Схема стабилизатора на 12 вольт для светодиодов: Cтабилизатор напряжения 12 вольт для светодиодов в авто своими руками

Содержание

Простой стабилизатор тока на 12В для светодиодов в авто

Важнейшим параметром питания любого светодиода является ток. При подключении светодиода в авто, необходимый ток можно задать с помощью резистора. В этом случае резистор рассчитывается исходя из максимального напряжения бортовой сети (14,5В). Отрицательной стороной данного подключения является свечение светодиода не на полную яркость при напряжении в бортовой сети автомобиля ниже максимального значения.

Более правильным способом является подключение светодиода через стабилизатор тока (драйвер). По сравнению с токоограничивающим резистором, стабилизатор тока обладает более высоким КПД и способен обеспечить светодиод необходимым током как при максимальном, так и при пониженном напряжении в бортовой сети автомобиля. Наиболее надежными и простыми в сборке являются стабилизаторы на базе специализированных интегральных микросхем (ИМ).

Стабилизатор на LM317

Трёхвыводной регулируемый стабилизатор lm317 идеально подходит для конструирования несложных источников питания, которые применяются в самых разнообразных устройствах. Простейшая схема включения lm317 в качестве стабилизатора тока имеет высокую надежность и небольшую обвязку. Типовая схема токового драйвера на lm317 для автомобиля представлена на рисунке ниже и содержит всего два электронных компонента: микросхему и резистор.

Помимо данной схемы, существует множество других, более сложных схемотехнических решений для построения драйверов с применением множества электронных компонентов. Детальное описание, принцип действия, расчеты и выбор элементов двух самых популярных схем на lm317 можно найти в данной статье.

Главные достоинства линейных стабилизаторов, построенных на базе lm317, простота сборки и дешевизна используемых в обвязке компонентов. Розничная цена самого ИС составляет не более 1$, а готовая схема драйвера не нуждается в наладке. Достаточно замерить мультиметром выходной ток, чтобы убедиться в его соответствии с расчётными данными.

К недостаткам ИМ lm317 можно отнести сильный нагрев корпуса при выходной мощности более 1 Вт и, как следствие, необходимость в отводе тепла. Для этого в корпусе типа ТО-220 предусмотрено отверстие под болтовое соединение с радиатором. Также недостатком приведенной схемы можно считать максимальный выходной ток , не более 1,5 А, что устанавливает ограничение на количество светодиодов в нагрузке. Однако этого можно избежать путём параллельного включения нескольких стабилизаторов тока или использовать вместо lm317 микросхему lm338 или lm350, которые рассчитаны на более высокие токи нагрузки.

Стабилизатор на PT4115

PT4115 – унифицированная микросхема, разработанная компанией PowTech специально для построения драйверов для мощных светодиодов, которую можно использовать также и в автомобиле. Типовая схема включения PT4115 и формула расчета выходного тока приведены на рисунке ниже.

Стоит подчеркнуть важность наличия конденсатора на входе, без которого ИМ PT4115 при первом же включении выйдет из строя.

Понять, почему так происходит, а также ознакомиться с более детальным расчетом и выбором остальных элементов схемы можно здесь. Известность микросхема получила, благодаря своей многофункциональности и минимальному набору деталей в обвязке. Чтобы зажечь светодиод мощностью от 1 до 10 Вт, автолюбителю нужно всего лишь рассчитать резистор и выбрать индуктивность из стандартного перечня.

PT4115 имеет вход DIM, который значительно расширяет её возможности. В простейшем варианте, когда нужно просто зажечь светодиод на заданную яркость, он не используется. Но если необходимо регулировать яркость светодиода, то на вход DIM подают либо сигнал с выхода частотного преобразователя, либо напряжение с выхода потенциометра. Существуют варианты задания определенного потенциала на выводе DIM с помощью МОП-транзистора. В этом случае в момент подачи питания светодиод светится на полную яркость, а при запуске МОП-транзистора светодиод уменьшает яркость наполовину.

К недостаткам драйвера светодиодов для авто на базе PT4115 можно отнести сложность подбора токозадающего резистора Rs из-за его очень малого сопротивления. От точности его номинала напрямую зависит срок службы светодиода.

Обе рассмотренные микросхемы прекрасно зарекомендовали себя в конструировании драйверов для светодиодов в автомобиле своими руками. LM317 – давно известный проверенный линейный стабилизатор, в надежности которого нет сомнений. Драйвер на его основе подойдёт для организации подсветки салона и приборной панели, поворотов и прочих элементов светодиодного тюнинга в авто.

PT4115 – более новый интегральный стабилизатор с мощным MOSFET-транзистором на выходе, высоким КПД и возможностью диммирования.

Стабилизатор тока светодиода, схемы

См. также:  Электронный балласт для светодиодной лампы. Схемотехника.

Статья-ликбез по стабилизаторам тока светодиодов и не только. Рассматриваются схемы линейных и импульсных стабилизаторов тока.

Стабилизатор тока для светодиода устанавливается во многие конструкции светильников. Светодиоды, как и все диоды имеют нелинейную вольт-амперную характеристику. Это означает, что при изменении напряжения на светодиоде, ток изменяется непропорционально. По мере увеличения напряжения, сначала ток растёт очень медленно, светодиод при этом не светится. Затем, при достижении порогового напряжения, светодиод начинает светиться и ток возрастает очень быстро. При дальнейшем увеличении напряжения, ток возрастает катастрофически и светодиод сгорает.

Пороговое напряжение указывается в характеристиках светодиодов, как прямое напряжение при номинальном токе. Номинальный ток для большинства маломощных светодиодов — 20 мА. Для мощных светодиодов освещения, номинальный ток может быть больше — 350 мА или более. Кстати, мощные светодиоды выделяют тепло и должны быть установлены на теплоотвод.

Для правильной работы светодиода, его надо питать через стабилизатор тока. Зачем? Дело в том, что пороговое напряжение светодиода имеет разброс. Разные типы светодиодов имеют разное прямое напряжение, даже однотипные светодиоды имеют разное прямое напряжение — это указано в характеристиках светодиода как минимальное и максимальное значения. Следовательно, два светодиода, подключенные к одному источнику напряжения по параллельной схеме будут пропускать разный ток. Этот ток может быть настолько разным, что светодиод может раньше выйти из строя или сгореть сразу. Кроме того, стабилизатор напряжения также имеет дрейф параметров (от уровня первичного питания, от нагрузки, от температуры, просто по времени). Следовательно, включать светодиоды без устройств выравнивания тока — нежелательно. Различные способы выравнивания тока рассмотрены отдельно. В этой статье рассматриваются устройства, устанавливающие вполне определённый, заданный ток — стабилизаторы тока.

Типы стабилизаторов тока

Стабилизатор тока устанавливает заданный ток через светодиод вне зависимости от приложенного к схеме напряжения. При увеличении напряжения на схеме выше порогового уровня, ток достигает установленного значения и далее не изменяется. При дальнейшем увеличении общего напряжения, напряжение на светодиоде перестаёт меняться, а напряжение на стабилизаторе тока растёт.

Поскольку напряжение на светодиоде определяется его параметрами и в общем случае неизменно, то стабилизатор тока можно назвать также стабилизатором мощности светодиода. В простейшем случае, выделяемая устройством активная мощность (тепло) распределяется между светодиодом и стабилизатором пропорционально напряжению на них. Такой стабилизатор называется линейным. Также существуют более экономичные устройства — стабилизаторы тока на базе импульсного преобразователя (ключевого преобразователя или конвертера). Они называются импульсными, поскольку внутри себя прокачивают мощность порциями — импульсами по мере необходимости для потребителя. Правильный импульсный преобразователь потребляет мощность непрерывно, внутри себя передаёт её импульсами от входной цепи к выходной и выдаёт мощность в нагрузку уже опять непрерывно.

Линейный стабилизатор тока

Линейный стабилизатор тока греется тем больше, чем больше приложено к нему напряжение. Это его основной недостаток. Однако, он имеет ряд преимуществ, например:

  • Линейный стабилизатор не создаёт электромагнитных помех
  • Прост по конструкции
  • Имеет низкую стоимость в большинстве применений

Поскольку импульсный преобразователь не бывает абсолютно эффективным, существуют приложения, когда линейный стабилизатор имеет сравнимую или даже большую эффективность — когда входное напряжение лишь немного превышает напряжение на светодиоде. Кстати, при питании от сети, часто используется трансформатор, на выходе которого устанавливается линейный стабилизатор тока. То есть, сначала напряжение снижается до уровня, сравнимого с напряжением на светодиоде, а затем, с помощью линейного стабилизатора устанавливается необходимый ток.

В другом случае, можно приблизить напряжение светодиода к напряжению питания — соединить светодиоды в последовательную цепочку. Напряжение на цепочке будет равняться сумме напряжений на каждом светодиоде.

Схемы линейных стабилизаторов тока

Самая простая схема стабилизатора тока — на одном транзисторе (схема «а»). Поскольку транзистор — это усилитель тока, то его выходной ток (ток коллектора) больше тока управления (ток базы) в h21 раз (коэффициент усиления). Ток базы можно установить с помощью батарейки и резистора, или с помощью стабилитрона и резистора (схема «б»). Однако такую схему трудно настраивать, полученный стабилизатор будет зависеть от температуры, кроме того, транзисторы имеют большой разброс параметров и при замене транзистора, ток придётся подбирать снова.

Гораздо лучше работает схема с обратной связью «в» и «г». Резистор R в схеме выполняет роль обратной связи — при увеличении тока, напряжение на резисторе возрастает, тем самым запирает транзистор и ток снижается. Схема «г», при использовании однотипных транзисторов, имеет бóльшую температурную стабильность и возможность максимально уменьшить номинал резистора, что снижает минимальное напряжение стабилизатора и выделение мощности на резисторе R.

Стабилизатор тока можно выполнить на базе полевого транзистора с p-n переходом (схема «д»). Напряжение затвор-исток устанавливает ток стока. При нулевом напряжении затвор-исток, ток через транзистор равен начальному току стока, указанному в документации. Минимальное напряжение работы такого стабилизатора тока зависит от транзистора и достигает 3 вольт. Некоторые производители электронных компонентов выпускают специальные устройства — готовые стабилизаторы с фиксированным током, собранные по такой схеме — CRD (Current Regulating Devices) или CCR (Constant Current Regulator) .

Некоторые называют его диодным стабилизатором, поскольку в обратном включении он работает как диод.

Компания On Semiconductor выпускает линейный стабилизатор серии NSIxxx, например NSIC2020B, который имеет два вывода и для увеличения надежности, имеет отрицательный температурный коэффициент — при увеличении температуры, ток через светодиоды снижается.

Импульсный стабилизатор тока

Стабилизатор тока на базе импульсного преобразователя по конструкции очень похож на стабилизатор напряжения на базе импульсного преобразователя, но контролирует не напряжение на нагрузке, а ток через нагрузку. При снижении тока в нагрузке, он подкачивает мощность, при увеличении — снижает. Наиболее распространённые схемы импульсных преобразователей имеют в своём составе реактивный элемент — дроссель, который с помощью коммутатора (ключа) подкачивается порциями энергии от входной цепи (от входной ёмкости) и в свою очередь передаёт её нагрузке. Кроме очевидного преимущества экономии энергии, импульсные преобразователи обладают рядом недостатков, с которыми приходится бороться различными схемотехническими и конструктивными решениями:

  • Импульсный конвертер производит электрические и электромагнитные помехи
  • Имеет как правило сложную конструкцию
  • Не обладает абсолютной эффективностью, то есть тратит энергию для собственной работы и греется
  • Имеет чаще всего бóльшую стоимость, по сравнению, например, с трансформаторными плюс линейными устройствами

Поскольку экономия энергии во многих приложениях является решающей, разработчики компонентов, схемотехники стараются снизить влияние этих недостатков, и, зачастую, преуспевают в этом.

Схемы импульсных преобразователей

Поскольку стабилизатор тока основан на импульсном преобразователе, рассмотрим основные схемы импульсных преобразователей. Каждый импульсный преобразователь имеет ключ, элемент, который может находиться только в двух состояниях — включенном и выключенном. В выключенном состоянии, ключ не проводит ток и, соответственно, на нём не выделяется мощность. Во включенном состоянии, ключ проводит ток, но имеет очень малое сопротивление (в идеале — равное нулю), соответственно на нём выделяется мощность, близкая к нулю. Таким образом, ключ может передавать порции энергии от входной цепи к выходной практически без потерь мощности. Однако, вместо стабильного тока, какой можно получить от линейного источника питания, на выходе такого ключа будет импульсное напряжение и ток. Для того, чтобы получить снова стабильные напряжение и ток, можно поставить фильтр.

С помощью обычного RC фильтра можно получить результат, однако, эффективность такого преобразователя не будет лучше линейного, поскольку вся избыточная мощность выделится на активном сопротивлении резистора. Но если использовать вместо RC — LC фильтр (схема «б»), то, благодаря «специфическим» свойствам индуктивности, потерь мощности можно избежать. Индуктивность обладает полезным реактивным свойством — ток через неё возрастает постепенно, подаваемая на него электрическая энергия преобразуется в магнитную и накапливается в сердечнике. После выключения ключа, ток в индуктивности не пропадает, напряжение на индуктивности меняет полярность и продолжает заряжать выходной конденсатор, индуктивность становится источником тока через обводной диод D. Такая индуктивность, предназначенная для передачи мощности, называется дросселем. Ток в дросселе правильно работающего устройства присутствует постоянно — так называемый неразрывный режим или режим непрерывного тока (в западной литературе такой режим называется Constant Current Mode — CCM). При снижении тока нагрузки, напряжение на таком преобразователе возрастает, энергия, накапливаемая в дросселе снижается и устройство может перейти в разрывный режим работы, когда ток в дросселе становится прерывистым.

При таком режиме работы резко повышается уровень помех, создаваемых устройством. Некоторые преобразователи работают в пограничном режиме, когда ток через дроссель приближается к нулю (в западной литературе такой режим называется Border Current Mode — BCM). В любом случае, через дроссель течет значительный постоянный ток, что приводит к намагничиванию сердечника, в связи с чем, дроссель выполняется особой конструкции — с разрывом или с использованием специальных магнитных материалов.

Стабилизатор на базе импульсного преобразователя имеет устройство, регулирующее работу ключа, в зависимости от нагрузки. Стабилизатор напряжения регистрирует напряжение на нагрузке и изменяет работу ключа (схема «а»). Стабилизатор тока измеряет ток через нагрузку, например с помощью маленького измерительного сопротивления Ri (схема «б»), включенного последовательно с нагрузкой.

Ключ преобразователя, в зависимости от сигнала регулятора, включается с различной скважностью. Есть два распространённых способа управления ключом — широтно-импульсная модуляция (ШИМ) и токовый режим. В режиме ШИМ, сигнал ошибки управляет длительностью импульсов при сохранении частоты следования. В токовом режиме, измеряется пиковый ток в дросселе и изменяется интервал между импульсами.

В современных ключевых преобразователях в качестве ключа обычно используется MOSFET транзистор.

Понижающий преобразователь

Рассмотренный выше вариант преобразователя называется понижающим, поскольку напряжение на нагрузке всегда ниже напряжения источника питания.

Поскольку в дросселе постоянно течёт однонаправленный ток, требования к выходному конденсатору могут быть снижены, дроссель с выходным конденсатором играют роль эффективного LC фильтра. В некоторых схемах стабилизаторов тока, например для светодиодов, выходной конденсатор может отсутствовать вообще. В западной литературе понижающий преобразователь называется Buck converter.

Повышающий преобразователь

Схема импульсного стабилизатора, приведённая ниже, также работает на основе дросселя, однако дроссель всегда подключен к выходу источника питания. Когда ключ разомкнут, питание поступает через дроссель и диод на нагрузку. Когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС добавляется к ЭДС источника питания и напряжение на нагрузке возрастает.

В отличие от предыдущей схемы, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе повышающе-понижающий преобразователь называется Boost converter.

Инвертирующий преобразователь

Еще одна схема импульсного преобразователя работает аналогично — когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС будет иметь обратный знак и на нагрузке появится отрицательное напряжение.

Как и в предыдущей схеме, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе инвертирующий преобразователь называется Buck-Boost converter.

Прямоходовой и обратноходовой преобразователи

Наиболее часто блоки питания изготавливаются по схеме, использующей в своем составе трансформатор. Трансформатор обеспечивает гальваническую развязку вторичной цепи от источника питания, кроме того, эффективность блока питания на основе таких схем может достигать 98% и более. Прямоходовой преобразователь (схема «а») передаёт энергию от источника в нагрузку в момент включенного состояния ключа. Фактически — это модифицированный понижающий преобразователь. Обратноходовой преобразователь (схема «б») передаёт энергию от источника в нагрузку во время выключенного состояния.

В прямоходовом преобразователе трансформатор работает в обычном режиме и энергия накапливается в дросселе. Фактически — это генератор импульсов с LC фильтром на выходе. Обратноходовой преобразователь накапливает энергию в трансформаторе. То есть трансформатор совмещает свойства трансформатора и дросселя, что создаёт определённые сложности при выборе его конструкции.

В западной литературе прямоходовой преобразователь называется Forward converter. Обратноходовой — Flyback converter.

Применение импульсного конвертера в качестве стабилизатора тока

Большинство импульсных блоков питания выпускаются с стабилизацией выходного напряжения. Типичные схемы таких блоков питания, особенно мощных, кроме обратной связи по выходному напряжению, имеют схему контроля тока ключевого элемента, например резистор с малым сопротивлением. Такой контроль позволяет обеспечивать режим работы дросселя. Простейшие стабилизаторы тока используют этот элемент контроля для стабилизации выходного тока. Таким образом, стабилизатор тока оказывается даже проще стабилизатора напряжения.

Рассмотрим схему импульсного стабилизатора тока для светодиода на базе микросхемы NCL30100 от известного производителя электронных компонентов On Semiconductor:

Схема понижающего преобразователя работает в режиме неразрывного тока с внешним ключом. Схема выбрана из множества других, поскольку она показывает, насколько простой и эффективной может быть схема импульсного стабилизатора тока с внешним ключом. В приведённой схеме, управляющая микросхема IC1 управляет работой MOSFET ключа Q1. Поскольку преобразователь работает в режиме неразрывного тока, выходной конденсатор ставить необязательно. В многих схемах датчик тока устанавливается в цепи истока ключа, однако, это снижает скорость включения транзистора. В приведённой схеме датчик тока R4 установлен в цепи первичного питания, в результате схема получилась простой и эффективной. Ключ работает на частоте 700 кГц, что позволяет установить компактный дроссель. При выходной мощности 7 Ватт, входном напряжении 12 Вольт при работе на 700 мА (3 светодиода), эффективность устройства более 95%. Схема стабильно работает до 15 Ватт выходной мощности без применения дополнительных мер по отводу тепла.

Ещё более простая схема получается с использованием микросхем ключевых стабилизаторов с встроенным ключом. Например, схема ключевого стабилизатора тока светодиода на базе микросхемы CAV4201/CAT4201:

Для работы устройства мощностью до 7 Ватт необходимо всего 8 компонентов, включая саму микросхему. Импульсный стабилизатор работает в пограничном режиме тока и для его работы требуется небольшой выходной керамический конденсатор. Резистор R3 необходим при питании от 24 Вольт и выше для снижения скорости нарастания входного напряжения, хотя это несколько снижает эффективность устройства. Частота работы превышает 200 кГц и меняется в зависимости от нагрузки и входного напряжения. Это обусловлено методом регулирования — контролем пикового тока дросселя. Когда ток достигает максимального значения, ключ размыкается, когда ток снижается до нуля — включается. Эффективность устройства достигает 94%.

Назад к каталогу статей >>>

Схема стабилизатора напряжения на 12 Вольт

Стабилизатор – устройство, которое вне зависимости от колебаний входящих характеристик, на выходе всегда выдает стабильное номинальное значения напряжения. И он может понадобиться не только для использования в сетях на 220В, а и в 12В системах. К примеру – в автомобиле, или там, где есть необходимость использовать низковольтное оборудование (освещение во влажных помещениях и т. д.).

К примеру, подключение светодиодной подсветки в автомобиле без микросхемы стабилизатора напряжения 12В чревато быстрым выходом диодов из строя, так как генератор авто не может обеспечить стабильный вольтаж в бортовой сети. Однако не обязательно покупать готовое устройство – такую схему можно собрать и самостоятельно.

Разновидности 12В стабилизаторов

Существует несколько вариаций схем такого устройства для 12 Вольт, но самые распространенные – линейный и импульсный. Чем же они, по сути, отличаются?

  • Линейный стабилизатор является по своим свойствам обычным делителем напряжения, который получает входящее напряжение на одно из плеч, а на другом изменяет сопротивление, чтобы в результате на выходе получалось заданное напряжение. Если дельта входа/выхода слишком велика, КПД такого прибора резко падает, так как значительная часть энергии рассеивается в виде тепла — это приводит к необходимости охлаждения.
  • В импульсном варианте ток поступает в накопитель (конденсатор или же дроссель) короткими импульсами, сформированными ключом. Когда электронный ключ замыкается, накопленная энергия поступает на нагрузку, при этом значение напряжения остается стабильным. Сам процесс стабилизации происходит контролем длительности импульсов при помощи ШИМ. Такой вариант прибора имеет высокий КПД, однако наводит импульсные помехи на выходе, что не всегда приемлемо.

Также существуют автотрансформаторные и феррорезонансные аппараты, использующиеся преимущественно для переменного тока, но они относительно сложны.

Благодаря наличию множества электронных компонентов и радиодеталей в свободной продаже, любой, даже начинающий радиолюбитель, при необходимости может дома собрать для своих нужд стабилизатор напряжения на 12 Вольт – была бы схема.

Как сделать 12В стабилизатор

Стабилизатор на LM317

Самый простой способ получить в домашних условиях работающий стабилизатор на 12 Вольт – приобрести готовую микросхему, к примеру, LM317, и, добавив резистор, получить готовый выравниватель напряжения. Этот вариант отлично подойдет для запуска светодиодов в условиях постоянно скачущего напряжения.

К готовой микросхеме LM317, а именно к среднему контакту, подпаивается резистор на 120-130 Ом, левый контакт паяется к выходу на нагрузку сразу за сопротивлением, а на правый контакт подается напряжение с источника. Для лучшего понимания все изображено на картинке ниже.

Схема на микросхеме LD1084

Также весьма незатейлив стабилизатор напряжения на 12 Вольт на микросхеме LD1084. Благодаря плавной стабилизации, такое устройство поможет не только при использовании светодиодов, а и, например, для избавления от изменения яркости света в авто, которое всегда присутствует в силу особенностей работы бортовой электросистемы. Схема такого прибора приведена ниже.

Стабилизатор на диодах и плате L7812

Еще одним вариантом исполнения прибора в домашних условиях может служить простая схема на L7812 и диодах Шоттки. Кроме этих деталей понадобится пара конденсаторов, и провода для пайки. Итак, к регуляторной микросхеме подпаиваются диод и конденсаторы согласно схеме. Диод должен быть между + проводом входного питания, и левым контактом микросхемы. Правый контакт платки припаивается к + нагрузки. Средний – к минусам емкостей и минусу источника питания. Таким образом, получается простая и надежная схема стабилизации напряжения.

Самый простой стабилизатор  — плата КРЕН

Самым, пожалуй, простым вариантом для изготовления прибора дома является микросхема КРЕН, точнее КР142ЕН8Б (таково ее полное название). Кроме самой платки, понадобится выпрямляющий диод 1n4007. Спаяв эти элементы согласно схеме, приведенной ниже, можно получить самый элементарный, однако очень надежный прибор.

Применив любую из этих схем стабилизации, можно быстро и без особых затрат собрать устройство, которое в силах обеспечить необходимые выходные характеристики в 12В электрических сетях.

Если же ваши познания в электронике не позволяют вам паять и мастерить, то лучшим вариантом будет приобретение заводского устройства, которое собрано в фабричных условиях, обладает подходящим корпусом, системой охлаждения, и собраны из хорошо подобранной и подогнанной друг к другу элементной базы.

Основные моменты, касающиеся изготовления стабилизатора на 12 Вольт, приведены в этом видео:

Читайте также:

Как включить светодиод в 12 вольт

D-I-N › Блог › 左 Светодиоды в авто…

Итак! Что мы имеем!

Бортовая сеть легкового авто – 12-14,5 Вольта. В зависимости заглушён двиратель или заведён.

Типичный светодиод с характеристиками: (напряжение падения 3,2 Вольта и ток 20мА = 0,02Ампера)

«Падение напряжения» и «рабочий ток» — это основные характеристики светодиода

Питается светодиод током – это ВАЖНО! Напряжение он возьмёт столько, сколько ему надо, а вот ток нужно ограничить. Падение напряжения типичного белого светодиода – 3,2 Вольта

Но у светодиодов разных цветов оно отличается для желтых и красных светодиодов — 2 — 2,5 Вольта.; для синих, зеленых, белых — 3-3,8 Вольта. Так что при выборе цвета светодиода учитывайте его падение напряжения. Ток маломощных светодиодов, как правило, не более 20мА

Что такое падение напряжения? Если мы подключим наш белый светодиод падение напряжения, которого — 3,2 Вольта, а рабочий ток 20мА=0,02 Ампера к источнику 12 Вольт, то этот светодиод съест 3,2 Вольта. Напряжение после этого светодиода снизится (упадёт) на 3,2 Вольта. 12-3,2=8,8. Но не забываем – что светодиод питается током а не напряжением т.е. сколько тока дадите — столько он через себя пропустит, а ток нужно задать. Как понять задать?! Задать – значит ограничить. Ограничить ток можно резистором, либо запитать светодиод через драйвер. Давайте рассмотрим на примерах как рассчитать и подключить светодиод к источнику воображаемой бортовой сети автомобиля, напряжение которой колеблется от 12 до 14,5 Вольт. Что бы наш светодиод не сгорел при длительном включении — рассчитывать мы будем исходя того, что в нашем автомобиле 14,5 Вольт а не 12,5 Вольта. Светодиод в этом случае будет светить менее ярко, но зато дольше прослужит. В одном из пунктов этой статьи мы рассмотрим как подключить светодиод или цепочки из светодиодов через микросхему-стабилизатор напряжения. Такой способ подключения — сохранит яркость светодиодов при изменении оборотов двигателя.

Сперва делаем расчёты. Вычитаем из имеющегося исходного напряжения 14,5 Вольта напряжение питания светодиода (3,2 Вольта). 14,5В — 3,2В =11,3В Получаем 11,3 Вольта. Вот на эти оставшиеся 11,3 Вольта нужно задать ток 20мА — что бы светодиод не сгорел. Далее нам в помощь Закон Ома для участка электрической цепи, то есть для вашего светодиода и резистора. R=U/I . Где R — сопротивление резистора, U — напряжение, которое нужно погасить, I — ток в цепи. То есть, чтобы получить сопротивление гасящего резистора, нужно разделить напряжение, которое нужно погасить, на ток, который нужно получить. Ток в формулу подставляется в амперах, в одном ампере 1000 миллиампер, то есть в нашем случае 20 мА — 0,02 А. Пользуясь формулой вычисляем. R = 11,3 / 0,02. Получаем 565 Ом. Итак, нам нужен резистор номиналом 565 Ом. Самый ближайший по номиналу, который вы сможете найти в радиомагазине будет 560 Ом. Мощность резистора желательно взять 0,25Вт

Этот резистор мы подключаем последовательно к светодиоду причём не важно к АНОДУ(плюсовому) или КАТОДУ(минусовому) выводу — главное что бы на АНОД вы подали плюс, а на КАТОД минус. Так сказать — соблюдали полярность

И наш резистор благополучно рассеет лишний ток в тепло. Резистор рекомендуется припаивать непосредственно к светодиоду.

Подключение светодиодной ленты

Большая часть светодиодных лент работает от напряжения 12 В или 24 в. Если линейка кристаллов одна, питание требуется 12 В, если их две — 24 в. Подходит любой источник постоянного тока, выдающий такое напряжение: аккумулятор, блок питания, батарея и т.д.

Схема подключения светодиодной ленты к сети 220 В через блок питания

Чтобы подключить ленту к бытовой сети 220 В требуется преобразователь или адаптер (еще называют блоками или источниками питания, адаптерами).

Недавно появились ленты, которые сразу можно подключать к сети в 220 В. Все они запаяны в пластиковые трубки — 220 Вольт это уже не шутки. Режутся тоже по намеченным линиям, соединяются при помощи специального коннектора, который вставляется в проводники. К коннектору подключается шнур со встроенным выпрямителем (это диодный мост и конденсатор).

Подключение специальной светодиодной ленты к сети 220В

Отличается эта лента от обычной тем, что в ней небольшие участки (20 шт) со светодиодами подключены не последовательно, а параллельно, еще и так, что диоды направлены навстречу друг другу. За счет этого получаем требуемое напряжение в 220 Вольт или около того. Переменный ток преобразуется в постоянный при помощи диодного моста, а пульсация гасится конденсатором.

Схема подключения светодиодной ленты без блока питания

В принципе, такую ленту можно собрать из обычной, но нужно будет позаботиться об изоляции: прикосновение к элементу, подключенному к бытовой сети без переходника чревато серьезными последствиями.

Как подключить несколько светодиодных лент

Каждая из лент, в зависимости от используемых модулей и количества элементов на одном метре, потребляет различное количество тока. Средние параметры приведены в таблице. Зная, какой длины вы хотите смонтировать подсветку, можно выбрать адаптер, который будет выдать требуемый ток.

Таблица потребляемого тока светодиодными лентами, питающимися от 12 В

Иногда требуемая длина ленты превышает 5 метров — когда необходимо подсветить комнату по периметру. Даже если блок питания может выдать требуемый ток, соединять последовательно две или больше пятиметровые ленты нельзя. Максимально допустимая длина одной ветки — вот те 5 метров, которые приходят в бобине. Если дорастить ее, подключив вторую последовательно, по дорожкам первой ленты будет проходить ток, многократно превышающий расчетный. Это приведет к быстрому выходу элементов из строя. Может даже расплавится дорожка.

Если мощность блока питания такова, что к нему можно подключить несколько лент, к каждой из них тянут отдельные проводники: схема подключения параллельная.

Как подключить несколько светодиодных лент к одному блоку питания

В таком случае удобно блок питания располагать посредине, например, в углу, а от него — две ленты по обе стороны. Но часто дешевле купить несколько менее адаптеров, чем один более мощный.

Подключение RGB ленты через контроллер

Последовательно подключаются сначала блок питания, потом контролер. Между собой они подключаются двумя проводами. Из контроллера выходят уже 4 проводника, которые разводятся по соответствующим контактным площадкам ленты RGB.

Подключение светодиодной ленты RGB через контроллер

Точно также, как и в монохромных лентах, и в этом случае максимально допустимая длина одной линии — 5 метров. Если необходимо большая длина, то от контроллера отходят два пучка проводов по 4 штуки в каждом, то есть соединяются они параллельно. Длинна проводников может быть разной, но более рационально, чтобы блок питания и контроллер находился посередине, а в стороны уходят две ветки подсветки.

Самодельный драйвер для светодиодов от сети 220В

Преимущества светодиодных лап рассматривались неоднократно. Обилие положительных отзывов пользователей светодиодного освещения волей-неволей заставляет задуматься о собственных лампочках Ильича. Все было бы неплохо, но когда дело доходит до калькуляции переоснащения квартиры на светодиодное освещения, цифры немного «напрягают».

Для замены обыкновенной лампы на 75Вт идёт светодиодная лампочка на 15Вт, а таких ламп надо поменять десяток. При средней стоимости около 10 долларов за лампу бюджет выходит приличный, да и еще нельзя исключить риск приобретения китайского «клона» с жизненным циклом 2-3 года. В свете этого многие рассматривают возможность самостоятельного изготовления этих девайсов.

Подключение светодиода к сети 220 В на примере выключателя с подсветкой

Сейчас уже никого не удивишь выключателем с интегрированной подсветкой в виде светодиода. Разобрав его и разобравшись мы получим еще один способ, благодаря которому можем подключить любой светодиод к сети 220 В.

Во всех выключателях с подсветкой используется резистор с номиналом не менее 20 кОм. Ток в этом случае ограничивается порядка 1А. При включении в сеть такой светодиод будет светиться. Ночью его легко можно различить на стене. Обратный же ток в этом случае будет очень маленьким и не сможет повредить полупроводник. В принципе, такая схема также имеет право на существование, но свет от такого диода будет все-таки ничтожно маленьким. И стоит ли овчинка выделки — не понятно.

Как подключить led к 3 или 5 Вольтам

Маломощные светодиоды хорошо функционируют, если их подключить к блоку питания с напряжением 5 и даже 3 вольта. Сопротивление рассчитывается по той же формуле, но резистор заменяется драйвером. В нем теряется меньше вольтажа, в магазине можно купить готовый.

Самый популярный источник питания при изготовлении лент на 5 вольт, которые используются в качестве ночников – зарядные устройства от старых мобильных телефонов. Лампочки следует подключать параллельно (для последовательного соединения требуется 6 вольт).

3 вольта можно получить из батарейки на 1,5 вольт при помощи специальной микросхемы. Она может повышать как ток, так вольтаж. При втором варианте диод необходимо подключить к сопротивлению.

Подключение сверхярких и мощных LED к 12В

Сначала рассмотрим способ подключения одного мощного сверхъяркого светодиода к 12 Вольтам. Допустим, в нашем распоряжении имеется прибор, рабочий ток которого 350 мА. При этом падение напряжения на нем в рабочем режиме составляет примерно 3.4 Вольта. Нетрудно подсчитать, что потребляемая мощность такого прибора составляет 1 W.

Понятно, что подключать его напрямую к 12 Вольтам нельзя. Нам придется, каким-то образом, «погасить» часть напряжения. В простейших случаях для этих целей применяются гасящие (токоограничивающие) резисторы. Его соединяют со светодиодом последовательно. Схема питания одного LED показана на фото.

Чтобы рассчитать номинал токоограничивающего резистора пользуются формулой:

Вооружившись калькулятором легко подсчитать, что сопротивление будет составлять около 25 Ом. На нем будет рассеиваться мощность, которую рассчитывают по формуле:

В нашем примере мощность составит около 3 ватт. Найти сопротивление такой мощности довольно трудно, поэтому в качестве гасящего резистора можно применить два резистора по 100 Ом мощностью 2 Вт, соединенные параллельно.

В принципе на основе этих расчетов уже можно создавать практическую конструкцию. Выполнив подключение светодиода к 12В через выключатель, можно организовать дополнительную подсветку подкапотного пространства автомобиля, багажника или перчаточного бокса.

Мы показали, что создание такой схемы возможно, но применение ее нерационально. Нетрудно заметить, что две трети мощности потребляемой конструкцией приходится на гасящий резистор и, следовательно, тратится впустую. Ниже мы расскажем, как избежать ненужных потерь.

Для самых пытливых ? — первый светодиодный драйвер для авто

Дальнейшая информация служит для продвинутых любителей, которые закон Ома уже освоили. Нет предела совершенству, и вам уже мало просто зажечь светодиоды — хочется, чтобы они светили равномерно, не завися от оборотов двигателя.

Самое правильное включение светодиодов – через стабилизатор тока. Светодиод — это полупроводниковый прибор, который питается током, а не напряжением. Поэтому, если вы стабилизируете и ограничите ток, протекающий через него, то можете подключить хоть киловольт, светодиод будет светить нормально. А от режима работы зависит как долго светодиод будет светить не теряя яркости. Для стабилизации тока используются приборы, называемые драйверами. Простейший драйвер — схема на микросхеме-стабилизаторе LM317. Главное достоинство этой микросхемы для начинающих — ее очень трудно спалить

Испугались ? Ничего В сущности, требуются две детали — сама микросхема — трехвыводной стабилизатор напряжения, который мы включим в режим стабилизации тока, и резистор. Чтобы не вдаваться в теорию, действия следующие — приобретаем переменный резистор сопротивлением 0,5 кОм. Это такая штуковина с тремя выводами и крутилкой. Как и микросхема, он продается все в том же «Радиолюбителе» за смешные деньги. Можно и вовсе выковырять из ненужного бытового прибора

Припаиваем провода к среднему выводу и одному из крайних, неважно какому. Включаем мультиметр в режим измерения сопротивления

Подключаем к проводам прибор и замеряем сопротивление резистора. Вращением стержня добиваемся максимального показания, то есть 500 Ом (или около того). Это чтобы не сжечь светодиод при слишком низком сопротивлении резистора.

Собираем цепь

Внимание! Внимательно проверьте правильность соединений перед подключением ? Проверили ? Точно ?

Прибор включаем в режим измерения тока. Вращением движка переменного резистора добиваемся показаний прибора 20 мА. Отключаем цепь, замеряем сопротивление резистора и впаиваем вместо него обычный резистор с таким же сопротивлением. Вуаля! Вы только что собрали свой первый светодиодный драйвер Он имеет ограничение по максимальному току в пределах 1-1,5 А, поэтому при подключении большого количества светодиодов : во первых, используйте резистор большей мощности. Во-вторых, потрогайте микросхему. Если горячая — имеет смысл прикрепить ее к радиатору. Не забывайте, что корпус авто имеет электрический контакт с «минусом» аккумулятора, а подложка микросхемы (корпус) — со своей второй ножкой. Поэтому крепить ее на кузов без изолирующей прокладки — плохая идея. Еще один нюанс — сама микросхема снижает максимальное напряжение, которое можно подать на светодиод, на два-три вольта. Поэтому больше 11-12 вольт вы при таком драйвере не получите. Но зато он простой и первое представление о правильном подключении светодиодов в авто вам даст К слову сказать, на этой же микросхеме + пара деталей можно собрать регулируемый блок питания 1,5-30 в., что бывает очень полезно в автомобиле. Схем включения в интернете множество. В общем, если у вас все получилось — добро пожаловать в увлекательный мир радиоэлектроники, ведь вряд ли вы теперь остановитесь.

(с) Юрий Рубан, led22.ru. Вопросы и критика приветствуются в разделе «Светодиоды в авто» на форуме «Светлый угол»

Практический метод

Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке. Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет. В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору.

Текущие показания на экране и будут номинальным прямым напряжением светодиода. Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.

Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.

В отсутствии регулируемого блока питания можно воспользоваться «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.

Вариант драйвера без стабилизатора тока

В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.

Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.

На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.

Диаграмма напряжения в схеме без стабилизатора

Диаграмма в схеме со стабилизатором

Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.

Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.

Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт. Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.

Теория питания светодиодных ламп от 220В

Самый бюджетный вариант можно собирать своими руками из вот таких светодиодов. Десяток таких малюток стоит меньше доллара, а по яркости соответствует лампе накаливания на 75Вт. Собрать всё воедино не проблема, вот только напрямую в сеть их не подключишь – сгорят. Сердцем любой светодиодной лампы является драйвер питания. От него зависит, насколько долго и хорошо будет светить лампочка.

Что бы собрать светодиодную лампу своими руками на 220 вольт, разберёмся в схеме драйвера питания.

Параметры сети значительно превышают потребности светодиода. Что бы светодиод смог работать от сети требуется уменьшить амплитуду напряжения, силу тока и преобразовать переменное напряжение сети в постоянное.

Для этих целей используют делитель напряжения с резисторной либо ёмкостной нагрузкой и стабилизаторы.

Последовательное подключение

Если мастер выполняет подключение светодиода 12 Вольт по последовательной схеме, лампы собирают в цепочку. При этом катод каждого предыдущего элемента припаивают к аноду каждого следующего.

При такой схеме сборки через все лампочки проходит ток величиной 20 мА. Уровень напряжения здесь же складывается из сумм падения Вольт на каждой из них. Таким образом, в одну цепь запрещено подключать произвольное количество лампочек.

Если нужно последовательно подключить большое количество светодиодных ламп, нужно брать источник питания с большими показателями по напряжению и мощности.

К недостаткам последовательного подключения относят:

  • Выход из строя всей световой цепочки при поломке одного элемента.
  • Необходимость закупки более мощного ИП при монтаже большого количества ламп.

Видео о подключении

Перед подключением советуем посмотреть хорошее видео для закрепления полученных знаний. Автор подробно и доступным языком рассказывает, как подключить светодиод к 12 вольтам от блока питания компьютера, как рассчитать резистор и другие нюансы.

В заключении можно сказать, что при подключении сверхъярких светодиодах нужно принимать во внимание следующие соображения:

  • важнейшим параметром светодиода является его рабочий ток;
  • на гасящих резисторах бесполезно рассеивается энергия;
  • применяя последовательное подключение можно уменьшить потери, одновременно уменьшив количество и мощность применяемых резисторов;
  • в бортовой сети автомобиля не 12 Вольт, а несколько больше, и для надежной работы подключаемых светоизлучающих диодов нужно обязательно учитывать этот фактор.

Запомнив все вышеперечисленные аспекты подключения, Вы с легкостью запитаете любой светодиод, в любом количестве, от любого источника питания постоянного тока 12 Вольт.

Поделиться с друзьями:

Совсем недавно мы рассказывали, как разобрать светодиодную лампу. В этой статье мы покажем, что находится внутри, как это устроено и как работает.

Как ты, наверное, уже знаешь, лампочки эти бывают на 220 и 12 вольт. Последние сделаны в качестве энергосберегающей альтернативы галогенкам, и это неудивительно, ведь КПД хороших светодиодов выше, чем оный у лампочек накаливания, даже галогенных.

Но не всё так плохо. Более честные последователи дядюшки Ляо смекнули, что если взять несколько мощных светодиодов, посадить их через термопасту на радиатор и приделать импульсный преобразователь-стабилизатор, то всё это вполне может уместиться в привычные габариты.

Китайская промышленность бодро откликнулась на такую потребность и начала клепать микросхемы одну за другой. Одним из примеров вышесказанного является данный экземпляр лампочки.

Заявленная мощность — аж 5 или 6 ватт (производитель сам не определился), 25 светодиодов форм-фактора 5050. Рассеивающие линзы лампы изготовлены из пластика, радиатор — литьё из отходов алюминия и кремния (силумин).

В цоколе расположен вполне честный импульсный преобразователь на микросхеме CSC8513. Информации о ней в интернете немного, но известно, что она предлагается как замена более известной BP3122. Впрочем, на обе есть даташиты.

Вывод: микросхема CSC8513 вполне пригодна для драйвера светодиодов мощностью 5-6 ватт. Внешний транзистор и радиаторы ей не требуются.

Следующие схемы светодиодных ламп предназначены для работы от переменного напряжения 12 вольт. именно его выдаёт трансформатор для галогенок. В связи с этим на входе каждого драйвера имеется мостик, собранный из четырёх диодов, предположительно — Шоттки. Дальше — самый обыкновенный, понижающий или повышающий преобразователь, в зависимости от количества светодиодов и схемы их соединения: параллельное, последовательное или смешанное.

Схема на микросхеме XL6001, информации по ней предостаточно:

Схема на популярной MC34063, из даташита:

Как видим, ничего нового революционного здесь нет. Радует то, что адепты дядюшки Ляо применяют высокоэффективные драйверы, выполняя их на компактных двухсторонних печатных платах, способных поместиться в малюсенький цоколь.

02.03.2015 9zip.ru Авторские права охраняет Роскомнадзор

Оцените статью:

изготовление и установка на автомобиль

В последние годы автолюбители стали оснащать свои автомобили дневными ходовыми огнями. Хотя правила допускают в этом качестве использовать штатные осветительные приборы (противотуманки, фары и т.д.), многие предпочитают выполнять ДХО в виде отдельных блоков. И часть автомобилистов столкнулась с тем, что светодиоды, на основе которых выполнены фонари, выходят из строя, не проработав и года. Причину столь короткой службы никто детально не выяснял. Возможно, это связано с качеством LED от неизвестных производителей, или с тем, что изготовители намного завышают заявленный ресурс полупроводниковых изделий, а может быть все дело в недостаточном охлаждении.

Но существует устойчивое мнение, что светодиоды выходят из строя из-за нестабильного напряжения в бортсети авто или из-за кратковременных выбросов по цепи питания, амплитуда которых достигает нескольких десятков вольт. Спастись от этой беды пытаются установкой стабилизатора напряжения бортсети для ДХО автомобиля.

На сколько вольт должен быть стабилизатор

Если стабилизатор для ДХО используется с промышленными фонарями, то его выходное напряжение должно быть равно напряжению питания, обозначенному на корпусе прибора. В большинстве случаев это 12 вольт. Для самодельной системы надо рассмотреть ее схему.

Схема фонаря из цепочки стабилитронов.

Обычно она состоит из последовательной цепочки 2..4 светодиодов и гасящего резистора. Для нормальной работы светодиода на нем должно падать его номинальное напряжение. Например, для светодиода ARPL-Star-3W-BCB падение напряжения составляет 3,6 В. Для цепочки из трех элементов надо обеспечить 3.6*3=10,8 вольт. Еще небольшое напряжение должно упасть на балласте (его величина определяется при расчете, 1. .2 вольта). В итоге выходим примерно на 12 вольт.

Тип LEDМощность, ВтПадение напряжения, В
TDS-P003L4U1333,6
TDSP005L801156,5
ARPL-Star-3W-BCB33..3,6
STAR 3WR33,6
High Power 3 W33,35..3,6

Какие бывают стабилизаторы напряжения для ДХО

Самые простые и недорогие стабилизаторы – линейного типа. Они перераспределяют напряжение сети между регулирующим элементом (транзистором) и нагрузкой.

Принцип работы линейного регулятора напряжения.

При уменьшении входного напряжения или увеличении тока нагрузки транзистор приоткрывается, и напряжение на нагрузке увеличивается. Если входное напряжение увеличилось или ток нагрузки упал, регулятор немного закрывает силовой элемент, и напряжение на нагрузке уменьшается. Так достигается стабильность. Достоинства таких стабилизаторов:

  • простота;
  • низкая стоимость;
  • можно купить в интегральном исполнении на фиксированное напряжение.

Среди минусов – большие потери мощности за счет рассеяния на регулирующем элементе (в связи с этим нужен эффективный теплоотвод) и необходимость заметного превышения входного напряжения над выходным.

От этих недостатков свободны импульсные стабилизаторы, они распределяют энергию во времени, но их проблема – сложность изготовления. Для самостоятельной сборки нужны определенные знания и квалификация.

Как правильно подобрать

Для подбора прибора промышленного изготовления надо задаться следующими параметрами:

  • выходное напряжение;
  • рабочий ток;
  • минимальное входное напряжение (максимальное обычно составляет несколько десятков вольт, такого напряжения в сети автомобиля не бывает).

Как подбирать выходное напряжение, сказано выше. Рабочий ток должен превышать ток потребления фонарей (или фонаря, если стабилизатор ставится на каждый прибор отдельно) с запасом. На последний параметр мало кто обращает внимание, а он может оказать критическое влияние на работу всей системы.

Читайте также: Как правильно выбрать ходовые огни на авто, чтобы не оштрафовали

Изучаем популярные схемы стабилизатора напряжения

В первую очередь надо выбрать схему устройства. В глобальной сети много рекомендаций собирать такие блоки на интегральных линейных стабилизаторах 7812 (КР142ЕН8Б).

Схема стабилизатора на 7812 из интернета (явная ошибка – на входе должно быть не менее 14,5 вольта).

Те, кто публикует такие схемы, обращают внимание на их простоту и отсутствие необходимости настройки, совершенно забывая об одной проблеме. Для нормальной работы на таком стабилизаторе должно падать не менее 2,5 вольт – об этом написано в любом даташите. Попросту, для хоть сколько-нибудь эффективной стабилизации на выходе, на входе должно быть не менее 14,5 вольт. В автомобиле с исправным генератором такого напряжения быть не должно, а при более низком значении применять такую схему бессмысленно. В качестве компромисса можно использовать девятивольтовый стабилизатор (LM7809), его работоспособность начнется от 11,5 вольт на входе, но при этом упадет яркость свечения фонарей. По требованиям ГОСТ минимальная сила света должна составлять 400 кд, и ниже этого предела опускаться нельзя.

Еще более бездумными выглядят рекомендации ставить на входе диод.

Схема из сети – микросхема 7812 с диодом на входе.

Его назначение весьма сомнительно – защищать микросхему от обратной полярности при стабильном монтаже не надо. Но на кремниевом p-n переходе дополнительно упадет еще 0,6 вольта, и для нормальной работы понадобится не менее 15 вольт.

Схемы с интегральным линейником на 12 вольт (с диодом или без него) пригодны разве что для среза высоковольтных всплесков по шине +12 вольт (если таковые на самом деле присутствуют). То есть они могут служить своеобразным «барьером Зенера», но такой барьер можно сделать гораздо проще. Надо включить параллельно цепочке светодиодов стабилитрон Uст, немного превышающее рабочее напряжение. В нормальном режиме его сопротивление велико, он не окажет влияния на работу осветительного прибора. При превышении напряжения стабилизации (например, 15 вольт) он откроется и «срежет» излишек.

Подключение стабилитрона параллельно фонарю.

Немного лучше работают стабилизаторы на микросхемах LDO (low drop out). Они выглядят подобно обычным линейным регуляторам, но им для нормальной работы необходимо падение всего в 1,2 вольта, и эффективная стабилизация начнется уже при 13,2 вольтах. Что уже лучше, но все равно недостаточно для нормального функционирования. Для работы в такой схеме подойдут микросхемы LM1084 и LM1085, но схема их включения несколько сложнее.

Схема включения LDO LM1084.

Для получения выходного напряжения 12 вольт сопротивление резистора R1 должно быть 240 Ом, а R2 – 2,2 кОм. Имеется принципиальное препятствие для дальнейшего снижения падения – регулятор выполнен на биполярном транзисторе, и на его эмиттерном и коллекторном переходах должно упасть не менее 1,2 вольт. Это легко обходится применением полевого транзистора в качестве регулирующего элемента. Интегральные микросхемы, построенные по такому принципу, найти сложно, еще сложнее подобрать по нужным параметрам и они стоят дороже. А вот сделать самому такое устройство на дискретных элементах по силам даже радиолюбителю средней квалификации.

Схема линейного регулятора на мощном полевом транзисторе.

Номиналы элементов:

  • R1 — 68 кОм;
  • R2 — 10 кОм;
  • R3 — 1 кОм;
  • R4,R5 — 4,7 кОм;
  • R6 — 25 кОм;
  • VD1 — BZX84C6V2L;
  • VT1 — AO3401;
  • VT2,VT3 — 2N5550.

Выходное напряжение задается соотношением R5/R6. При указанных номиналах на выходе будет 12 вольт, на входе понадобится не более 12,5. Это cерьезное улучшение. Но принципиального скачка можно добиться только применением импульсного источника питания. Такой преобразователь по схеме Step-Up можно собрать на микросхеме XL6009.

Схема импульсника на XL6009.

Такой стабилизатор в готовом виде можно заказать на популярных интернет-площадках. Но есть проблема – производители из экономии часто устанавливают элементы, рассчитанные на ток не более 1 А (хотя микросхема способна выдать ток до 3 А). Или, например, могут быть не установлены входные или выходные оксидные конденсаторы. Даже диод Шоттки  N5824, указанный в даташите, при токах выше 1,5 А начинает греться.  Вместо него надо применить более мощный диод, например SR560. Все эти замены и упрощения ведут к перегреву платы и выходу ее из строя.

В видео показан пример сборки стабилизатора на 12 вольт.

Рекомендации по изготовлению

Для изготовления потребуются электронные компоненты для выбранной схемы. Приобрести их можно в специализированных магазинах или через интернет. Для устройства на интегральном линейном стабилизаторе корпус не нужен, но надо позаботиться о радиаторе. Также радиатор понадобится при изготовлении линейника на дискретных элементах. Более сложные устройства надо собирать на платах. Владеющие домашними технологиями смогут разработать и вытравить печатную плату самостоятельно. Остальным лучше воспользоваться макетной платой – отрезать необходимый кусочек и смонтировать элементы на нем.

Монтаж на макетной плате.

Также надо подобрать или собрать корпус, не забывая об отводе тепла. Затянуть плату в термоусадку – не лучший вариант в этом плане. Также понадобится паяльник с набором расходников.

Общую инструкцию по изготовлению дать сложно – все зависит от выбранной схемы и предпочитаемых технологий. Но можно дать несколько советов тем, у кого опыта в изготовлении электронных устройств немного:

  • все соединения надо тщательно пропаивать (стараясь не перегреть элементы и проводники в изоляции) – условия эксплуатации будут сопряжены с тряской и перепадами температур, и некачественная пайка сразу даст о себе знать;
  • корпус конструкции должен исключать попадания внутрь воды и грязи – при установке устройства под капотом этих субстанций будет достаточно;
  • если корпус не используется, места пайки надо тщательно изолировать – по тем же резонам;
  • после сборки и проверки работоспособности не будет лишним покрыть плату со стороны пайки лаком и просушить.

Только тщательный подход к изготовлению может гарантировать хоть сколько-нибудь долгую работу самоделки в жестких условиях.

Читайте также

Самостоятельное изготовление ДХО

 

Установка на ДХО

Стабилизатор, вне зависимости от того, по какой схеме он собран, устанавливается в разрыв провода, идущего от выключателя или контроллера к фонарям дневных ходовых огней. Делается это в любом удобном месте. Если мощность регулятора достаточная для работы с двумя фонарями, можно включить его в разрыв провода питания двух фонарей, до точки разделения. Если нет – для каждой лампы ДХО потребуется два устройства.

Подключение стабилизирующего устройства.

Надо не забывать подключать минусовой провод к общему проводнику автомобиля. Еще один часто возникающий вопрос – установка радиатора для линейного регулятора. Существует идея использовать в качестве элемента охлаждения кузов автомобиля. Его площадь велика, и он будет великолепно отводить тепло. При условии, что обеспечен надежный тепловой контакт между поверхностью микросхемы и поверхностью кузова. А это потребует, как минимум, удаление лакокрасочного покрытия в месте установки, а также сверления отверстия под винт крепления. В этом месте быстро образуется очаг коррозии. Поэтому данная идея не самая удачная. Лучше сделать небольшой отдельный радиатор из кусочка листового алюминия.

Видео: Подключение и проверка стабилизаторов L7812CV и LM317T для светодиодных ДХО на ВАЗ-2106.

Вопрос применения стабилизатора для дневных ходовых огней не так прост, как это кажется на первый взгляд. Для принятия решения о его применении и выборе способа установки требуется определенная техническая подготовка. Материалы обзора помогут сделать этот выбор.

Стабилизатор тока для светодиодов своими руками

В настоящее время трудно представить тюнинг автомобиля без светодиодных ламп. Но порой их установка осложнена тем, что они перегорают. Чтобы избежать этой ситуации, в сеть можно включить стабилизатор тока для светодиодов своими руками. В статье приводятся примеры микросхем, по которым можно его сделать.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

Если применять универсальный выпрямитель как зарядку для АКБ или других задач, то достаточно использовать резистора R1 и транзистор.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Заключение

Нами были рассмотрены стабилизаторы напряжения на различных компонентах. Эти схемы можно усложнять, повышая быстродействие, улучшая другие показатели. Можно использовать готовые микросхемы, которые всегда можно усовершенствовать своими руками, создавая устройства, предназначенные для выполнения конкретных задач.

Фотогалерея «Микросхемы для самодельных выпрямителей»

1. Прибор на КРЕНке 2. На двух транзисторах 3. С операционным усилителем

Разработка микросхем для светодиодов в авто – трудоемкое и сложное дело, которое требует специальных знаний и опыта. При их отсутствии трудно будет достичь необходимого результата.

Но опыт можно приобрести, внимательно собирая несложный стабилизатор тока для светодиодов согласно приведенным схемам. Его можно использовать для дневных ходовых огней в своем автомобиле с установленными светодиодными лампами.

Видео «Выпрямитель для светодиодов своими руками»

Видео о том, как изготовить устройство, которое защитит светодиоды от перегорания (автор ролика — Яков TANK_OFF).

Понравилась статья? Поделиться с друзьями:

Схемы простых стабилизаторов на 3 вольта. Как получить нестандартное напряжение

Светодиоды разного цвета имеют свою рабочую зону напряжения. Если мы видим светодиод на 3 вольта, то он может давать белый, голубой или зеленый свет. Напрямую подключать его к источнику питания, который генерирует более 3 вольт нельзя.

Расчет сопротивления резистора

Чтобы понизить напряжение на светодиоде, в цепь перед ним последовательно включают резистор. Основная задача электрика или любителя будет заключаться в том, чтобы правильно подобрать сопротивление.

В этом нет особой сложности. Главное, знать электрические параметры светодиодной лампочки, вспомнить закон Ома и определение мощности тока.

R=Uна резисторе/Iсветодиода

Iсветодиода – это допустимый ток для светодиода. Он обязательно указывается в характеристиках прибора вместе с прямым падением напряжения. Нельзя, чтобы ток, проходящий по цепи, превысил допустимую величину. Это может вывести светодиодный прибор из строя.

Зачастую на готовых к использованию светодиодных приборах пишут мощность (Вт) и напряжение или ток. Но зная две из этих характеристик, всегда можно найти третью. Самые простые осветительные приборы потребляют мощность порядка 0,06 Вт.

При последовательном включении общее напряжение источника питания U складывается из Uна рез. и Uна светодиоде. Тогда Uна рез.=U-Uна светодиоде

Предположим, необходимо подключить светодиодную лампочку с прямым напряжением 3 вольта и током 20 мА к источнику питания 12 вольт. Получаем:

R=(12-3)/0,02=450 Ом.

Обычно, сопротивление берут с запасом. Для того ток умножают на коэффициент 0,75. Это равносильно умножению сопротивления на 1,33.

Следовательно, необходимо взять сопротивление 450*1,33=598,5=0,6 кОм или чуть больше.

Мощность резистора

Для определения мощности сопротивления применяется формула:

P=U²/ R= Iсветодиода*(U-Uна светодиоде)

В нашем случае: P=0,02*(12-3)=0,18 Вт

Такой мощности резисторы не выпускаются, поэтому необходимо брать ближайший к нему элемент с большим значением, а именно 0,25 ватта. Если у вас нет резистора мощность 0,25 Вт, то можно включить параллельно два сопротивления меньшей мощности.

Количество светодиодов в гирлянде

Аналогичным образом рассчитывается резистор, если в цепь последовательно включено несколько светодиодов на 3 вольта. В этом случае от общего напряжения вычитается сумма напряжений всех лампочек.

Все светодиоды для гирлянды из нескольких лампочек следует брать одинаковыми, чтобы через цепь проходил постоянный одинаковый ток.

Максимальное количество лампочек можно узнать, если разделить U сети на U одного светодиода и на коэффициент запаса 1,15.

N=12:3:1,15=3,48

К источнику в 12 вольт можно спокойно подключить 3 излучающих свет полупроводника с напряжением 3 вольта и получить яркое свечение каждого из них.

Мощность такой гирлянды довольно маленькая. В этом и заключается преимущество светодиодных лампочек. Даже большая гирлянда будет потреблять у вас минимум энергии. Этим с успехом пользуются дизайнеры, украшая интерьеры, делая подсветку мебели и техники.

На сегодняшний день выпускаются сверхяркие модели с напряжением 3 вольта и повышенным допустимым током. Мощность каждого из них достигает 1 Вт и более, и применение у таких моделей уже несколько иное. Светодиод, потребляющий 1-2 Вт, применяют в модулях для прожекторов, фонарей, фар и рабочего освещения помещений.

Примером может служить продукция компании CREE, которая предлагает светодиодные продукты мощностью 1 Вт, 3Вт и т. д. Они созданы по технологиям, которые открывают новые возможности в этой отрасли.

Как из 5 Вольт получить 3. 3 Вольта? Нужен наиболе простой способ

Есть микросхема, которая питается от 3. 3 Вольт. Её нужно подключить к USB-разъему, где напряжение 5 Вольт. Как правильно поступить, искать какой-то преобразователь или просто припаять резистор? 3 годов назад от Евгений Пуртов

3 Ответы

Микросхема потребляет боле-мене стабильный ток. Проще последовательно с проводом питания установить подобранный резистор (не забудьте блокировочный электролитический конденсатор 100. 0 мкф на Землю) . Подбираете так: сначала ставите резистор явно большого значения. Начните с 5 ком. Тестером меряете напряжение на ИМС и, уменьшая резистор, приближаете его к номинальному значению напряжения питания -3. 3 вольта. Это обычный радиолюбительский способ, когда не требуется особой стабилизации по питанию. У меня всегда он работал. 3 годов назад от Andrey Fedaevskiy Вы хочете песен? Их есть у нас! Мелкосхема-стабилизатор обзывается 7833! Массу паяешь посередке, слева паяешь плюсовой провод от УСБ, а справа запитываешь этот свой секретный девайс. А разгадка одна — ну не может толковый илехтронщег, которым ты себя мнишь, не знать про микросхемы-стабилизаторы напряжения готично-православной серии 78х. Такие дела! 3 годов назад от asdasdasdas dasdasdasd Наиболе простой и правильный способ-это микросхема-стабилизатор на фиксированное напряжение 3. 3 v. если нет такой микросхемы, то тогда делаешь схему из даташита на lm317 -их везде навалом. Рассчитываешь 2 резистора по формуле из даташита, чтоб было на выходе 3. 3 вольта. Или просто переменным резистором выставляешь 3. 3 вольта. Можешь сделать стабилизатор на резисторе и стабилитроне, как тебе написали выше, но по любому надо после него поставить эмиттерный повторитель. . Делать импульсные преобразователи смысла не вижу, так как разница между входом и выходом небольшая. 3 годов назад от Яркие Краски

Связанные вопросы

9 месяцев назад от *****

1 год назад от федор волошин

1 год назад от Андрей Козлов

engangs.ru

Как из 5 Вольт получить 3.3 Вольта? Нужен наиболее простой способ — domino22

Как из 5 Вольт получить 3.3 Вольта? Нужен наиболее простой способ

  1. микросхема-стабилизатор на 3.3В или микросхема-инвертор 5В на 3.3В сам
  2. Господи, да включи ее напрямую, какие 3.3 в, ты смотри максимально допустимые, да и те, можно в нку поднять 20%
  3. Можно поставить стабилизатор на 3,3 в. Их полно всяких, выбирайте подходящую.
  4. 1) никаких сопротивлений, если ты питаешь микросхему Сопротивление ставится, если тебе уровень сигнала уменьшить!2) Бершь LM1117-3.3 дешовая, доступная и дешовая. Только на вход и выход желательно поставить конденсаторы электоролитические — так стабильнее будет.
  5. Поставить стабилитрон на 3,3 вольта.
  6. Если бы вы указали, что за микросхема, получили бы дельный совет. Почему у этих вопрошающих все засекречено?
  7. Микросхема потребляет более-менее стабильный ток. Проще последовательно с проводом питания установить подобранный резистор (не забудьте блокировочный электролитический конденсатор 100.0 мкф на Землю) .Подбираете так: сначала ставите резистор явно большого значения. Начните с 5 ком. Тестером меряете напряжение на ИМС и, уменьшая резистор, приближаете его к номинальному значению напряжения питания -3.3 вольта. Это обычный радиолюбительский способ, когда не требуется особой стабилизации по питанию. У меня всегда он работал.
  8. Ищи LDO стабилизатор — это стабилизатор позволяющий подавать напряжение чуть выше чем на входе. Поясню почему 7833 не годится: у серии 78xx минимальное падение между входом и выходом около 2,5 Вольт, так что получить 3,3 из 5 не удастся. У LDO входное напряжение может отличаться от входного на 0,2…0,5 Вольт, Примеры: AMS1117-3.3, NCP551-3.3 и подобные.Микросхема — это и наджность и простота схемотехнического решения.
  9. Вы хочете песен? Их есть у нас! Мелкосхема-стабилизатор обзывается 7833! Массу паяешь посередке, слева паяешь плюсовой провод от УСБ, а справа запитываешь этот свой секретный девайс. А разгадка одна — ну не может толковый илехтронщег, которым ты себя мнишь, не знать про микросхемы-стабилизаторы напряжения готично-православной серии 78хх. Такие дела!
  10. Резистор 300Ом + стабилитрон 3.3В
  11. Наиболее простой и правильный способ-это микросхема-стабилизатор на фиксированное напряжение 3.3 v… если нет такой микросхемы, то тогда делаешь схему из даташита на lm317 -их везде навалом. Рассчитываешь 2 резистора по формуле из даташита, чтоб было на выходе 3.3 вольта. Или просто переменным резистором выставляешь 3.3 вольта. Можешь сделать стабилизатор на резисторе и стабилитроне, как тебе написали выше, но по любому надо после него поставить эмиттерный повторитель. . Делать импульсные преобразователи смысла не вижу, так как разница между входом и выходом небольшая..
Внимание, только СЕГОДНЯ!

www.domino22.ru

Как из 5 вольт сделать 3 —

Сегодня мы разберём как из 5 вольт сделать 3 на примере прибора для удаления катышков. Данное руководство можно использовать для любого устройства с питанием 3 вольта. Прибор для удаления катышков http://ali.pub/1be8qi Понижающий преобразователь http://ali.pub/1be9f0



Как с помощью резистора уменьшить напряжение? Как подобрать резистор чтобы понизить напряжение? Провожу небольшой эксперимент, и объясняю результаты. Обсудить н

Краткий ликбез по типам низковольтных стабилизаторов напряжения и принципам их работы. поддержать канал материально. http://www.donationalerts.ru/r/arduinolab

Подробно о явлениях в трехфазной электропроводке возникающих в результате обрыва нулевого проводника. Повышенное напряжение в розетке. Как защитить свою электри

Переделка старого блока питания. Группа ВК https://vk.com/beginner_electronika Всем привет! В этом видео я расскажу Вам, как можно переделать старый источник пи

Here are the instructions to wire a stable AMS1117-3.3 voltage regulator properly. This can power an ESP8266 or any 3.3V micro-controller reliably supporting cu

Как из зарядного устройства от мобильного телефона получить разное напряжение на выходе. ======================================================= Тестер RM 102

В видеомагнитофонах есть сборка-модулятор.Это готовый маломощный телевизионный передатчик и антенный усилитель.На вход модулятора нужно подать видео и аудио сиг

Подписывайтесь на нашу группу Вконтакте — http://vk.com/chipidip, и Facebook — https://www.facebook.com/chipidip * Казалось бы, что сложного в последовате

Давно хотел сделать из пьезоэлемента от зажигалки звуковое устройство. Радиопередатчик из пьезика https://youtu.be/3-SVSQQ-REU я соорудил, Фонарик из пьезоэлеме

Wireless зарядка на любой телефон — http://got.by/21qcge Зарядник QuickCharge 3в1 — http://got.by/294bwr Клей для ремонта дисплеев — http://got.by/294bpy Прогр

Внимание не суйте пальцы на высоковольтную часть схемы, там может укусить 220 вольт Недорогие блоки питания на 12V http://ali.pub/73zah и на 5V http://ali.pub

В видео показал как я паял себе стабилизаторы напряжения для автомобиля. с 14в понижает до 12в и не дает перегореть диодам! Моя партнерка на ЮТУБЕ — www.air.i

ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ. ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ своими руками. ♦DIY CAM♦ Для преобразования напряжения 24-вольтового аккумулятора автомобиля или автобуса

Покупал для nrf24l01 стабилизаторы, за 50 штук отдал менее двух долларов, все естественно не проверял, но те что использовал работают. Как подключять и на какое

vimore.org

С разных компьютерных плат, я их иногда применяю для стабилизации нужных напряжений в зарядках от сотовых телефонов. И вот недавно понадобился носимый и компактный БП на 4,2 В 0,5 А для проверки телефонов с подзарядкой аккумуляторов, и сделал так — взял подходящую зарядку, добавил туда платку стабилизатора на базе данной микросхемы, работает отлично.

И вот для общего развития подробная информация о данной серии. APL1117 это линейные стабилизаторы напряжения положительной полярности с низким напряжением насыщения, производятся в корпусах SOT-223 и ID-Pack. Выпускаются на фиксированные напряжения 1,2, 1,5, 1,8, 2,5, 2,85, 3,3, 5,0 вольт и на 1,25 В регулируемый.

Выходной ток микросхем до 1 А, максимальная рассеиваемая мощность 0,8 Вт для микросхем в корпусе SOT-223 и 1,5 Вт выполненных в корпусе D-Pack. Имеется система защиты по температуре и рассеиваемой мощности. В качестве радиатора может использоваться полоска медной фольги печатной платы, небольшая пластинка. Микросхема крепится к теплоотводу пайкой теплопроводящего фланца или приклеивается корпусом и фланцем с помощью теплопроводного клея.

Применение микросхем этих серий обеспечивает повышенную стабильность выходного напряжения (до 1%), низкие коэффициенты нестабильности по току и напряжению (менее 10 мВ), более высокий КПД, чем у обычных 78LХХ, что позволяет снизить входные напряжения питания. Это особенно актуально при питании от батарей.

Если требуется более мощный стабилизатор, который выдаёт ток 2-3 А, то типовую схему нужно изменить, добавив в нее транзистор VT1 и резистор R1.

Стабилизатор на микросхеме AMS1117 с транзистором

Транзистор серии КТ818 в металлическом корпусе рассеивает до 3 Вт. Если требуется большая мощность, то транзистор следует установить на теплоотвод. С таким включением максимальный ток нагрузки может быть для КТ818БМ до 12 А. Автор проекта — Igoran.

Обсудить статью МИНИАТЮРНЫЕ СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
Шаг 1: Какие детали необходимы для сборки блока питания…
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие…


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения…
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

Доступность и относительно невысокие цены на сверхъяркие светодиоды (LED) позволяют использовать их в различных любительских устройствах. Начинающие радиолюбители, впервые применяющие LED в своих конструкциях, часто задаются вопросом, как подключить светодиод к батарейке? Прочтя этот материал, читатель узнает, как зажечь светодиод практически от любой батарейки, какие схемы подключения LED можно использовать в том или ином случае, как выполнить расчет элементов схемы.

В принципе, просто зажечь светодиод, можно от любой батарейки. Разработанные радиолюбителями и профессионалами электронные схемы позволяют успешно справиться с этой задачей. Другое дело, сколько времени будет непрерывно работать схема с конкретным светодиодом (светодиодами) и конкретной батарейкой или батарейками.

Для оценки этого времени следует знать, что одной из основных характеристик любых батарей, будь то химический элемент или аккумулятор, является емкость. Емкость батареи – С выражается в ампер-часах. Например, емкость распространенных пальчиковых батареек формата ААА, в зависимости от типа и производителя, может составлять от 0.5 до 2.5 ампер-часов. В свою очередь светоизлучающие диоды характеризуются рабочим током, который может составлять десятки и сотни миллиампер. Таким образом, приблизительно рассчитать, на сколько хватит батареи, можно по формуле:

T= (C*U бат)/(U раб. led *I раб. led)

В данной формуле в числителе стоит работа, которую может совершить батарея, а в знаменателе мощность, которую потребляет светоизлучающий диод. Формула не учитывает КПД конкретно схемы и того факта, что полностью использовать всю емкость батареи крайне проблематично.

При конструировании приборов с батарейным питанием обычно стараются, чтобы их ток потребления не превышал 10 – 30% емкости батареи. Руководствуясь этим соображением и приведенной выше формулой можно оценить сколько нужно батареек данной емкости для питания того или иного светодиода.

Как подключить от пальчиковой батарейки АА 1,5В

К сожалению, не существует простого способа запитать светодиод от одной пальчиковой батарейки. Дело в том, что рабочее напряжение светоизлучающих диодов обычно превышает 1.5 В. Для эта величина лежит в диапазоне 3.2 – 3.4В. Поэтому для питания светодиода от одной батарейки потребуется собрать преобразователь напряжения. Ниже приведена схема простого преобразователя напряжения на двух транзисторах с помощью которого можно питать 1 – 2 сверхъярких LED с рабочим током 20 миллиампер.

Данный преобразователь представляет собой блокинг-генератор, собранный на транзисторе VT2, трансформаторе Т1 и резисторе R1. Блокинг-генератор вырабатывает импульсы напряжения, которые в несколько раз превышают напряжение источника питания. Диод VD1 выпрямляет эти импульсы. Дроссель L1, конденсаторы C2 и С3 являются элементами сглаживающего фильтра.

Транзистор VT1, резистор R2 и стабилитрон VD2 являются элементами стабилизатора напряжения. Когда напряжение на конденсаторе С2 превысит 3.3 В, стабилитрон открывается и на резисторе R2 создается падение напряжения. Одновременно откроется первый транзистор и запирет VT2, блокинг-генератор прекратит работу. Тем самым достигается стабилизация выходного напряжения преобразователя на уровне 3.3 В.

В качестве VD1 лучше использовать диоды Шоттки, которые имеют малое падение напряжения в открытом состоянии.

Трансформатор Т1 можно намотать на кольце из феррита марки 2000НН. Диаметр кольца может быть 7 – 15 мм. В качестве сердечника можно использовать кольца от преобразователей энергосберегающих лампочек, катушек фильтров компьютерных блоков питания и т. д. Обмотки выполняют эмалированным проводом диаметром 0.3 мм по 25 витков каждая.

Данную схему можно безболезненно упростить, исключив элементы стабилизации. В принципе схема может обойтись и без дросселя и одного из конденсаторов С2 или С3 . Упрощенную схему может собрать своими руками даже начинающий радиолюбитель.

Cхема хороша еще тем, что будет непрерывно работать, пока напряжение источника питания не снизится до 0.8 В.

Как подключить от 3В батарейки

Подключить сверхъяркий светодиод к батарее 3 В можно не используя никаких дополнительных деталей. Так как рабочее напряжение светодиода несколько больше 3 В, то светодиод будет светить не в полную силу. Иногда это может быть даже полезным. Например, используя светодиод с выключателем и дисковый аккумулятор на 3 В (в народе называемая таблеткой), применяемый в материнских платах компьютера, можно сделать небольшой брелок-фонарик. Такой миниатюрный фонарик может пригодиться в разных ситуациях.

От такой батарейки — таблетки на 3 Вольта можно запитать светодиод

Используя пару батареек 1.5 В и покупной или самодельный преобразователь для питания одного или нескольких LED, можно изготовить более серьезную конструкцию. Схема одного из подобных преобразователей (бустеров) изображена на рисунке.

Бустер на основе микросхемы LM3410 и нескольких навесных элементов имеет следующие характеристики:

  • входное напряжение 2.7 – 5.5 В.
  • максимальный выходной ток до 2.4 А.
  • количество подключаемых LED от 1 до 5.
  • частота преобразования от 0.8 до 1.6 МГц.

Выходной ток преобразователя можно регулировать, изменяя сопротивление измерительного резистора R1. Несмотря на то, что из технической документации следует, что микросхема рассчитана на подключение 5-ти светодиодов, на самом деле к ней можно подключать и 6. Это обусловлено тем, что максимальное выходное напряжение чипа 24 В. Еще LM3410 позволяет свечения светодиодов (диммирование). Для этих целей служит четвертый вывод микросхемы (DIMM). Диммирование можно осуществлять, изменяя входной ток этого вывода.

Как подключить от 9В батарейки Крона

«Крона» имеет относительно небольшую емкость и не очень подходит для питания мощных светодиодов. Максимальный ток такой батареи не должен превышать 30 – 40 мА. Поэтому к ней лучше подключить 3 последовательно соединенных светоизлучающих диода с рабочим током 20 мА. Они, как и в случае подключения к батарейке 3 вольта не будут светить в полную силу, но зато, батарея прослужит дольше.

Схема питания от батарейки крона

В одном материале трудно осветить все многообразие способов подключения светодиодов к батареям с различным напряжением и емкостью. Мы постарались рассказать о самых надежных и простых конструкциях. Надеемся, что этот материал будет полезен как начинающим, так и более опытным радиолюбителям.

Схемы стабилизаторов тока для силовых светодиодов. Изготовление простого стабилизатора тока и напряжения. Драйвер светодиодов

Существует неправильное мнение, что для светодиода важным индикатором является напряжение питания. Однако это не так. Для его правильной работы необходим постоянный ток потребления (ипотр.), Который обычно бывает в районе 20 миллиампер. Значения номинального тока за счет светодиодной конструкции, эффективности теплоотвода.

Но величина падения напряжения в основном определяется материалом полупроводника, из которого изготовлен светодиод, может достигать 1.От 8 до 3,5 В.

Отсюда следует, что это как раз стабилизатор тока для светодиода нормальной работы. В этой статье рассмотрим стабилизатор тока на LM317 для светодиодов .

Стабилизатор тока для светодиодов — Описание

Конечно, самый простой способ ограничить ипотр. Для светодиода есть. Но следует отметить, что этот способ малоэффективен из-за больших потерь энергии, и подходит только для слаботочных светодиодов.

Формула расчета необходимого сопротивления: Rd = (Упит.-Упад.) / Ipotre.

Пример: Упит. = 12В; Упад. на светодиоде = 1,5В; Ипотр. Сотовость = 0,02А. Необходимо рассчитать сопротивление РД.

В нашем случае РД = (12,5В-1,5В) / 0,02А = 550 Ом.

Но еще раз повторюсь, такой способ стабилизации подходит только для маломощных светодиодов.

Следующий вариант стабилизатор ТКА Практичнее. На следующей схеме LM317 ограничивает iPotr. Светодиод, который устанавливается сопротивлением R.

Для стабильной работы на LM317 входное напряжение должно превышать напряжение питания светодиода на 2-4 вольта. Диапазон ограничения выходного тока составляет 0,01 … 1,5 А при выходном напряжении до 35 вольт.

Формула расчета сопротивления резистора R: R = 1,25 / IPOTR.

Пример: для светодиода с iPotre. 200мА, R = 1,25 / 0, 2а = 6,25 Ом.

Вычислитель стабилизатора тока на LM317

Чтобы рассчитать сопротивление и мощность резистора, просто введите требуемый ток.

Описание нюансов сборки стабилизатора напряжения 12 вольт на машину, список необходимых запчастей, 3 схемы. + Тест для самотестирования. Мы занимаемся 5 основными вопросами по теме и 3 основными припоями для плат.

ТЕСТ:

Чтобы понять, достаточно ли у вас информации о автомобильных стабилизаторах, вам следует пройти небольшой тест:
  1. Зачем устанавливать на свой автомобиль стабилизатор на 12 вольт? А) автомобильная сеть дает непостоянное напряжение. Это зависит от степени зарядки аккумулятора.Напряжение колеблется в пределах 11,5 — 14,5 вольт. Но для светодиодных ламп требуется всего 12 вольт. Запитать нужное напряжение и поставить ЦЗ.
    б) Светодиодные лампы работают от 18 вольт. Чтобы они функционировали при подключении на автомобиле, приходится давать дополнительную нагрузку через стабилизатор.
  2. Почему светодиодные лампы часто перегорают без стабилизатора? А) основная причина — некачественный производитель светодиодов.
    б) Из-за скачкообразного напряжения на них.
  3. В каком случае к стабилизатору дополнительно подключают алюминиевый радиатор? А) Если на автомобиле установлено более 10 светодиодов.
    б) при установке на станке светодиодных ламп разного цвета.
  4. Как подключаются светодиоды? А) 3 светодиода подключаются последовательно к резистору, а после собранного комплекта параллельно подключаются следующие светодиоды.
    б) 3 светодиода подключаются параллельно резистору, а затем собранный набор последовательно подключается к следующим светодиодам.

Ответы:

  1. а) В зависимости от степени заряда АКБ на светодиодные лампы будет действовать колебательное напряжение — от 11.5 до 14,5. Именно поэтому его подключают к лампам для получения постоянного напряжения, равного 12 вольт (такой индикатор нужен светодиодам).
  2. б) Светодиоды не рассчитаны на скачки напряжения, которые исходят от АКБ, поэтому без стабилизатора скоро сгорают.
  3. а) Если на автомобиле установлено более 10 светодиодов, желательно оснастить схему алюминиевым радиатором.
  4. б) Сначала к резистору последовательно подключаются 3 светодиода, а после берут новую заминку и уже параллельно соединяют между собой.

Автовладельцы часто устанавливают на свой автомобиль светодиодную подсветку. Но лампочки часто выходят из строя, и вся созданная красота тут же вспыхивает. Объясняется это тем, что светодиодные лампочки работают некорректно, если их просто подключить к электрической сети. Для них необходимо использовать специальные стабилизаторы. Только в этом случае лампы будут защищены от перепадов напряжения, перегрева, повреждения важных узлов. Чтобы установить стабилизатор напряжения на свой автомобиль, вам необходимо подробно разобраться в этом вопросе и изучить простую схему, которая будет собрана своими руками.

Определение: CH 12 вольт для автомобиля — небольшое устройство, предназначенное для очистки от чрезмерного автомобильного напряжения, идущего от аккумулятора. В результате подключенные светодиодные лампы получаются постоянной нагрузкой 12 вольт.

Подбор стабилизатора 12 В

Бортовая сеть автомобиля обеспечивает питание от 13 В, но для работы светодиодов нужно всего 12 В. Поэтому необходимо установить стабилизатор напряжения, который будет обеспечивать 12 В.

Установив такое оборудование для обеспечения нормальных условий работы светодиодного освещения, которое долгое время не выйдет из строя.Выбирая стабилизаторы, автомобилисты сталкиваются с проблемами, ведь конструкций очень много, и работают они по-разному.

Выбирает стабилизатор, который:

  1. Он будет нормально работать.
  2. Обеспечивают надежную защиту и безопасность светотехники.

Стабилизатор напряжения простой 12 своими руками

Если есть даже небольшие навыки сборки электрической схемы, то стабилизатор напряжения приобретается по желанию в готовом виде.На изготовление самодельного устройства Человек потратит 50 рублей и меньше, готовая модель стоит несколько дороже. Переплачивать нет смысла, ведь в результате получается качественный аппарат, отвечающий всем необходимым требованиям.

Самый простой, но функциональный стабилизатор можно сделать своими руками без особых усилий. Импульсный прибор собрать очень сложно, особенно новичку, а потому стоит рассмотреть на нем линейные стабилизаторы и любительские схемы.

Самый простой стабилизатор напряжения 12 вольт собран из схемы (готов), как и сопротивление резистора.Желательно использовать микросхему LM317. Все элементы будут прикреплены к перфорированной панели или универсальной печатной плате. Если правильно собрать прибор и подключить к автомобилю, можно обеспечить хорошее освещение — лампочки перестанут мигать.


Перечень деталей CH 12 V

Чтобы сделать стабилизатор напряжения своими руками, следует найти или купить следующие детали:

  1. Доска — 35 на 20 мм.
  2. Микросхема
  3. LD 1084.
  4. Диодный мост RS407.Если этого нет, выбираем любой маленький диод, предназначенный для обратного тока.
  5. Блок питания с транзистором и двумя сопротивлениями. Это оборудование нужно для того, чтобы выключить торец при включении ближнего или дальнего света.

Три светодиода необходимо преобразовать в токоограничивающий резистор, регулирующий электричество. Этот набор после того, как он должен быть подключен к следующему комплекту лампочек.

Как сделать стабилизатор напряжения на 12 вольт для светодиодов в машине на микросхеме L7812

Для сборки качественного стабилизатора напряжения можно использовать трехконтактный стабилизатор постоянного тока, выпускаемый в серии L7812.Это устройство позволит не только отделить этикетки в автомобиле, но и целую ленту из светодиодов.


L7812.
Компоненты:
  1. Микросхема L7812.
  2. Конденсатор 330 MKF 16 В.
  3. Конденсатор 100 мкФ 16 В.
  4. Выпрямительный диод на 1 ампер. Вы можете использовать 1N4001 или диод Шоттки.
  5. Термоусадочная на 3 мм.
  6. Электропроводка соединительная.
Порядок сборки:
  1. Немного укоротите одну ножку стабилизатора.
  2. Используйте припой.
  3. Добавьте диод в короткую ножку, а после и конденсаторы.
  4. Накладываем термоусадку на проводку.
  5. Занимаемся коммутацией проводов.
  6. Носим термоусадочную пленку, прессуем строительным феном или зажигалкой. Важно не переставлять и не растапливать термоусадку.
  7. На входе с левой стороны подаем питание, на правую будет выводиться светодиодная лента.
  8. Проводим тест — включаем освещение.Лента должна загореться, теперь ее работа увеличится.

Так стабилизатор напряжения 22В своими руками.

Схема стабилизатора напряжения 12 В для светодиодов в авторучках на базе LM2940CT-12.0


Также для сборки качественного стабилизатора напряжения используется схема LM2940CT-12.0. В качестве корпуса мы используем абсолютно любой материал, кроме дерева. Если в автомобиле планируется установить более 10 светодиодных ламп, то алюминиевый радиатор желательно прикрепить к стабилизатору.

Возможно, у кого-то уже был опыт работы с подобным оборудованием, и они скажут, что нет необходимости использовать дополнительные детали — напрямую подключайте светодиоды и получайте удовольствие от работы. Так поступить можно, но в этом случае лампочки будут постоянно находиться в неблагоприятных условиях, а значит, скоро сгорят.

Достоинства всех перечисленных выше схем стабилизатора напряжения — простота сборки. Чтобы собрать стабилизатор, не нужно обладать какими-то специальными навыками и навыками.Но если представленные картинки только вызывают недоумение, то не пытайтесь собрать схему своими руками.

Еще важно знать 3 нюанса, как собрать стабилизатор напряжения 12 вольт своими руками

  1. Светодиоды предпочтительно подключаются через стабилизатор тока. Таким образом удастся уравновесить колебания электрической сети, а владелец автомобиля не будет беспокоиться о сбрасывании тока.
  2. Требования к питанию также должны соблюдаться, потому что, таким образом, собственный самосборный стабилизатор может быть правильно настроен под электрическую сеть.
  3. Желательно собрать такой агрегат, который обеспечит достойную устойчивость, надежность и устойчивость — стабилизатор должен продержаться долгие годы. Именно поэтому не обязательно дешеветь на комплектующие — приобретайте в хороших магазинах электронику.

Как избежать 3х ошибок при пайке схем

  1. Перед началом всех работ по штырю обязательно подберем наиболее подходящий паяльный аппарат для сборки микросхемы. Старый, который лежит дома или в гараже, подойдет только опытным людям, новенький испортит плату, не справился с мощностью.Наиболее подходящий диапазон напряжений для подключения платы и проводки — 15-30 Вт. Большой мощности не используем, иначе сгорит плата и придется начинать все сначала, с новинки.
  2. Перед тем, как приступить к подключению соединений пайкой, убедитесь, что схема хорошо очищена. Для качественной обработки используется простой состав — смешивается любое мыло с чистой водой. После чистая салфетка вырисовывалась в приготовленном растворе и доска очень качественная по всей поверхности.Если на металле остались места мыла, то протираем их аккуратной сухой тканью. На досках часто бывают довольно плотные отложения. Чтобы избавиться от них, придется отправиться в магазин с электрооборудованием и купить специальный очищающий состав. Продавцы подскажут все необходимое. Обработайте до появления светлого металлического блеска.
  3. Контакты на плате У нас в правильной последовательности — для начала работаем с небольшими резисторами, а потом переходим к большим деталям. Если сначала скрепить все основные детали, то мелкие детали будет очень неудобно прикреплять — большие детали помешают.

Не пренебрегайте советами. Они создадут более качественный состав, что означает долговечность стабилизатора.

Паяльник Top 3 для плат

Чтобы упростить себе работу на шипе стабилизатора, желательно купить качественный паяльник. В магазинах есть агрегаты хороших и проверенных производителей, на которые стоит обратить внимание:

  1. ERSA — немецкая компания. Товар очень хороший и надежный, но дорогой, а потому для дома по карману далеко не каждому.
  2. Китайская фирма Quick. Качество на высоте, а цена приемлемая.
  3. Лаки. Самый бюджетный вариант. Нельзя оставлять включенный автомат без присмотра — возможно возгорание.

Паяльник потребляет 10 Вт, чтобы сделать простую микропланшет. При покупке читайте ручку — она ​​не должна быстро нагреваться. Лес — идеальный вариант. Пластик быстро нагревается, эбонит тяжелый, поэтому работать с мелкими деталями затруднительно.

Силы Желательно выбирать из меди — от нагара легко очистить после работы.Балай бывает разной формы и продается наборами. Это бесполезно, но опытным людям будет удобно пользоваться насадками разной конфигурации.

Стабилизаторы напряжения автомобильные

Ответы на 5 часто задаваемых вопросов по пайке

  1. Сколько нужно держать предварительно нагретое жало на деталях для хорошей фиксации? — 3 секунды хватит, если протянуть дольше, плата сгорает.
  2. Сколько добавляется припой? — Следите за тем, чтобы покрыть обработанную часть.Иногда хватает и капель.
  3. Пайка по внешнему виду должна стать блестящей или матовой? — блестящий.
  4. Купить дополнительные средства защиты? — Только очки. Если вы подобрали хороший паяльник, защищать руки не нужно.
  5. Какая температура у микросхемы? — 230 градусов.
Содержимое:

Ни для кого не секрет, что светодиодные лампы периодически перегорают, несмотря на длительный гарантийный срок, установленный производителями.Многие люди просто не знают этих причин, по которым они терпят неудачу. Тем не менее особых сложностей здесь нет, просто такие лампы имеют определенные параметры, требующие обязательной стабилизации. Это мощность тока в самой лампе и падение напряжения в питающей сети.

Для решения этой проблемы используется стабилизатор тока для светодиодов. Однако не все стабилизаторы могут эффективно решить поставленную задачу. Поэтому в некоторых случаях рекомендуется изготовить стабилизатор своими руками.Перед этим процессом следует внимательно разобраться в предназначении, устройстве и принципе работы стабилизатора, чтобы не допустить ошибок при сборке схемы.

Назначение стабилизатора

Основная функция стабилизатора — выравнивание тока вне зависимости от падений напряжения в электрической сети. Есть два типа стабилизирующих устройств — линейные и импульсные. В первом случае все выходные параметры регулируются путем распределения мощности между нагрузкой и собственным сопротивлением.Второй вариант намного эффективнее, так как в этом случае на светодиоды поступает только необходимое количество мощности. В основе действия таких стабилизаторов лежит принцип широтно-импульсной модуляции.

В более высоком КПД, который составляет не менее 90%. Однако они имеют довольно сложную схему и соответственно высокую цену по сравнению с приборами линейного типа. Следует отметить, что использование стабилизаторов LM317 допустимо только для линейных схем. Их нельзя включать в цепочки с большими значениями тока.Вот почему эти устройства лучше всего подходят для совместного использования со светодиодами.

Необходимость использования стабилизаторов объясняется особенностями параметров светодиодов. Они отличаются нелинейной вольт-амперной характеристикой, когда изменение напряжения на светодиоде приводит к непропорциональному изменению тока. При повышении напряжения нарастание тока в самом начале происходит очень медленно, поэтому свечения не наблюдается. Далее, когда напряжение достигает порогового значения, начинается излучение света с одновременным быстрым увеличением тока.Если напряжение продолжает расти, в этом случае происходит еще большее увеличение тока, что приводит к возгоранию светодиода.

Характеристики светодиодов отражают значение порогового напряжения в виде постоянного напряжения при номинальном токе. Индикатор номинального тока для большинства маломощных светодиодов составляет 20 мА. Для мощных светодиодов требуется более высокий номинальный ток, достигающий 350 мА и выше. Они выделяют большое количество тепла и устанавливаются на специальные радиаторы.

Для нормальной работы светодиодов питание на них следует подключать через стабилизатор тока. Это связано с разбросом порогового напряжения. То есть светодиоды разных типов отличаются разным постоянным напряжением. Даже у однотипных ламп может быть не одинаковое постоянное напряжение, причем не только его минимальное, но и максимальное значение.

Таким образом, если к одному источнику, то они будут пропускать через себя совершенно другой ток. Разница токов приводит к их преждевременному выходу из строя или мгновенному выгоранию.Чтобы избежать подобных ситуаций, светодиоды рекомендуется включать совместно со стабилизаторами, предназначенными для выравнивания тока и доведения его до определенного заданного значения.

Стабилизаторы линейного типа

С помощью стабилизатора ток устанавливается равным току, проходящему через светодиод, с заданным значением, которое не зависит от напряжения, приложенного к диаграмме. Если напряжение превышает пороговый уровень, ток останется прежним и не изменится. В дальнейшем при увеличении общего напряжения его рост будет происходить только на стабилизаторе тока, а на светодиоде он останется неизменным.

Таким образом, при неизменных параметрах светодиода стабилизатор тока можно назвать стабилизатором его мощности. Распределение активной мощности Разделенное устройство в виде тепла происходит между стабилизатором и светодиодом пропорционально напряжению на каждом из них. Этот тип стабилизатора получил название линейного.

Нагрев линейного стабилизатора тока увеличивается с ростом приложенного к нему напряжения. Это его главный недостаток. Однако у этого устройства есть ряд преимуществ.Во время работы отсутствуют электромагнитные помехи. Конструкция очень простая, что делает изделие довольно дешевым в большинстве схем.

Есть области применения, в которых линейный стабилизатор тока для светодиодов на 12 В становится более эффективным по сравнению с импульсным преобразователем, особенно когда напряжение на входе лишь немного превышает напряжение на светодиоде. Если питание осуществляется от сети, в схеме можно использовать трансформатор, к выходу подключают линейный стабилизатор.

Таким образом, сначала снижается напряжение до того же уровня, что и в светодиоде, после чего линейный стабилизатор устанавливает необходимое значение тока. Другой вариант предполагает приближение напряжения светодиода к напряжению питания. Для этого выполняется последовательное включение светодиодов в общую цепочку. В результате общее напряжение в цепи будет величиной напряжений каждого светодиода.

Некоторые стабилизаторы тока могут быть выполнены на полевых транзисторах с использованием перехода P-P.Ток протока устанавливается с помощью клапана заслонки. Ток, проходящий через транзистор, такой же, как начальный ток протекания, указанный в технической документации. Величина минимального рабочего напряжения такого устройства зависит от транзистора и составляет около 3 В.

Стабилизаторы импульсов Toka

К более экономичным приборам относятся стабилизаторы тока, в основе которых лежит импульсный преобразователь. Этот элемент известен как ключевой преобразователь или преобразователь. Внутри преобразователя мощность накачивается определенными порциями в виде импульсов, что и определило его название.В нормальном рабочем устройстве энергопотребление происходит непрерывно. Он непрерывно передается между входными и выходными цепями, а также постоянно попадает в нагрузку.

Электрические схемы

IN Стабилизатор тока и напряжения на основе импульсных преобразователей имеет практически одинаковый принцип действия. Единственное отличие состоит в том, чтобы контролировать ток через нагрузку, а не нагрузку на нагрузку. Если ток в нагрузке уменьшается, стабилизатор выполняет переключение мощности. В случае увеличения мощность снижается.Это позволяет создавать стабилизаторы тока для мощных светодиодов.

В наиболее распространенных схемах дополнительно присутствует струйный элемент, называемый дросселем. От входной цепочки по ней определенными участками поступает энергия, которая в дальнейшем передается на нагрузку. Эта передача происходит с помощью переключателя или ключа, находящегося в двух основных состояниях — выключенном и включенном. В первом случае ток не проходит, и мощность не выделяется. Во втором случае ключ проводит ток, но при этом имеет очень низкое сопротивление.Следовательно, и выделенная мощность близка к нулю. Таким образом, передача энергии происходит практически без потери мощности. Однако импульсный ток считается нестабильным, и для его стабилизации используются специальные фильтры.

Импульсный преобразователь наряду с явными достоинствами имеет серьезные недостатки, устранение которых требует конкретных конструктивных и технических решений. Эти устройства отличаются сложностью конструкции, они создают электромагнитные и электрические помехи.Они тратят определенное количество энергии на свою работу и в результате нагреваются. Стоимость их значительно выше, чем у линейных стабилизаторов и трансформаторных устройств. Однако большинство недостатков успешно преодолеваются, поэтому импульсные стабилизаторы пользуются большой популярностью у потребителей.

Драйвер светодиодов

Источники света на светодиодах становятся все более распространенными, вытесняя других конкурентов, как в области применения индикации, так и в качестве мощных осветительных приборов.Для стабильной и долговечной работы источников на светодиодах требуется ряд требований.

Источник тока или напряжение?

Наиболее знакомо понятие стабилизатора напряжения, т. Е. Устройств, обеспечивающих выдачу стабильного напряжения вне зависимости от условий: мощности нагрузки, температуры, значений входного напряжения. Для питания источников освещения на светодиодах необходимо обеспечить стабильный ток через диод. Это связано с тем, что полупроводниковые элементы имеют нелинейную зависимость тока через p-N переход.Изменение внешних условий влияет на величину протекающего тока, которая может выйти за допустимые пределы. Поэтому концепция стабилизатора напряжения для светодиодов не имеет смысла. Особенно важно обеспечить стабилизацию тока для светодиодов в автомобиле, где напряжение не отличается стабильностью, а температурный диапазон изменения температуры очень широк.

Эти условия необходимы для применения источника тока. В простейшем случае можно довольствоваться простым ограничением максимального значения с помощью ограничительного резистора, но это не обеспечивает стабильной яркости и неэффективно с энергетической точки зрения.

На заметку. Более рациональный источник питания на стабилизированное значение с использованием схемотехнических решений источников тока на малогабаритных электронных компонентах.

Схематическое решение

Развитие современной микроэлектроники позволяет создавать устройства с требуемыми параметрами, используя минимум элементов. Довольно хорошо зарекомендовавшие себя устройства генераторов тока на интегральной микросхеме LM317. В целом данная микросхема представляет собой интегральный стабилизатор напряжения, но некоторые изменения стандартной схемы включения, кстати, указанные в технической документации, позволяют использовать эту ИМС в качестве источника тока, в том числе для питания светодиодов.

Параметры микросхемы следующие:

  • Напряжение — 1,2-37В;
  • Ток через микросхему — до 2а в случае использования LM317T.

Множество разновидностей этого стабилизатора выпускаются разными производителями, но разница в стоимости и габаритах на минимальную и максимальную мощность незначительна, поэтому имеет смысл использовать максимально доступную мощность, питание которой никогда не помешает.

Важно! При использовании мощного стабилизатора тока для светодиодов с нагрузкой, близкой к максимальной, обязательно используйте радиатор, который позволит выделить выделяемый интегральный микрокамер тепла.

Итак, ниже представлен наиболее простой, но надежно работающий стабилизатор тока на микросхеме LM317 для светодиодов.

В данной схеме микросхема имеет только один резистор во внешней обмотке. Именно с его помощью устанавливается значение выходного параметра. Это делается по формуле:

Данный вариант стабилизатора работает в диапазоне значений от 0,01 до 1,5а. Верхний предел ограничен мощностью чипа. Мощность, которая рассеивается на резисторе, может составлять несколько ватт при максимальном токе. Точнее определяется из выражения:

Важно! При значениях более 0,3А использование радиатора охлаждения для микросхемы обязательно!

Добавив на схему всего два элемента: мощный транзистор и резистор, можно поднять выходной ток до 10а.

На схеме представлен мощный составной транзистор КТ825 с любой буквой. Резистор R2 выполняет ту же функцию, что и в предыдущей схеме, и рассчитывается аналогично.Поскольку по нему течет большой ток, а значение сопротивления невелико, следует использовать провод. Резистор R1 устанавливает смещение на основе транзистора и должен иметь рассеивающую мощность 0,25-0,5 Вт.

В обеих цепях источник напряжения питания (входное напряжение) может быть от 3 до 38В. Для поддержания требуемого тока во всем диапазоне нагрузок напряжение питания должно быть приближено к максимальному значению.

Пример. Пусть будет на 20мА. Тогда с одним подключенным диодом выходное напряжение будет около 2-3В (в зависимости от типа светодиода).Если включить два последовательных светодиода, то для обеспечения необходимого тока 20 мА схема уже превысит ровно в два раза большее напряжение. Подобные расчеты можно произвести для любого количества позиций.

Требуемое входное напряжение может быть получено с помощью понижающего трансформатора с мостовым выпрямителем и фильтрующего конденсатора.

Диоды надо рассчитывать на требуемый ток, а емкость конденсатора надо брать порядка нескольких тысяч микрофрейд.

Важно! Рабочее напряжение конденсатора должно превышать напряжение питания примерно в полтора раза, то есть в этом случае должно быть не менее 50В.

В автомобиле напряжение бортовой сети не более 14В. Поскольку частота пульсаций здесь выше, чем в домашней сети, а амплитуда невысока, емкость конденсатора может быть меньше. Также рабочее напряжение может составлять 25 В. Разумеется, выпрямительный мост здесь не нужен.

Как видите, сделать стабилизатор тока для светодиодов своими руками — задача простая.Важна аккуратность, внимательность и минимум навыков работы с электроникой.

Видео

Сегодня напишу о чем давно надо было написать, как подсветка и поделки из светодиодов Становится все больше, но бывает в них перегорает один-два светодиода, а уже красота уходит в фон, чтобы этого не произошло, нужно поставить стабилизаторы на LED Products. Поставив такие стабилизаторы один раз, мы добиваемся долговечности и бесперебойной работы наших светодиодов.

Ни для кого не секрет, что светодиодных ламп , Используемые в автомобиле, как и большинство светодиодных лент, рассчитаны на постоянное напряжение 12 вольт. А также всем известно, что напряжение в бортовой сети может превышать 15 вольт, что может быть губительно для чувствительных светодиодов. Вследствие резких скачков напряжения светодиоды могут выйти из строя (мигать, терять яркость или что чаще встречается в оплетке).

С этой проблемой можно бороться И даже нужно, тем более специальных знаний и затрат она не требует.Как вы, наверное, уже догадались, для борьбы с завышенным (для светодиодов) напряжением необходимо докупить и сделать стабилизатор напряжения. Стабилизатор на 12 вольт легко найти в любом магазине радиодеталей. Маркировка может быть разная, я взял катушку 8b (15 руб.) И диодную 1N4007 (1 рубль). Диод нужен для предотвращения перемешивания и вставьте его на вход стабилизатора.

Схема подключения

Ботинки

Стал подключать стабилизаторы к подсветке (это я уже сделал).Как видно на картинке, напряжение в бортовой сети при зажигании (напряжение аккумуляторной батареи) составляет 12,24 вольт, что для светодиодной ленты это не страшно, но напряжение в бортовой сети при спроектированном двигателе угрожает (для светодиодов) 14,44 вольт. Далее видим, что стабилизатор отлично справляется со своей задачей и выдает на выходе напряжение, не превышающее 12 вольт, что не может не радовать.

Единственный пример, в любом другом электронном письме. Цепи Ситуация аналогичная

Схема подключения

Дверь передняя правая

Водительская дверь

Ну и все осталось только все хорошо выставить, удачно провести запас проводов и собрать накладки дверей.
За все время эксплуатации ни один светодиод не поборол и надеюсь что подсветка будет очень долго радовать меня и окружающих.

Надеюсь кому пригодится …

Автоматический регулятор напряжения цепи 12 вольт. Две простые, но надежные схемы стабилизатора тока для светодиодов в автомобилях

› Стабилизатор мощности для светодиодов 12В

Перегоревший светодиод (кукуруза) габаритами за 250 рублей стимулировал изучение данной темы.Установив эту хрень на машину, я столкнулся с тем, что они довольно быстро выходили из строя из-за некачественного питания.

Преамбула

Автомобильная бортовая сеть электроснабжения — довольно «грязная» среда с точки зрения всевозможных помех, просадок и скачков напряжения. При работе генератора возникают импульсные шумы амплитудой до ста и более вольт, «ходящее» напряжение в зависимости от состояния АКБ и оборотов двигателя, сильные просадки при работе стартера.Плюс к этому вносятся помехи от некачественных потребителей внутри самого автомобиля, статические помехи от движущихся частей шасси и внешних источников, таких как трамвайные линии и линии электропередач и т. Д. Если штатные электронные компоненты автомобиля, как правило, имеют хорошую защиту и фильтрацию от таких проблем, то менее важные электрические цепи, такие как цепи освещения или цепи прикуривателя, практически не защищены от них. Это нужно учитывать при собственной модификации автомобиля.Набирающие популярность дневные ходовые огни и светодиодное освещение используют светодиоды в качестве светоизлучающих элементов. С точки зрения электричества светодиоды — очень требовательные потребители. Для работы в номинальном режиме, а значит, для сохранения заявленных сроков службы и светосилы светодиодам требуется постоянный, строго дозированный ток питания, отсутствие импульсных помех, особенно обратной полярности по отношению к рабочей. Результат несоблюдения этих условий вы наверняка видели на любой оживленной улице, глядя на машину с дешевыми китайскими «кластерами» — одни светодиоды не горят, другие мерцают в такт генератору или еле тлеют.Печальное зрелище. Причина в том, что в таких кластерах в лучшем случае используются токоограничивающие резисторы и диоды для исключения излучения обратной полярности и защиты от обратной полярности, при этом не предусмотрена фильтрация или стабилизация. От такой простой схемы есть смысл только при питании стабилизированным и отфильтрованным напряжением (но даже в этом случае не учитывается температурный режим светодиодов). Таким образом, вся «грязь» из автомобильной бортовой сети падает прямо на тонкие кристаллы светодиодов, вызывая их преждевременную деградацию и разрушение.Очевидно, чтобы этого избежать, следует запитать светодиоды через стабилизатор фильтра. В идеале это должен быть стабилизатор тока, но для питания заводских осветителей подойдет и стабилизатор напряжения, изначально рассчитанный на питание от 12 вольт.

(осторожно, мультибукаф)

Итак, наша ТЗ заключается в следующем: имея входное напряжение бортовой сети автомобиля со всеми его скачками, просадками и шумами, получить стабильные 12 вольт при токе нагрузки порядка 0,3-0,4 амперы на выходе.
Здесь мы сталкиваемся с первой трудностью — напряжение электросистемы в разных ситуациях может быть как выше, так и ниже 12 вольт. В среднем мы принимаем диапазон входного напряжения 8-16 вольт. Соответственно, схема стабилизатора в различных ситуациях должна будет работать как в повышенном, так и в нижнем режимах. Поэтому от такого простого варианта, как использование параметрического стабилизатора (отечественный МС КР12ЕН или зарубежный LM7812), можно сразу отказаться, так как эти микросхемы работают только на понижение, при работе подвержены нагреву и требуют входного напряжения не менее на пару вольт выше выходного напряжения.Очевидно, что лучшим выбором будет использование импульсного преобразователя напряжения, к тому же способного работать в режиме «вверх-вниз». Для построения этого преобразователя используется топология SEPIC (несимметричный преобразователь первичной индуктивности, преобразователь с несимметрично нагруженной первичной индуктивностью), а в качестве управляющей микросхемы используется дешевый и широко распространенный MC3x063, имеющий множество аналогов.
Более подробное описание архитектуры SEPIC и принципов работы преобразователей на ее основе можно найти в Интернете, просто введя строку «sepic converter» в поисковой системе.Эта тема хорошо разжевана, в том числе статей на русском языке очень много, поэтому подробно останавливаться на этом не будем. Но тот факт, что преобразователь sepic позволяет получить стабильное выходное напряжение при входном напряжении как выше, так и ниже выходного, для нас сейчас более важен. Находится отличная статья с описанием методики расчета параметров такого преобразователя и даже онлайн-калькулятор. По сути, рассмотренная в статье схема представляет собой переработанное под автомобильную специфику решение, доступное на том же сайте.
Сразу отметим, что поскольку в схеме присутствует несинхронный элемент — диод Шоттки, а микросхема управления имеет относительно низкую рабочую частоту, ее нагрузочная способность очень мала. На самом деле 1-1,5 ампера — разумный предел тока нагрузки, поскольку с его ростом также увеличиваются пиковые токи через переключатель, диод и катушки (которые в среднем в три раза превышают номинальный ток). Конечно, все это можно решить, применив более мощный транзистор и диод, применив внешний теплоотвод и обмотанные толстым проводом катушки, но габариты такого изделия, КПД и тепловые потери будут совершенно неприемлемыми.Для питания мощных потребителей, таких как ноутбук или автомобильный компьютер, лучше использовать другие схемотехнические решения, например схемы синхронного преобразователя на MC LTC3780 или БП с трансформаторной развязкой. В нашем случае вполне подойдет рассмотренная ниже схема.
Вторая проблема — защита от помех. Решить относительно легко. На входе должен быть установлен хороший LC-фильтр для подавления различных гармоник периодических помех и плавных скачков тока. Для защиты от импульсных помех используем супрессор или TVS-диод, в худшем случае подойдет двуханодный стабилитрон, хотя смысла как такового в этом почти нет.
Ниже приведены две принципиальные схемы, на одной из которых показан преобразователь напряжения, а на другой — преобразователь тока. Соответственно, первая выдает постоянное напряжение при изменении тока нагрузки в определенных пределах, что подходит для питания купленных в магазине готовых осветителей, так как они уже рассчитаны на 12 вольт. Второй вырабатывает постоянный ток при изменении напряжения в определенных пределах, в этом случае схема рассчитана на ток 20 мА — стандартный ток большинства распространенных светодиодов.Это позволяет подключить цепочку из десятка последовательно соединенных светодиодов напрямую к стабилизатору, что может пригодиться, например, если вы сделали самодельное светодиодное освещение типа «ресниц» или «ангельских глазков» в фарах.
Разумеется, никто не потрудится пересчитать номиналы элементов схемы под ваши нужды.

Возможность диммирования не присуща, так как она нам не нужна. Готовое изделие имеет габариты порядка 70 на 20 мм, высоту 25 мм (из-за высокого электролита, но при желании его можно заменить на низкопрофильный или положить набок).Входные и выходные контактные площадки имеют стандартные размеры для установки винтовых клеммных колодок, что облегчает подключение и отключение проводов. Три монтажных отверстия для шурупов M3 позволяют закрепить доску в футляре или удобном месте для подводки. Внимание! Подложка, на которую монтируется плата, должна быть непроводящей, иначе все закоротит! Перед установкой в ​​автомобиль желательно покрыть плату защитным лаком в несколько слоев, чтобы минимизировать влияние перепадов температуры и влажности на схему.

Так выглядит готовый продукт в реальности:

При попытке воспроизвести продукт люди, не имеющие опыта пайки SMD компонентов, могут столкнуться с некоторыми трудностями, поэтому, если есть интерес к этой теме, я могу сделать макет платы для микруху в DIP пакете и традиционный вывод деталей. Размеры обязательно увеличатся, за что паять будет несложно. Схема
, плата в Spring Layot и спецификации в архиве по ссылке или здесь: Google-Disk.

За проделанную огромную работу спасибо Коста, он же Meta_Kot

Цена вопроса: 150 ₽ Пробег: 15000 км

Сегодня нетрудно заметить, что светодиодные элементы все чаще вводятся в нашу жизнь. Техник со светодиодами становится все больше, но бывает, что одна или несколько ламп перегорают и красота устройства отходит на второй план. Особенно это касается кустарных самоделок, где часто преобладает ручной труд. Чтобы этого не происходило, необходимо ставить стабилизаторы на сборки со светодиодными элементами.

Хорошо известно, что лампы накаливания (светодиоды) рассчитаны максимум на 12 вольт, а также известно, что бортовое напряжение в автомобиле может превышать 15 вольт, что вредно для вышеуказанных ламп. Из-за таких резких скачков напряжения светодиоды могут выйти из строя — мигать, терять яркость и так далее.

Чтобы этого не случилось, необходимо только вставить в узел стабилизатор. Изготовление устойчивости, о которой пойдет речь далее, не требует особых навыков. Стабилизатор на 12 вольт легко найти в любом магазине радиодеталей.

Маркировка стабилизаторов может быть разной, в данном случае использовались КРЕН-8Б и диод 1N4007, что необходимо для предотвращения возможного переворота. Диод необходимо припаять ко входу стабилизатора.

Так как я уже сделал подсветку для ног, соответственно сначала по этой схеме подключился стабилизатор. Напряжение при выключенном зажигании составляет 12,24 вольт — это напряжение аккумуляторной батареи — это напряжение не представляет угрозы для лампочек, и даже при работающем двигателе напряжение резко скачет до 14.44 вольт, что плохо для светодиодов.



При подключении стабилизатора можно легко заметить, что этот элемент явно выполняет свою работу.

Подключаем к подсветке днища дверей. Приходится снимать обшивку двери.


Самый важный параметр мощности любого светодиода — это сила тока. При подключении светодиода в автомобиле необходимый ток можно выставить с помощью резистора. В этом случае резистор рассчитывается исходя из максимального напряжения бортовой сети (14.5В). Отрицательная сторона этого подключения — свечение светодиода не на полной яркости, когда напряжение в бортовой сети автомобиля ниже максимального значения.

Более правильный способ — подключить светодиод через стабилизатор тока (драйвер). По сравнению с токоограничивающим резистором стабилизатор тока имеет более высокий КПД и способен обеспечивать светодиод необходимым током как при максимальном, так и при низком напряжении в бортовой сети автомобиля. Самыми надежными и простыми в сборке считаются стабилизаторы на базе специализированных интегральных схем (ИС).

Стабилизатор на LM317

Трехконтактный регулируемый стабилизатор lm317 идеально подходит для разработки простых источников питания, которые используются в самых разных устройствах. Простейшая схема включения lm317 в качестве стабилизатора тока имеет высокую надежность и небольшую обвязку. Типовая схема драйвера тока для lm317 для автомобиля представлена ​​на рисунке ниже и содержит всего два электронных компонента: микросхему и резистор. В дополнение к этой схеме существует множество других, более сложных схемотехнических решений для построения драйверов с использованием многих электронных компонентов.Подробное описание, принцип работы, расчеты и подбор элементов двух самых популярных схем на lm317 можно найти.

Основными преимуществами линейных стабилизаторов на основе lm317 являются простота сборки и невысокая стоимость комплектующих, используемых в обвязке. Розничная цена самого ИП составляет не более 1 доллара, а готовую схему драйвера в корректировке не требуется. Достаточно измерить выходной ток мультиметром, чтобы убедиться, что он соответствует расчетным данным.

Недостатками IM lm317 являются сильный нагрев корпуса при выходной мощности более 1 Вт и, как следствие, необходимость отвода тепла. Для этого в корпусе типа ТО-220 предусмотрено отверстие для болтового соединения с радиатором. Также недостатком указанной схемы можно считать максимальный выходной ток, не более 1,5 А, который устанавливает ограничение на количество светодиодов в нагрузке. Однако этого можно избежать, подключив несколько стабилизаторов тока параллельно или используя микросхему lm338 или lm350 вместо lm317, которые рассчитаны на более высокие токи нагрузки.

Стабилизатор на PT4115

PT4115 — это унифицированный чип, разработанный PowTech специально для создания драйверов для мощных светодиодов, которые также можно использовать в автомобиле. Типовая схема переключения PT4115 и формула для расчета выходного тока показаны на рисунке ниже.

Стоит подчеркнуть важность наличия на входе конденсатора, без которого PT4115 выйдет из строя при первом запуске.

Можно понять, почему это происходит, а также ознакомиться с более детальным расчетом и выбором остальных элементов схемы.Микросхема получила известность благодаря своей многофункциональности и минимальному набору деталей в жгуте. Чтобы зажечь светодиод мощностью от 1 до 10 Вт, автомобилисту достаточно рассчитать резистор и выбрать индуктивность из стандартного списка.

PT4115 имеет вход DIM, что значительно расширяет его возможности. В самом простом варианте, когда нужно просто зажечь светодиод заданной яркости, он не используется. Но если необходимо отрегулировать яркость светодиода, то на вход DIM подается либо сигнал с выхода преобразователя частоты, либо напряжение с выхода потенциометра.Есть варианты установки определенного потенциала на выводе DIM с помощью МОП-транзистора. В этом случае при включении питания светодиод загорается на полную яркость, а при запуске МОП-транзистора светодиод снижает яркость вдвое.

К недостаткам драйвера светодиода для автомобилей на базе PT4115 можно отнести сложность выбора токозадающего резистора Rs из-за его очень низкого сопротивления. Срок службы светодиода напрямую зависит от точности его номинала.

Обе эти микросхемы зарекомендовали себя при создании драйверов для светодиодов в автомобиле своими руками.LM317 — хорошо известный проверенный линейный стабилизатор, надежность которого не вызывает сомнений. Водитель на его основе подходит для организации освещения салона и приборной панели, поворотов и других элементов светодиодного тюнинга в автомобиле.

PT4115 — это новый интегрированный стабилизатор с мощным выходным MOSFET-транзистором, высоким КПД и возможностью регулирования яркости.

Читать то же

Светодиодные поделки

, а также различные виды подсветки сегодня все более распространены. Однако для того, чтобы перестать работать, стоит один светодиод, так как все впечатление от света исчезает.Для этого, чтобы не наступило разочарование, стоит использовать стабилизаторы, которые устанавливаются на светодиодные конструкции.

Самый простой стабилизатор своими руками

Если посмотреть причину, по которой перегорают светодиодные лампы, то все просто. Ни для кого не секрет, что все светодиодные элементы, которые столь оригинально украшают автомобиль, рассчитаны на работу при постоянном напряжении с напряжением 12 вольт. Но напряжение, которое выдает бортовая сеть, вряд ли может обеспечить такой показатель.Как правило, это 15 вольт. В результате светодиоды начинают тускнеть, мигать или полностью перестают работать.

Для того, чтобы разобраться с такой проблемой, стоит использовать стабилизатор напряжения , который вы можете создать самостоятельно, потому что для этого не требуются специальные знания.


Стабилизатор на 12 вольт можно купить практически в любом магазине, где продаются радиодетали. Вы можете выбрать совершенно другую маркировку. Самый простой вариант — CREN 8B, также стоит купить диод 1N4007.Последний следует использовать, чтобы исключить возможность появления переполюсовки. На создавая стабилизатор диод нужно припаять к входу. Когда диод встал на место, можно приступать к подключению стабилизаторов.

После работы можно проводить замеры. Замерив напряжение, которое бортовая сеть выдает при неработающем зажигании, видим, что оно составляет 12,24 вольта. Светодиодные элементы могут на это не реагировать. Но если включить зажигание, то напряжение будет 14.44. После того, как стабилизаторы установлены, видно, что они полностью выполняют свою работу и напряжение выдается не более 12 вольт.

Думаю каждый, кто ставил светодиоды в машину, рано или поздно сталкивался с тем, что диоды перегорают. Это связано с тем, что в электропроводке исправного транспортного средства напряжение «ходит» в диапазоне от 11 до 15 вольт плюс различные скачки напряжения, шумы и импульсы обратного тока.
Во избежание этого необходимо установить стабилизатор тока.

Как показывает практика, лучше всего использовать микросхему LM317T.


Обратите внимание, что Uout находится не только на средней ножке, но и на радиаторе.

Самая простая схема подключения этой микросхемы выглядит так:



Обратите внимание, наши диоды не должны потреблять в сумме более 1,5А, иначе стабилизатор сгорит.

Оптимальная схема, конечно, посложнее и выглядит так:


Задача была такая: собрать стабилизатор так, чтобы на входе было 14.5В, а на выходе 12В.
Нам понадобится:
1. Микросхема LM317T — 2шт.
2. Диод 1N4007 — 2шт.
3. Конденсатор 1мкф 16В — 2шт.
4. Конденсатор 2.2мкф 16В — 2шт.
5. Доска для установки — 2 шт.
6. Термоусадочная трубка, подходящая к плате.
7. Паяльник (желательно паяльная станция).
8. Прямые руки.
Все это можно купить, например, в Chip and Deep или Quartz1 (в Москве).

Схема в моем случае получилась так:



Диод 1N4007 нужен для защиты от импульсов обратного тока, а конденсаторы — для стабилизации напряжения при временном падении в сети автомобиля (например, при включении поворотников. сигналы).

Схема справа со светодиодами — мои «ангельские глазки» — они неразборные, так что резисторы там заводские.

Получилось все так:



Плата покрыта термоусадочной пленкой для герметизации и залита по краям клеем-герметиком (ну электроника не любит воду). Слева — разъем для подключения к диодам (стабилизатор будет расположен снаружи фары).

В общем, как ни странно, все еще работает и, надеюсь, диодные кольца будут жить долго и счастливо =)

И хочу отметить один момент, есть такие современные грузовики, как JAC, очень практичные и очень практичные. удобны как в обслуживании, так и в эксплуатации.В ремонтном соотношении jac запчасти очень легко заказать и купить. Приобретая эту машину, вы делаете правильный выбор.


регулятор напряжения, диммер с ШИМ, блоки питания 12 вольт

PS1, мощность от 25 Вт до 150 Вт Расходные материалы:
Промышленные серии ПС1. регулируемые 12-вольтовые блоки питания предназначен для прямого подключения к проводка 120 В переменного тока за стеной.Каждый действует как центр силы для кластер из 12-вольтовой техники. Они есть рекомендуется, если вы хотите установить светодиод освещение в жилом доме.

Все блоки питания PS1-xx соответствуют требованиям UL одобренный.

При установке необходимо соблюдать осторожность. соответствующую проводку на 12 В между блок питания и 12 вольт бытовая техника.Провод динамика часто бывает достаточно, но следите за калибром AWG провод, который вы используете.

Чем выше номер калибра AWG провода, тем он меньше и тем меньше усилители он может нести без перегрева. В таблице ниже показаны результаты каждый источник питания и максимальное AWG провод с номером калибра для использования, если ВСЕ по этому проводу проходит ток, и предполагая, что длина провода меньше 10 ноги.Переходите к меньшему номеру датчика, когда сомневаюсь, просто чтобы быть уверенным.

В таблице также указаны физические размеры блоков питания.

Вт

Ампер

макс
awg

л

Вт

D

25

2.1

24

3,9

3,3

1.4

40

3,3

24

5.2

3,9

1,6

60

5.0

22

6,4

3,9

1.6

100

8,3

20

8.0

3,9

1,6

150

12.5

18

8,0

3,9

2.0


Стабилизатор напряжения по схеме 12 вольт. Перечень элементов регулируемой схемы питания на LM317. Схема преобразователя со стабильным напряжением смещения

24.06.2015

Представляем мощный стабилизированный блок питания на 12 В. Он построен на микросхеме стабилизатора LM7812 и транзисторах TIP2955, обеспечивающий ток до 30 А.Каждый транзистор может выдавать ток до 5 А, соответственно 6 транзисторов будут обеспечивать ток до 30 А. за счет изменения количества транзисторов и получения требуемого значения тока. Микросхема выдает ток около 800 мА.

На выходе предохранитель 1 и для защиты от больших переходных токов. Необходимо предусмотреть хороший теплоотвод из транзисторов и микросхем. Когда ток через нагрузку велик, мощность, рассеиваемая каждым транзистором, также увеличивается, так что избыточное тепло может привести к пробою транзистора.

В этом случае для охлаждения потребуется очень большой радиатор или вентилятор. Резисторы на 100 Ом используются для стабильности и предотвращения насыщения, т.к. коэффициенты усиления имеют некоторый разброс от однотипных транзисторов. Мостовые диоды рассчитаны не менее 100 А.

Банкноты

Самым дорогим элементом всей конструкции, пожалуй, является входной трансформатор, возможно использование двух последовательно соединенных автомобильных аккумуляторов. Напряжение на входе стабилизатора должно быть несколько выше требуемого (12 В), чтобы он мог поддерживать стабильный выход.Если используется трансформатор, то диоды должны выдерживать довольно большой пиковый постоянный ток, обычно 100А или более.

Через LM 7812 будет проходить не более 1 А, остальное обеспечивают транзисторы. Так как схема рассчитана на нагрузку до 30А, то шесть транзисторов включаются параллельно. На каждую из них выделяется мощность 1/6 от общей нагрузки, но все же необходимо обеспечить достаточный теплоотвод. Максимальный ток нагрузки приведет к максимальной дисперсии, и потребуется большой радиатор.

Для эффективного отвода тепла от радиатора рекомендуется использовать вентилятор или радиатор с водяным охлаждением. Если блок питания загружен на максимальную нагрузку, а силовые транзисторы вышли из строя, то весь ток пройдет через микросхему, что приведет к катастрофическому результату. Во избежание поломки микросхемы на ее выходе предохранитель на 1 А. Нагрузка 400 мОм предназначена только для тестирования и в итоговую схему не входит.

Расчеты

Эта схема — отличная демонстрация законов Кирхгофа.Сумма токов, входящих в узел, должна быть равна сумме токов, выходящих из этого узла, а сумма падений напряжения на всех ответвлениях любой замкнутой цепи цепи должна быть равна нулю. В нашей схеме входное напряжение 24 вольта, из них 4В падает на R7 и 20В на входе LM 7812, т.е. 24-4-20 = 0. На выходе из общего тока нагрузки 30а регулятор подает 0,866а и 4,855а каждый из 6 транзисторов: 30 = 6 * 4,855 + 0,866.

Ток базы составляет около 138 мА на транзистор, чтобы получить ток коллектора около 4.Коэффициент усиления по постоянному току 86а для каждого транзистора должен быть не менее 35.

TIP2955 удовлетворяет этим требованиям. Падение напряжения на R7 = 100 Ом при максимальной нагрузке составит 4В. Рассеиваемая на нем мощность рассчитывается по формуле P = (4 * 4) / 100, т.е. 0,16 Вт. Желательно, чтобы этот резистор был мощностью 0,5 Вт.

Входной ток микросхемы проходит через резистор в цепи эмиттера и транзисторы b-E. Еще раз применим законы Кирхгофа. Входной ток регулятора состоит из тока 871 мА, протекающего по основной цепи, и 40 мА.3 мОм через R = 100 Ом.
871,18 = 40,3 + 830. 88. Входной ток стабилизатора всегда должен быть больше выходного. Мы видим, что он потребляет всего около 5 мА и практически не должен греться.

Проверка и ошибка

Во время первого теста подключать нагрузку не нужно. Изначально замеряем напряжение на розетке, оно должно быть 12 вольт, или совсем другое значение. Затем подключите сопротивление около 100 Ом, 3 Вт в качестве нагрузки.Вольтметр менять не должен. Если вы не видите 12 В, то после отключения питания следует проверить правильность установки и качество пайки.

Один из считывателей получил на выходе 35 В вместо стабилизированных 12 В. Это было вызвано коротким замыканием силового транзистора. Если есть какой-либо из транзисторов, вам придется выкопать все 6, чтобы проверить мультиметр переходов эмиттер-коллектор.

Схемы самодельных импульсных преобразователей постоянного напряжения на транзисторах, семь примеров.

Из-за высокого КПД импульсные стабилизаторы напряжения получают в последнее время более широкое распространение, хотя обычно они более сложные и содержат больше элементов.

Поскольку только небольшая часть энергии, подаваемой в импульсный стабилизатор энергии, преобразуется в тепловую энергию, его выходные транзисторы меньше нагреваются, поэтому за счет уменьшения площади теплоотвода уменьшаются масса и габариты устройства.

Существенным недостатком импульсных стабилизаторов является наличие высокочастотных пульсаций на выходе, что значительно сужает область их практического использования — чаще всего импульсные стабилизаторы используются для питания устройств на цифровых микросхемах.

Понижающий импульсный стабилизатор напряжения

Стабилизатор с выходным напряжением без входного может быть собран на трех транзисторах (рис. 1), два из которых (VT1, VT2) образуют ключевой регулирующий элемент, а третий (tz) — усилитель сигнала рассогласования.

Рис. 1. Схема импульсного стабилизатора напряжения с КПД 84%.

Устройство работает в автоколебательном режиме. Положительная обратная связь от коллектора составного транзистора ѴT1 через конденсатор C2 поступает в цепь базы транзистора ѵT2.

Элементом сравнения и усилителем сигнала рассогласования является каскад на транзисторе ѵtz. Его эмиттер подключен к источнику опорного напряжения — стабилитрону VD2, а база — к делителю выходного напряжения R5 — R7.

В импульсных стабилизаторах регулирующий элемент работает в ключевом режиме, поэтому выходное напряжение регулируется изменением открытия ключа.

Включение / выключение транзистора VT1 через сигнал транзистора ѵTZ управляет транзистором ѵT2.В моменты, когда транзистор ѵT1 открыт, в дросселе L1 из-за протекания тока нагрузки усиливается электромагнитная энергия.

После закрытия транзистора энергия окружающей среды через диод VD1 передается на нагрузку. Пульсации выходного напряжения стабилизатора сглаживаются фильтром L1, SZ.

Характеристики стабилизатора полностью определяются свойствами транзистора ѵT1 и диода VD1, быстродействие которых должно быть максимальным.При входном напряжении 24 В, выходном — 15 В и токе нагрузки 1 измеренный КПД КПД составил 84%.

Дроссель L1 имеет 100 витков провода диаметром 0,63 мм на кольце К26х16х12 из феррита с магнитной проницаемостью 100. Его индуктивность при токе утечки 1 А составляет около 1 мп.

ПОСТОЯННЫЙ преобразователь напряжения DC-DC на + 5В

Схема простого импульсного стабилизатора приведена на рис. 2. Дроссели L1 и L2 намотаны на пластмассовые рамки, размещенные в бронемагнитных трубопроводах В22 из феррита М2000НМ.

Дроссель L1 содержит 18 витков жгута 7 проводов ПЭВ-1 0,35. Между чашками его магнитного трубопровода вкладывается толщина 0,8 мм.

Активное сопротивление обмотки дроссельной заслонки L1 27 МОм. Дроссель L2 имеет 9 витков жгута 10 проводов ПЭВ-1 0,35. Зазор между его чашками — 0,2 мм, активное сопротивление обмотки — 13 МОм.

Прокладки могут быть выполнены из жесткого термостойкого материала — текстолита, слюды, электрокартона. Винт, скрепляющий чашку магнитопровода, должен быть из немагнитного материала.

Рис. 2. Схема простого ключевого стабилизатора напряжения с КПД 60%.

Для установки стабилизатора на его выход к его выходу подключают сопротивление 5 … 7 Ом и 10 Вт. Подбором резистора R7 устанавливают номинальное выходное напряжение, затем увеличивают ток нагрузки до 3 А и, выбирая номинал конденсатора С4, устанавливают такую ​​частоту генерации (примерно 18 … 20 кГц), при которой высокочастотное напряжение излучается. на конденсаторе СЗ минимальны.

Выходное напряжение стабилизатора можно поднять до 8 … 10В, увеличив размер резистора R7 и установив новое значение рабочей частоты. В этом случае мощность, рассеиваемая на транзисторе ѵtz, также увеличится.

В схемах импульсных стабилизаторов желательно использовать конденсаторы электролитические К52-1. Необходимое количество емкостей получается параллельным включением конденсаторов.

Основные характеристики:

  • Входное напряжение, В — 15… 25.
  • Выходное напряжение, В — 5.
  • Максимальный ток нагрузки, А — 4.
  • Пульсации выходного напряжения при токе нагрузки 4 А во всем диапазоне входных напряжений, МВ, не более — 50.
  • КПД,%, не ниже — 60.
  • Рабочая частота при входном напряжении 20 В и токе нагрузки 3 А, кГц — 20.

Улучшенный вариант реализации стабилизатора импульсов на + 5В

По сравнению с предыдущей версией импульсного стабилизатора в новой конструкции А.А. Миронова (рис. 3), и улучшил его характеристики, такие как КПД, стабильность выходного напряжения, длительность и характер переходного процесса при воздействии импульсной нагрузки.

Рис. 3. Схема импульсного стабилизатора напряжения.

Оказалось, что при работе прототипа (рис. 2) через транзистор с составным ключом возникает так называемый сквозной ток. Этот ток появляется в те моменты, когда ключевой транзистор открывается по сигналу сборки сравнения, а коммутирующий диод еще не успел замкнуться.Наличие такого тока вызывает дополнительные потери на нагрев транзистора и диода и снижает КПД устройства.

Еще один недостаток — значительная пульсация выходного напряжения при токе нагрузки, близком к предельному. Для борьбы с пульсациями на стабилизаторе (рис. 2) был введен дополнительный выходной LC-фильтр (L2, C5).

Уменьшить нестабильность выходного напряжения от изменения тока нагрузки можно только за счет активного сопротивления дросселя L2.

Улучшение динамики переходного процесса (в частности, уменьшение его длительности) связано с необходимостью уменьшения индуктивности дросселя, но при этом неизбежно возрастет пульсация выходного напряжения.

Следовательно, этот выходной фильтр оказалось целесообразным исключить, а увеличение емкости C2 C2 в 5 … 10 раз (параллельно включению нескольких конденсаторов в батарее).

Цепь R2, C2 в оригинальном стабилизаторе (рис.6.2) длительность выходного тока практически не меняет, поэтому его можно убрать (замкнуть резистор R2), а сопротивление резистора R3 увеличить до 820 Ом.

Но тогда при увеличении входного напряжения с 15 6 до 25 6 ток, протекающий через резистор R3 (в устройстве-источнике), увеличится в 1,7 раза, а мощность рассеивания в 3 раза (до 0,7 Вт) .

Подключив нижний по выходной схеме R3 (на модифицированной схеме стабилизатора это резистор R2) к плюсовому выходу конденсатора C2, этот эффект можно ослабить, но при этом сопротивление R2 (рис.3) необходимо уменьшить до 620 Ом.

Одним из эффективных способов борьбы со сквозным током является увеличение тока через открытый ключевой транзистор.

Тогда при полном открытии транзистора ток через диод VD1 уменьшится почти до нуля. Этого можно добиться, если форма тока через ключевой транзистор близка к треугольной.

Как показывает расчет, для получения такой формы тока индуктивность накопительного дросселя L1 не должна превышать 30 мкГн.

Другой способ — использование более быстрого переключающегося диода VD1, например, CD219B (с разнесенным барьером). Эти диоды имеют более высокое быстродействие и меньшее падение напряжения при одном и том же значении постоянного тока по сравнению с обычными кремниевыми высокочастотными диодами. Конденсатор С2 типа К52-1.

Улучшение параметров устройства можно получить и при смене ключевого транзистора. Особенностью мощного транзистора ѵtz в оригинальном и улучшенном стабилизаторах является то, что он работает в активном режиме, а не в насыщенном, а потому имеет высокое значение коэффициента прохождения тока и быстро закрывается.

Однако из-за повышенного напряжения на нем в открытом состоянии емкость в 1,5 … 2 раза превышает минимально достижимое значение.

Уменьшить напряжение на ключевом транзисторе можно за счет положительного (относительно положительного источника питания) напряжения смещения на эмиттер транзистора ѵt2 (см. Рис. 3).

Требуемая величина напряжения смещения выбирается при установке стабилизатора. Если он питается от выпрямителя, подключенного к сетевому трансформатору, то для получения напряжения смещения может быть предусмотрена отдельная обмотка на трансформаторе.Однако напряжение смещения будет изменяться в зависимости от сети.

Схема преобразователя со стабильным напряжением смещения

Для получения стабильного напряжения смещения необходимо доработать стабилизатор (рис. 4), а дроссель превратить в трансформатор Т1, намотать дополнительную обмотку II. Когда ключевой транзистор закрыт, а диод VD1 открыт, напряжение на обмотке I определяется из выражения: U1 = Ubyl + U VD1.

Т.к. выходное напряжение и на диоде в это время меняется незначительно, вне зависимости от входного напряжения, на обмотке II напряжение практически стабильно.После выпрямления он подается на эмиттер транзистора VT2 (и VT1).

Рис. 4. Схема модифицированного импульсного стабилизатора напряжения.

Потери нагрева уменьшились в первом варианте конечного стабилизатора на 14,7%, а во втором — на 24,2%, что позволяет им работать при токе нагрузки до 4 А без установки ключевого транзистора на радиатор.

В стабилизаторе варианта 1 (рис. 3) дроссель L1 содержит 11 витков, намотанных жгутом из восьми проводов ПЭВ-10.35. Обмотка размещена в магнитопроводе брони Б22 из Феррита 2000НМ.

Между чашками нужно уложить прокладку из текстолита толщиной 0,25 мм. В стабилизаторе варианта 2 (рис. 4) трансформатор Т1 образован путем намотки на катушку дросселя L1 двух витков провода ПЭВ-1 0,35.

Вместо германского диода D310 можно использовать кремний типа CD212A или CD212B, при этом количество витков обмотки II следует увеличить до трех.

Стабилизатор постоянного напряжения

Стабилизатор с импульсно-импульсным управлением (рис.5) по принципу действия близок к описанному в статье стабилизатору, но, в отличие от него, имеет две цепи обратной связи, соединенные таким образом, что ключевой элемент замыкается при превышении напряжения на нагрузке или повышении силы тока. потребляется нагрузкой.

При подаче питания на вход текущего тока резистор R3 открывает ключевой элемент, образованный транзисторами VT.1, VT2, в результате чего транзистор VT1 — дроссель L1 — нагрузка — Возникает резистор R9.Конденсатор С4 заряжается и накапливается энергия дроссельной заслонки L1.

Если сопротивление нагрузки достаточно велико, напряжение на ней достигает 12 В, и стабилитрон VD4 открывается. Это приводит к открытию транзисторов VT5, ѵtz и закрытию ключевого элемента, а за счет наличия диода VD3 дроссель L1 передает накопленную энергию на нагрузку.

Рис. 5. Схема стабилизатора-стабилизатора с КПД до 89%.

Технические характеристики стабилизатора:

  • Входное напряжение — 15… 25 В.
  • Выходное напряжение — 12 В.
  • Номинальный ток нагрузки — 1 А.
  • Пульсация выходного напряжения при токе нагрузки 1 А — 0,2 В. КПД (при UBX = 18 6, IH = 1 А) — 89%.
  • Потребление тока при UBX = 18 В в режиме замыкания грузовой цепи — 0,4 А.
  • Выходной ток КЗ (при UBX = 18 6) — 2,5 А.

По мере того, как ток уменьшается через дроссель и разряд конденсатора C4, напряжение нагрузки также будет уменьшаться, что приведет к закрытию транзисторов VT5, ѵtz и открытию ключевого элемента.Далее процесс работы стабилизатора повторяется.

Конденсатор С3, снижающий частоту колебательного процесса, увеличивает КПД стабилизатора.

При малом сопротивлении нагрузки иначе происходит колебательный процесс в стабилизаторе. Увеличение тока нагрузки приводит к увеличению падения напряжения на резисторе R9, открытию транзистора ѵT4 и замыканию ключевого элемента.

Во всех режимах стабилизатора потребляемый ток меньше тока нагрузки.Транзистор ѵT1 должен быть установлен на радиаторе размером 40×25 мм.

Дроссель L1 представляет собой 20 витков жгута трех проводов ПЭВ-2 0,47, помещенных в чашку магнитопровода В22 из феррита 1500 нм. Магнитопровод имеет зазор толщиной 0,5 мм из немагнитного материала.

Стабилизатор легко восстановить другое выходное напряжение и ток нагрузки. Выходное напряжение задается выбором типа стабилитрона VD4, а максимальный ток нагрузки пропорционален сопротивлению резистора R9 или подаче на базу транзистора небольшого тока от отдельного параметрического стабилизатора через переменный резистор.

Для снижения уровня пульсаций выходного напряжения рекомендуется применять LC-фильтр, аналогичный тем, которые используются на схеме на рис. 2.

Стабилизатор напряжения импульсный с преобразованием КПД 69 … 72%

Импульсный стабилизатор напряжения (рис.6) состоит из пускового узла (R3, VD1, ѵT1, VD2), источника опорного напряжения и устройства сравнения (DD1.1, R1), усилителя постоянного тока (Т2, DD1.2). , ѵT5), транзисторный ключ (ѵtz, ѵt4), индуктивный накопитель энергии с переключаемым диодом (VD3, L2) и фильтрами — вход (L1, C1, C2) и выход (C4, C5, L3, C6).Частота коммутации индуктивного энергопривода в зависимости от тока нагрузки находится в пределах 1,3 … 48 кГц.

Рис. 6. Схема импульсного стабилизатора напряжения с эффективностью преобразования 69 … 72%.

Все индукторы индукторов L1 — L3 одинаковые и намотаны в броне магнитопроводами Б20 из феррита 2000НМ с зазором между чашками около 0,2 мм.

Номинальное выходное напряжение 5 В при изменении входа от 8 до 60 В и КПД преобразования 69… 72%. Коэффициент стабилизации — 500.

Амплитуда пульсаций выходного напряжения при токе нагрузки 0,7 А не более 5 мВ. Выходное сопротивление 20 МОм. Максимальный ток нагрузки (без радиаторов для транзистора VT4 и диода VD3) — 2 А.

Стабилизатор напряжения импульсный на 12В

Импульсный стабилизатор напряжения (рис. 6.7) при входном напряжении 20 … 25 В обеспечивает выходное стабильное напряжение 12 В при токе нагрузки 1,2 А.

Пульсация на выходе до 2 мВ.Из-за высокого КПД в устройстве не используются радиаторы. Индуктивность дросселя L1 составляет 470 мкГн.

Рис. 7. Схема импульсного стабилизатора напряжения с небольшими колебаниями.

Аналоги транзисторов: SW547 — КТ3102А] СП548В — КТ3102В. Примерные аналоги транзисторов Сибирского Кодекса Сибиряка 807 — КТ3107; БД244 — КТ816.

Описание нюансов сборки стабилизатора напряжения 12 вольт на машину, список необходимых запчастей, 3 схемы.+ Тест для самотестирования. Мы занимаемся 5 основными вопросами по теме и 3 основными припоями для плат.

ТЕСТ:

Чтобы понять, достаточно ли у вас информации о автомобильных стабилизаторах, вам следует пройти небольшой тест:
  1. Зачем устанавливать на свой автомобиль стабилизатор на 12 вольт? А) автомобильная сеть дает непостоянное напряжение. Это зависит от степени зарядки аккумулятора. Напряжение колеблется в пределах 11,5 — 14,5 вольт. Но для светодиодных ламп требуется всего 12 вольт. Запитать нужное напряжение и поставить ЦЗ.
    б) Светодиодные лампы работают от 18 вольт. Чтобы они функционировали при подключении на автомобиле, приходится давать дополнительную нагрузку через стабилизатор.
  2. Почему светодиодные лампы часто перегорают без стабилизатора? А) основная причина — некачественный производитель светодиодов.
    б) Из-за скачкообразного напряжения на них.
  3. В каком случае к стабилизатору дополнительно подключают алюминиевый радиатор? А) Если на автомобиле установлено более 10 светодиодов.
    б) при установке на станке светодиодных ламп разного цвета.
  4. Как подключаются светодиоды? А) 3 светодиода подключаются последовательно к резистору, а после собранного комплекта параллельно подключаются следующие светодиоды.
    б) 3 светодиода подключаются параллельно резистору, а затем собранный набор последовательно подключается к следующим светодиодам.

Ответы:

  1. а) В зависимости от степени заряда АКБ на светодиодные лампы будет действовать колебательное напряжение — от 11,5 до 14,5. Именно поэтому его подключают к лампам для получения постоянного напряжения, равного 12 вольт (такой индикатор нужен светодиодам).
  2. б) Светодиоды не рассчитаны на скачки напряжения, которые исходят от АКБ, поэтому без стабилизатора скоро сгорают.
  3. а) Если на автомобиле установлено более 10 светодиодов, желательно оснастить схему алюминиевым радиатором.
  4. б) Сначала к резистору последовательно подключаются 3 светодиода, а после берут новую заминку и уже параллельно соединяют между собой.

Автовладельцы часто устанавливают на свой автомобиль светодиодную подсветку. Но лампочки часто выходят из строя, и вся созданная красота тут же вспыхивает.Объясняется это тем, что светодиодные лампочки работают некорректно, если их просто подключить к электрической сети. Для них необходимо использовать специальные стабилизаторы. Только в этом случае лампы будут защищены от перепадов напряжения, перегрева, повреждения важных узлов. Чтобы установить стабилизатор напряжения на свой автомобиль, вам необходимо подробно разобраться в этом вопросе и изучить простую схему, которая будет собрана своими руками.

Определение: CH 12 вольт для автомобиля — небольшое устройство, предназначенное для очистки от чрезмерного автомобильного напряжения, идущего от аккумулятора.В результате подключенные светодиодные лампы получаются постоянной нагрузкой 12 вольт.

Подбор стабилизатора 12 В

Бортовая сеть автомобиля обеспечивает питание от 13 В, но для работы светодиодов нужно всего 12 В. Поэтому необходимо установить стабилизатор напряжения, который будет обеспечивать 12 В.

Установив такое оборудование для обеспечения нормальных условий работы. светодиодное освещение, что долго не выйдет из строя. Выбирая стабилизаторы, автомобилисты сталкиваются с проблемами, ведь конструкций очень много, и работают они по-разному.

Выбирает стабилизатор, который:

  1. Он будет нормально работать.
  2. Обеспечивают надежную защиту и безопасность светотехники.

Стабилизатор напряжения простой 12 своими руками

Если есть даже небольшие навыки сборки электрической схемы, то стабилизатор напряжения приобретается по желанию в готовом виде. На изготовление самодельного устройства Человек потратит 50 рублей и меньше, готовая модель несколько дороже.Переплачивать нет смысла, ведь в результате получается качественный аппарат, отвечающий всем необходимым требованиям.

Самый простой, но функциональный стабилизатор можно сделать своими руками без особых усилий. Импульсный прибор собрать очень сложно, особенно новичку, а потому стоит рассмотреть на нем линейные стабилизаторы и любительские схемы.

Самый простой стабилизатор напряжения 12 вольт собран из схемы (готов), как и сопротивление резистора.Желательно использовать микросхему LM317. Все элементы будут прикреплены к перфорированной панели или универсальной печатной плате. Если правильно собрать прибор и подключить к автомобилю, можно обеспечить хорошее освещение — лампочки перестанут мигать.


Перечень деталей CH 12 V

Чтобы сделать стабилизатор напряжения своими руками, следует найти или купить следующие детали:

  1. Доска — 35 на 20 мм.
  2. Микросхема
  3. LD 1084.
  4. Диодный мост RS407.Если этого нет, выбираем любой маленький диод, предназначенный для обратного тока.
  5. Блок питания с транзистором и двумя сопротивлениями. Это оборудование нужно для того, чтобы выключить торец при включении ближнего или дальнего света.

Три светодиода необходимо преобразовать в токоограничивающий резистор, регулирующий электричество. Этот набор после того, как он должен быть подключен к следующему комплекту лампочек.

Как сделать стабилизатор напряжения на 12 вольт для светодиодов в машине на микросхеме L7812

Для сборки качественного стабилизатора напряжения можно использовать трехконтактный стабилизатор постоянного напряжения, выпускаемый серией L7812.Это устройство позволит не только отделить этикетки в автомобиле, но и целую ленту из светодиодов.


L7812.
Компоненты:
  1. Микросхема L7812.
  2. Конденсатор 330 MKF 16 В.
  3. Конденсатор 100 мкФ 16 В.
  4. Выпрямительный диод на 1 ампер. Можно использовать 1N4001 или диод Шоттки.
  5. Термоусадочная на 3 мм.
  6. Электропроводка соединительная.
Порядок сборки:
  1. Немного укоротите одну ножку стабилизатора.
  2. Используйте припой.
  3. Добавьте диод в короткую ножку, а после и конденсаторы.
  4. Накладываем термоусадку на проводку.
  5. Занимаемся коммутацией проводов.
  6. Носим термоусадочную пленку, прессуем строительным феном или зажигалкой. Важно не переставлять и не растапливать термоусадку.
  7. На входе с левой стороны подаем питание, на правую будет выводиться светодиодная лента.
  8. Проводим тест — включаем освещение.Лента должна загореться, теперь ее работа увеличится.

Это делается стабилизатором напряжения 12 своими руками.

Схема стабилизатора напряжения 12 В для светодиодов в авторучках на базе LM2940CT-12.0


Также для сборки качественного стабилизатора напряжения используется схема LM2940CT-12.0. В качестве корпуса мы используем абсолютно любой материал, кроме дерева. Если в автомобиле планируется установить более 10 светодиодных ламп, то алюминиевый радиатор желательно прикрепить к стабилизатору.

Возможно, у кого-то уже был опыт работы с подобным оборудованием, и они скажут, что нет необходимости использовать дополнительные детали — напрямую подключайте светодиоды и получайте удовольствие от работы. Так поступить можно, но в этом случае лампочки будут постоянно находиться в неблагоприятных условиях, а значит, скоро сгорят.

Достоинства всех перечисленных схем стабилизатора напряжения — упрощенная сборка. Чтобы собрать стабилизатор, не нужно обладать какими-то специальными навыками и навыками.Но если представленные картинки только вызывают недоумение, то не пытайтесь собрать схему своими руками.

Еще важно знать 3 нюанса, как собрать стабилизатор напряжения 12 вольт своими руками

  1. Светодиоды предпочтительно подключаются через стабилизатор тока. Таким образом удастся уравновесить колебания электрической сети, а владелец автомобиля не будет беспокоиться о сбрасывании тока.
  2. Требования к питанию также должны соблюдаться, потому что, таким образом, собственный самосборный стабилизатор может быть правильно настроен под электрическую сеть.
  3. Желательно собрать такой агрегат, который обеспечит достойную устойчивость, надежность и устойчивость — стабилизатор должен продержаться долгие годы. Именно поэтому не обязательно дешеветь на комплектующие — приобретайте в хороших магазинах электронику.

Как избежать 3х ошибок при пайке схем

  1. Перед началом всех работ по штырю обязательно подберем наиболее подходящий паяльный аппарат для сборки микросхемы. Старый, который лежит дома или в гараже, подойдет только опытным людям, новенький испортит плату, не справился с мощностью.Наиболее подходящий диапазон напряжений для подключения платы и проводки — 15-30 Вт. Мы не используем большую мощность, иначе плата сгорит и придется начинать все заново, с новыми деталями.
  2. Перед тем, как приступить к подключению соединений пайкой, убедитесь, что схема хорошо очищена. Для качественной обработки используется простой состав — смешивается любое мыло с чистой водой. После чистая салфетка вырисовывалась в приготовленном растворе и доска очень качественная по всей поверхности.Если на металле остались места мыла, то протираем их аккуратной сухой тканью. На досках часто бывают довольно плотные отложения. Чтобы избавиться от них, придется отправиться в магазин с электрооборудованием и купить специальный очищающий состав. Продавцы подскажут все необходимое. Обработайте до появления светлого металлического блеска.
  3. Контакты на плате У нас в правильной последовательности — для начала работаем с небольшими резисторами, а потом переходим к большим деталям. Если сначала скрепить все основные детали, то мелкие детали будет очень неудобно прикреплять — большие детали помешают.

Не пренебрегайте советами. Они создадут более качественный состав, что означает долговечность стабилизатора.

Паяльник Top 3 для плат

Чтобы упростить себе работу на шипе стабилизатора, желательно купить качественный паяльник. В магазинах есть агрегаты хороших и проверенных производителей, на которые стоит обратить внимание:

  1. ERSA — немецкая компания. Товар очень хороший и надежный, но дорогой, а потому для дома по карману далеко не каждому.
  2. Китайская фирма Quick. Качество на высоте, а цена приемлемая.
  3. Лаки. Самый бюджетный вариант. Нельзя оставлять включенный автомат без присмотра — возможно возгорание.

Паяльник потребляет 10 Вт, чтобы сделать простую микропланшет. При покупке читайте ручку — она ​​не должна быстро нагреваться. Лес — идеальный вариант. Пластик быстро нагревается, эбонит тяжелый, поэтому работать с мелкими деталями затруднительно.

Пауэрс Желательно выбирать из меди — ее легко очистить от нагара после работы.Балай бывает разной формы и продается наборами. Это бесполезно, но опытным людям будет удобно пользоваться насадками разной конфигурации.

Стабилизаторы напряжения автомобильные

Ответы на 5 часто задаваемых вопросов по пайке

  1. Сколько нужно держать предварительно нагретое жало на деталях для хорошей фиксации? — 3 секунды хватит, если протянуть дольше, плата сгорает.
  2. Сколько добавляется припой? — Следите за тем, чтобы покрыть обработанную часть.Иногда хватает и капель.
  3. Пайка по внешнему виду должна стать блестящей или матовой? — блестящий.
  4. Купить дополнительные средства защиты? — Только очки. Если вы подобрали хороший паяльник, защищать руки не нужно.
  5. Какая температура у микросхемы? — 230 градусов.

radiohome.ru.

cXEMA.org — Мощный импульсный блок питания 12В 40А

Такое устройство недавно заказали в местном магазине. Устройство рассчитано на подхватывание стенда сразу с 30 автомагнитол. Ясный случай, если прикинуть, одно радио будет потреблять ток около 1 ампера, это легко, если он включен, но если вы работаете на полной громкости, то потребление одного радио будет в районе 7-8 ампер.30 Magnetol 1 А это уже 30 ампер, а при напряжении 12 вольт мощность блока питания должна быть не менее 350-400 ватт. Так как финансы были ограничены, то собирать такой бизнес с сетевым трансформатором на 400 ватт крайне не выгодно, поэтому решил замутить импульсную схему. Один из самых простых вариантов построен на поллитровом высоковольтном драйвере. IR2153. Несмотря на простоту сборки, такой блок питания может обеспечивать заданную мощность.

Стоимость комплектующих не превышает 10 долларов, при этом блок оказался минимальным.

Силовой фильтр встроен на вводе питания, предохранитель. Термистор защищает края от скачков напряжения во время подачи питания. Диодный мост построен на 4-х выпрямителях 1N5408, он представляет собой 3-амперный диод с обратным напряжением 1000 вольт. Конденсаторы 200В 470МКФ — сняты с компьютера Блок питания. При замене емкости можно увеличить или уменьшить мощность блока питания в целом. Несмотря на то, что он нагружал блок питания почти до максимума, но за 3 минуты работы клавиши были полностью холодными.Сами клавиши за счет изоляции укреплены на общем радиаторе небольших размеров. Обдув осуществляется кулером, питающим отдельный БП на 3 Вт, такой блок убрали со светодиодной лампы. Такое решение связано с тем, что в случае прокладки кулера от общей шины 12 вольт может образоваться фон, а это в свою очередь приводит к искажениям, если блок подключается к автомобилю.

Трансформатор пришлось заводить с нуля.

Ядро было взято от блока питания компьютера.Все промышленные обмотки необходимо снять и намотать их. Сетевая обмотка состоит из 40 витков провода 0,8 мм. Вторичная обмотка намотана покрышкой из 7жил проводов 0,8 мм, обмотка состоит из 2х3 витков. На выходе сдвоенный диод Schottky 2x30a, радиатором для него является корпус блока питания, а сам корпус взят от вычислительного бп.

Резистор ограничительный для промывки микросхемы нужен мощный (2 Вт) при работе. Может немного перегреться, номинал может отклониться в ту или иную сторону на 10%.

В итоге получился очень мощный блок питания, который неделю питает стойку с автомагнитолой, работает 12 часов в сутки без перерывов.

С уважением — Ака Касьян

vip-cxema.org.

Как сделать блок питания 12 В своими руками

Блок питания постоянного напряжения 12 В состоит из трех основных частей:

  • Понижающий трансформатор от условного входного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение. , только снижается примерно до 16 вольт на холостом ходу — без нагрузки.
  • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и выставляет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
  • Электролитический конденсатор большого контейнера, который сглаживает полусинусоиды напряжения, заставляя их приближаться к прямой линии с напряжением 16 вольт. Это сглаживание лучше, чем емкость конденсатора.

Самое простое — получить постоянное напряжение, способное питать устройства, рассчитанные на 12 вольт — лампочки, светодиодные ленты и другое низковольтное оборудование.

Понижающий трансформатор можно взять от старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с намотками и перемоткой. Однако, чтобы в конечном итоге выйти на желаемое напряжение 12 вольт во время работы нагрузки, вам нужно взять трансформатор, который снижает напряжение до 16.

Для моста вы можете взять четыре выпрямляемых диода 1N4001, рассчитанные на диапазон напряжений или аналогичный.

Емкость конденсатора должна быть не менее 480 мкФ. Для хорошего качества выходное напряжение также может быть более 1000 мкФ или выше, но необязательно для питания осветительных устройств.Диапазон рабочих нагрузок конденсатора нужен, скажем, до 25 вольт.

Схема устройства

Если мы хотим сделать достойное устройство, которое не стыдно будет тогда подключать в качестве источника постоянного питания, скажем, для цепочку светодиодов нужно начинать с трансформатора, монтажных плат электронных компонентов и коробки, где все это будет закреплено и подключено. Выбирая коробку, важно учитывать, что электрические цепи в процессе эксплуатации нагреваются. Поэтому хорошо подойдет коробка подходящей по размеру и с вентиляционными отверстиями.Можно купить в магазине или снять корпус от блока питания компьютера. Последний вариант может быть громоздким, но в нем в качестве упрощения можно оставить существующий трансформатор даже вместе с охлаждающим вентилятором.

Корпус блока питания

Корпус блока питания

По трансформатору нас интересует низковольтная обмотка. Если это дает снижение напряжения с 220 В до 16 В — идеальный случай. Если нет, придется его перематывать. Перемотав и проверив напряжение на выходе трансформатора, его можно закрепить на плате.И сразу подумайте, как монтажная плата будет крепиться внутри коробки. Для этого у нее есть посадочная яма.

Обмотка низкого напряжения

Печатная плата

Дальнейшие монтажные работы будут проводиться на этой печатной плате, это означает, что она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы , или чип, который по-прежнему должен быть помещен в выбранное поле.

Диодный мост

Диодный мост собран на плате, должно получиться такое ромбирование из четырех диодов.Причем левая и правая пара в равной степени состоят из последовательно соединенных диодов, причем обе пары параллельны друг другу. Один конец каждого диода отмечен полосой — это обозначено плюсом. Сначала припаиваем диоды попарно друг к другу. Последовательно — это означает, что плюс первого связан с минусом второго. Получатся и свободные концы пары — плюс и минус. Параллельно соединить пары — значит припаять как плюсовые пары, так и оба минуса. Теперь у нас выходные контакты моста — плюс и минус.Или их можно назвать жердями — верхними и нижними.

Схема диодного моста

Остальные два полюса левый и правый — используются как входные контакты, на них подается переменное напряжение от вторичной обмотки понижающего трансформатора. А на выходах оси диоды будут заполнять пульсирующее высокое напряжение.

Если теперь подключить параллельно выходу конденсаторного моста, соблюдая полярность — к плюсу моста — плюс конденсатор, то он начнет сглаживание, а также у него есть контейнер.1000 МКФ хватит, а еще поставить 470 мкФ.

Внимание! Конденсатор электролитический — опасное устройство. При неправильном подключении, при подаче напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом по округе разбросано все его внутреннее содержимое — лохмотья корпуса, металлическая фольга и брызги электролита. Что очень опасно.

Ну вот и получился самый простой (если не сказать примитивный) блок питания для устройств с напряжением 12 В постоянного тока, то есть постоянного тока.

Проблемы простого источника питания с нагрузкой

Сопротивление, изображенное на диаграмме, эквивалентно нагрузке. Нагрузка должна быть такой, чтобы ток ее подачи при подаче напряжения 12 В не превышал 1 А., можно рассчитать нагрузочную способность и сопротивление по формулам.

Откуда сопротивление r = 12 Ом, а мощность p = 12 Вт. Это значит, что если мощность больше 12 Вт, а сопротивление меньше 12 Ом, то наша схема заработает с перегрузкой, она будет очень греться и быстро сгорает.Решить проблему можно несколькими способами:

  1. Стабилизируйте выходное напряжение так, чтобы при текущем сопротивлении нагрузки ток не превышал максимально допустимого значения или при резких скачках тока в сети нагрузки — например, в момент включение определенных устройств — пиковые значения тока обрезаются до номинальных. Такие явления возникают при питании источника питания от радиоэлектронных устройств — радиоприемников и т. Д.
  2. Используйте специальные схемы защиты, которые отключили бы питание при превышении тока на нагрузке.
  3. Используйте более мощные блоки питания или блоки питания с большим запасом мощности.

Блок питания со стабилизатором на микросхеме

На рисунке ниже показано развитие предыдущей простой схемы с включением 12-вольтового стабилизатора на микросхеме LM7812.

Блок питания со стабилизатором на микросхеме

Уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания все равно не должен превышать 1 А.

Увеличенный блок питания

Более мощный блок питания питание может быть выполнено добавлением нескольких мощных каскадов в тип TIP2955 Дарлингтона на схеме.Одна ступень даст увеличение тока нагрузки на 5 А, шесть составных транзисторов, включенных параллельно, обеспечат ток нагрузки в 30 А.

TIP2955 транзисторы Дарлингтона

Схема с такой выходной мощностью требует соответствующего охлаждения. Транзисторы необходимо снабдить радиаторами. Потребуется дополнительный вентилятор охлаждения. Кроме того, вы можете обезопасить себя предохранителями (на схеме не показаны).

На рисунке показано подключение одного составного транзистора Дарлингтона, позволяющего увеличить выходной ток до 5 ампер.Можно еще увеличить, подключив новые каскады параллельно указанному.

Подключение одного составного транзистора Дарлингтона

Внимание! Одна из главных катастроф в электрических цепях — это внезапное короткое замыкание в нагрузке. При этом, как правило, идет поток гигантской силы, сжигающий все на своем пути. В этом случае сложно придумать такой мощный блок питания, который сможет его выдержать. Затем применяют схемы защиты, начиная от предохранителей и заканчивая сложными схемами с автоматическим отключением на интегрированных микросхемах.

lampagid.ru.

radiohome.ru.

Блок питания 12 вольт, 20 ампер и 240 ватт с пассивным охлаждением

Почему я люблю ковырять силовые блоки особо расписывать нет смысла, а почему именно 12 вольт, напишу.
Так уж сложилось, но блоки питания на 12 вольт одни из самых популярных наряду с 5 вольтами и 19 вольтами.
5 вольт использовались для питания небольших устройств, но большей популярности прибавило то, что такое же напряжение дает порт USB, поэтому стали «сбываться» такие БП.
19 Вольт используются в ноутбуках, а также такие БП энтузиасты используют радиолюбители для разного рода паяльных станций и усилителей, в основном за счет приемлемой мощности и компактности.
Ну, 12 вольт — это просто для начала безопасное напряжение и в то же время позволяет передавать гораздо большую мощность. Конечно, на мой взгляд часто можно (а иногда и нужно) на 24 вольта, но это напряжение больше используется в промышленных устройствах.
При жизни от 12 вольт можно питать распространение светодиодных лент для декоративной подсветки и освещения, от 12 вольт также питать системы видеонаблюдения, иногда небольшие компьютеры, а также различные граверы, 3D-принтеры и т. Д.

В общем, в планах сделать несколько обзоров аналогичных БП, но разной мощности и сегодня мне достался блок питания на 240 ватт с пассивной системой охлаждения.
На данный момент обычные несведущие БП имеют мощность до 240-300 ватт, а вторые встречаются гораздо реже и я бы сказал, что 240 ватт — это почти максимум.

На этом я закончу краткую запись и перейду к теме обзора.
БП в привычном металлическом корпусе, думаю, многие видели в продаже аналогичные решения.Упакована
была в обычном белом ящике, на фото она не попадала, да и не особо там что посмотреть.

Вход и выход вынесены на одну большую клеммную планку, есть наклейка с указанием назначения контактов, но наклеена сдвигом, что может запутать неопытного пользователя.

Клеммная коробка имеет защитную крышку, и она открывается на 90 градусов, что даже мало, но плюс, так как есть варианты, когда крышка не открывается полностью.

Подстроечный резистор и светодиод, указывающий источник питания на блоке питания, подключенном справа от терминала.
Заявленные параметры — 12 вольт 20 ампер, реальный производитель неизвестен, стандарт маркировки многих недорогих БП — S-240-12
Переключатель входного напряжения 110/200 вольт расположен, лучше перед первым включением проверить, что он находится в правильное положение. Дата выпуска
конец 2016 г., так что БП можно сказать свеженькая.

Для начала замеряем, что на выходе БП настроен.Выставил
12,3 Вольта, диапазон регулировки 10-14,5 вольт. После проверки поставил что-то близкое к 12 вольтам.

Внешне осматривать больше нечего, потому что снимаем верхнюю крышку И посмотрим, что внутри.

А внутри блок питания ничем не отличается от других аналогичных недорогих блоков.
Он мне напомнил блок питания на 48 вольт 240 ватт, я бы даже сказал, что они одни.
Даже наверное не так, по сути это тот же БП, только с другим напряжением, потому что я в самом начале и писал, что настоящий производитель неизвестен.

Классический контроль пломб.
1. Входной фильтр присутствует, но не полностью, конденсатора после дросселя и варистора нет. К сожалению, это особенность подавляющего большинства китайских БП.
2. Встречные конденсаторы в опасной цепи — Y1, в менее опасном, нормальном высоковольтном, можно сказать, что нормальном.
3. Установлен входной диодный мост с запасом, 8 ампер 1000 вольт, но нет радиатора. В предыдущей версии диодный мост был на 20 ампер.
Также рядом два термистора включены параллельно.
4. Конденсаторы входные RUBICON г. Запос под РУБИКОН, если остальные параметры соответствовали заявленным, но об этом позже.
5. Пара высоковольтных транзисторов прижата к алюминиевому корпусу, работающему как радиатор.
6. Трансформатор силовой Имеется четкая маркировка 240 Вт 12 Вольт. Вид неплохой, видны следы пропитки лаком.

Китайские производители продолжают штамповать свои блоки питания на классической элементной базе.Не скажу, что это плохо, но более именитые производители гораздо реже будут делать БП на базе TL494.
По-своему имеет свои преимущества, ремонт такой силовой установки достаточно простой, компоненты есть везде, и документации на них очень много.

Как и в варианте 48 вольт, здесь также используется усиленный вариант радиатора, узел выходных диодов прижат к ребристому радиатору, который уже отводит часть тепла к корпусу.Если на 48-вольтовой версии в этом особо не было необходимости, то при токах в 20 ампер такое решение не лишнее.

1. Выходной дроссель при вполне нормальных размерах намотан только в два провода, а сечение провода сопоставимо с тем, что использовалось в БП на 48 вольт.
2. Выходные конденсаторы имеют заявленную емкость 2200мкФ, производитель тоже неизвестен, однако я не ожидал увидеть конденсаторы от Nichicon или хотя бы Samwha.
3.4. Но момент с фиксатором силовых элементов я проверил отдельно, так как в прошлый раз у меня были большие претензии к креплению диодной сборки. В этом случае все в принципе нормально. Можно немного натянуть транзисторы (слева), но практика показала, что все в порядке.

Берем плату с корпуса и смотрим качество пайки и заводские «косяки».

Высоковольтные транзисторы применяются с запасом, можете не волноваться.Кроме того, корпус Т247, в который они комплектуются, улучшает отвод тепла на радиаторе.
Выходной диодный узел MBR30200 представляет собой два высоковольтных диода Шоттки. Я немного скептически отношусь к использованию высоковольтных диодов Шоттки, так как они уже не имеют преимущества перед обычными в плане падений напряжения, но преимущество остается в большей скорости переключения, т. Е. Меньше динамических потерь.

Общая форма днища печатной платы.

Пайка вполне нормальная, в этой части БП все нормально, даже чисто.

Силовые дорожки дополнительно прикрыты смещением для увеличения сечения, тут тоже претензий нет, хотя кое-где на мой взгляд припоя не хватает.

Но все же нашел один неприятный момент. Один из силовых контактов не очень хорошо раскручен. Можно конечно сказать, что на полюсе три контакта, но может и так нагружается. Соб

www.kirich.blog.

Самодельный блок питания на 12В

Привет всем радиолюбителям, в этой статье я хочу представить вам блок питания с регулировкой напряжения от 0 до 12 вольт.Добиться нужного напряжения очень просто, даже в Милвольте. В схеме нет покупных запчастей — все это можно вытащить из старой техники, как импортной, так и советской.



Концепция БП (уменьшенная)

Корпус деревянный, посередине прикручен трансформатор на 12 вольт, конденсатор на 1000 мкФ x 25 вольт и плата, регулирующая напряжение .

Конденсатор С2 нужно брать большой емкости, например, для подключения усилителя к блоку питания и чтобы напряжение не пропадало на низких частотах.

Транзистор VT2 лучше устанавливать на небольшой радиатор. Т.к. при долгой работе может нагреться и сгореть, у меня уже 2 штуки сгорело, пока не поставил приличный по размерам радиатор.

Резистор R1 можно поставить постоянным, большой роли это не играет. Сверху на корпусе есть переменный резистор, на котором регулируется напряжение, и красный светодиод, показывающий, есть ли напряжение на выходе БП.

На выходе устройства, чтобы постоянно ни к чему не прикручивать проводку, припаял крокодилов — с ними очень удобно.Схема не требует никаких настроек и работает надежно и стабильно, ее действительно может сделать любой радиолюбитель. Спасибо за внимание, удачи! .

Форум по схемам простейшего БП

Обсудить самодельный блок питания на 12В

radioskot.ru.

Мощный блок питания на 12 вольт, описанный в этой статье, сегодня пользуется большим спросом, это связано с тем, что для множества различного оборудования и электронных устройств требуется стабилизированное питание на 12 вольт с высоким потреблением тока до 10 ампер.Это потребители, такие как мощные светодиодные ленты, автомобильные магнитолы, которые используются в стационарных условиях, любительские сооружения и различные электрические инструменты.

Схема блока питания на 12 вольт очень проста, так как для стабилизации напряжения и хорошей фильтрации помех на микросхеме КР142ЕН 18Б используется встроенный стабилизатор. Для увеличения выходного тока применен мощный биполярный транзистор TIP3055 Падение напряжения на транзисторе в пределах 0.5 вольт компенсируется диодом VD2, входящим в среднюю ножку цепи стабилизатора, тем самым поднимая напряжение на выходе микросхемы на нужное нам половое вольт.
Важным элементом блока питания 12 вольт является понижающий трансформатор, так как схема рассчитана на большой ток, он должен иметь параметры не ниже следующих: напряжение на вторичной обмотке от 12 до 18 вольт и выходной ток не менее 10 ампер. Микросхему можно заменить на L7812abv, MC7812BT или LM7812CT, устанавливается транзистор любой марки, с током коллектора не менее 15 ампер.Используемые в схеме конденсаторы рассчитаны на напряжение от 25 В, диодный мост на ток не менее 10 ампер, VD2 заменен практически на любой кремниевый диод.

Мощный регулируемый блок питания 12 вольт 20 ампер на транзисторе Kt827 | Радиоприемник

В статье представлена ​​схема довольно простого, но мощного блока питания, вполне пригодного не только для зарядки автомобильных аккумуляторов 12 вольт, но и для питания и тестирования многих самодельных схем, требующих мощного стабилизированного напряжения.Незаменимая вещь в гараже автолюбителя. Желаемое напряжение на выходе устройства плавно изменяется в диапазоне 0 — 12 вольт. Выходная нагрузка может достигать 20 ампер. Коллекторы силовых транзисторов соединены между собой и могут быть установлены на один алюминиевый ребристый радиатор с площадью охлаждаемой поверхности не менее 200 кв. М.

Трансформатор подойдет к старым советским телевизорам, например, ТС-270, он же Вполне подойдет и большая мощность, но габаритные размеры агрегата увеличатся.Все вторичные обмотки снимаются и поверх сетевой обмотки медным эмалированным проводом диаметром намотки 2 мм, на напряжение 14 — 16 вольт. Витки следует распределять равномерно по всей ширине каркаса трансформатора. Схема лёгкая в повторении и не требует особых навыков в радиолюбительском деле, не требует настройки и настройки, работает сразу с хорошими деталями и правильной сборкой.
Все радиодетали устройства отечественные и имеют много зарубежных аналогов:
SA1 — сетевой выключатель на 5 ампер
FU1 — предохранитель на 2 ампера
VT1 — Kt827 — Импортные аналоги 2N6059, 2N6284, BDX63, BDX65A, MJ4035
VT2 — CT947 — Замена на 2N6047, BDP620
VD1 — D132-50
VD2 — D132-50
VD3 — D815E.
C1 — 1000 мкФ x 25 В
C2 — 0,01 мкФ
C3 — 1000 мкФ x 25 В
R1 — 1 ком
R2 — 10 ком — сильный
R3 — 1 ком

Для 1-2 ампер, но более высокий ток уже проблематичен. Здесь будет описан блок питания повышенной мощности, стандартное напряжение 13,8 (12) вольт. Диаграмма для 10 ампер, но вы можете увеличить это значение. В схеме предлагаемого БП нет ничего особенного, кроме того, что показали тесты, он способен выдавать ток до 20 ампер кратковременно или 10а непрерывно.Для дальнейшего увеличения емкости используйте трансформатор большего размера, выпрямитель на диодном мосту, большую емкость и количество транзисторов. Схема блока питания для удобства представлена ​​на нескольких рисунках. Транзисторы не обязательно ставить строго так, как указано в схеме. 2N3771 (50В, 20А, 200Вт) использовались, потому что их много в наличии.


Регулятор напряжения работает в небольших пределах, от 11 В до 13,8 при полной нагрузке. При напряжении холостого хода значение 13.8 В (номинальное напряжение аккумулятора 12 В), выходная мощность упадет на 13,5 около 1,5 А и на 12,8 В около 13 А.


Выходные транзисторы подключены параллельно, мощностью 0,1 Ом 5 ​​Вт с проволочными резисторами в схемах излучения. Чем больше транзисторов вы используете, тем больший пиковый ток можно удалить из схемы.


светодиоды покажут неправильную полярность, и реле блокирует стабилизатор БП от выпрямителей. Тиристор большой мощности ВТ152-400 Открывается при перенапряжении и принимает ток на себя, что приводит к возгоранию предохранителя.Не думайте, что первым сгорит Симистор, BT152-400R выдерживает до 200а за 10 мс. Этот источник питания может служить в качестве зарядного устройства. для автомобильных аккумуляторов, но во избежание возгорания не нужно оставлять АКБ на длительное время подключенным без присмотра .

Преобразователь 12В в 9В — 5 лучших схем

Ниже представлена ​​схема простых схем преобразователя 12В в 9В. Эти схемы преобразователя постоянного тока в постоянный можно использовать для преобразования всех типов источника питания 12 В в источник питания 9 В.

Эти схемы также могут использоваться для понижения или уменьшения потенциала батареи с 12 В до 9 В, чтобы использовать его с модулями микроконтроллеров или любыми ИС.Здесь в основном используются надежные линейные преобразователи мощности типа LM7809 и LM317.

Преобразователь 9В в 5В с LM7809:

LM7809 — это микросхема стабилизатора постоянного напряжения, которая снижает и регулирует входное напряжение в электрических цепях.

Преобразователь регулятора напряжения с 12 В на 9 В с микросхемой LM7809 реализован, как показано на схематической диаграмме ниже. Его можно использовать для слаботочных приложений, а также для тока до 2 ампер и более.

Важно:
Подключите входной конденсатор «Cin» и выходной конденсатор «Co» к IC 7809.Радиатор необходим, потому что падение напряжения в 3 вольта должно рассеиваться в виде тепла.

Существует большая вероятность выхода из строя ИС, если радиатор не подключен. Разница входного и выходного напряжения здесь составляет 3 вольта, что больше рекомендуемого значения в 2,5 вольта.

Необходимые компоненты:
Аккумулятор 12 В / источник питания 12 В, конденсатор 100 мкФ, конденсатор 0,1 мкФ, IC LM7809, радиатор, провода и разъемы.

Рабочий:

ИС имеет множество встроенных функций, таких как тепловое отключение, защита от короткого замыкания и защита безопасной рабочей зоны.

LM7809 — это ИС серии LM78xx, все ИС этой серии предназначены для различных фиксированных выходных напряжений. Эти типы ИС обычно используются в регулируемых цепях питания.

LM7809 ИС линейного трансформатора. Цифры «xx » представляют значение регулируемого напряжения o / p. Микросхема 7809 выдает 9 В постоянного тока как цифра xx в последнем значении (09).

Контакт 1 — это входной контакт . Контакт 2 — это контакт заземления .Контакт 3 — это выходной контакт .

LM317 Преобразователь 12В в 9В:

Преобразователь постоянного тока 12В в 9В также может быть изготовлен с универсальным линейным регулятором напряжения IC LM317. Это полезно для цепей среднего и высокого тока (от 1 до 1,5 ампер +) с подходящим радиатором.

Обычно LM317 находится в цепях переменного питания, которые выдают регулируемое напряжение (от 1,25 В до 37 В) при изменении напряжения на контакте № 1. Здесь схема делителя напряжения, используемая с LM317, дает фиксированное значение o / p 9 В.

Важно:
Настаивают на добавлении входного конденсатора Cin (а ​​также o / p конденсатора Co). Радиатор необходим для охлаждения ИС от тепла, выделяемого внутри ИС.

Напряжение i / p должно быть не менее чем на 1,5 В выше номинального выходного напряжения, чтобы эта ИС работала, как описано.

Необходимые компоненты:
Аккумулятор 12 В / источник питания 12 В, резистор 2,2 кОм, резистор 300 Ом, конденсатор 100 мкФ, конденсатор 0,1 мкФ, IC LM317, радиатор.

Рабочий:
LM317 — это ИС регулируемого регулятора напряжения, способная обеспечивать более…

(для получения более подробной информации о регуляторе LM317 и его работе перейдите по этой ссылке)

Преобразователь 12В в 9В с использованием резисторов в качестве делителя напряжения:

Схема ниже, показанная ниже, представляет собой схему для слаботочных приложений (~ 20 мА) или для измерения опорного напряжения в цепи компаратора или схемы низкого тока светодиода.

Вы можете подключить три светодиода последовательно через вывод резистора R2, если вы используете 12-вольтовую батарею на входе.

Этот тип схемы не является эффективным, поэтому не рекомендуется для использования в проектных схемах.

Необходимые компоненты:

Одна батарея 12 В, резистор 300 Ом, резистор 1 кОм, несколько проводов.

Это просто схема делителя напряжения. Вы можете получить выходной сигнал в соответствии с вашими потребностями по следующей формуле:

Где Vo — это напряжение o / p.Vin — напряжение источника. Выберите любое значение резистора R1 или R2 (также зависит от импеданса нагрузки) и решите другое. Затем выберите ближайший стандарт. номинал резистора.

Преобразователь 12В в 9В с использованием стабилитрона:

Схема, показанная ниже схемой стабилитрона, полезна для (1-900мА) схемы рисования среднего тока, например. Светодиодные индикаторы, транзисторные переключатели, Arduino и т.д.Стабилитрон 1в. На выходе вы получите около 9,1 В.

Важно:
Нагрузка должна быть подключена к выходному концу, чтобы предотвратить повреждение стабилитрона. Резистор серии
10 Ом является токоограничивающим резистором, и когда на него подается большой ток, он должен пропускать этот ток через него, поэтому необходим резистор мощностью 5 Вт.

Необходимые компоненты:
Аккумулятор 12 В, резистор 10 Ом (≥10 Ом), стабилитрон 9,1 В (5 Вт), некоторые провода или разъемы.

Рабочий:
Это наиболее распространенная схема стабилитрона в конфигурации регулятора напряжения.

Конструкция стабилизатора напряжения стабилитрона 9 вольт от источника питания 12 вольт. Максимальная номинальная мощность…

Подробный расчет и формулы можно найти в статье о преобразователе 9В в 5В на этом сайте.

Простой преобразователь постоянного тока в постоянный с 12 В до 9 В с использованием транзистора:

Эти типы схем устарели, но все еще встречаются в некоторых периферийных устройствах.Это стабилизатор напряжения транзистор-стабилитрон в режиме ЕС:

скоро появится…

% PDF-1.4 % 1937 0 объект > эндобдж xref 1937 123 0000000016 00000 н. 0000004330 00000 н. 0000004510 00000 н. 0000007824 00000 н. 0000007969 00000 п. 0000008671 00000 н. 0000009306 00000 н. 0000009935 00000 н. 0000010559 00000 п. 0000010830 00000 п. 0000011408 00000 п. 0000011523 00000 п. 0000011636 00000 п. 0000011665 00000 п. 0000011916 00000 п. 0000012550 00000 п. 0000013175 00000 п. 0000013432 00000 п. 0000015046 00000 п. 0000015711 00000 п. 0000015991 00000 п. 0000016528 00000 п. 0000018525 00000 п. 0000019817 00000 п. 0000021494 00000 п. 0000023191 00000 п. 0000023442 00000 п. 0000023559 00000 п. 0000023984 00000 п. 0000024374 00000 п. 0000024631 00000 п. 0000025731 00000 п. 0000025936 00000 п. 0000027849 00000 н. 0000029351 00000 п. 0000059356 00000 п. 0000094151 00000 п. 0000094222 00000 п. 0000094335 00000 п. 0000135989 00000 н. 0000136275 00000 н. 0000136754 00000 н. 0000180098 00000 н. 0000211611 00000 п. 0000211663 00000 н. 0000247410 00000 н. 0000259659 00000 н. 0000312127 00000 н. 0000312564 00000 н. 0000312588 00000 н. 0000312667 00000 н. 0000312781 00000 н. 0000312858 00000 н. 0000334681 00000 п. 0000335014 00000 н. 0000335300 00000 п. 0000335444 00000 н. 0000335525 00000 н. 0000335645 00000 н. 0000335763 00000 н. 0000335787 00000 н. 0000335866 00000 н. 0000335943 00000 н. 0000357267 00000 н. 0000357602 00000 н. 0000357889 00000 н. 0000358033 00000 н. 0000358114 00000 н. 0000358234 00000 н. 0000369843 00000 н. 0000370120 00000 н. 0000399814 00000 н. 0000399855 00000 н. 0000430306 00000 н. 0000430347 00000 н. 0000430469 00000 н. 0000430568 00000 н. 0000430718 00000 п. 0000430840 00000 п. 0000430939 00000 п. 0000431089 00000 н. 0000431605 00000 н. 0000431683 00000 н. 0000431797 00000 н. 0000432113 00000 п. 0000432191 00000 п. 0000432507 00000 н. 0000432585 00000 н. 0000432983 00000 н. 0000433061 00000 н. 0000433418 00000 н. 0000433496 00000 н. 0000433894 00000 н. 0000433972 00000 н. 0000434332 00000 н. 0000434410 00000 п. 0000434806 00000 н. 0000434884 00000 н. 0000435245 00000 н. 0000435323 00000 п. 0000435720 00000 н. 0000435798 00000 н. 0000436157 00000 н. 0000436235 00000 п. 0000436426 00000 н. 0000436504 00000 н. 0000436884 00000 н. 0000436962 00000 н. 0000437343 00000 п. 0000437421 00000 н. 0000437802 00000 п. 0000437880 00000 н. 0000438259 00000 н. 0000438337 00000 н. 0000438724 00000 н. 0000438802 00000 н. 0000439186 00000 н. 0000439264 00000 н. 0000439647 00000 н. 0000439725 00000 н. 0000440110 00000 н. 0000004114 00000 п. 0000002817 00000 н. трейлер ] / Назад 2406281 / XRefStm 4114 >> startxref 0 %% EOF 2059 0 объект > поток h ޔ {L [ek / ZV) / 75NAB`ʀP«Y1C1UοH 1JK 㹷 / 9 = w ߹

Как использовать регуляторы напряжения в цепи

Введение

В этом уроке мы рассмотрим, как использовать регулятор напряжения в цепи!

Регуляторы напряжения

предназначены для поддержания и стабилизации уровней напряжения.Регуляторы присутствуют в большинстве электронных устройств и могут использоваться для понижения и управления выходным напряжением от источника высокого напряжения, рассеивая избыточную энергию в виде тепла. Это отлично подходит для приложений, где вам нужно несколько дискретных напряжений для разных устройств в одной цепи, поскольку вы можете использовать регуляторы напряжения для понижения напряжения от одного источника с более высокой выходной мощностью!

Большинство регуляторов напряжения имеют 3 контакта:

Вход — это входное напряжение от исходного источника.Например аккумулятор или блок питания. Вы подаете выход этого устройства на вход регулятора. Вход всегда должен быть как можно более чистым и всегда должен быть больше, чем требуемое выходное напряжение. Большинство регуляторов напряжения имеют минимальное указанное входное напряжение, поэтому убедитесь, что вы его соблюдаете (иначе выходная мощность может быть ниже ожидаемой)

Земля — ​​требуется общая земля между входным и выходным напряжениями. Он должен подключаться к земле в цепи и необходим для работы регулятора.

Выход — выходной контакт выдает регулируемое напряжение.

Как использовать в цепи регуляторы напряжения?

Как работают регуляторы напряжения — это отдельная тема, поэтому здесь мы не будем останавливаться на ней. Достаточно сказать, что регуляторы напряжения — это, по сути, рассеиватели напряжения, которые преобразуют избыточное напряжение в тепло. Более высокое входное напряжение приведет к более горячему регулятору напряжения, так как он будет труднее избавляться от этого избыточного напряжения, поэтому пользователи должны знать об этом!

Ваша настенная розетка выдает переменный ток, в то время как большинство электроприборов питаются постоянным током.Одна из функций источника питания — понижать и преобразовывать этот сигнал переменного тока в постоянный, однако в зависимости от качества используемого источника питания на линии может оставаться «шум», и это может вызвать проблемы для регуляторов напряжения.

Если ваш регулятор расположен на расстоянии более 25 см (10 дюймов) от источника питания, вам необходимо добавить конденсаторы на вход (0,33 мкФ) и выход (0,10 мкФ), чтобы отфильтровать любой остаточный шум переменного тока в линии. Стабилизаторы напряжения работают наиболее эффективно, когда на них подается чистый сигнал постоянного тока, и этот байпасный конденсатор помогает уменьшить любые пульсации переменного тока.По сути, они действуют, чтобы замкнуть шум переменного тока сигнала напряжения на землю и фильтровать только постоянное напряжение в стабилизаторе.

Эти два конденсатора не обязательно требуются, и их можно не устанавливать, если вас не слишком беспокоит уровень шума в линии, например если добавляете несколько светодиодов с резисторами. Однако, если вы создаете что-то вроде зарядного устройства для мобильного телефона или используете выход для логической оценки, вам понадобится хорошая чистая линия постоянного тока, поэтому мы рекомендуем включить конденсаторы!

0.Керамический конденсатор 33 мкФ следует подключать после источника напряжения и перед входом регулятора напряжения. Второй конденсатор, керамический конденсатор 0,1 мкФ, должен быть подключен после выхода регулятора напряжения.

В схеме выше у нас есть источник 12 В, который нам нужно стабилизировать до 5 В, чтобы наш светодиод заработал! GND в этой цепи — это просто отрицательная сторона этого источника 12 В.

Первый конденсатор емкостью 0,33 мкФ замыкает любые помехи переменного тока в линии на землю и очищает сигнал для входа нашего регулятора.Регулятор в этой схеме представляет собой регулятор TS7805CZ (5 В 1 А), который затем понижает сигнал напряжения 12 В до 5 В и подает его на выход.

Конденсатор 0,1 мкФ затем очищает сигнал постоянного тока, что оставляет нам хороший чистый источник 5 В. Мы можем использовать для питания любых устройств с напряжением 5 В, в данном случае светодиода, но на этом этапе вы можете подключить любое устройство с напряжением 5 В!

При использовании регуляторов напряжения в цепи необходимо помнить следующее:

  • Всегда дважды проверяйте выходное напряжение с помощью мультиметра перед подключением вашей цепи.Последнее, что вы хотите сделать, это взорвать свое устройство 5 В, по ошибке пропустив через него большое напряжение
  • Большинство регуляторов имеют только 3 порта (IN / OUT / GND). Если контактов больше, убедитесь, что вы знаете, что они делают и требуются ли какие-либо посторонние компоненты.
  • Избыточное напряжение рассеивается регулятором в виде тепла, поэтому будьте осторожны при проектировании и использовании схем. Если вы понижаете большое напряжение, регулятор будет выделять больше тепла, и вам может потребоваться радиатор, чтобы гарантировать, что ваш регулятор не перегорит.Если он кажется слишком горячим, возможно, он слишком горячий!
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *