сопротивления и почти разомкнут, поэтому он не влияет на нормальную работу устройства или электрического оборудования.

Варистор (резистор датчика Voltaga, VSR) — это новый тип защиты от перенапряжения. Варистор представляет собой керамический компонент металл-оксид-полупроводник, изготовленный из оксида цинка в качестве основного материала, а основным материалом, составляющим варистор, является оксид цинка, который включает зерна оксида цинка и межзеренный пограничный слой вокруг кристаллических зерен.Удельное сопротивление зерен оксида цинка очень низкое, а удельное сопротивление межзеренного слоя очень высокое. Между двумя контактирующими кристаллическими зернами образуется барьер, соответствующий стабилитрону, который становится варисторным блоком и множеством блоков. Основание варистора образовано последовательным и параллельным соединением. Когда варистор работает, каждый варисторный блок отвечает за импульсную энергию, и эти варисторные блоки по существу равномерно распределены по корпусу резистора, а весь корпус резистора отвечает за энергию, в отличие от вторичной стабилизации стабилитрона.Напорная трубка — это только место соединения, на которое подается электроэнергия, и ее сопротивление изменяется в зависимости от напряжения на клеммах.

1. Конструктивные характеристики и принцип работы варистора

Основными характеристиками варистора являются широкий диапазон рабочего напряжения (6-3000 В, разделенный на несколько передач), быстрая реакция на импульсы перенапряжения (наносекунды), высокая устойчивость к пусковому току (100 ~ 2000 А) и низкий ток утечки (микроампер). уровень), малый температурный коэффициент сопротивления, высокое качество и низкая цена, небольшой размер, является идеальным компонентом защиты, который может представлять собой схему защиты от перенапряжения, схему устранения шума, схему устранения искры и схему поглощения.Когда импульс перенапряжения накладывается на сеть электропитания, после подключения варистора форма волны пика перенапряжения сглаживается и ограничивается определенным диапазоном. Когда индуктивная и емкостная цепь нагрузки включается или выключается, форма волны постоянного тока имеет импульс переключения, и варистор может поглощать обратный электрический потенциал в цепи, тем самым эффективно защищая схему переключения от повреждения.

Обычно используемые варисторы включают варистор из карбида кремния и варистор из оксида цинка.Среди них широко используется варистор из оксида цинка. Он использует оксид цинка в качестве основного сырья и добавляет различные оксиды металлов в следовых количествах. Спеченная сборка нового типа идеального устройства защиты от перенапряжения, величина проводимости которого изменяется нелинейно с приложением напряжения, его называют варистором или поглотителем перенапряжения.

2, терминология основных электрических параметров варистора

(1) Номинальное напряжение или напряжение варистора U1mA: В условиях постоянного напряжения, когда варистор протекает через определенный ток, напряжение на клеммах варистора называется напряжением варистора варистора.Обычно напряжение на клеммах, когда варистор протекает через постоянный ток 1 мА, называется напряжением варистора U1 мА. Для варизоров диаметром 5 мм или меньше номинальное напряжение измеряется при 0,1 мА, а для низковольтных изделий большого диаметра номинальное напряжение также выражается как 20 мА.

(2) Испытательный ток I1mA: Ток, соответствующий напряжению варистора, называется испытательным током, а испытательный ток обычно указывается как 1 мА постоянного тока.

(3) Отношение напряжений: отношение падения напряжения постоянного тока, создаваемого варистором, протекающим через ток заданной величины, к напряжению варистора, называется отношением напряжений.

(4) Температурный коэффициент напряжения: в указанном диапазоне температур и условиях импульсного тока, когда температура варистора изменяется на 1 ° C, относительное изменение напряжения в процентах называется температурным коэффициентом напряжения.

(5) Сквозной поток: максимальная скорость прохождения, когда скорость изменения напряжения варистора варистора меньше или равна значению, указанному в технических условиях, после подачи на варистор указанной стандартной формы волны тока в соответствии с заданным интервалом времени. и количество раз.Текущее значение называется пропускной способностью импульсного потока, которая называется расходом.

Максимальное значение импульсного тока может пройти в течение указанного времени (8 мкс / 20 мкс). Импульсный ток составляет от 8% максимального значения до максимального значения 8 мкс, а длительность пика составляет 20 мкс.

(6) Скорость изменения напряжения: процентное изменение напряжения варистора до и после испытания на удар называется скоростью изменения напряжения.Формула выглядит следующим образом:

Скорость изменения напряжения = [(U1-U2) / U1] × 100%

Где: U1, U2 — напряжения до и после испытания.

(7) Ток утечки (мкА): когда напряжение на компоненте равно 75% напряжения на указанном токе, постоянный ток, проходящий через варистор, называется током утечки.

(8) Номинальная мощность P: мощность нагрузки варистора при указанной температуре окружающей среды называется номинальной мощностью.

(9) Собственная емкость C.: Отношение заряда, накопленного между двумя полюсами варистора, и приложенного к нему напряжения.

(10) Остаточное напряжение Uc: когда через варистор протекает определенный импульсный ток, пиковое значение напряжения, возникающего на варисторе, называется остаточным напряжением.

(11) Коэффициент остаточного напряжения η: отношение значения остаточного напряжения варистора к напряжению варистора U1mA.

Варистор не является резистором в общем смысле. Он состоит из частиц оксида металла (например, оксида цинка), разделенных изолирующей пленкой, которая называется MOV (варистор оксида металла). Характеристики варистора и его применение, его электрические характеристики, i = kU, k — постоянная величина, a находится в диапазоне 30 ~ 40. Имеет большое сопротивление при низком напряжении, небольшой ток утечки; при увеличении напряжения в варисторе изолирующая пленка становится проводником, напряжение немного увеличивается, а ток резко увеличивается, что аналогично характеристике пробоя стабилитроновой лампы и может выдерживать большую мгновенную мощность.

Варистор часто подключается между токоведущими и токоведущими проводами входа импульсного адаптера питания, токоведущими и нейтральными проводами и выводами индуктивного устройства в качестве компонентов, поглощающих скачки и скачки напряжения. Рабочее напряжение обычно составляет половину напряжения пробоя. Основными характеристическими параметрами являются напряжение пробоя Ub, коэффициент остаточного напряжения η и полученная энергия потерь W.

Shenzhen WPOWER Co., Ltd. — адаптер питания постоянного / переменного тока 12 В 10 А Адаптер питания 24 В 5 А Производитель адаптера питания 24 В 5 А Производитель адаптера питания 5 В 12 А переменного тока / Адаптер постоянного тока 5V12A Адаптер переменного / постоянного тока Поставщик 15V8A Завод адаптеров импульсного источника питания 15V8A Адаптер импульсного источника питания 15V8A Адаптер импульсного источника питания Оптовик и другие продукты, специализирующиеся на производстве и обработке.Компания располагает полным производственным оборудованием и испытательным оборудованием, первоклассной командой продаж и независимой командой высокого уровня по исследованиям и разработкам. Продукция прошла сертификацию UL, CE, FCC, KC, PSE, SAA, GS и другие. Чтобы узнать больше о производителе адаптера питания переменного / постоянного тока, войдите на официальный сайт источника питания — WPOWER!

Предыдущий : Принцип работы светодиодного переключаемого источника света
Далее : Широкомасштабное применение источника питания светодиодов снижает потребление энергии

Как и почему происходит отказ варистора, включая эффект многоимпульсных скачков

Был 2011 год, и в Китае проводился эксперимент по регистрации воздействия сработавшей вспышки молнии на воздушной линии электропередачи.Линия была оборудована для регистрации наведенных токов, а инструменты были защищены варистором из оксида металла (MOV). Варистор часто называют MOV (металлооксидный варистор). Зарегистрированная вспышка молнии состояла из нескольких обратных ударов, ни один из которых не превышал рейтинг Imax MOV. Но, к большому удивлению экспериментаторов, MOV был поврежден.

Как такое могло случиться? И что еще более важно, почему Imax не может быть хорошей основой для выбора MOV для защиты от молний, ​​и есть ли альтернативы? Чтобы помочь ответить на эти вопросы, мы обсудим в этой статье, что такое MOV и как способ его создания влияет на его поведение при скачках напряжения, как происходят отказы и как многоимпульсные скачки отличаются от одиночных скачков по их влиянию на свойства MOV.

Основы варистора

Чтобы понять неисправность, полезно обсудить, как делаются варисторы. В этой связи следует отметить три момента.

Во-первых, варисторы представляют собой керамический материал, состоящий в основном из оксида цинка (ZnO). В условиях окружающей среды ZnO кристаллизуется в гексагональную структуру вюрцита, как показано на рисунке 1, где большие шары представляют Zn, а маленькие шары представляют кислород (O). Это сложная структура, которая, если бы она идеально кристаллизовалась, была бы изолятором.Но из-за несовершенства процесса кристаллизации образующиеся кислородные вакансии или межузельные частицы цинка превращают эту структуру в широкозонный полупроводник с относительно низким удельным сопротивлением 1-100 Ом-см при комнатной температуре.

Рисунок 1: Структура вюрцита. Большие шары представляют собой Zn, а меньшие шары представляют собой кислород.

Во-вторых, варистор — это не один однородный кристалл вюрцита, а множество, которые сливаются в зерна. Чтобы превратить ZnO в варистор, добавляется небольшое количество Bi 2 O 3 .Bi 2 O 3 проникает в границы зерен, как показано на рисунке 2. В дополнение к Bi 2 O 3 может быть добавлен MnO для улучшения нелинейных свойств; Sb2O3 для контроля роста зерен ZnO и небольшое количество Al 2 O 3 для увеличения проводимости зерен ZnO.

Рисунок 2: Типичная микрофотография варисторной структуры

Bi 2 O 3 между двумя зернами ZnO приводит к образованию обратных диодов Шоттки.Таким образом, по сути, варистор представляет собой последовательно-параллельную схему из материала n-типа, разделенного обратными диодами Шоттки, имеющими падение напряжения около 2–3 В на межзеренный переход (независимо от размера зерна). Согласно He [1], эта структура может быть электрически охарактеризована уравнением (1).

(1)

Где V — приложенное напряжение, а I — ток через варистор. Здесь E, A 1 , A 2 , V th и m — константы, связанные с электрическими характеристиками варистора, а α — обычный нелинейный коэффициент варистора.Уравнение (1) полезно для объяснения формы кривой V-I варистора. E — энергия возбуждения варистора, K постоянная Больцмана, A 1 , A 2 и m — константы, связанные с электрическими характеристиками варистора, V th — пороговое напряжение.

Первый член в уравнении (1) редко включается в описание варистора V-I. Это ток эмиссии Шоттки в слаботочной области варистора. Второй член — это обычный нелинейный ток в сильноточной области.

Константы в уравнении (1) контролируются путем изменения состава материала варистора и времени спекания в процессе производства. Пороговое напряжение V th также зависит от состава и условий спекания. Они контролируют количество границ зерен между двумя электродами. Поскольку V th пропорционален количеству границ зерен, большее количество границ зерен приводит к более высокому V th .

В-третьих, это изменение в процессе изготовления варистора и сопровождающие его статистические флуктуации свойств, которые обычно происходят в поликристаллических материалах, приводят к тому, что получаемые варисторы имеют неоднородные электрические свойства.Это говорит о том, что:

  1. Константы в модели варистора, такой как уравнение (1), вероятно, будут разными для каждого варистора; и
  2. Не все варисторы одинаковых размеров обладают одинаковыми свойствами — важный фактор при выборе MOV для защиты.

Отказ варистора

Варисторы должны поглощать энергию, выделяемую при временном перенапряжении, коммутационных импульсах или грозовых импульсах. Эксперименты показывают, что различия в размерах зерен и характеристиках границ зерен вызывают неоднородную микроструктуру.Неоднородная микроструктура приводит к изменчивости возможностей управления током варистора и связанной с этим способности поглощения энергии. Это, в свою очередь, имеет прямое отношение к режимам отказа, которые включают электрический прокол, физическое растрескивание и тепловой разгон.

Способность к поглощению энергии можно разделить на способность поглощения тепловой энергии и способность поглощения энергии импульса. Способность к поглощению энергии импульса зависит от того, как импульс приложен:

  • Напряжение единичным импульсом
  • Множественное импульсное напряжение (без достаточного охлаждения между импульсами)
  • Повторяющееся импульсное напряжение (при достаточном охлаждении между напряжениями)

На способность поглощения тепловой энергии, с другой стороны, в основном влияет способность рассеивания тепла всей конструкции разрядника в дополнение к электрическим свойствам варисторов.

Рисунок 3: Типичная микрофотография горячих точек границ зерен

Давайте сначала рассмотрим отказ варистора, вызванный нагревом. При более низких токах нагрев локализуется в цепочках крошечных горячих точек, которые возникают на границах зерен, где потенциал падает через барьеры типа Шоттки (см. Рисунок 3). Теплопередача в этом случае слишком быстрая, чтобы допускать перепады температур, которые могут вызвать сбой.

Теперь рассмотрим более высокие токи. В небольших варисторах (например, <25 мм), где количество зерен ZnO между электродами может составлять всего около 40, изменение в 3-4 зерна может привести к тому, что ток, протекающий по заданному пути, будет на порядок отличаться от окружающего пути.Пути с низким пробивным напряжением несут большую часть тока и становятся более горячими, что приводит к последствиям, отмеченным в исследовании Sargent и др. [4]. В этом исследовании анализ неисправных образцов MOV показал растрескивание и образование нового аморфного материала вблизи канала проводимости. Исследование этого аморфного материала показало, что локальные горячие точки (на самом деле горячие каналы) образовывались, когда энергия, возникающая в результате импульса тока, приложенного к MOV, поглощалась быстрее, чем могла рассеиваться.Аморфный материал в этих горячих точках, вероятно, возник в результате образования плазмы во время импульса тока. После этого горячие точки быстро охлаждались за счет теплопроводности к окружающим зернам ZnO.

При различных текущих условиях режимы отказа включают электрический пробой (см. Рисунок 4), физическое растрескивание (см. Рисунок 5) и тепловой разгон. Трещины возникают из-за того, что варисторы в основном представляют собой керамический материал, и удар по ним резким скачком большой амплитуды подобен удару молотка по обеденной тарелке.

Рисунок 4: Типичная микрофотография прокола

Рисунок 5: Типичное образование трещин

Прокол разрушения происходит в небольших варисторах, когда ток относительно низкий и длительный (например, см. Рисунок 6). В результате варистор нагревается. Анализ прокола в этих варисторах убедительно показывает, что формируется нить с достаточно высокими температурами, чтобы расплавить Bi 2 O 3 (817 o C). Когда это происходит, последовательно включенные диоды Шоттки разрушаются, что приводит к снижению сопротивления нити накала [1].Сниженное сопротивление нити обеспечивает более высокую плотность тока, иногда вызывая достаточно высокую температуру для плавления ZnO (2000 o C).

Рисунок 6: Пример комбинаций плотности тока и длительности импульса, вызывающих отказ варисторов. Этот график предназначен для конкретного варистора. Для любого другого варистора шкалы могут отличаться от показанных.

Если ток будет продолжаться достаточно долго, энергия, вложенная в варистор, может повысить его температуру до точки теплового разгона из-за отрицательного температурного коэффициента удельного сопротивления материала [1].

Самые высокие импульсные токи с короткой продолжительностью могут вызвать отказ (см. Рисунок 5), который обычно возникает на краю варистора, так как температура увеличивается больше на краю микросхемы (белая область на рисунке 7). Причина в том, что рост зерен во время спекания часто происходит быстрее во внешней части блока, чем в центре блока, что приводит к меньшему количеству и большему количеству зерен между электродами и, следовательно, к более низкому напряжению пробоя.

Рисунок 7: Типичное тепловое сканирование варистора, работающего в импульсном режиме при сильном токе

На рис. 6 показаны условия, при которых могут возникать трещины и проколы.Для данного варистора красная сплошная линия показывает случаи, при которых может произойти растрескивание, а черной пунктирной линией — случаи, когда может произойти прокол.

Отказы из-за многоимпульсной молнии

Почему мы говорим о многоимпульсной молнии? Что ж, наблюдения за молниями и данные об искусственно инициированных молниях, обобщенные в [6], показывают, что почти 70% ударов молний между облаками и землей включают от двух до 26 ударов. У этих ударов средний геометрический интервал между ударами составляет около 60 мс.Они также могут иметь продолжительный ток с интервалом между ударами до нескольких сотен миллисекунд. Типичная многоимпульсная последовательность показана на рисунке 8.

Рисунок 8: Пример многоимпульсной молнии

Многоимпульсная молния только что описанного типа важна, потому что она способна вызывать повышение температуры, которое приводит к только что обсужденным видам отказов, в то время как одиночный импульсный разряд — нет. Например, в исследовании Sargent et al [4] половина набора 18-миллиметровых образцов MOV была подвергнута многоимпульсному импульсу 8/20 скачков при номинальном токе.Эти образцы показали признаки повреждения, тогда как другая половина образцов, испытанных при однократном скачке напряжения 8/20 при номинальном токе, повторяемом с интервалами 60 секунд или более, не показала никаких повреждений. В другом многоимпульсном тесте Руссо и др. [7] без сбоев подвергли MOV 60 импульсам 20 кА 8/20 с интервалом 60 секунд. Но когда такой же тип MOV подвергся всего лишь пяти скачкам напряжения 20 кА 8/20 с интервалом в 50 мс, произошел сбой. В этих случаях отказ варистора, вероятно, был вызван накоплением тепла из-за относительно большой тепловой постоянной времени варисторов (рис. 9), что проиллюстрировано для одного всплеска с использованием теплового моделирования, как показано на рис. 10 (подробности см. В [8]).

Рисунок 9: Тепловая постоянная времени варистора

Рисунок 10: Пример повышения температуры в 25-миллиметровом MOV, подверженном одному скачку 10/63 6 кА

Как отмечалось ранее, в исследовании Sargent и др. анализ неисправных 18-миллиметровых образцов MOV, подвергнутых испытанию многоимпульсным взрывом, показал образование около канала проводимости нового аморфного материала, для которого, как считалось, требуется локальная температура. около 1000 o ° C. Тепловое моделирование предполагает, что это повышение температуры произойдет, если мощность импульса будет сосредоточена примерно в 2% от объема MOV.Это важное наблюдение, потому что расчет энергии, поглощенной при испытании на многоимпульсные импульсы, показал, что повышение температуры MOV составило бы только 231 ° C, если бы распределение температуры было равномерным, что намного меньше, чем температура, которая, как считается, вызвала ущерб.

Результаты Sargent и др. предполагают, что критерием отказа MOV является локальное повышение температуры до 1000 o ° C (или его окрестности). Итак, для рассматриваемого MOV нам нужно определить, может ли локализованная область достигать 1000 o ° C.На рисунке 11 показано дополнительное повышение температуры, которое происходит, когда импульс, использованный для создания рисунка 10, применяется к тому же MOV второй раз через 30 мс. Дополнительное повышение температуры происходит из-за относительно большой тепловой постоянной времени MOV, которая не позволяет MOV рассеивать много тепловой энергии (и, следовательно, охлаждение) до того, как наступит второй скачок. Повышение температуры теперь находится в красной области выше 1000 o ° C, где ожидается отказ. Это пример того, как варистор может быть разрушен многоимпульсными скачками.

Рисунок 11: Пример повышения температуры для MOV 25 мм, подверженного двум скачкам напряжения 10/63 6 кА

В другом взгляде на эффекты многоимпульсной молнии, в исследовании Zhang и др. [5] изучалась прогрессия отказа варисторов при множественных ударах молнии, используя серию пятиимпульсных групп из 8/20 разрядов молнии с импульсами. интервалы 50 мс и амплитуды импульсов, установленные при номинальном токе разряда 20 кА. Время между приложением одной группы импульсных токов к варистору и следующей группой импульсных токов составляло 30 минут, что позволяло вернуться к исходным условиям.

Варисторы были признаны вышедшими из строя при изменении исходного напряжения варистора более чем на ± 10% U 1 мА ; ток утечки I , т.е. превысил 20 мкА; или произошло прямое повреждение (обычно в результате растрескивания кромок). Среднее изменение уровня U 1 мА и I , т.е. для серии групп импульсов показано на рисунке 12.

Рисунок 12: Напряжение варистора U 1 мА и ток утечки I , т. Е. Изменение варистора при множественном импульсном токе молнии (источник: Zhang et al [5])

На рис. 12 показано, что в отсутствие постоянного тока единичный многоимпульсный импульс не доставил достаточно энергии на MOV, чтобы вызвать отказ.Многократное применение многоимпульсной пачки в конечном итоге приводило к отказу.

Таким образом, возможно, что единичный неразрушающий многоимпульсный импульс обусловливает отказ MOV от будущих многоимпульсных пакетов, о чем свидетельствует постоянно увеличивающийся ток утечки. Это кондиционирование можно рассматривать как своего рода ускоренный процесс износа.

Микроструктурное исследование вышедших из строя варисторов показало, что после нескольких ударов молнии размер зерна уменьшился, а доля Bi в межзеренно-пограничном слое значительно увеличилась.Эти эффекты были кумулятивным результатом нескольких токов молнии и были вызваны тепловым повреждением и повреждением структуры границ зерен из-за температурного градиента термического напряжения. Это повреждение в конечном итоге привело к отказу MOV. Обратите внимание, что при однократном испытании на помпаж этот механизм износа будет пропущен.

Комментарии

Похоже, что повторяющиеся колебания MOV изменяют его микроструктуру, и понимание того, как это происходит, важно для понимания того, как MOV выходят из строя.Что вызывает некоторые вопросы. В частности, является ли деградация микроструктуры кумулятивной, как показано на текущем графике на предыдущем рисунке? Или эффекты деградации скрыты до тех пор, пока не достигнут критической точки, как показано на графике напряжения на предыдущем рисунке? Ответ, вероятно, будет зависеть от величины и разноса скачков, и может быть порог величины скачка и интервал скачка, ниже которого не происходит значительного ухудшения характеристик. Чтобы ответить на вопросы, необходимы дополнительные исследования.

Испытания короткими одиночными импульсами высокой амплитуды (например, 6 кВ, 3 кА 8/20) обычно используются для оценки отказа варистора. Этот тип испытания может вызвать режим отказа, отличный от режима отказа варистора, подверженного многоимпульсным ударам молнии с меньшей амплитудой (например, растрескивание или износ). Одноимпульсные испытания также могут пропустить сбои по накоплению тепла, которые могут вызвать многоимпульсные молнии, особенно многоимпульсные молнии, которые включают постоянный ток.

Корпус в точке

Возвращаясь к отказу, описанному в начале, сработавшая вспышка молнии с множественными обратными ударами была зарегистрирована во время эксперимента с молниями.Эта вспышка повредила УЗИП, даже несмотря на то, что номинальное значение Imax для УЗИП (определенное с помощью одного импульсного теста) было намного выше, чем зарегистрированный пиковый ток освещения [9]. Почему?

Как указано в [10], причиной отказа была продолжающаяся текущая часть многоимпульсной последовательности, а продолжающийся ток не учитывается в рейтинге Imax. Продолжающийся ток накапливал достаточно энергии в MOV, чтобы вывести его из строя.

Другое соображение

Поскольку мы обычно живем в среде с многоимпульсной вспышкой молнии, типичный график снижения характеристик (созданный с помощью одиночных скачков), как показано на рисунке 13, необходимо изменить, если он будет использоваться для MOV, который был установлен для защиты от многоимпульсных молний. .В частности, линии на Рисунке 13, возникающие в результате (повторного) применения одиночных скачков, вероятно, необходимо будет уменьшить, чтобы учесть эффект разрушения микроструктуры, предложенный исследованиями Zhang и др. [5].

График многоимпульсного снижения номинальных характеристик может быть создан путем повторения многоимпульсного группового теста Чжана таким же образом, как это использовалось для создания диаграммы снижения номинальных характеристик на рис. 13, но теперь с использованием многоимпульсных групп вместо одиночных выбросов. Так, например, для линии с одним попаданием группа скачков с относительно узкой формой волны будет применяться при токе, который вызовет сбой во втором приложении.Затем процесс будет повторяться с использованием групп скачков с более широкими формами волны. Результатом будет что-то вроде верхней строки на рисунке 13.

Рисунок 13: Типичные кривые снижения характеристик MOV

Точно так же амплитуда тока будет уменьшена так, что a для линии с двумя ударами вторая группа скачков вызовет отказ в третьем приложении, и процесс будет повторяться с использованием групп скачков с более широкими формами волны. Этот процесс будет продолжаться до тех пор, пока не будет создано достаточно линий для адекватной характеристики продукта.

Заключительное примечание

Для получения дополнительной информации о варисторах см. Стандарт IEEE PC62.33 ™ на методы испытаний и рабочие характеристики металлооксидных варисторных компонентов защиты от импульсных перенапряжений [11].

Резюме

Процесс изготовления варистора и статистические колебания свойств, которые обычно возникают в поликристаллических материалах, приводят к тому, что варисторы имеют неоднородные электрические свойства. В результате несколько токопроводящих дорожек с низким пробивным напряжением несут большую часть тока и становятся более горячими.Если температура этих путей достигает около 1000 o ° C, происходит плавление, и MOV разрушается. В случае 18-миллиметровых MOV это повышение температуры произойдет, если неоднородности в MOV вызывают концентрацию импульсной мощности примерно в 2% от объема MOV (2% могут отличаться в других размерах MOV). Это повышение температуры могло быть причиной отказа прокола, наблюдаемого в случае длительных скачков низкой амплитуды.

В случае кратковременных скачков большой амплитуды отказ MOV может произойти из-за растрескивания до того, как произойдет плавление.На линиях электропередачи могут возникать одиночные кратковременные скачки большой амплитуды, поэтому установленные таким образом параметры MOV могут быть подходящими для применений в линиях электропередач

Для защиты от молнии более важными могут быть характеристики, установленные при многоимпульсном испытании. Это связано с тем, что многоимпульсный удар молнии часто является движущей силой повышения температуры, поскольку он вызывает накопление энергии в MOV из-за его большой тепловой постоянной времени. Вот почему важно многоимпульсное тестирование, поскольку одно импульсное испытание может пропустить сбои, которые могут вызвать многоимпульсные молнии, в частности, износ, и особенно многоимпульсные молнии, которые включают постоянный ток.И чаще всего молнии многоимпульсного типа. При построении кривых снижения характеристик может потребоваться учитывать эффект ухудшения микроструктуры из-за повторяющихся многоимпульсных скачков.

Понимание механизма того, как помпаж MOV изменяет его микроструктуру, важно для понимания того, как MOV выходят из строя. Это тема, требующая дальнейшего изучения.

Список литературы
  1. Jinliang He, Металлооксидные варисторы: от микроструктуры к макрохарактеристикам , John Wiley and Sons, 2019
  2. М.Бартковяк, «Локализация тока, неоднородный нагрев и отказы варисторов ZnO», Осеннее собрание Общества исследования материалов, Бостон, Массачусетс, 1-5 декабря 1997 г.
  3. Гордон Пайк, «Пробой ZnO-варисторов мощными электрическими импульсами», отчет Sandia SAND2001-2160 , июль 2001 г.
  4. Р. А. Сарджент, Г. Л. Данлоп и М. Дарвениза. «Влияние многократных импульсных токов на микроструктуру и электрические свойства металлооксидных варисторов», IEEE Transactions on Electrical Insulation Vol.27 № 3, июнь 1992 г.
  5. Chunlong Zhang, Hongyan Xing, Pengfei Li, Chunying Li, Dongbo Lv и Shaojie Yang, «Экспериментальное исследование режима отказа варисторов ZnO при множественных ударах молнии», Электроника , , февраль 2019 г.
  6. CIGRE WG C4.407, «Параметры молнии TB549 для инженерных приложений», 2013 г.
  7. А. Руссо, Х. Чжан и М. Тао, «Множественные выстрелы по SPD — дополнительные испытания», Международная конференция по молниезащите (ICLP) , Шанхай, 2014 г.
  8. A.R. Мартин, «Влияние многократных вспышек молнии на устройства защиты от перенапряжения, использующие MOV», в журнале Compliance Magazine , ноябрь 2017 г., стр. 32–39.
  9. С. Дж. Ян, С. Д. Чен, Ю. Дж. Чжан, В. С. Донг, Дж.Г. Ван, М. Чжоу, Д. Чжэн и Х. И Хуэй, «Анализ срабатывания молнии дает новое представление о влиянии сверхтока на устройства защиты от перенапряжения», http://www.ten350.com/papers/icae- conghua.pdf, 2011.
  10. М. Мэйтум, «Технический бюллетень CIGRÉ (Совет по большим электрическим системам) (TB) 549 (2013) Параметры молний для инженерных приложений», Конференция группы инженеров по защите решений для телекоммуникационной отрасли , Литтлтон, Колорадо, 2014 г.
  11. Стандарт IEEE PC62.33 ™ на методы испытаний и рабочие характеристики для компонентов защиты от перенапряжения с варистором на основе оксида металла

Как использовать устройства защиты от электростатического разряда / перенапряжения: дисковые варисторы | Примечание по применению

Преимущества различных типов варисторов

Варисторы

могут использоваться в качестве подавителей для защиты устройств и цепей от переходных аномальных напряжений, включая электростатический разряд (электростатический разряд) и удар молнии.
Для защиты от относительно большого импульсного тока (от 100А до 25кА) подходят дисковые варисторы с выводами и дисковые варисторы SMD. Для защиты от повышенного импульсного тока (примерно 25 кА и более) подходят блочные варисторы и ленточные варисторы.

Ниже приведены подробные приложения.



Пример применения: защита от перенапряжения для входной части импульсного источника питания

Различные типы небольших, легких и высокоэффективных импульсных источников питания часто используются в качестве источников питания электронных устройств.В импульсном источнике питания перед силовой цепью размещается ЭМС-фильтр для предотвращения шума проводимости, который проникает через силовую линию. Однако, поскольку грозовые перенапряжения и коммутационные перенапряжения нельзя предотвратить только с помощью фильтра ЭМС, схема защиты от перенапряжения с использованием дисковых варисторов размещается перед фильтром ЭМС. Комбинации с ограничителями перенапряжения и другими устройствами, а также их схемные конфигурации различаются. Подобные схемы защиты встроены в адаптеры переменного тока, которые используются для портативных компьютеров и т.п.Варисторы также используются для удлинителей и розеток с молниезащитой.

Рис.1 Пример схемы защиты от импульсных перенапряжений для импульсного блока питания

Пример приложения: Защита от перенапряжения для светодиодной системы освещения

Система светодиодного освещения состоит из светодиодных матриц с несколькими подключенными светодиодами, драйвера (схемы управления), схемы управления и источника питания светодиодов, а также подсистем, включая источник питания для связи.Многие варисторы микросхемы используются для защиты от электростатических разрядов и защиты от перенапряжения для интерфейсной части, а варисторы необходимы для защиты от электростатических разрядов. Светодиод — это устройство, в котором используется полупроводник, и без защиты он может быть разрушен электростатическим разрядом или скачком напряжения. По этой причине параллельно светодиодному устройству устанавливается варистор.

Рис.2 Защита светодиодного устройства в системе светодиодного освещения

Пример применения: Защита от перенапряжения для индуктивных нагрузок, таких как двигатели

В момент отключения питания устройств с индуктивными нагрузками, использующих катушки, такие как двигатели, соленоиды и электромагнитные клапаны, устройства разряжают магнитную энергию, которая была накоплена в качестве противодействующей электродвижущей силы, и генерируют большое импульсное напряжение.Для защиты устройств от скачков напряжения параллельно нагрузке подключают варистор.

Рис3. Защита от перенапряжения для индуктивных нагрузок, таких как двигатели

Пример приложения: Защита от перенапряжения для двигателя с электромагнитным тормозом и защита контакта его выключателя

Двигатели переменного тока

, которые используются в промышленных устройствах, включают двигатель с тормозом.Электромагнитный тормоз с использованием электромагнита, якоря (подвижной стальной пластины) и пружины может останавливать вращение двигателя сразу после выключения переключателя. Однако, поскольку электромагнит представляет собой индуктивную нагрузку, использующую катушку, в момент отключения тока катушка создает противодействующую электродвижущую силу, и возникает большое импульсное напряжение, которое повреждает контакт переключателя. Для поглощения перенапряжения и защиты контакта переключателя подключен варистор.

Рис.4 Защита контакта выключателя двигателя с электромагнитным тормозом

Пример приложения: защита от перенапряжения для твердотельного реле (SSR) и защита его выходной клеммы

SSR (твердотельное реле), использующее полупроводниковый элемент (например, тиристор), используется во многих промышленных устройствах с большим током. Это реле, электрически изолированное оптопарой, и, как преимущество, оно может безопасно управлять включением и выключением устройства с помощью сигналов включения и выключения очень небольшого электрического тока источника постоянного тока.Однако из-за того, что включается и выключается большой ток, выходной терминал легко повреждается из-за импульсного перенапряжения. Чтобы подавить это, на выходной стороне параллельно подключается варистор (некоторые SSR имеют встроенные варисторы).

Рис.5 Защита выходной клеммы твердотельного реле

Пример применения: защита от перенапряжения от сброса нагрузки и распада поля

Когда ток, протекающий через индуктивную нагрузку, использующую катушку, такую ​​как двигатель и генератор переменного тока (электрогенератор), отключается, генерируется большое импульсное напряжение из-за создания противодействующей электродвижущей силы.

Сброс нагрузки — это проблема перенапряжения, которая возникает, когда линия батареи отключена по такой причине, как отключение клеммы батареи, когда питание подается от генератора переменного тока на батарею. Затухание поля — это проблема с отрицательным импульсным напряжением, которое возникает, когда полярность батареи изменяется по ошибке.
Поскольку оба они могут достичь ЭБУ и вызвать неисправность, ЭБУ должны пройти испытание на сброс нагрузки и испытание на спад в поле. Дисковый варистор используется для защиты от перенапряжения.

Рис.6 Сброс нагрузки и защита от перенапряжения варистором

Когда питание от генератора переменного тока подается на аккумулятор, отключение аккумуляторной линии приводит к возникновению большого скачка напряжения. Варистор блокирует импульсное напряжение для защиты ЭБУ и других устройств.
Испытание на невосприимчивость и испытание на выбросы для блоков управления двигателем (ISO10605)

Оценочные тесты ЭМС для ЭБУ включают в себя тест на невосприимчивость для подтверждения того, что ЭБУ не неисправен, и тест на выбросы для подтверждения того, что ЭБУ спроектирован так, чтобы не генерировать шум, превышающий предел.

Тест на невосприимчивость Стандартный Описание
Тест ESD ISO10605 Оценивает допуск, применяя ESD
Проверка устойчивости к радиочастотам ISO11452-2, -3, -4 Оценивает переносимость с помощью сильной радиоволны.
Испытание на самосвал ISO7637-2 Оценивает допуск путем подачи положительного импульсного напряжения
Тест на распад поля Оценивает допуск путем подачи отрицательного импульсного напряжения
Испытание на выбросы Стандартный Описание
Испытание на излучение CISPR25 Оценивает радиационный шум от ЭБУ.
Испытание на кондуктивные выбросы Оценивает шум проводимости от ЭБУ.

Пример применения: Защита от перенапряжения для распределительных коробок и стабилизаторов мощности солнечных систем выработки энергии

Электроэнергия постоянного тока, генерируемая солнечной панелью, направляется в стабилизатор питания через соединительную коробку, усиливается преобразователем постоянного тока в постоянный, преобразуется в электроэнергию переменного тока с помощью инвертора, а затем отправляется в коммерческую энергосистему.Чтобы защитить его цепь от индуктивного удара молнии и т.п., схемы защиты по напряжению с использованием варисторов вставляются во входную и выходную части соединительной коробки и стабилизатора мощности. Сочетание с ограничителем перенапряжения увеличивает его надежность.

Рис.7 Защита от перенапряжения для распределительных коробок и стабилизаторов мощности солнечных энергосистем

Пример приложения: Защита от перенапряжения для важных устройств с помощью грозового трансформатора

Устройство, называемое трансформатором молнии, используется для защиты важных устройств, таких как серверы в центрах обработки данных и телефонные коммутаторы, от грозового перенапряжения.Это комбинация SPD (устройства защиты от перенапряжения или молниезащиты) и специального трансформатора, первичная обмотка и вторичная обмотка которого защищены электростатическим экраном, а скачок напряжения, который не может быть устранен с помощью SPD, проходит через заземленные материалы электростатического экрана и разряжается на земля. Он отлично справляется с синфазным индуктивным разрядом молнии.

Рис.8 Пример защиты от грозовых перенапряжений с грозовым трансформатором

Пример применения: Защита от скачков большой энергии в промышленных устройствах

Блочные варисторы и ленточные варисторы — это высокоэнергетические изделия, используемые для источников питания промышленных устройств и устройств связи, силовых распределительных устройств на электростанциях и подстанциях, железнодорожных сигнальных систем и др., И их преимуществом является чрезвычайно высокая стойкость к импульсным токам.Блочный варистор находится в корпусе и имеет винтовые клеммы, а ременной варистор имеет плоские (плоские) клеммы с отверстиями, которые фиксируются винтами (или припаяны). Также используется разрядник для защиты линии переменного тока.

Рис. 9 Пример защиты от скачков напряжения в промышленном устройстве

Связанные страницы

  • ■ Устройства защиты от напряжения Карта продуктов

    Широкий модельный ряд устройств защиты от напряжения

    TDK включает как варисторы (оксид цинка), так и разрядники (разрядные трубки).Их можно использовать в различных приложениях от малых до больших токов.

■ Порталы продукции дисковых варисторов

Варисторы

— обзор | Темы ScienceDirect

2.3 DSSC на основе ZnO

Оксид цинка, который обладает превосходными характеристиками в электронике, оптике, фотонике и оптоэлектронике, получил широкое внимание благодаря своим приложениям к варисторам, прозрачной электронике большой мощности, устройствам с поверхностными акустическими волнами, пьезоэлектрическим преобразователям, УФ излучатели света, сенсоры и солнечные элементы [35–38].Синтез одномерных (1D) наноструктур ZnO, например, ННК и наностержней (НК), вызывает растущий интерес благодаря их новым электрическим, механическим, химическим и оптическим свойствам, а также многообещающим приложениям для многих устройств [39–19]. 43]. Достоинством вертикальных одномерных наноструктур для использования во многих устройствах является обеспечение прямых электронно-проводящих каналов к электродам. Методы паровой фазы широко используются для получения высококачественных и хорошо ориентированных одномерных наноструктур ZnO [44–46], однако высокая температура процесса (~ 500–1100 ° C) ограничивает доступные подложки для роста ZnO.С другой стороны, выровненные одномерные наноструктуры ZnO были успешно синтезированы на различных подложках с использованием низкотемпературного (<100 ° C) и недорогого метода осаждения в химической ванне (CBD) [47, 48].

Обладая шириной запрещенной зоны, аналогичной ширине запрещенной зоны обычно используемого TiO 2 , но обладает более высокой подвижностью электронов, ZnO является альтернативным анодным материалом для DSSC [49]. Наноструктуры ZnO привлекают значительное внимание для применения DSSC из-за их низкой температуры кристаллизации и анизотропного роста, а также превосходных свойств переноса электронов.Law et al. [18] использовали полиэтиленимин (PEI) для увеличения аспектного отношения анодов ZnO NW во время роста CBD. ННК с высокой плотностью и длиной 20–25 мкм были получены путем выращивания с несколькими ваннами, а лучшие характеристики ZnO NW DSSC характеризовались эффективностью 1,5% при облучении AM 1,5 (100 мВт / см 2 ). Они предположили, что производительность ZnO NW DSSC все еще ограничена меньшей площадью поверхности NW для загрузки красителя, хотя электроды ZnO NW увеличивают скорость переноса электронов.Обогащение площади поверхности одномерных наноструктур необходимо для дальнейшего улучшения характеристик DSSC. В дополнение к монокристаллическому массиву NW, превосходные свойства переноса электронов и, следовательно, эффективность сбора заряда были продемонстрированы в DSSC на основе ZnO с различными анодными структурами, такими как пористая кристаллическая пленка [26], композитная пленка NW / NP [27,28] , композитная пленка ND / NP [29].

Хотя ZnO обладает преимуществами быстрого переноса и сбора электронов, максимальная эффективность преобразования энергии составляет 7 баллов.5% для DSSC на основе ZnO, о котором недавно сообщалось [50], все еще ниже, чем рекордная эффективность 12,3% для DSSC на основе TiO 2 [14]. Основная причина может заключаться в том, что красители DSSC всегда разрабатываются для пленочного анода TiO 2 NP, тогда как для анода из ZnO нет эффективных красителей [26,51]. Помимо скорости переноса электронов в фотоаноде, превосходная эффективность DSSC также определяется скоростью инжекции электронов и скоростью регенерации красителя. Уровень энергии НСМО и уровень энергии ВЗМО молекул красителя должны соответствующим образом согласовываться с минимумом зоны проводимости фотоанода и окислительно-восстановительным потенциалом окислительно-восстановительного медиатора в электролите, соответственно.Для большинства распространенных красителей эффективность инжекции электронов в DSSC на основе ZnO ниже, чем в DSSC на основе TiO 2 , что в основном может быть связано как с низкой диэлектрической проницаемостью, так и с низкой плотностью состояний в зоне проводимости. ZnO [51]. С другой стороны, низкая химическая стабильность ZnO-электрода в кислотном растворе красителя [52] и в присутствии комплексообразователей красителей [53] приводит к ухудшению качества ZnO и затруднению поглощения красителя, о чем сообщалось как наиболее вероятная причина плохой производительности ZnO DSSC [51].

Показано, что структура кристаллов ZnO разрушается после загрузки красителей на основе комплекса Ru. Протоны, высвобождающиеся из молекул красителя в этанольном растворе, растворяют ZnO с образованием агрегатов Ru-комплексный краситель-Zn 2+ [52]. Было продемонстрировано, что по сравнению с красителем на основе комплекса Ru, меркурохромный краситель больше подходит для анода из ZnO, хотя меркурохромный краситель обладает более узким диапазоном поглощения для сбора света [52]. Более частая межфазная рекомбинация электронов происходит в сенсибилизированном красителем Ru ZnO NW DSSC по сравнению с сенсибилизированным меркурохромом красителем из-за более высокой плотности захвата поверхности в фотоаноде ZnO NW после адсорбции красителя Ru.Тем не менее, с оптимизированным процессом сенсибилизации красителя, например, более коротким периодом сенсибилизации красителя и более низкой концентрацией красителя, недавние результаты показывают, что сенсибилизированные красителем Ru DSSC на основе ZnO также демонстрируют обнадеживающую эффективность из-за относительно высокой плотности фототока [50].

Индолиновые красители сравнительно хорошо сочетаются с ZnO из-за его более низкой кислотности и отсутствия комплексообразующего агента [26,51]. Благодаря высокому коэффициенту экстинкции эффективность DSSC на основе ZnO выше ~ 5% может быть достигнута с использованием индолинового красителя, кодированного D149 [26,54].Однако длины волн поглощения красителя D149 ограничены диапазоном видимого света, который намного уже, чем у красителя рутения [26]. Узкий диапазон поглощения может ограничивать эффективность D149-сенсибилизированных ZnO DSSC. В отсутствие красителей, специально разработанных для анодов ZnO, улучшение характеристик DSSC на основе ZnO может быть реализовано за счет использования разнообразных наноструктур ZnO [27–29,55–57].

Чтобы увеличить эффективность сбора света ZnO NW DSSC, сообщалось о стратегии модификации массивов ZnO NW путем увеличения площади поверхности фотоанода без ущерба для переноса быстрых электронов ZnO NW [27–29,55, 57] и добавление светорассеивающего слоя для отражения непоглощенных фотонов обратно в анод NW [56,57].В следующих разделах дается обзор формирования иерархических наноструктур на массивах ZnO NW для использования в DSSC. Будут обсуждены фотоэлектрические характеристики DSSC на основе ZnO NW и поведение переноса / рекомбинации заряда в этих DSSC.

(PDF) Об использовании металлооксидных варисторов в качестве демпфирующей цепи в твердотельных выключателях

0 2 4 6 8 10

0

5

10

15

20

25

30

35

40

45

50

Количество параллельных K11 как MOVE

Напряжение [В], часть энергии [%]

Пиковое напряжение IGBT

Поглощенная энергия в MOVov

Рис.7. Если K11 используется как MOVov и несколько параллельных K11 как MOVE,

, поглощенная энергия в MOVov уменьшается как 1 / x, где x — количество

параллельных K11.

C. Параллельные MOV того же типа

Желательно поддерживать как можно более низкий переходный пик перенапряжения

, чтобы снизить нагрузки как на IGBT, так и на

в самой системе. Используя K11 вместо K14 в качестве MOVov,

можно дополнительно снизить перенапряжение. Инжир.7 показывает серию экспериментов

, где MOVov — это K11, а MOVEis

изменено с одного на десять параллельных K11. В первом случае это

приводит к одному K11 как MOVov и другому K11 как MOVE.

В идеале это должно привести к равному распределению тока после

первого переходного процесса, а поглощенная энергия в MOVov немного

выше 50%. Из-за различий между компонентами, которые

находятся в пределах допусков, заявленных производителем, поглощенная энергия

составляет около 40% вместо ожидаемых 50%.После этого

поглощенная энергия падает как 1 / x, где x — количество

параллельных K11 в MOVE. Это естественно, поскольку все подключенные MOV

имеют одинаковые U-I-характеристики, и каждый компонент

,

будет пропускать одинаковый ток, даже если U-I-характеристики

каждого компонента нелинейны. Пиковое напряжение IGBT здесь также является постоянным, но ниже по сравнению с предыдущим случаем на рис.

6, поскольку теперь напряжение определяется K11.

IV. ВЫВОДЫ

На небольшой испытательной установке показана проблема с превышением

напряжений в твердотельных выключателях, которая традиционно решается с помощью демпфирующих цепей

. Низкий уровень тока в установке по сравнению с

,

и энергосистемой низкого или среднего напряжения компенсируется

за счет завышенной паразитной индуктивности 3 мкГн. Конечно, один

может попытаться минимизировать паразитные индуктивности, но это не всегда возможно. В силовом приложении, где токи в диапазоне

десятков килоампер переключаются за микросекунды, даже паразитные индуктивности

всего десять наногенри вызовут нежелательное перенапряжение

на 100 В.

Эксперименты также показывают, что подключение меньшего MOV

рядом с твердотельным переключателем позволяет отделить поглощение энергии

от защиты от перенапряжения. Однако

, если соотношение напряжений между MOV недостаточно велико,

MOVov поглотит значительную часть индуктивной энергии системы

, и желаемый эффект будет потерян.

Чтобы концепция имела смысл, MOVov должен иметь значение

, намного более низкое, чем MOVE, чтобы обеспечить очень низкую паразитную индуктивность

во внутреннем контуре.К этому случаю приближаются эксперименты с одним

MOVasMOV

ov и несколькими параллельными MOV в качестве MOVE

. Когда номинальное напряжение MOVov

выше, чем MOVE, поглощенная энергия в MOVov быстро падает на

по мере увеличения отношения энергоемкости, то есть количества параллельных

компонентов. Это связано с тем, что U-I-характеристики

,

MOVE изменяются, приводя к более высокому эффективному коэффициенту

напряжений между MOVov и MOVE.

Ограниченная энергия, которая должна быть поглощена в MOVov, связана с недостатком

более высокого напряжения IGBT во время отключения IGBT

из-за более высокого уровня напряжения MOVov. Оптимальный MOVov

, скорее всего, является MOV с U-I-характеристиками

, близкими к MOVE, но более крутыми. Таким образом, первый пиковый ток

,

будет принят MOVov, что ограничит напряжение до желаемого значения

. Когда ток уменьшается, более крутые I-характеристики U-

подталкивают остаточный ток к MOVE

и, следовательно, минимизируют энергию, поглощаемую в MOVov.Недостатком этой комбинации является то, что крутая U-образная кривая

всегда желательна для MOV, поэтому найти MOVov

, который круче, чем MOVE, вероятно, означает взять вместо этого MOVE

с худшими U-I-характеристиками.

СПИСОК ЛИТЕРАТУРЫ

[1] J. H¨

afner и B. Jacobson, «Проактивные гибридные выключатели HVDC — ключевая инновация

для надежных сетей HVDC», в Электроэнергетическая система будущего

— Интеграция суперсетей и микросети Int.symp., Bologna, Sep.

2011.

[2] Т. Подлесак, Дж. Мак-Мюррей и Дж. Картер, «Твердотельный переключатель, использующий последовательно

GTO», в Proc. 24-я Международная конференция по преобразованию энергии —

ing Conf., Август 1989 г., стр. 651–655, том 1.

[3] М. Рахимо и С. Клака, «Высоковольтные полупроводниковые технологии»,

на 13-й Европейской конференции «Силовая электроника и приложения», сентябрь

, 2009 г., стр. 1–10.

[4] Р. Фолкнер и Р. Карнес, «Электромеханический баллистический выключатель постоянного тока для использования на судах

», в 2011 г., IEEE Electric Ship Technologies Symp.(ESTS),

2011, стр. 339–344.

[5] А. М. С. Атмаджи и Дж. Дж. Дж. Слот, «Гибридная коммутация: обзор современной литературы по

», в 1998 г. Int. Конф. по энергетическому менеджменту и энергетике

Delivery, 1998. Proceedings of EMPD ’98, vol. 2, 1998, с. 683–688

т. 2.

[6] Дж. Магнуссон, Р. Саерс, Л. Лильестранд и Г. Энгдал, «Разделение

на поглощение энергии и защиту от перенапряжения в твердотельных прерывателях

с использованием параллельных варисторов». Принято к публикации в IEEE Trans.

Power Electron., 2013. [Online]. Доступно: www.ieeexplore.org

[7] Epcos, «Металлооксидные варисторы SIOV», 2011 г. [Online]. Доступно:

http://www.epcos.com/inf/70/db/var 11 / SIOV Leaded StandarD.pdf

4

Реле общего назначения: наиболее эффективный тип для защиты контактов | FAQ | Австралия

Основное содержание

Вопрос

Выбирая из CR-элементов, диодов, варисторов и других типов ограничителей перенапряжения, какой из них наиболее эффективен для защиты контактов?

Для нагрузки постоянного тока, как правило, наиболее эффективен диод, а на втором месте по эффективности идут CR-элементы.Для нагрузки переменного тока наиболее эффективны варистор или CR-элементы.

Примеры ограничителей перенапряжения:

Деталь Пример схемы Применимость Характеристики и примечания
Рекомендации по выбору элемента

9

AC Тип
Тип CR
*
(OK)
OK * Полное сопротивление нагрузки
должно быть на
меньше, чем полное сопротивление цепи
CR
при использовании реле
для напряжения переменного тока
.
Когда контакты
разомкнуты, ток
течет к индуктивной нагрузке
через CR.
Используйте следующие ориентиры для значений C и R
:
C: от 0,5 до 1 мкФ на 1 А контактного тока (A)
R: от 0,5 до 1 Ом на 1 В контактного напряжения (В)
Эти значения зависят от по различным факторам,
с учетом нагрузочных характеристик и
вариаций характеристик. Конденсатор C
подавляет разряд при размыкании контактов
, а резистор R
ограничивает ток, подаваемый при следующем замыкании контактов
.Подтвердите оптимальные значения
экспериментально.
Как правило, используйте конденсатор с диэлектрической проницаемостью
от 200 до 300 В. Для применений в цепи переменного тока
используйте конденсатор переменного тока (без полярности
). Если есть какие-либо вопросы о способности
отключать дугу на контактах в приложениях
с высокими напряжениями постоянного тока, может быть,
будет более эффективным, если подключить конденсатор
и резистор через контакты, а не
через нагрузку. Чтобы определить это, проведите тестирование на реальном оборудовании
.
OK OK Время отпускания
контактов будет увеличено на
, если нагрузка
является реле или соленоидом
.
Диод
типа
NG OK Электромагнитная энергия
, накопленная в индуктивной нагрузке
, достигает индуктивной нагрузки
в виде тока через
, диод, подключенный параллельно
, и рассеивается
как Джоуль
тепла сопротивлением
индуктивной нагрузки
.
Этот тип схемы
увеличивает время срабатывания
на более чем
, чем тип CR.
Используйте диод, имеющий обратное напряжение пробоя
, более чем в 10 раз превышающее напряжение цепи
, и номинальный прямой ток, превышающий
, чем ток нагрузки. Диод, имеющий обратное напряжение пробоя
, в два или три раза превышающее напряжение питания в
раза, можно использовать
в электронной схеме, где напряжение схемы
не особенно высокое.
Диод +
Стабилитрон
Тип
NG OK Эта схема эффективно
сокращает время отпускания
в приложениях
, где время отпускания
схемы диода
слишком медленное.
Напряжение пробоя стабилитрона
должно быть примерно таким же, как напряжение питания
.
Варистор
, тип
OK OK Эта схема предотвращает
высокое напряжение с
, подаваемое на
контакты
, используя постоянную характеристику
напряжения
варистора. Эта схема
также
несколько увеличивает время расцепления
.
Подключение варистора
к нагрузке
эффективно
, когда напряжение питания
составляет от 24 до 48
В, и через контакты
, когда напряжение питания
составляет 100, от
до 240 В.
Напряжение отключения Vc должно удовлетворять следующим условиям
. Для AC это должно быть
, умноженное на √2.
Vc> (Напряжение питания × 1,5)
Если Vc установлено слишком высоким, его эффективность будет снижена на
, поскольку он не сможет отсечь высокие
напряжения.

Не используйте ограничитель перенапряжения описанным ниже образом.

Эта схема очень эффективна для уменьшения дуги на контактах при размыкании цепи.
Однако, поскольку электрическая энергия накапливается в C (конденсаторе), когда контакты разомкнуты, ток от C течет в контакты, когда они замыкаются. Это может привести к контактной сварке.
Эта схема очень полезна для уменьшения дуги на контактах при размыкании цепи.
Однако, поскольку зарядный ток до C течет в контакты, когда они замкнуты, может произойти контактная сварка.

Примечание: Хотя считается, что переключение индуктивной нагрузки постоянного тока сложнее, чем резистивной нагрузки, соответствующая схема защиты контактов может обеспечить почти такие же характеристики.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *