Схемы реле времени и задержки выключения нагрузки
Принципиальные схемы реле задержки времени, автоматических включателей и выключателей нагрузки 220В с заданым интервалом времени. Схемы просты в сборке и построены на основе микросхемы LM555.
Реле времени для автоматического отключения нагрузки
Иногда бывает необходимо выключить приемник или лампу подсветки через определенный интервал времени. Эту задачу может решить схема, приведенная на рис. 1.
Рис. 1. Схема таймера для автоматического отключения нагрузки.
При указанных на схеме номиналах времязадающих элементов задержка отключения составит около 40 минут (для микромощных таймеров это время может быть значительно увеличено, так как они позволяют R2 установить с большим номиналом).
В ждущем режиме устройство не потребляет энергии, так как при этом транзисторы VT1 и VT2 заперты. Включение производится кнопкой SB1 — при ее нажатии открывается транзистор VT2 и подает питание на микросхему.
Кнопка блокируется, и схема будет находиться в таком состоянии, пока заряжается конденсатор С2, после чего отключит нагрузку. Резистор R3 ограничивает ток разряда емкости времязадающего конденсатора, что повышает надежность работы устройства. Для получения больших интервалов задержки конденсатор С2 необходимо применять с малым током утечки, например танталовый из серии К52-18.
Таймер с увеличенным временным интервалом
Схема устройства аналогичного назначения показана на рис. 2. Она позволяет дискретно изменять время задержки отключения нагрузки от 5 до 30 мин (с шагом 5 мин) при помощи переключателя SA1. Благодаря использованию микромощного таймера, обладающего большим входным сопротивлением, имеется возможность использовать времязадающие резисторы значительно больших номиналов (от 8,2 до 49,2 МОм), что позволяет увеличить и временной интервал: Т= 1,1 * С2 * (R1 + .
Рис. 2. Схема таймера с увеличенным временным интервалом для отключения нагрузки.
Схемы реле времени на симисторах
Схемы, позволяющие непосредственно (без реле) управлять отключением сетевой нагрузки, приведены на рис. 3 и 4. В них в качестве коммутатора использован симистор. По сравнению с оригиналом, в приведенных здесь вариантах некоторые номиналы изменены для работы устройств от сетевого напряжения 220 В.
В схеме на рис. 3 включение нагрузки происходит сразу при замыкании контактов SA1, а выключение с задержкой, определяемой номиналами R2-C2 (для указанных на схеме она составляет 11 секунд). Цепь R1-C1 обеспечивает запуск одновибратора при включении.
Рис. 3. Бестрансформаторная схема управления сетевой нагрузкой.
Рис. 4. Вариант схемы для автоматического отключения сетевой нагрузки.
Во второй схеме (рис. 4) включение нагрузки будет при первоначальном подключении к сети или при нажатии на кнопку SB1.
Стабилитрон VD1 обеспечивает стабильное напряжение питания микросхемы, а диод VD3 позволяет уменьшить время готовности схемы для частого нажатия на кнопку. Время задержки выключения может регулироваться резистором R3 от 0 до 8,5 мин. Времязадающий конденсатор СЗ обязательно должен иметь маленькую утечку.
Литература: Радиолюбителям: полезные схемы, Книга 5. Шелестов И.П.
Схемы реле времени задержки выключения нагрузки | Vtuz.Auto.Zavod
Схема №1. Таймер для отключения нагрузки
Устройство предназначено для задержки управляющего сигнала, например отсроченного выключения освещения, лампы подсветки, приемника (любого электроприбора). Регулировать интервал задержки времени можно используя:
- Разные типы конденсаторов на 220 мкф. Например, чтобы увеличить время экспозиции нужно использовать танталовые электролиты серии К52-18.
- Большие номиналы резисторов вместо сопротивления 10 мОм (подходит для маломощных систем).
Если вы будете использовать номиналы электронных компонентов, указанные на схеме, время экспозиции составит 40 минут.
Достоинства схемы:
- простота сборки;
- отсутствие потребления электроэнергии в ждущем режиме;
- элементарное управление (с помощью кнопки, нажатие которой обеспечивает поступление питание на микросхему-таймер).
Совет: Перед подключением к сети обязательно протестируйте собранную схему.
Схема №2. Схема РВ с увеличенным временным интервалом
Простота сборки этой схемы реле времени позволяет собрать устройство даже начинающему радиолюбителю. Его основное назначение — прерывисто изменять время эксплозии поступления сигнала с шагом в 5 минут в диапазоне 5-30 минут. Это достигается с помощью переключателя. Схема работает, благодаря:
- маломощной микросхеме с большим входным сопротивлением;
- 7 сопротивлениям больших номиналов.
Возможность увеличить номинал резисторов позволяет удлинить время задержки сигнала. Это основное достоинство данной схемы.
Схема №3. Два варианта тиристорного реле времени
Управлять отключением подачи напряжения, если его источником служит бытовая электросеть, можно без реле, используя как коммутатор триак ТС 120-22 с максимально допустимым током 25 А.
Напряжение подается на микросхему сразу по замыкании контактов, а выключение прибора происходит с задержкой в 11 секунд, если вы используете указанный на схеме номинал резистора, соединенного с микросхемой (10 Мом).
Во втором варианте тиристорного реле, представленного на схеме, включение нагрузки происходит после нажатия на кнопку, подача питания на микросхему осуществляется через конденсатор номиналом 1 мкф 400 В.
Время экспозиции регулируется резистором (на схеме это сопротивление 1 мОм, вы можете использовать больший или меньший номинал), но учтите, что задающий время конденсатор (на схеме это емкость номиналом 470 мкф 20 В) должен иметь минимальную утечку.
Достоинство данной схемы реле времени задержки выключения нагрузки в том, что время экспозиции, поддерживаемое ею, может регулироваться в диапазоне 0-8,5 минут.
использование в сети 220 В, характеристики таймеров и их применение
Для управления последовательностью работы электрических приборов используется реле времени с задержкой выключения 220 В. После включения электрического аппарата через заданное время происходит отключение нагрузки. Таким образом регулируется последовательность работы элементов электрической цепи и производится управление электроприборами и технологическими процессами.
Типы реле
Все реле подразделяются на устройства с гальванической развязкой и без гальванической развязки. Под гальванической развязкой понимается электрическая изоляция цепей по отношению к другим цепям, находящимся рядом. Имеется полная изоляция между контролирующей цепью и управляемыми цепями.
На практике применяются следующие устройства:
- Устройства, основанные на электромагнитном принципе. Предназначены для работы в цепях постоянного тока. На катушке устройства добавлен отдельно короткозамкнутый контур. За счёт остаточного магнитного поля происходит замедление на отпускание или замыкание контактов. Пределы регулирования — до 5 секунд.
- Устройства с пневматическим замедлением. После поступления сигнала якорь не может включить контакт, пока воздух находится в демпфере. Время задержки задаётся путём регулирования отверстия. Задержка возможна до 60 секунд. Реле времени пневматического типа возможно использовать для управления металлорежущими станками или для ступенчатого регулирования разгона и торможения.
- Моторные реле задержки включения 220 В используются для задержки времени от 10 секунд до десятков часов. Они состоят из синхронного электродвигателя, редуктора, электромагнита и контактов.
- Устройства на часовом механизме осуществляют регулировку за счёт пружины, взведённой под действием электромагнита. Контакт реле срабатывает только после отсчёта времени часовым механизмом. До появления электронных реле часовые механизмы имели большое распространение. Их отличает простота регулирования, точность отсчёта времени и лёгкая перенастройка.
- Электронные реле времени с задержкой включения применяются при коммутации малоиндуктивных или неиндуктивных нагрузок. При использовании электронного реле можно сэкономить электроэнергию. Оно может отключать освещение в подъездах и коридорах через некоторое расчётное время, которого достаточно, чтобы покинуть помещение.
Электронные таймеры обладают большой точностью, но интервал задержки у них значительно меньше, чем у электромагнитных, и они требуют программирования. Электромагнитные устройства имеют меньшую стоимость, их проще настраивать. Они не требуют обслуживания, но ресурс работы у них ограничен.
Применение таймеров
Реле времени можно разделить на встроенные в технику и отдельно приобретаемые. В мультиварках, стиральных и посудомоечных машинах таймеры запрограммированы, на их работу повлиять нельзя. Самостоятельно можно применить отдельные таймеры, управляющие освещением, отоплением, открыванием дверей. Самыми распространёнными считаются цифровые таймеры, в основе которых лежит кварцевый резонатор со стабильной частотой.
Замена человеческого труда при управлении различными механическими устройствами, увеличение производительности устройств без участия человека, повышение безопасности производства — эти задачи способны выполнять реле времени.
Характеристики установок
По характеристикам определяется возможность использования приборов в тех или иных рабочих условиях. Свойства установок задержки времени имеют четыре направления:
- Диапазон времени задержки. Он может регулироваться в больших пределах.
- Стабильность работы. Этот параметр относится к электронным приборам и характеризует возможность прибора функционировать при изменении напряжения питания.
- Долговечность, измеряемая в циклах включения-выключения.
- Электронные приборы характеризуются потребляемой мощностью.
Каждый таймер характеризуется определёнными параметрами. Важным является алгоритм работы, а именно последовательность включений и отключений.
Наиболее часто используемые алгоритмы:
- Задержка включения — после подачи электропитания на таймер выходной импульс образуется после отсчёта установленного времени.
- Импульс формируется при включении — сигнал появляется в момент включения электропитания таймера и исчезает после окончания установленного времени.
- После включения электропитания таймера выходной сигнал появляется в момент снятия управляющего сигнала и исчезает через установленное время.
- Задержка выключения после отключения электропитания — выходной сигнал появляется в момент включения питания таймера и исчезает через установленное время после отключения.
- Циклический режим — после включения электропитания таймера время импульса чередуется со временем паузы и так до отключения электропитания.
Для того чтобы подключить таймер, необходимо знать, в какой сети он будет монтироваться — однофазной или трехфазной. Важно учитывать, что будет коммутировать этот таймер, какую нагрузку нужно отключать или включать. Используя эти данные, можно подобрать устройство с необходимыми характеристиками.
youtube.com/embed/kDppeVyXo2c»/>
Реле времени с задержкой выключения
03 Мар 2018г | Раздел: Работы читателей
Здравствуйте, уважаемые читатели сайта sesaga.ru. После прочтения статьи о реле времени с задержкой включения я попробовал собрать схему реле с задержкой выключения для вентилятора в туалете и мне не понравилась схема бестрансформаторного источника питания на двух диодах и гасящем конденсаторе, применяемая в статье. Поскольку схема получилась очень прожорливая и потребляла достаточно много тока на собственное питание, мною был установлен диодный мост, что позволило снизить потребляемую мощность до 10 Вт (общая потребляемая мощность реле времени зависит от типа применяемого реле).
Внимание! Эта конструкция имеет бестрансформаторное питание от сети переменного тока. Собирая ее, обращайте особое внимание на соблюдение техники безопасности при работе с электроустановками.
Принцип работы реле времени простой. При замыкании контактов кнопки S1 (без фиксации) питание подаётся в схему через бестрансформаторный блок питания и таймер NE555 оказывается во включенном состоянии. Открывается транзистор VT1, срабатывает реле КL1 и блокирует контакты кнопки S1, оставляя питание схемы реле времени и включенный вентилятор на время заданной задержки выключения.
По мере заряда конденсатора С3 до уровня равного 2\3 напряжения питания таймер переключится в выключенное состояние, реле КL1 обесточится и своими контактами KL1.1 отключит от сети схему и вентилятор. Таким образом обеспечивается нулевое потребление тока в режиме ожидания.
В общем реле времени работает отлично и ток не потребляет в выключенном состоянии. Печатку в формате lay рисовал исходя из имеющихся деталей. Для подключения проводов использовал самозажимной коннектор от сгоревшего балласта люминесцентной лампы типа ЭПРА 2х36 и им подобных, что очень удобно при монтаже слаботочных цепей, главное быстро. Таймер 555 применен в SMD корпусе, а кнопка S1 взята от квартирного звонка.
Архив печатной платы в формате lay можно скачать по этой ссылке.
Желаю успеха в повторении конструкции!
До встречи!
Юрий, г. Витебск.
Поделиться с друзьями:
Еще интересно почитать:
Электромеханическое (1РВМ, 2РВМ) | Программное реле времени с часовым механизмом электромеханического типа. При отключения питания РВМ способно обеспечить работу до 72-х часов. Напряжение питания 230 ± 10%В, номинальная частота питающей сети — 45-60 Гц. | |
Электромеханический таймер UNO | Orbis, модульное электромеханическое реле. Имеет суточную или недельную программу, с резервом питания или без резерва питания в зависимости от типа модели. | |
Описание реле CRONO QRDD | Производитель Orbis — Испания, серия CRONO — является аналогом отечественного 2РВМ. Таймеры с резервом 100 часов снабжены аккумулятором. | |
Характеристики реле INCA DUO QRD | Испанский производитель Orbis, суточная или недельная программа, с резервом питания (без резерва питания). | |
Электромеханическое серии MINI-T | Электромеханический таймер работает в диапазоне температур от -10°C до +45°C, имеет переключающий контакт. Имеет суточную или недельную программы, с резервом питания или без резерва. | |
Техническое описание, производство Орбис. | Для автоматики аналоговые и цифровые таймеры для применения в быту и промышленной автоматике. | |
Таймеры | Таймеры бытовые, характеристики, описание | |
Модульное исполнение, Чешский производитель, фирмы Elko на рынке более 20 лет. | CRM-61 — продукция высокого качества, известна далеко за пределами, многофункциональные изделия, целый ряд модульных устройств. Подробнее Elko 10 функций, 10 временных диапазонов, универсальное питание, коммутация 16 A, или 3 группы по 8 A. Серия CRM-91H, CRM-93H, CRM-9S | |
Техническое описание ВЕХА-Д (ВЕХА-Щ) | Однократное или циклическое включение (выключение) исполнительных механизмов после отработки установленной выдержки. Предназначено для применения в производственных процессах, в промышленности и народном хозяйстве. | |
Трехцепное ВЛ-100А, ВЛ-101А | С тремя независимыми выходными контактами с задержкой на включение и отключение. | |
С двумя цепями ВЛ-102, ВЛ-103 | Двухцепные реле – с выдержкой на включение + мгновенный контакт, аналоговое реле времени 630 Kb. | |
Трехцепное ВЛ-104 | Трёхцепное реле времени с независимыми регулируемыми выдержками. | |
Оперативное питание, марка ВЛ-108 | Изделие имеет оперативное питанием, температура от минус 40°С до плюс 55°С Инструкция по применению и технические характеристики 630 Kb. | |
Многопрограммное реле ВЛ-159М | Многопрограммное реле, 8 функций, режим счета импульсов, цифровая индикация ( сохраняет работоспособность при температуре до минус 10 °С), имеет универсальное питание (AC/DC 24-40 или AC/DC 110-240), инструкция и технические характеристики 1385 Kb. | |
Данные ВЛ-161, ВЛ-162, ВЛ-163, ВЛ-164 | Реле времени ВЛ-161, ВЛ-162, 10 программ, счет и генерирование импульсов. Задержка на включение, задержка выключения при отключении питания. Пусковое реле — переключение при пуске звезда-треугольник. Циклические, раздельные регулировки времени импульса и паузы. | |
Широкий диапазон напряжения ВЛ-40М1 | Реле времени с широким диапазоном питания, шесть диаграмм работы, начало работы с подачей питания, по управляющему сигналу. | |
Реле времени ВС-43 | ВС-43 три или шесть независимых цепей с выдержкой времени и дополнительный мгновенный контакт. | |
Реле ВС-44 | Программные, циклические; 11, 12, 6 и 7 – ми цепные, по 46, 48, 26 и 28 команд. | |
Реле ВЛ-4U | Имеет универсальное питание, мощность потребления — не более 1.4 Вт. Выдержка: 0.1…9.9, 1…99 (с, мин, ч) 280 Kb | |
Специальное реле ВЛ-50, ВЛ-51, ВЛ-52 | Для жёстких условий эксплуатации (для ж.д. транспорта и морских судов). Задержка времени на включение и отключения при снятии напряжения питания. | |
Реле ВЛ-54, ВЛ-55, ВЛ-55 (Е) | Многофункциональное, формирует импульс с заданной выдержкой. Задержка отключения при снятии напряжения питания. | |
Трехцепное реле ВЛ-56, ВЛ-56С | Трехцепное реле времени с независимой регулировкой в трех цепях. Исполнение на напряжение питания: = 24, 110, 220В, ~ 110, 220В. Диапазон по исполнению (0,1-9,9; 1-99) с, мин, ч. | |
Двухфункциональное реле времени-счетчик импульсов ВЛ-59 | Работа в режиме реле времени или счета импульсов, питание напряжением постоянного 24; 110; 220 В, переменного тока частотой 50, 60 Гц 110; 220; 240 В | |
Модульное ВЛ-5U | Отсчет начинается от момента снятия питающего напряжения. Работа в диапазоне напряжения питания от 24—220 В постоянного или переменного тока 115 Kb | |
ВЛ-6-II, ВЛ-6-III | Реле времени с широким диапазоном питания. | |
ВЛ-60Е, 60Е1 | Реле времени, диаграммы работы: формирование импульса, задержка включения. Реле времени 60Е1 имеет широкий диапазон питающих напряжений | |
Реле времени/таймер D6DQ | Реле времени Tele D6DQ с широким диапазоном питания 24VAC/DC 110-240VAC, четыре диаграммы работы, модульное исполнение шириной 22,5 мм. 140 Kb | |
Широкий диапазон питания ВЛ-60М1 | Реле времени с широким диапазоном питания, четыре диаграммы работы времени, модульное исполнение. | |
Реле ВЛ-61, ВЛ-63, ВЛ-64, ВЛ-66, ВЛ-67, ВЛ-68, ВЛ-69 | ВЛ-64…ВЛ-69 задержка включения, задержка выключения. ВЛ-61 для отключения освещения на лестничных площадках | |
ВЛ-65, ВЛ-65 (С) | Циклические, раздельная регулировка выдержки времени импульса и паузы. | |
Статические РСВ-01, РСВ-14 | У статического реле времени в зависимости от модификации напряжения питания может быть как постоянным 24, 110, 220 вольт, так и переменным 24, 48, 60, 110, 127, 220 вольт. Выдержка от 0,05 … 90с (разные диапазоны), а отдельных модификаций выдержка и более, диапазон переключения ступенчатый. Выходные контакты как мгновенного срабатывания, так и с регулируемой выдержкой. | |
Пневматическое РВП-72 | Реле времени с пневматическим замедлением обеспечивает выдержку от 0. 4 до 180с, для отсчета выдержки имеется пневматический демпфер. | |
Циклическое, серия РВЦ | РВЦ — реле времени циклическое начало работы с импульса или паузы | |
Трехцепное РВЦ-03 | Реле времени циклическое трехцепное программируемое | |
Многопрограмное реле времени РВ-01 | Реле времени многопрограммное РВ-01 с цифровой индикацией | |
Однокомандное реле времени РВО-15 | Реле времени однокомандное РВО-15 имеет две диаграммы работы, переключаемый диапазон времени, две переключаемые группы, напряжение питания 24в/220в. | |
Отсчет времени после снятия напряжения питания | Реле времени РВО-26 с отсчетом времени после снятия напряжения питания, имеет широкий диапазон питающего напряжения, переключаемые поддиапазоны выдержек и две диаграммы работы. | |
Многофункциональное реле времени РВО-П2-М | Реле с широким напряжением питания, имеет 8 диаграмм работы, две переключающие группы, работает в диапазоне напряжения питания 24-240В как постоянного так и переменного тока, является аналогом реле типа D6DQ и других. | |
Трехцепное реле времени РВ3-П2-У-14 | Реле времени трехмодульного исполнения РВ3, разработано для замены реле ВЛ-56. Имеет восемь поддиапазонов времени и две диаграммы работы — задержка включения, задержка отключения. Каждая цепь имеет свою настройку времени выдержки. Дополнительно имеется мгновенный контакт. | |
Серия реле времени РП-21 В | РП-21-В реле времени, диаграммы работы задержка включения, задержка отключения, циклические. | |
Таймер реального времени ТРВ-02 | Таймер реального времени ТРВ-02- перепрограммируемый таймер имеет два выходных исполнительных реле, по каждому каналу две уставки, совмещен с датчиком освещенности, что позволяет применять для программного включения рекламных щитов, наружного освещения и т.д. | |
Schneider реле времени RE 11 | Реле времени серии RE11 производства Schneider. Подробное описание, технические характеристики, конструкция, диаграммы работы. Диапазоны 0,1…1 s, 1…10 s, 6…60 s, 1…10 min, 6…60 min, 1…10 h, 10…100 h | |
Модульный таймер TRF10 | Реле времени TRF10 производства BMR, импульсное запоминающее, напряжение питания 12 В — 230 В (AC), 12 В (DC). 10 функций -диаграмм работы, 2 замыкающих контакта. Индикация: светодиоды зеленого и желтого цвета. | |
Таймер с поворотной механической шкалой | Таймер ST2P-E, втычное реле времени, с поворотной механической шкалой, функции работы: задержка на включение/выключение. Диапазон выставки значений 0…60 с или 0…60 мин. Потребляемая мощность от сети 1ВА. | |
Таймер ARCOM-T44 | Реле времени (таймер) ARCOM-T44 имеет два режима работы — однократный или циклический, втычное подсоединение. Диапазон выдержек от 0,01 сек до 999 часов, на передней панели расположен трехразрядный цифровой светодиодный индикатор. |
Внимание! |
cxema.org — Реле времени 220 В с задержкой выключения
Привет друзья!
Сегодня мы с вами детально рассмотрим схему и конструкцию достаточно полезного устройства – реле времени с задержкой выключения нагрузки. Разумеется, устройство можно использовать и для включения нагрузки и для переключения между двумя разными нагрузками. Рабочее напряжение нагрузки может составлять до 220В, максимальный коммутируемый ток – до 5 А. Путем несложных вычислений получаем, что мощность нагрузки может составлять до 1100 Вт.
Схема устройства и принцип ее работ
Прежде всего изучим схему реле задержки времени. Важный момент: разработчиком схемы я не являюсь и на авторские права не претендую.
Представленная схема работает следующим образом. При нажатии на тактовую кнопку SW1 осуществляется зарядка конденсатора С1, открывается транзистор VT1 (транзистор VT2 и транзистор VT3 находятся в закрытом состоянии). Поскольку контакты реле (Х3 и Х4) разомкнуты, нагрузка отключена. В процессе разряда конденсатора С1 транзистор VT1 закрывается. В то же время открываются транзисторы VT2 и VT3, и через катушку реле начинает протекать ток, что приводит к замыканию контактов реле (Х3 и Х4) и включению нагрузки.
Можно догадаться, что основным времязадающим элементом является конденсатор С1. Именно от него напрямую зависит максимальное время задержки включения/выключения. Также время срабатывания реле зависит от сопротивления переменного резистора R1. Соответственно для изменения времени задержки достаточно изменить номиналы резистора R1 и конденсатора С1.
Схема питается от источника постоянного тока напряжением 12 В. Потребление тока не превышает 100 мА.
Что касается деталей. Все транзисторы, использованные в схеме, однотипные – BC547. Данные транзисторы могут быть заменены транзисторами с аналогичными параметрами. Например, вместо ВС547 можно вполне успешно применить транзисторы серии КТ3102 с любыми буквенными индексами.
Электромеханическое реле – BS115C с напряжением срабатывания 9В. В принципе, реле может быть любым малогабаритным с напряжением срабатывания от 9 до 12В, например, это может быть реле JQC-3F-1C-9VDC.
Печатная плата реле времени
Устройство собирается на печатной плате из фольгированного стеклотекстолита, размерами 41×35 мм. Для удобства монтажа рекомендую нанести на плату «схему» расположения элементов. Нанесение рисунка расположения элементов может осуществляться все тем же лазерно-утюжным методом.
Рисунок печатной платы и расположение элементов
Вот так печатная плата получилась у меня:
Конструкция реле задержки выключения
Устройство может быть собрано в абсолютно любом корпусе подходящих размеров. Не забывайте, что помимо самого реле в корпусе должен уместиться еще и блок питания. В моем случае использован пластиковый корпус для сборки блока питания. Думаю, что аналогичный корпус можно без проблем приобрести практически в любом радиомагазине.
Как можно заметить и плата с реле и блок питания умещаются в таком корпусе просто замечательно. Кстати, в качестве блока питания можно взять зарядное от сотового телефона. Для того, чтобы повысить выходное напряжение такой зарядки, достаточно заменить в ней стабилитрон на большее напряжение. О том, как правильно это сделать, можно найти в Ютубе.
Для максимального удобства пользования реле мной была сделана лицевая панель с надписями и пометками времени срабатывания. Сделать такую панель очень просто — понадобятся лишь навыки работы с графическим редактором и немного терпения.
Вот, собственно, и все. Напоследок для полноты материала предлагаю вам посмотреть видеоролик о данном реле времени и об его сборке. Смотрим:
Автор статьи и видео Антон Писарев
1 | ЗАДЕРЖКА ВКЛЮЧЕНИЯ: Когда на катушку подается питание, начинается период ЗАДЕРЖКИ ВКЛЮЧЕНИЯ, и контакты в это время не переключаются. По истечении времени ЗАДЕРЖКИ ВКЛЮЧЕНИЯ контакты переключаются, либо подключают (нормально разомкнутые контакты), либо отключают (нормально замкнутые контакты) нагрузку. Контакты остаются в переданном состоянии до тех пор, пока с катушки не будет отключено питание. Затем они возвращаются в исходное состояние, и устройство готово к новому циклу. |
2 | ЗАДЕРЖКА ВЫКЛЮЧЕНИЯ I: На катушку постоянно подается питание. При замыкании пускового выключателя («сухой» внешний контакт) контакты переключаются, либо подключают (нормально разомкнутые контакты), либо отключают (нормально замкнутые контакты) нагрузку. Когда пусковой переключатель разомкнут, начинается период ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ, и контакты остаются в переданном положении до окончания периода ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ. Затем они возвращаются в исходное положение, и агрегат готов к новому циклу. |
3 | ЗАДЕРЖКА ВЫКЛЮЧЕНИЯ II: На катушку постоянно подается питание. После включения и выключения пускового переключателя («сухой» внешний контакт) начинается период ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ и контакты переключаются, либо подключают (нормально разомкнутые контакты), либо отключают (нормально замкнутые контакты) нагрузку. Когда период отсчета времени заканчивается, контакты возвращаются в исходное положение, и устройство готово к новому циклу. |
4 | ИНТЕРВАЛЬНАЯ ЗАДЕРЖКА: При подаче питания на катушку (в многофункциональных таймерах пусковой переключатель должен быть переставлен), начинается период ИНТЕРВАЛ и контакты переключаются, либо соединяются (нормально разомкнутые контакты), либо разъединяются (нормально замкнутые контакты) Загрузка. Когда интервал времени INTERVAL заканчивается, контакты возвращаются в исходное положение. Устройство перезагружается при отключении питания от катушки, делая устройство готовым к новому циклу. |
5 | ВЫПУСК ЦИКЛА 1 (РАВНОЕ ВРЕМЯ ВЫКЛ. / ВКЛ.): При подаче питания на таймер начинается отсчет времени. Выходное реле выключено на установленное время, а затем включено на установленное время только на 1 цикл. Таймер сбрасывается при отключении питания или подаче сигнала сброса. |
6 | ЦИКЛ ПОВТОРЕНИЯ (РАВНЫЕ ВРЕМЯ ЗАДЕРЖКИ ВКЛЮЧЕНИЯ И ВЫКЛЮЧЕНИЯ): Когда питание подается на катушку, инициируется период времени ВЫКЛЮЧЕНИЯ; контакты не переносятся.В конце периода времени выключения начинается период времени включения. Контакты переключаются, либо подключают (нормально разомкнутые контакты), либо отключают (нормально замкнутые контакты) нагрузку. В конце периода включения контакты переключаются, и цикл продолжается до тех пор, пока с катушки не будет отключено питание. |
7 | ЦИКЛ ПОВТОРЕНИЯ (НЕЗАВИСИМЫЕ ВРЕМЯ ЗАДЕРЖКИ ВКЛЮЧЕНИЯ И ВЫКЛЮЧЕНИЯ): При подаче питания на катушку период включения инициируется переключением контактов (нормально разомкнутые контакты замыкаются, нормально замкнутые контакты разомкнуты).В конце периода ВЫКЛ контакты размыкаются и начинается период ВКЛ. Цикл продолжается до тех пор, пока с катушки не будет отключено питание. |
8 | ИНТЕРВАЛ СИГНАЛА / ЗАДЕРЖКА ВЫКЛЮЧЕНИЯ: На катушку постоянно подается питание. После замыкания пускового выключателя («сухой» внешний контакт) начинается цикл ИНТЕРВАЛ; контакты переключаются, либо подключают (нормально разомкнутые контакты), либо отключают (нормально замкнутые контакты) нагрузку. В конце цикла ИНТЕРВАЛ начинается цикл ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ, и контакты остаются переданными до тех пор, пока цикл ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ не закончится.Затем контакты возвращаются в исходное положение, и устройство готово к новому циклу. |
9 | ЗАДЕРЖКА ВКЛЮЧЕНИЯ / ЗАДЕРЖКА ВЫКЛЮЧЕНИЯ СИГНАЛА: На катушку постоянно подается питание. После замыкания пускового выключателя («сухой» внешний контакт) начинается цикл ЗАДЕРЖКИ ВКЛЮЧЕНИЯ; контакты не переносятся. В конце цикла ЗАДЕРЖКИ ВКЛЮЧЕНИЯ контакты переключаются, либо подключают (нормально разомкнутые контакты), либо отключают (нормально замкнутые контакты) нагрузку.После отпускания пускового переключателя начинается цикл ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ; контакты остаются переданными. В конце цикла ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ контакты возвращаются в исходное положение, и устройство готово к новому циклу. |
10 | ЗАДЕРЖКА ВЫКЛЮЧЕНИЯ ПИТАНИЯ: При подаче питания на катушку контакты переключаются, либо подключают (нормально разомкнутые контакты), либо отключают (нормально замкнутые контакты) нагрузку. Когда питание обмотки прекращается, начинается отсчет времени ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ; контакты остаются переданными. В конце цикла ЗАДЕРЖКИ ВЫКЛЮЧЕНИЯ контакты возвращаются в исходное положение, и устройство готово к новому циклу. |
11 | WATCHDOG (RETRIGGERABLE SINGLE SHOT): При подаче входного напряжения реле с выдержкой времени готово принимать сигналы запуска. При подаче триггерного сигнала реле включается и начинается заданное время. По истечении заданного времени реле обесточивается, если триггерный сигнал не срабатывает и не размыкается до истечения времени ожидания (до истечения заданного времени).Непрерывное переключение триггерного сигнала со скоростью, превышающей заданное время, приведет к тому, что реле останется под напряжением. |
Объяснение реле задержки времени — Инженерное мышление
Изучите основы реле задержки таймера и переключателей таймера, чтобы понять основные типы, как они работают и где мы их используем.
Прокрутите вниз, чтобы просмотреть руководство по YouTube.
TELE Controls любезно спонсировала эту статью, и они являются одним из ведущих производителей в области автоматизации с 1963 года.
Они предлагают одни из лучших таймеров на рынке и гарантируют максимальную функциональность и временные диапазоны.
Найдите время, чтобы изучить их портфель реле с выдержкой времени, а также подходящие релейные базы и аксессуары. Вы можете связаться с ними по адресу [электронная почта защищена] или через LinkedIn. Чтобы узнать больше, нажмите ЗДЕСЬ
Что такое реле с задержкой времени?
Реле задержки времениРеле задержки времени — это просто управляющие реле со встроенной функцией задержки времени.Они управляют событием, запитывая вторичную цепь, через определенное время или в течение определенного периода времени, некоторые могут даже делать и то, и другое.
Механическое релеВ стандартном нормально разомкнутом реле управления контакты на вторичной стороне замыкаются немедленно, когда на катушку на первичной стороне подается напряжение. Когда электричество отключается на первичной стороне, контакты на вторичной стороне размыкаются и отключают питание нагрузки.
Для некоторых приложений нам не нужен немедленный ответ на вторичной стороне, мы хотим, чтобы это происходило через определенное время или только в течение определенного времени.Для этого мы можем использовать реле с выдержкой времени.
Существует два основных типа реле времени: с задержкой включения и с задержкой выключения. Это могут быть реле нормально открытого или нормально закрытого типа, и мы можем контролировать время задержки от миллисекунд до часов или даже дней.
Тип задержки выключения, тип задержки включенияКстати, мы подробно рассмотрели основы механических реле в нашей предыдущей статье, проверьте это ЗДЕСЬ.
Где используются реле времени
Реле временишироко используются в промышленных приложениях, системах отопления, вентиляции и кондиционирования воздуха и строительстве для обеспечения переключения с задержкой по времени. Например, чтобы запустить двигатель, управлять электрической нагрузкой или просто автоматизировать действие. Они играют жизненно важную роль для целевых логических нужд.
Типичный пример, который вы, вероятно, видели, — коридор или лестничная клетка, которые используются нечасто. Возможно, на рабочем месте или в многоквартирном доме. Мы не хотим, чтобы свет горел постоянно, мы хотим, чтобы он автоматически выключался. Таким образом, как только выключатель света нажат, реле задержки времени удерживает свет включенным в течение определенного времени. По истечении этого времени он автоматически отключает питание света.
Пример релеРеле времени можно применять практически в любом приложении, они доступны в виде съемных устройств, монтируемых на цоколе устройств, печатных плат и даже в виде элементов управления, устанавливаемых на DIN-рейку.
Традиционно реле времени были доступны только как однофункциональные устройства с одним временным диапазоном. Эти устройства все еще доступны и обычно используются в приложениях с очень простыми временными требованиями.
Но мы можем получить более совершенные реле времени с различными функциями и несколькими диапазонами времени.Большинство из них также способны управлять напряжением или током в широком диапазоне, поэтому их применение не ограничено. Для их настройки не требуется язык программирования, мы просто настраиваем параметры с помощью циферблатов, а руководства производителя проинструктируют вас, как это сделать.
Усовершенствованные реле времениРеле задержки времени и переключатели будут работать автоматически после настройки и снабжены триггером или сигналом, вызывающим действие. В многофункциональных реле мы часто находим светодиод, встроенный в устройство, он будет мигать с разной периодичностью, чтобы указать, какую функцию оно выполняет в данный момент.Руководство производителя расскажет нам, на какую функцию указывает светодиод.
Чтобы применить реле или переключатель с выдержкой времени, нам необходимо рассмотреть, где будет установлено устройство, что будет запускать устройство, как долго будет задержка перед подачей питания на вторичную сторону или как долго будет запитываться вторичная сторона.
Цепь отключения с задержкой по времени
Иногда нам нужно, чтобы вторичная сторона реле оставалась включенной в течение определенного времени. Например, внешний лучистый обогреватель, который мы можем найти в ресторане со столиками на открытом воздухе.Когда клиент замерз, он щелкает выключателем. Теперь они потребляют много энергии, поэтому мы не хотим, чтобы их оставляли включенными на несколько часов. Клиент не будет там слишком долго, поэтому мы можем использовать реле времени. Реле времени автоматически выключит обогреватель, например, примерно через 30 минут.
Простая схемаЕсли мы посмотрим на эту простую схему батареи и светодиода. Когда переключатель замкнут, загорается светодиод. При размыкании переключателя светодиод мгновенно гаснет. Как мы можем отложить выключение светодиода?
Можно поставить конденсатор параллельно светодиоду.Таким образом, когда переключатель замкнут, светодиод загорается, и конденсатор заряжается. Когда переключатель разомкнут, конденсатор разряжается, а светодиод продолжает гореть. Мы можем использовать конденсаторы разного размера, чтобы изменить время, в течение которого светодиод остается запитанным. Мы могли бы даже использовать переменный конденсатор, чтобы можно было регулировать период времени.
Установите конденсатор параллельно.Переключатель может быть вторичной стороной реле и использует входной сигнал на первичной стороне для запуска таймера на вторичной стороне.
В качестве альтернативы светодиод может быть на первичной стороне твердотельного реле. Следовательно, в этом случае будет использоваться светодиод для обеспечения оптической связи с фототранзистором на вторичной стороне.
Простая временная задержкаПроблема, с которой мы сталкиваемся в этой конструкции, заключается в том, что скорость разряда конденсатора не является линейной, поэтому светодиод медленно гаснет, пока в конце концов не погаснет. Так что нам может понадобиться лучший дизайн.
Как мы можем гарантировать, что светодиодный индикатор остается включенным при размыкании переключателя, а также обеспечить его автоматическое отключение, если он станет слишком тусклым.
Мы можем добавить в схему транзистор. Транзистор будет действовать как переключатель. Существуют разные типы транзисторов, но мы не будем подробно останавливаться на них в этом видео. А пока мы будем считать, что основная цепь подключена к двум из трех контактов транзистора. Этот тип транзистора обычно блокирует прохождение тока в цепи. Но когда на вывод базы подается определенное напряжение, транзистор пропускает ток. Когда напряжение на выводе базы снимается, транзистор останавливает ток в главной цепи.
Приложение малого напряженияНа этой схеме показана простая схема задержки отключения с использованием транзистора, конденсатора, светодиода и переключателя. Резисторы используются для ограничения тока и защиты компонентов.
Схема простого отключения с задержкойИтак, мы можем управлять током в главной цепи, посылая сигнал на базовый вывод транзистора, этот сигнал представляет собой небольшое напряжение. Транзистор позволит току течь в главной цепи, только если напряжение на выводе базы находится на определенном уровне или выше, обычно 0. 7V. Если напряжение на выводе базы упадет ниже этого минимального уровня, это не позволит току течь.
При разомкнутом переключателе светодиод не загорается, напряжение на выводе базы транзистора не обнаруживается, поэтому транзистор действует как разомкнутый переключатель и предотвращает протекание тока в главной цепи.
Switch ClosedКогда переключатель замкнут, электричество течет к базовому выводу транзистора. Транзистор определяет напряжение и определяет, что оно выше минимального уровня, что позволяет току течь через главную цепь.
По мере прохождения тока через главную цепь загорается светодиод, в то время как конденсатор заряжается.
Когда переключатель разомкнут, основное питание на выводе базы транзистора отключается. Конденсатор теперь начинает разряжаться и подает напряжение на вывод базы. Это позволяет транзистору пропускать ток через главную цепь, поэтому светодиод остается включенным.
Когда уровень напряжения конденсатора упадет ниже минимального значения срабатывания транзистора, он выключится и остановит ток, протекающий в главной цепи, поэтому светодиод погаснет. Таким образом, емкость конденсатора определяет, как долго цепь находится под напряжением.
Эта простая конструкция предназначена для переключателя с временной задержкой, но мы могли бы снова интегрировать его в реле.
Кстати, мы подробно рассмотрели, как работают конденсаторы, в нашей предыдущей статье ЗДЕСЬ
Задержка по времени в цепи
Иногда нам нужно, чтобы вторичная сторона реле оставалась выключенной в течение заданного времени.
Например, когда большие индуктивные нагрузки включаются или выключаются, возможно, из-за внезапной потери мощности или запуска большого асинхронного двигателя, из-за сильного магнитного потока в цепи могут возникнуть большие скачки напряжения или броски тока.Эти скачки могут повредить компоненты и оборудование.
Если предусмотрена небольшая задержка, такого повреждения можно избежать. Для этого используются цепи реле с выдержкой времени.
Транзистору требуется минимальное напряжениеЕсли мы посмотрим на это простое время задержки в цепи, транзистор препятствует включению лампы. Транзистору необходимо минимальное напряжение для открытия и включения лампы. Когда мы замыкаем переключатель, транзистор получает это напряжение и мгновенно открывается.
Как мы можем отсрочить это?
Мы могли бы просто подключить стабилитрон к выводу базы транзистора, а затем подключить резистор и конденсатор параллельно между диодом и переключателем.Диоды позволяют току течь только в одном направлении и блокируют ток в противоположном направлении. Однако, если на стабилитрон подается определенное обратное напряжение, он откроется и позволит току течь в обратном направлении, это называется напряжением пробоя. Таким образом, мы можем использовать это для управления транзистором, открывая его только при подаче определенного напряжения.
Переключатель закрыт, блокировка транзистораТеперь, когда мы замыкаем переключатель, ток будет медленно заряжать конденсатор. Стабилитрон продолжает блокировать ток транзистора, а лампа остается выключенной.По мере зарядки конденсатора напряжение увеличивается. В конце концов напряжение превысит напряжение пробоя стабилитронов. В этот момент диод пропускает ток через него и достигает транзистора. Транзистор принимает это и позволяет току течь через него, поэтому лампа включается.
Когда мы отключаем переключатель, конденсатор продолжает подавать напряжение, поддерживая открытыми стабилитрон и транзистор. Ток течет через резистор, пока не истощит конденсатор, как только напряжение конденсатора упадет ниже напряжения пробоя, стабилитрон снова блокирует ток, идущий к транзистору, и лампа выключается.
Итак, теперь, когда цепь находится под напряжением, нагрузка не включается мгновенно. Он включится только после того, как конденсатор будет заряжен и превысит напряжение пробоя стабилитронов.
Напряжение пробоя стабилитрона превышеноЭто довольно простая конструкция, вероятно, чаще встречается микросхема внутри, вместо этого используется что-то вроде таймера 555. Но этот простой дизайн дает вам визуальное представление о том, как может работать схема.
Множество различных функций реле с задержкой времени
Реле дает команду на включение электрических и электронных устройств и машин.Мы полагаемся на реле для активации множества бытовых приборов, машин и оборудования, начиная от автомобилей и мобильных телефонов до печных вентиляторов и конвейерных лент.
Реле с задержкой времениимеют встроенную функцию задержки времени. Реле с задержкой времени срабатывают по-разному. Они могут минимизировать количество энергии, используемой для запуска крупного промышленного оборудования или включения и выключения освещения или оборудования в определенное время. Их также можно использовать для обеспечения того, чтобы разные части машины запускались отдельно в заранее определенное время, например:
Реле с выдержкой времени можно использовать для управления нагрузками или производственными процессами различными способами. Например, реле с временной задержкой может гарантировать, что предметы перемещаются с одного конвейера на другой, когда это необходимо, чтобы предметы на конвейерной ленте не складывались друг на друга.
В качестве примера обеспечения безопасности печи или другие камеры сгорания требуют вентиляции, чтобы избавиться от дыма и избежать возможности взрыва. Реле с выдержкой времени может обеспечить окно по расписанию для удаления ядовитых газов из камеры.
Обычно реле задержки срабатывает при размыкании или замыкании цепи или при подаче входного тока.Триггерный сигнал может быть разработан либо с помощью переключателя управления с сухим контактом, например, поплавкового переключателя, концевого переключателя или нажимной кнопки; или с напряжением. Однако существует несколько типов реле с временной задержкой, и их временные функции работают по-разному.
Как работает реле с выдержкой времени
Тип используемого реле с выдержкой времени будет зависеть от настройки системы. Таймеры задержки включения и выключения представляют собой наиболее типичные используемые реле времени задержки. К другим типам относятся таймеры с интервалом при срабатывании, мигающие и повторяющиеся циклы.
Нормально разомкнутые таймеры задержки включения начинают отсчет времени при подаче входного напряжения (мощности). Выход активируется в конце задержки. Необходимо снять входное напряжение, чтобы обесточить выход и сбросить реле задержки времени.
Также называемые таймерами задержки при срабатывании, они часто используются для электродвигателей воздуходувок для задержки срабатывания на определенный период времени после включения газового, электрического или масляного нагревателя. Таймеры задержки включения также используются для смещения времени пуска для нескольких компрессоров или двигателей, которые активируются главным выключателем.Это позволяет избежать чрезмерного скачка тока в линии электропередачи. Другие приложения включают в себя охранную сигнализацию и охранную сигнализацию, предупреждения об открытых дверях, определение последовательности подачи электроэнергии, средства управления воспламенителем духовки и средства управления вентиляторами.
Таймеры задержки выключения (также известные как таймеры задержки при отпускании, задержки при отключении или задержки при включении) готовы принять триггер при подаче входного напряжения. На выход подается питание с помощью триггера, который необходимо убрать, чтобы сработала задержка по времени. Выход обесточивается в конце периода задержки времени.Если триггер сработает во время задержки, он будет сброшен.
Таймеры задержки выключения могут использоваться в системах кондиционирования воздуха для удержания двигателя вентилятора в работе в течение определенного периода времени после того, как термостат выключил охлаждающий компрессор. Они также могут использоваться для управления электрическими устройствами и двигателями в течение определенного времени, например, монетными сушилками в коммерческих прачечных. Другие приложения включают управление газовым клапаном, управление телефонной цепью и управление дверью лифта.
Также называемые одноразовыми таймерами, выход для интервальных таймеров уже запитан, и отсчет времени начинается при подаче входного напряжения. По истечении периода задержки выход обесточивается. Необходимо снять входное напряжение, чтобы можно было сбросить реле задержки времени.
Реле временной задержки с интервалом включения могут использоваться для широкого спектра сложных промышленных и коммерческих приложений общего назначения, в зависимости от выбранной конкретной модели.В некоторых системах охранной сигнализации используются интервальные таймеры. Другие приложения включают синхронизированные циклы для электросварочных аппаратов, системы предупреждения о ремнях безопасности автомобилей, дозирующее оборудование и насосные станции.
Когда на мигалку подается входное напряжение, контакты включаются и отключаются один за другим. Время включения и выключения одинаково. Таймер сбрасывается путем снятия напряжения и его повторной подачи. Таймеры мигалок обычно используются с системами сигнализации, световыми индикаторами, системами предупредительной световой сигнализации и последовательными таймерами, такими как те, которые используются для освещения взлетно-посадочной полосы в аэропортах.
Таймеры повторения цикла имеют два элемента управления, поэтому циклы можно регулировать независимо. Эти циклы будут повторяться до тех пор, пока на реле с выдержкой времени будет подано напряжение. Некоторые таймеры повторного цикла запускают сначала таймер выключения, а другие запускают таймер включения. Например, они могут использоваться вместе друг с другом для включения и выключения ламп.
Реле задержки времени The Amperite Co.
Amperite Co. предлагает широкий ассортимент реле с выдержкой времени для множества применений.Хотя наши основные рынки состоят в основном из производителей оригинального оборудования (OEM) и электроники, мы также предлагаем индивидуальные продукты для удовлетворения всех потребностей клиентов.
Не стесняйтесь обращаться к нам, чтобы узнать, как мы можем помочь вашему бизнесу добиться успеха.
Задержка выключения — базовое управление двигателем
Задержка выключения управления с определенной последовательностьюНа приведенной выше схеме показана стандартная трехпроводная схема для однодвигательного пускателя M1. В параллельно с M1 находится реле с выдержкой времени (TR) , которое нормально разомкнуто, с синхронизацией по времени (NOTO), контакты идентифицируют его как таймер задержки выключения.Эти синхронизированные контакты относятся к серии с пускателем двигателя M2.
Вышеупомянутая схема переключения позволяет управлять двумя двигателями с одной кнопочной станции . Если нажать кнопку пуска, оба двигателя M1 и M2 запустятся мгновенно. Это связано с тем, что нормально разомкнутые контакты , связанные с катушкой задержки выключения, мгновенно изменят свое состояние, когда катушка находится под напряжением.
После включения обоих пускателей электродвигатели будут продолжать работать, пока не будет нажата кнопка останова.При нажатии контактор M1 и таймер задержки выключения будут обесточены, а их контакты вернутся в исходное состояние.
Для пускателя двигателя , это произойдет мгновенно, но синхронизированные контакты, связанные с катушкой таймера, будут иметь задержку в пять секунд перед тем, как они откроются, в течение которого двигатель M2 будет продолжать работать. Важно отметить, что даже несмотря на то, что катушка таймера была отключена от источника питания, она по-прежнему выполняет свою функцию синхронизации.Ему не требуется внешняя энергия для задержки контактов, эта энергия сохраняется в таймере, обычно в виде сжатого воздуха или напряжения пружины.
Если на двигателе M2 возникнет перегрузка , остановится только этот двигатель, но если в двигателе M1 возникнет перегрузка и его контакты OLR разомкнуты, то катушка обесточится, и ее удерживающие контакты 2-3 разомкнутся, отключив катушка таймера от источника питания. Как только катушка задержки выключения обесточивается, ее контакты задерживаются на пять секунд, а затем возвращаются в исходное состояние, поэтому двигатель M2 будет продолжать работать в течение пяти секунд после остановки двигателя M1 из-за перегрузки.
Если более двух двигателей должны быть подключены таким образом, мы просто увеличим эту схему переключения, подключив дополнительные реле времени параллельно каждому пускателю двигателя, чтобы каждый двигатель останавливался один за другим в предписанной последовательности.
ПРОМЫШЛЕННЫЙ КОНТРОЛЬ — Прикладное промышленное электричество
Хотя может показаться странным охватить элементарную тему электрических переключателей на столь позднем этапе этой серии книг, я делаю это потому, что в следующих главах исследуется более старая область цифровых технологий, основанная на контактах механического переключателя, а не на твердотельных затворах. цепей, и для этого необходимо доскональное понимание типов переключателей.Изучение функции схем на основе переключателей одновременно с изучением полупроводниковых логических вентилей упрощает понимание обеих тем и создает основу для расширенного опыта обучения булевой алгебре, математике, лежащей в основе цифровых логических схем.
Что такое электрический выключатель?
Электрический выключатель — это любое устройство, используемое для прерывания потока электронов в цепи. Переключатели по сути являются бинарными устройствами: они либо полностью включены («замкнуты»), либо полностью выключены («разомкнуты»). Существует много разных типов переключателей, и в этой главе мы рассмотрим некоторые из них.
Изучите различные типы переключателей
Самый простой тип переключателя — это переключатель, в котором два электрических проводника приводят в контакт друг с другом за счет движения исполнительного механизма. Другие переключатели более сложны и содержат электронные схемы, которые могут включаться или выключаться в зависимости от какого-либо физического стимула (например, света или магнитного поля). В любом случае конечным выходом любого переключателя будет (как минимум) пара клемм для подключения проводов, которые будут либо соединены вместе внутренним контактным механизмом переключателя («замкнут»), либо не соединены вместе («разомкнуты»). .Любой переключатель, предназначенный для управления человеком, обычно называется ручным переключателем , и они производятся в нескольких вариантах:
Тумблеры
Рисунок 9.1 ТумблерТумблеры приводятся в действие рычагом, расположенным под углом в одном из двух или более положений. Обычный выключатель света, используемый в бытовой электропроводке, является примером тумблера. Большинство тумблеров остановятся в любом из своих положений рычага, в то время как другие имеют внутренний пружинный механизм, возвращающий рычаг в определенное нормальное положение , что позволяет выполнять так называемое «мгновенное» действие.
Кнопочные переключатели
Рисунок 9.2 Кнопочный переключательКнопочные переключатели — это двухпозиционные устройства, приводимые в действие нажатием и отпусканием кнопки. Большинство кнопочных переключателей имеют внутренний пружинный механизм, возвращающий кнопку в ее «отжатое» или «отжатое» положение для кратковременного срабатывания. Некоторые кнопочные переключатели поочередно включаются или выключаются при каждом нажатии кнопки. Другие кнопочные переключатели будут оставаться в положении «включено» или «нажато» до тех пор, пока кнопка не будет вытянута обратно.Этот последний тип кнопочных переключателей обычно имеет грибовидную кнопку для легкого нажатия и вытягивания.
Селекторные переключатели
Рисунок 9.3 Селекторный переключательСелекторные переключатели приводятся в действие поворотной ручкой или каким-либо рычагом для выбора одного из двух или более положений. Как и тумблер, селекторные переключатели могут либо находиться в любом из своих положений, либо содержать механизмы с пружинным возвратом для мгновенного срабатывания.
Джойстик-переключатели
Рисунок 9.4 Джойстик-переключательПереключатель-джойстик приводится в действие рычагом, который может свободно перемещаться по более чем одной оси движения.Один или несколько из нескольких переключающих контактных механизмов приводятся в действие в зависимости от того, в каком направлении нажимается рычаг, а иногда и от того, насколько на дальше он нажат. Обозначение из круга и точки на символе переключателя представляет направление движения рычага джойстика, необходимое для приведения в действие контакта. Ручные переключатели-джойстики обычно используются для управления краном и роботом.
Некоторые переключатели специально разработаны для управления движением машины, а не рукой человека-оператора.Эти управляемые движением переключатели обычно называются концевыми выключателями , потому что они часто используются для ограничения движения машины путем отключения исполнительной мощности компонента, если он перемещается слишком далеко.
Как и ручные выключатели, концевые выключатели бывают нескольких разновидностей:
Концевые выключатели
Рисунок 9.5 Концевой выключатель рычажного приводаЭти концевые выключатели очень похожи на прочные тумблеры или ручные переключатели, оснащенные рычагом, нажимаемым частью машины.Часто рычаги имеют небольшой роликовый подшипник, предотвращающий износ рычага при многократном контакте с деталью машины.
Бесконтактные переключатели
Рисунок 9.6 Бесконтактный переключательБесконтактные переключатели распознают приближение металлической части машины либо с помощью магнитного, либо высокочастотного электромагнитного поля. Простые бесконтактные переключатели используют постоянный магнит для приведения в действие герметичного механизма переключения всякий раз, когда часть машины приближается (обычно на 1 дюйм или меньше).Более сложные бесконтактные переключатели работают как металлоискатель, запитывая катушку с проволокой током высокой частоты и электронным способом отслеживая величину этого тока. Если металлическая часть (не обязательно магнитная) подойдет достаточно близко к катушке, ток увеличится и отключит цепь контроля. Символ, показанный здесь для бесконтактного переключателя, относится к электронной разновидности, на что указывает ромбовидная рамка, окружающая переключатель. Для неэлектронного бесконтактного переключателя будет использоваться тот же символ, что и для концевого переключателя, приводимого в действие рычагом.Другой формой бесконтактного переключателя является оптический переключатель, состоящий из источника света и фотоэлемента. Положение машины определяется по прерыванию или отражению светового луча. Оптические переключатели также полезны в приложениях безопасности, где лучи света могут использоваться для обнаружения входа персонала в опасную зону.
Различные типы переключателей процесса
Во многих промышленных процессах необходимо контролировать различные физические величины с помощью переключателей. Такие переключатели могут использоваться для подачи сигналов тревоги, указывающих, что параметр процесса превысил нормальные параметры, или они могут использоваться для остановки процессов или оборудования, если эти переменные достигли опасного или разрушительного уровня.Есть много различных типов переключателей процесса.
Переключатели скоростей
Рисунок 9.7 Переключатель скорости.Эти переключатели определяют скорость вращения вала либо с помощью механизма центробежного груза, установленного на валу, либо с помощью какого-либо бесконтактного обнаружения движения вала, такого как оптическое или магнитное.
Реле давления
Рисунок 9. 8 Реле давления
Давление газа или жидкости можно использовать для приведения в действие механизма переключения, если это давление приложено к поршню, диафрагме или сильфону, который преобразует давление в механическую силу.
Реле температуры
Рисунок 9.9 Температурный переключательНедорогим механизмом измерения температуры является «биметаллическая полоса»: тонкая полоска из двух металлов, соединенных спиной к спине, причем каждый металл имеет разную скорость теплового расширения. Когда полоса нагревается или охлаждается, разная скорость теплового расширения двух металлов вызывает ее изгиб. Затем изгиб полосы можно использовать для приведения в действие механизма переключающего контакта. В других реле температуры используется латунная колба, заполненная жидкостью или газом, с крошечной трубкой, соединяющей колбу с датчиком давления.Когда баллон нагревается, газ или жидкость расширяются, вызывая повышение давления, которое приводит в действие механизм переключения.
Датчик уровня жидкости
Рисунок 9.10 Реле уровня жидкости.Плавающий объект может использоваться для приведения в действие механизма переключения, когда уровень жидкости в резервуаре поднимается выше определенной точки. Если жидкость электропроводна, сама жидкость может использоваться в качестве проводника между двумя металлическими зондами, вставленными в резервуар на требуемой глубине.Метод проводимости обычно реализуется с помощью специальной конструкции реле, срабатывающего при небольшом токе, протекающем через проводящую жидкость. В большинстве случаев переключать полный ток нагрузки цепи через жидкость нецелесообразно и опасно. Реле уровня также могут быть разработаны для определения уровня твердых материалов, таких как древесная щепа, зерно, уголь или корм для животных, в силосе для хранения, бункере или бункере. Обычной конструкцией для этого применения является небольшое лопастное колесо, вставленное в бункер на желаемой высоте, которое медленно вращается небольшим электродвигателем. Когда твердый материал заполняет бункер на эту высоту, материал предотвращает вращение лопаточного колеса. Отклик крутящего момента маленького двигателя приводит к срабатыванию механизма переключения. В другой конструкции используется металлический зубец в форме «камертона», вставляемый в бункер снаружи на желаемой высоте. Вилка вибрирует на своей резонансной частоте с помощью электронной схемы и узла катушки магнита / электромагнита. Когда бункер заполняется на эту высоту, твердый материал гасит вибрацию вилки, изменение амплитуды и / или частоты вибрации, обнаруживаемое электронной схемой.
Реле расхода жидкости
Рисунок 9.11 Реле расхода жидкости.Вставленное в трубу реле потока обнаруживает любой расход газа или жидкости, превышающий определенный порог, обычно с помощью небольшой лопасти или лопасти, которую толкает поток. Другие реле расхода сконструированы как реле перепада давления, измеряющие падение давления на дросселе, встроенном в трубу.
Ядерный датчик уровня
Рисунок 9. 12 Ядерный переключатель уровня.Другим типом реле уровня, подходящим для обнаружения жидких или твердых материалов, является ядерный переключатель.Состоящие из радиоактивного источника материала и детектора излучения, они установлены поперек диаметра емкости для хранения твердого или жидкого материала. Любая высота материала, превышающая уровень расположения источника / детектора, будет ослаблять силу излучения, достигающего детектора. Это уменьшение излучения на детекторе может быть использовано для запуска релейного механизма, обеспечивающего переключающий контакт для измерения, точки срабатывания сигнализации или даже контроля уровня в сосуде.
Источник и детектор находятся вне сосуда, никакого проникновения, кроме самого радиационного потока.Используемые радиоактивные источники довольно слабые и не представляют непосредственной угрозы здоровью эксплуатационного или обслуживающего персонала.
Все коммутаторы имеют несколько приложений
Как обычно, существует несколько способов реализовать коммутатор для мониторинга физического процесса или для управления оператором. Обычно не существует единого «идеального» переключателя для любого приложения, хотя некоторые из них, очевидно, обладают определенными преимуществами перед другими. Для обеспечения эффективной и надежной работы переключатели должны быть разумно адаптированы к задаче.
- Переключатель — электрическое устройство, обычно электромеханическое, используемое для контроля непрерывности между двумя точками.
- Ручные переключатели приводятся в действие от прикосновения человека.
- Концевые выключатели срабатывают при движении машины.
- Процесс Переключатели срабатывают при изменении какого-либо физического процесса (температуры, уровня, расхода и т. Д.).
Переключатель может быть сконструирован с любым механизмом, приводящим два проводника в управляемый контакт друг с другом.Это может быть так же просто, как соприкосновение двух медных проводов друг с другом движением рычага или непосредственное соприкосновение двух металлических полос. Однако хорошая конструкция переключателя должна быть прочной и надежной и не подвергать оператора опасности поражения электрическим током. Поэтому конструкции промышленных переключателей редко бывают такими примитивными. Проводящие части в переключателе, используемом для включения и отключения электрического соединения, называются контактами и . Контакты обычно изготавливаются из серебра или сплава серебро-кадмий, проводящие свойства которого существенно не ухудшаются из-за поверхностной коррозии или окисления.Золотые контакты демонстрируют лучшую коррозионную стойкость, но имеют ограниченную токонесущую способность и могут «свариваться в холодном состоянии», если соединены вместе с большим механическим усилием. Независимо от выбора металла, контакты переключателя управляются механизмом, обеспечивающим квадратный и равномерный контакт, что обеспечивает максимальную надежность и минимальное сопротивление. Такие контакты могут быть сконструированы так, чтобы выдерживать очень большие количества электрического тока, в некоторых случаях до тысяч ампер. Факторы, ограничивающие допустимую нагрузку на контакт переключателя, следующие: 90 · 106
- Тепло, выделяемое током через металлические контакты (в замкнутом состоянии).
- Искра, возникающая при размыкании или замыкании контактов.
- Напряжение на разомкнутых контактах переключателя (потенциал скачка тока через зазор).
Одним из основных недостатков стандартных переключающих контактов является воздействие на контакты окружающей атмосферы. В красивой, чистой среде диспетчерской это обычно не проблема. Однако большинство промышленных сред не столь благоприятны. Присутствие в воздухе агрессивных химикатов может привести к разрушению контактов и преждевременному выходу из строя.Еще более неприятной является возможность регулярного контактного искрения, вызывающего возгорание легковоспламеняющихся или взрывоопасных химикатов. Когда существуют такие проблемы с окружающей средой, для небольших переключателей можно рассмотреть другие типы контактов. Эти другие типы контактов изолированы от контакта с наружным воздухом и поэтому не подвержены тем же проблемам воздействия, что и стандартные контакты. Распространенным типом выключателя с герметичным контактом является ртутный выключатель. Ртуть — металлический элемент, жидкий при комнатной температуре.Будучи металлом, он обладает прекрасными проводящими свойствами. Будучи жидкостью, его можно привести в контакт с металлическими зондами (чтобы замкнуть цепь) внутри герметичной камеры, просто наклонив камеру так, чтобы зонды находились на дне. Во многих промышленных переключателях используются небольшие стеклянные трубки, содержащие ртуть, которые наклоняются в одну сторону, чтобы замкнуть контакт, и в другую сторону, чтобы размыкаться. Помимо проблем, связанных с поломкой трубки и разливом ртути (которая является токсичным материалом), а также восприимчивостью к вибрации, эти устройства являются отличной альтернативой открытым контактам переключателя, где бывают проблемы с воздействием окружающей среды.Здесь ртутный переключатель (часто называемый переключателем наклона ) показан в открытом положении, где ртуть не контактирует с двумя металлическими контактами на другом конце стеклянной колбы:
Рисунок 9. 13 Рисунок 9.14Здесь тот же переключатель показан в закрытом положении. Теперь гравитация удерживает жидкую ртуть в контакте с двумя металлическими контактами, обеспечивая электрическую непрерывность от одного к другому: контакты ртутного переключателя непрактично строить в больших размерах, поэтому вы обычно найдете такие контакты, рассчитанные не более чем на несколько ампер. , и не более 120 вольт.Конечно, есть исключения, но это общие ограничения. Другой тип переключателя с герметичными контактами — это герконовый переключатель. Как и у ртутного переключателя, контакты геркона расположены внутри герметичной трубки. В отличие от ртутного переключателя, в котором в качестве контактной среды используется жидкий металл, геркон — это просто пара очень тонких магнитных металлических полос (отсюда и название «язычок»), которые контактируют друг с другом путем приложения сильного магнитного поля. вне герметичной трубки. Источником магнитного поля в переключателях этого типа обычно является постоянный магнит, перемещаемый ближе или дальше от трубки с помощью исполнительного механизма. Из-за небольшого размера язычков этот тип контакта обычно рассчитан на более низкие токи и напряжения, чем средний ртутный переключатель. Однако герконы обычно лучше справляются с вибрацией, чем ртутные контакты, потому что внутри трубки нет жидкости, которая могла бы разбрызгиваться. Обычно номинальные значения напряжения и тока контактов переключателя общего назначения выше для любого данного переключателя или реле, если переключаемая электрическая мощность является переменным током, а не постоянным током. Причина этого — тенденция самозатухания дуги переменного тока через воздушный зазор.Поскольку ток в линии электропередачи 60 Гц фактически останавливается и меняет направление 120 раз в секунду, у ионизированного воздуха дуги есть много возможностей потерять температуру, достаточную для прекращения проведения тока, до такой степени, что дуга не возобновится в следующий раз. пиковое напряжение. Постоянный ток, с другой стороны, представляет собой непрерывный, непрерывный поток электронов, который имеет тенденцию гораздо лучше поддерживать дугу в воздушном зазоре.
Следовательно, переключающие контакты любого типа подвержены большему износу при переключении заданного значения постоянного тока, чем при таком же значении переменного тока.Проблема переключения постоянного тока усугубляется, когда нагрузка имеет значительную индуктивность, поскольку при размыкании цепи на контактах переключателя будут возникать очень высокие напряжения (индуктор делает все возможное, чтобы поддерживать ток в цепи на том же уровне, что и при размыкании цепи). выключатель был замкнут). Как при переменном, так и при постоянном токе искрение контактов можно свести к минимуму, добавив «демпферную» цепь (конденсатор и резистор, соединенные последовательно) параллельно контакту, например:
Рисунок 9.15Внезапное повышение напряжения на переключающем контакте, вызванное размыканием контактов, будет сдерживаться зарядным действием конденсатора (конденсатор противодействует увеличению напряжения за счет потребления тока). Резистор ограничивает количество тока, который конденсатор разряжает через контакт, когда он снова замыкается. Если бы резистора не было, конденсатор мог бы фактически сделать искрение во время замыкания контактов хуже, чем искрение во время размыкания контактов без конденсатора! Хотя это добавление к схеме помогает уменьшить возникновение контактной дуги, оно не лишено недостатков: основным соображением является возможность неисправной (закороченной) комбинации конденсатор / резистор, обеспечивающей постоянный путь для электронов, проходящих через цепь, даже если контакт разомкнут и ток не желателен.Риск этого отказа и серьезность возникающих последствий необходимо учитывать в отношении повышенного износа контактов (и неизбежного выхода из строя контактов) без демпфирующей цепи. Использование демпферов в цепях переключателя постоянного тока не является чем-то новым: производители автомобилей годами делали это для систем зажигания двигателей, сводя к минимуму искрение через «точки» контакта переключателя в распределителе с помощью небольшого конденсатора, называемого конденсатором . Как вам скажет любой механик, срок службы «точек» дистрибьютора напрямую зависит от того, насколько хорошо работает конденсатор. При всей этой дискуссии, касающейся уменьшения дугового разряда контактов переключателя, можно было бы подумать, что меньший ток всегда лучше для механического переключателя. Однако это не обязательно так. Было обнаружено, что небольшое периодическое искрение может быть полезно для контактов переключателя, поскольку оно защищает контактные поверхности от небольшого количества грязи и коррозии. Если механический переключающий контакт работает со слишком малым током, контакты будут иметь тенденцию к накоплению чрезмерного сопротивления и могут преждевременно выйти из строя! Это минимальное количество электрического тока, необходимого для поддержания контакта механического переключателя в хорошем состоянии, называется током смачивания .Обычно номинальный ток смачивания переключателя намного ниже его максимального номинального тока и намного ниже его нормальной рабочей токовой нагрузки в правильно спроектированной системе. Тем не менее, существуют приложения, в которых может потребоваться механический переключающий контакт для регулярной обработки токов ниже нормальных пределов тока смачивания (например, если механический селекторный переключатель должен размыкать или замыкать цифровую логическую или аналоговую электронную схему, где значение тока чрезвычайно мало. ). В таких случаях настоятельно рекомендуется использовать позолоченные переключающие контакты.Золото — «благородный» металл и не подвержен коррозии, как другие металлы. В результате такие контакты имеют чрезвычайно низкие требования к току смачивания. Обычные контакты из серебра или медного сплава не будут обеспечивать надежную работу при использовании в такой слаботочной среде!
- Части переключателя, отвечающие за включение и отключение непрерывного электрического соединения, называются «контактами». Обычно они изготавливаются из коррозионно-стойкого металлического сплава, контакты соприкасаются друг с другом с помощью механизма, который помогает поддерживать правильное выравнивание и расстояние. В ртутных выключателях
- в качестве подвижного контакта используется кусок жидкой металлической ртути. Запечатанный в стеклянной трубке искра ртутного контакта изолирована от внешней среды, что делает этот тип переключателя идеально подходящим для атмосфер, потенциально содержащих взрывоопасные пары.
- Герконы — это еще один тип устройства с герметичным контактом, контакт осуществляется двумя тонкими металлическими «язычками» внутри стеклянной трубки, соединенными друг с другом под действием внешнего магнитного поля.
- Переключающие контакты подвергаются большему давлению при переключении постоянного тока, чем переменного тока.Это в первую очередь связано с самозатуханием дуги переменного тока.
- Сеть резистор-конденсатор, называемая «демпфер», может быть подключена параллельно переключающему контакту для уменьшения дугового разряда.
- Смачивающий ток — это минимальная величина электрического тока, необходимая для того, чтобы переключающий контакт проводил самоочищение. Обычно это значение намного ниже максимального номинального тока переключателя.
Любой вид переключающего контакта может быть спроектирован так, что контакты «замыкаются» (обеспечивают непрерывность) при срабатывании или «размыкаются» (прерывают непрерывность) при срабатывании. Для переключателей, в которых есть механизм с пружинным возвратом, направление, в которое пружина возвращает его без приложения силы, называется нормальным положением . Поэтому контакты, которые разомкнуты в этом положении, называются нормально разомкнутыми , а контакты, которые замкнуты в этом положении, называются нормально замкнутыми . Для переключателей процесса нормальное положение или состояние — это то, в котором переключатель находится, когда на него не влияет процесс. Простой способ выяснить нормальное состояние технологического коммутатора — это рассмотреть состояние коммутатора, когда он находится на полке хранения и не установлен.Вот несколько примеров «нормальных» условий переключения процесса:
- Переключатель скорости : Вал не вращается
- Реле давления : нулевое приложенное давление
- Реле температуры : Температура окружающей среды (в помещении)
- Реле уровня : пустой бак или бункер
- Реле расхода : нулевой расход жидкости
Важно различать «нормальное» состояние коммутатора и его «нормальное» использование в рабочем процессе. Рассмотрим пример реле расхода жидкости, которое служит сигналом низкого расхода в системе охлаждающей воды. Нормальное или исправное состояние системы охлаждающей воды должно иметь довольно постоянный поток охлаждающей жидкости, проходящий через эту трубу. Если мы хотим, чтобы контакт реле потока замыкал в случае потери потока охлаждающей жидкости (например, для замыкания электрической цепи, которая активирует сирену аварийной сигнализации), мы хотели бы использовать реле потока с нормально закрытым а не нормально разомкнутые контакты.При достаточном потоке через трубу контакты переключателя размыкаются принудительно; когда расход падает до аномально низкого уровня, контакты возвращаются в нормальное (закрытое) состояние. Это сбивает с толку, если вы думаете о «нормальном» как о регулярном состоянии процесса, поэтому всегда думайте о «нормальном» состоянии переключателя как о том, что он находится на полке. Схематические символы переключателей различаются в зависимости от назначения и срабатывания переключателя. Нормально разомкнутый контакт переключателя нарисован таким образом, чтобы обозначать открытое соединение, готовое замкнуться при срабатывании.И наоборот, нормально замкнутый переключатель изображен как замкнутое соединение, которое будет разомкнуто при срабатывании. Обратите внимание на следующие символы:
Рисунок 9.16 Кнопочный переключательСуществует также общая символика для любого контакта переключателя, использующая пару вертикальных линий для обозначения точек контакта в переключателе. Нормально разомкнутые контакты обозначаются линиями, не соприкасающимися с ними, а нормально замкнутые контакты обозначаются диагональной линией, соединяющей эти две линии. Сравните два:
Рисунок 9.17 Общее обозначение переключающего контактаПереключатель слева замыкается при нажатии и размыкается в «нормальном» (не сработавшем) положении. Переключатель справа размыкается при нажатии и замыкается в «нормальном» (не сработавшем) положении. Если переключатели обозначены этими общими символами, тип переключателя обычно указывается в тексте непосредственно рядом с символом. Обратите внимание, что символ слева — , а не , чтобы его можно было спутать с символом конденсатора.Если конденсатор необходимо представить в схеме логики управления, он будет показан следующим образом:
Рисунок 9.18 КонденсаторВ стандартной электронной символике приведенный выше рисунок зарезервирован для конденсаторов, чувствительных к полярности. В символике управляющей логики этот символ конденсатора используется для любого конденсатора типа , даже если конденсатор не чувствителен к полярности, чтобы четко отличить его от нормально разомкнутого контакта переключателя. При использовании многопозиционных селекторных переключателей необходимо учитывать еще один фактор конструкции: то есть последовательность разрыва старых соединений и создания новых соединений при перемещении переключателя из положения в положение, при этом подвижный контакт последовательно касается нескольких неподвижных контактов.
Рисунок 9.19 Селекторный переключатель, показанный выше, переключает общий контактный рычаг в одно из пяти различных положений на контактные провода с номерами от 1 до 5. Наиболее распространенная конфигурация многопозиционного переключателя, подобного этому, — это когда контакт с одним положением разрывается с до происходит контакт со следующей позицией. Эта конфигурация называется перед сборкой . В качестве примера, если бы переключатель был установлен в положение номер 3 и медленно поворачивался по часовой стрелке, контактный рычаг переместился бы из положения номер 3, размыкая эту цепь, переместился бы в положение между номером 3 и номером 4 (оба пути цепи разомкнуты. ), а затем коснитесь позиции 4, замыкая эту цепь.Существуют приложения, в которых недопустимо полностью размыкать цепь, подключенную к «общему» проводу, в любой момент времени. Для такого применения может быть сконструирована конструкция переключателя с перерывом перед разрывом , в которой подвижный контактный рычаг фактически замыкает два положения контакта (между номером 3 и номером 4 в приведенном выше сценарии), когда он перемещается между положениями. . Компромисс здесь заключается в том, что схема должна допускать замыкания переключателя между соседними позиционными контактами (1 и 2, 2 и 3, 3 и 4, 4 и 5), когда ручка переключателя поворачивается из положения в положение.Такой переключатель показан здесь: Рисунок 9.20.Когда подвижный (е) контакт (ы) может быть приведен в одно из нескольких положений со стационарными контактами, эти положения иногда называют бросками . Количество подвижных контактов иногда называют полюсов . Оба переключателя, показанные выше, с одним подвижным контактом и пятью неподвижными контактами, будут обозначены как «однополюсные пятипозиционные» переключатели. Если два идентичных однополюсных пятипозиционных переключателя были бы механически соединены вместе так, чтобы они приводились в действие одним и тем же механизмом, вся сборка была бы названа «двухполюсным пятипозиционным переключателем»:
Рисунок 9.21 годВот несколько распространенных конфигураций переключателей и их сокращенные обозначения:
Рисунок 9.22 Двухполюсный, одноходовой Рисунок 9.23 Двухполюсный, двунаправленный Рисунок 9.24 Четырехполюсный, одноходовой- Нормальное состояние переключателя — это то, когда он не сработал. Для технологических коммутаторов это состояние, в котором они находятся на полке без установки.
- Переключатель, который разомкнут в неактивном состоянии, называется нормально разомкнутым .Переключатель, который замкнут, когда не сработал, называется нормально замкнутым . Иногда термины «нормально открытый» и «нормально закрытый» обозначаются аббревиатурой N.O. и N.C. соответственно.
- Многопозиционные переключатели могут быть как размыкающими перед размыканием (наиболее распространенные), так и переключающими перед размыканием.
- «Полюса» переключателя относятся к количеству подвижных контактов, в то время как «ходы» переключателя относятся к количеству неподвижных контактов на один подвижный контакт.
Электрический ток через проводник создает магнитное поле, перпендикулярное направлению потока электронов.Если этот проводник свернуть в форму катушки, создаваемое магнитное поле будет ориентировано по длине катушки. Чем больше ток, тем больше напряженность магнитного поля при прочих равных условиях: 90 · 106
Рисунок 9.25 Рисунок 9.26 Рисунок 9.27Катушки индуктивности реагируют на изменения тока из-за энергии, хранящейся в этом магнитном поле. Когда мы строим трансформатор из двух катушек индуктивности вокруг общего железного сердечника, мы используем это поле для передачи энергии от одной катушки к другой.Однако есть более простые и прямые способы использования электромагнитных полей, чем те, которые мы видели с индукторами и трансформаторами. Магнитное поле, создаваемое катушкой с токоведущим проводом, можно использовать для приложения механической силы к любому магнитному объекту, точно так же, как мы можем использовать постоянный магнит для притяжения магнитных объектов, за исключением того, что этот магнит (образованный катушкой) может быть включается или выключается путем включения или выключения тока через катушку. Если мы поместим магнитный объект рядом с такой катушкой с целью заставить этот объект двигаться, когда мы запитываем катушку электрическим током, мы получим так называемый соленоид .Подвижный магнитный объект называется якорем , и большинство якорей можно перемещать с помощью постоянного (DC) или переменного тока (AC), питающего катушку. Полярность магнитного поля не имеет значения для притяжения железного якоря. Соленоиды могут использоваться для электрического открывания дверных защелок, открытия или закрытия клапанов, перемещения роботизированных конечностей и даже приведения в действие механизмов электрических переключателей. Однако, если для приведения в действие набора переключающих контактов используется соленоид, у нас есть такое полезное устройство, которое заслуживает собственного названия: реле .Реле чрезвычайно полезны, когда нам необходимо управлять большим током и / или напряжением с помощью слабого электрического сигнала. Катушка реле, которая создает магнитное поле, может потреблять только доли ватта мощности, в то время как контакты, замыкаемые или размыкаемые этим магнитным полем, могут передавать нагрузке в сотни раз больше мощности.
Фактически, реле действует как двоичный (включенный или выключенный) усилитель. Как и в случае с транзисторами, способность реле управлять одним электрическим сигналом с помощью другого находит применение при построении логических функций.Более подробно эта тема будет рассмотрена в другом уроке. На данный момент будет исследована «усилительная» способность реле. На приведенной выше схеме катушка реле питается от источника низкого напряжения (12 В постоянного тока), а однополюсный однопозиционный (SPST) контакт прерывает высокий -цепь напряжения (480 В переменного тока). Вполне вероятно, что ток, необходимый для включения катушки реле, будет в сотни раз меньше номинального тока контакта. Типичные токи обмотки реле значительно ниже 1 А, в то время как номинальные характеристики контактов промышленных реле составляют не менее 10 А.Один узел обмотка реле / якорь может использоваться для приведения в действие более чем одного набора контактов. Эти контакты могут быть нормально разомкнутыми, нормально замкнутыми или любой их комбинацией. Как и в случае с переключателями, «нормальное» состояние контактов реле — это состояние, когда катушка обесточена, точно так же, как вы бы обнаружили реле, лежащее на полке, не подключенное к какой-либо цепи. Контакты реле могут быть открытыми площадками из металлического сплава, ртутными трубками или даже магнитными язычками, как и в других типах переключателей. Выбор контактов в реле зависит от тех же факторов, которые диктуют выбор контактов в других типах переключателей.Контакты на открытом воздухе лучше всего подходят для сильноточных приложений, но их склонность к коррозии и искрению может вызвать проблемы в некоторых промышленных средах. Ртутные и герконовые контакты не имеют искр и не подвержены коррозии, но их токопроводящая способность ограничена. Здесь показаны три небольших реле (примерно два дюйма в высоту, каждое), установленных на панели как часть системы электрического управления на муниципальной водоочистной станции: показанные здесь блоки реле называются «восьмеричным», потому что они подключаются в соответствующие гнезда, электрические соединения закрепляются с помощью восьми металлических штифтов на дне реле.Винтовые клеммы, которые вы видите на фотографии, где провода подключаются к реле, на самом деле являются частью узла розетки, в который вставляется каждое реле. Такая конструкция облегчает снятие и замену реле в случае выхода из строя. Помимо способности позволить относительно небольшому электрическому сигналу переключать относительно большой электрический сигнал, реле также обеспечивают электрическую изоляцию между катушкой и контактными цепями. Это означает, что цепь катушки и цепь контактов электрически изолированы друг от друга.Одна цепь может быть постоянным током, а другая — переменным током (например, в примере схемы, показанной ранее), и / или они могут иметь совершенно разные уровни напряжения между соединениями или между соединениями и землей. Хотя реле по сути являются двоичными устройствами, полностью или полностью выключенными, существуют рабочие условия, при которых их состояние может быть неопределенным, как и в случае с полупроводниковыми логическими вентилями. Для того, чтобы реле положительно «втягивало» якорь и приводило в действие контакт (ы), через катушку должен проходить определенный минимальный ток.Эта минимальная величина называется втягивающим током , и она аналогична минимальному входному напряжению, которое требуется логическому вентилю для обеспечения «высокого» состояния (обычно 2 В для TTL, 3,5 В для CMOS). Однако, когда якорь подтягивается ближе к центру катушки, требуется меньший поток магнитного поля (меньший ток катушки), чтобы удерживать его там. Следовательно, ток катушки должен упасть ниже значения, значительно меньшего, чем ток втягивания, прежде чем якорь «выпадет» в подпружиненное положение и контакты вернутся в нормальное состояние.Этот уровень тока называется падающим током , и он аналогичен максимальному входному напряжению, которое вход логического элемента позволяет гарантировать «низкое» состояние (обычно 0,8 В для TTL, 1,5 В для CMOS). Гистерезис или разница между токами включения и отключения приводит к работе, аналогичной работе логического элемента триггера Шмитта. Токи включения и отключения (и напряжения) сильно различаются от реле к реле и указываются производителем.
- Соленоид — это устройство, которое вызывает механическое движение за счет подачи питания на катушку электромагнита.Подвижная часть соленоида называется якорем .
- Реле — это соленоид, настроенный для приведения в действие контактов переключателя, когда его катушка находится под напряжением.
- Втягивающий ток — это минимальная величина тока катушки, необходимая для приведения в действие соленоида или реле из его «нормального» (обесточенного) положения.
- Падение тока — это максимальный ток катушки, ниже которого включенное реле вернется в свое «нормальное» состояние.
Что такое реле с задержкой времени?
Некоторые реле сконструированы с своеобразным механизмом «амортизатора», прикрепленным к якорю, который предотвращает немедленное полное движение, когда катушка находится под напряжением или обесточена.Это дополнение дает реле свойство срабатывания с задержкой по времени . Реле с выдержкой времени могут быть сконструированы так, чтобы задерживать движение якоря при включении катушки, отключении питания или и том и другом. Контакты реле с выдержкой времени должны быть указаны не только как нормально разомкнутые или нормально замкнутые, но и в зависимости от того, действует ли задержка в направлении закрытия или в направлении открытия. Ниже приводится описание четырех основных типов контактов реле с выдержкой времени.
Нормально открытый, закрытый по времени контакт
Во-первых, у нас есть нормально открытый, закрытый по времени (NOTC) контакт.Этот тип контакта обычно разомкнут, когда катушка обесточена (обесточена). Контакт замыкается подачей питания на катушку реле, но только после того, как катушка непрерывно запитана в течение заданного времени. Другими словами, направление , направление движения контакта (закрытие или размыкание) идентично обычному замыкающему контакту, но есть задержка в направлении замыкания . Поскольку задержка происходит в направлении подачи питания на катушку, этот тип контакта также известен как нормально разомкнутый, на -задержка:
Рисунок 9.28Ниже представлена временная диаграмма работы этого контакта реле:
Рисунок 9.29Нормально открытый контакт с синхронизацией по времени
Далее у нас есть нормально разомкнутый контакт с таймером открытия (NOTO). Как и контакт NOTC, этот тип контакта обычно разомкнут, когда катушка обесточена (обесточена), и замкнут при подаче питания на катушку реле. Однако, в отличие от контакта NOTC, синхронизация происходит при обесточивании катушки, а не при подаче напряжения.Поскольку задержка происходит в направлении обесточивания катушки, этот тип контакта также известен как нормально разомкнутый, выкл. -задержка:
Рисунок 9.30Ниже представлена временная диаграмма работы этого контакта реле:
Рисунок 9.31Нормально замкнутый контакт с синхронизацией открытия
Далее у нас есть нормально-замкнутый, открывающийся по времени (NCTO) контакт. Этот тип контакта нормально замкнут, когда катушка обесточена (обесточена).Контакт размыкается при подаче питания на катушку реле, но только после того, как на катушку непрерывно подается питание в течение заданного времени. Другими словами, направление движения контакта (закрытие или размыкание) идентично обычному размыкающему контакту, но есть задержка в направлении размыкания и направления. Поскольку задержка происходит в направлении подачи питания на катушку, этот тип контакта также известен как нормально замкнутый, на -задержка:
Рисунок 9.32Ниже представлена временная диаграмма работы этого контакта реле:
Рисунок 9.33Нормально закрытый, закрытый по времени контакт
Наконец, у нас есть нормально закрытый, закрытый по времени (NCTC) контакт. Как и контакт NCTO, этот тип контакта обычно замыкается, когда катушка обесточена (обесточена), и размыкается при подаче питания на катушку реле. Однако, в отличие от контакта NCTO, синхронизация происходит при обесточивании катушки, а не при подаче напряжения.Поскольку задержка происходит в направлении обесточивания катушки, этот тип контакта также известен как нормально замкнутый, выкл. -задержка:
Рисунок 9.34Ниже представлена временная диаграмма работы этого контакта реле:
Рисунок 9.35 Использование реле задержки временив промышленных логических схемах управления
Реле с выдержкой времени очень важны для использования в промышленных логических схемах управления. Вот некоторые примеры их использования:
- Управление мигающим светом (время включения, время выключения): два реле задержки времени используются вместе друг с другом для обеспечения включения / выключения с постоянной частотой импульсов контактов для подачи прерывистой энергии на лампу.
- Управление автоматическим запуском двигателя: Двигатели, которые используются для питания аварийных генераторов, часто оснащены элементами управления «автозапуском», которые позволяют автоматически запускать двигатель в случае отказа основного источника электроэнергии. Чтобы правильно запустить большой двигатель, сначала необходимо запустить некоторые вспомогательные устройства и дать им некоторое время для стабилизации (топливные насосы, масляные насосы предварительной смазки) перед подачей питания на стартер двигателя. Реле с выдержкой времени помогают упорядочить эти события для правильного запуска двигателя.
- Управление безопасной продувкой печи: перед тем, как печь сжигания может быть безопасно зажжена, необходимо запустить воздушный вентилятор на определенное время, чтобы «очистить» камеру печи от любых потенциально воспламеняющихся или взрывоопасных паров.Реле с выдержкой времени обеспечивает логику управления печью с этим необходимым элементом времени.
- Управление задержкой плавного пуска двигателя: вместо пуска больших электродвигателей путем переключения полной мощности из состояния полной остановки можно переключить пониженное напряжение для более «мягкого» пуска и уменьшения пускового тока. После заданной задержки времени (обеспечиваемой реле задержки времени) подается полная мощность.
- Задержка последовательности конвейерной ленты: когда несколько конвейерных лент расположены для транспортировки материала, конвейерные ленты должны запускаться в обратной последовательности (последняя первая и первая последняя), чтобы материал не складывался в стопу или медленно -подвижной конвейер.Чтобы разогнать большие ремни до полной скорости, может потребоваться некоторое время (особенно, если используются средства управления двигателем с плавным пуском). По этой причине на каждом конвейере обычно имеется схема задержки по времени, чтобы дать ему достаточно времени для достижения полной скорости ленты перед запуском следующей подачи конвейерной ленты.
Расширенные функции таймера
В более старых механических реле задержки времени использовались пневматические датчики или поршневые / цилиндровые устройства, заполненные жидкостью, для обеспечения «амортизации», необходимой для задержки движения якоря.В более новых конструкциях реле с выдержкой времени используются электронные схемы с цепями резистор-конденсатор (RC) для создания временной задержки, а затем для подачи питания на нормальную (мгновенную) катушку электромеханического реле с выходом электронной схемы. Реле электронного таймера более универсальны, чем более старые механические модели, и менее склонны к выходу из строя. Многие модели предоставляют расширенные функции таймера, такие как «однократный» (один измеренный выходной импульс для каждого перехода входа из обесточенного в под напряженный), «рециркуляционный» (повторяющиеся циклы включения / выключения выходного сигнала до тех пор, пока входное соединение находится в рабочем состоянии. запитан) и «сторожевой таймер» (меняет состояние, если входной сигнал не циклически включается и выключается повторно).
Рисунок 9.36 Рисунок 9.37 Рисунок 9.38. Реле «сторожевого таймера»Сторожевой таймер особенно полезен для мониторинга компьютерных систем. Если компьютер используется для управления критическим процессом, обычно рекомендуется иметь автоматический сигнал тревоги для обнаружения «зависания» компьютера (ненормальная остановка выполнения программы из-за любого количества причин). Простой способ настроить такую систему мониторинга — это заставить компьютер регулярно включать и выключать катушку реле сторожевого таймера (аналогично выходу таймера «рециркуляции»).Если выполнение компьютера останавливается по какой-либо причине, сигнал, который он выдает на катушку реле сторожевого таймера, перестанет циклически повторяться и зависнет в том или ином состоянии. Через некоторое время реле сторожевого таймера «отключится» и сигнализирует о проблеме.
- Реле с выдержкой времени построены в следующих четырех основных режимах работы контактов:
- 1: нормально открытый, закрытый по времени. Сокращенно «NOTC», эти реле открываются сразу после обесточивания катушки и замыкаются, только если катушка постоянно находится под напряжением в течение определенного периода времени.Также называется реле с нормально разомкнутыми контактами и задержкой включения .
- 2: нормально открытый, открытый по времени. Сокращенно «NOTO», эти реле замыкаются сразу после подачи питания на катушку и размыкаются после того, как катушка была обесточена на определенный период времени. Также называются реле нормально разомкнутые, реле задержки выключения .
- 3: нормально закрытый, открытый по времени. Сокращенно «NCTO», эти реле замыкаются сразу после обесточивания катушки и размыкаются только в том случае, если катушка постоянно находится под напряжением в течение определенного периода времени.Также называется реле с нормально замкнутыми контактами и задержкой включения .
- 4: нормально закрытый, закрытый по времени. Сокращенно «NCTC», эти реле открываются сразу после подачи питания на катушку и закрываются после того, как катушка была обесточена на определенный период времени. Также называется реле с нормально замкнутыми контактами и задержкой выключения .
- Одноразовые таймеры обеспечивают однократный контактный импульс заданной длительности для каждого включения катушки (переход от катушки на к катушке на ).
- Recycle Таймеры обеспечивают повторяющуюся последовательность импульсов включения-выключения до тех пор, пока катушка находится под напряжением.
- Сторожевые таймеры срабатывают своими контактами только в том случае, если катушка не может непрерывно включаться и выключаться (включаться и выключаться) с минимальной частотой.
Лестничные диаграммы — это специализированные схемы, обычно используемые для документирования промышленных логических систем управления.Их называют «лестничными» диаграммами, потому что они напоминают лестницу с двумя вертикальными направляющими (питание) и таким количеством «ступенек» (горизонтальных линий), сколько нужно представить схем управления. Если бы мы хотели нарисовать простую лестничную диаграмму, показывающую лампу, управляемую ручным переключателем, она выглядела бы так: Обозначения «L 1 » и «L 2 » относятся к двум полюсам 120 В переменного тока. поставка, если не указано иное. L 1 — это «горячий» провод, а L 2 — заземленный («нейтральный») провод.Эти обозначения не имеют ничего общего с индукторами, просто чтобы запутать. Фактический трансформатор или генератор, питающий эту схему, для простоты опущен. На самом деле схема выглядит примерно так: Обычно в схемах промышленной релейной логики, но не всегда, рабочее напряжение для контактов переключателя и катушек реле будет составлять 120 вольт переменного тока. Системы с более низким напряжением переменного и даже постоянного тока иногда строятся и документируются в соответствии с «лестничными» диаграммами: до тех пор, пока все контакты переключателя и катушки реле имеют соответствующие номиналы, действительно не имеет значения, какой уровень напряжения выбран для работы системы. с.Обратите внимание на цифру «1» на проводе между переключателем и лампой. В реальном мире этот провод должен быть помечен этим номером с помощью термоусадочных или самоклеящихся этикеток, где бы это было удобно для идентификации. Провода, ведущие к коммутатору, будут обозначены «L 1 » и «1» соответственно. Провода, ведущие к лампе, будут иметь маркировку «1» и «L 2 » соответственно. Эти номера проводов упрощают сборку и обслуживание. Каждый проводник имеет свой уникальный номер провода для системы управления, в которой он используется.Номера проводов не меняются ни на каком соединении или узле, даже если размер, цвет или длина провода меняются при входе в точку соединения или выходе из нее. Конечно, желательно поддерживать одинаковые цвета проводов, но это не всегда практично. Важно то, что любая электрически непрерывная точка в цепи управления имеет один и тот же номер провода. Возьмем, к примеру, этот участок цепи с проводом № 25 в качестве единой, электрически непрерывной точечной резьбы, подсоединяемой ко многим различным устройствам: на диаграммах — нагрузочное устройство (лампа, катушка реле, катушка соленоида и т. Д.).) почти всегда рисуется с правой стороны ступени. Хотя электрически не имеет значения, где находится катушка реле внутри ступени, имеет значение для , какой конец источника питания лестницы заземлен, для надежной работы. Возьмем, к примеру, эту схему: здесь лампа (нагрузка) расположена с правой стороны перекладины, как и заземление источника питания. Это не случайность или совпадение; скорее, это целенаправленный элемент хорошей практики проектирования.Предположим, что провод №1 случайно соприкоснулся с землей, причем изоляция этого провода была стерта, так что оголенный провод вступил в контакт с заземленным металлическим кабелепроводом. Наша схема теперь будет работать следующим образом: если обе стороны лампы соединены с землей, лампа будет «закорочена» и не сможет получать питание для зажигания. Если бы выключатель замкнулся, произошло бы короткое замыкание, немедленно взорвавшее предохранитель. Однако подумайте, что случится с цепью с такой же неисправностью (провод №1 соприкасается с землей), за исключением того, что на этот раз мы поменяем местами переключатель и предохранитель (L 2 все еще заземлен): на этот раз случайное заземление провода №1 приведет к подаче питания на лампу, в то время как выключатель не подействует.Намного безопаснее иметь систему, которая перегорает предохранитель в случае замыкания на землю, чем иметь систему, которая неконтролируемо включает лампы, реле или соленоиды в случае той же самой неисправности. По этой причине нагрузка (и) всегда должна быть расположена ближе всего к заземленному силовому проводу на лестничной диаграмме.
Рисунок 9.42 Рисунок 9.43 Рисунок 9.44- Релейные диаграммы (иногда называемые «релейной логикой») — это тип электрических обозначений и символов, часто используемых для иллюстрации того, как электромеханические переключатели и реле связаны между собой.
- Две вертикальные линии называются «рельсами» и прикрепляются к противоположным полюсам источника питания, обычно 120 вольт переменного тока. L 1 обозначает «горячий» провод переменного тока, а L 2 — «нейтральный» (заземленный) провод.
- Горизонтальные линии на лестничной диаграмме называются «ступенями», каждая из которых представляет уникальную параллельную ветвь цепи между полюсами источника питания.
- Обычно провода в системах управления маркируются цифрами и / или буквами для идентификации.Правило состоит в том, что все постоянно подключенные (электрически общие) точки должны иметь одну и ту же этикетку.
Мы можем построить простые логические функции для нашей гипотетической схемы лампы, используя несколько контактов, и довольно легко и понятно задокументировать эти схемы с дополнительными ступенями к нашей исходной «лестнице».Если мы будем использовать стандартную двоичную запись для состояния переключателей и лампы (0 для не сработавшего или обесточенного; 1 для сработавшего или запитанного), можно составить таблицу истинности, чтобы показать, как работает логика: Теперь лампа загорится горит, если срабатывает контакт A или контакт B, потому что все, что требуется для включения лампы, — это иметь хотя бы один путь для прохождения тока от провода L 1 к проводу 1. У нас есть простая логическая функция ИЛИ, реализовано только с контактами и лампой. Мы можем имитировать логическую функцию И, подключив два контакта последовательно, а не параллельно: теперь лампа активируется, только если одновременно срабатывают контакт A и контакт B.Путь существует для тока от провода L 1 к лампе (провод 2) тогда и только тогда, когда оба переключающих контакта замкнуты. Функция логической инверсии, или НЕ, может быть выполнена на контактном входе, просто используя нормально замкнутый контакт вместо нормально разомкнутого: теперь лампа включается, если контакт не срабатывает, а срабатывает, и отключается, когда контакт активирован . Если мы возьмем нашу функцию ИЛИ и инвертируем каждый «вход» с помощью нормально замкнутых контактов, мы получим функцию И-НЕ.В специальном разделе математики, известном как логическая алгебра , этот эффект изменения идентичности вентильной функции при инверсии входных сигналов описывается теоремой ДеМоргана , которая будет рассмотрена более подробно в следующей главе. быть под напряжением, если любой из контактов не сработал. Он погаснет только в том случае, если оба контакта задействованы одновременно. Точно так же, если мы возьмем нашу функцию И и инвертируем каждый «вход» с помощью нормально замкнутых контактов, мы получим функцию ИЛИ-ИЛИ: шаблон быстро обнаруживается, когда лестничные схемы сравниваются с их аналогами логического элемента:
- Параллельные контакты эквивалентны логическому элементу ИЛИ. Контакты серии
- эквивалентны логическому элементу И.
- Нормально замкнутые контакты эквивалентны вентилю НЕ (инвертору).
Мы можем создавать функции комбинационной логики, также группируя контакты в последовательно-параллельную схему. В следующем примере у нас есть функция исключающего ИЛИ, построенная из комбинации логических элементов И, ИЛИ и инвертора (НЕ): Верхняя ступень (замыкающий контакт A последовательно с замыкающим контактом B) является эквивалентом верхнего НЕ / И комбинация ворот.Нижняя ступенька (замыкающий контакт A последовательно с замыкающим контактом B) эквивалентен комбинации нижнего элемента НЕ / И. Параллельное соединение между двумя звеньями в проводе номер 2 образует эквивалент логического элемента ИЛИ, позволяя либо звену 1 , либо звену 2 запитать лампу. Чтобы реализовать функцию исключающего ИЛИ, нам пришлось использовать два контакта на каждый вход: один для прямого входа, а другой для «инвертированного» входа. Два контакта «А» физически приводятся в действие одним и тем же механизмом, как и два контакта «В».Общая связь между контактами обозначается меткой контакта. Нет ограничений на количество контактов на переключатель, которое может быть представлено на релейной диаграмме, поскольку каждый новый контакт на любом переключателе или реле (нормально разомкнутом или нормально замкнутом), используемых на диаграмме, просто помечен одной и той же меткой. Иногда несколько контактов на одном переключателе (или реле) обозначаются составными метками, такими как «A-1» и «A-2» вместо двух меток «A». Это может быть особенно полезно, если вы хотите конкретно указать, какой набор контактов на каждом переключателе или реле используется для какой части цепи.Для простоты я воздержусь от такой сложной маркировки в этом уроке. Если вы видите общую метку для нескольких контактов, вы знаете, что все эти контакты приводятся в действие одним и тем же механизмом. Если мы хотим инвертировать выход любой логической функции, генерируемой переключателем, мы должны использовать реле с нормально замкнутым контактом. Например, если мы хотим активировать нагрузку на основе инверсии, или НЕ, нормально разомкнутого контакта, мы могли бы сделать это: мы назовем реле «реле управления 1» или CR 1 .Когда катушка CR 1 (обозначенная парой скобок на первой ступени) находится под напряжением, контакт на второй ступеньке размыкает , таким образом обесточивая лампу. От переключателя A до катушки CR 1 логическая функция не инвертируется. Нормально замкнутый контакт, приводимый в действие катушкой реле CR 1 , обеспечивает функцию логического инвертора для включения лампы, противоположной состоянию срабатывания переключателя. Применяя эту стратегию инверсии к одной из наших функций инвертированного входа, созданной ранее, такой как OR-to-NAND, мы можем инвертировать выход с помощью реле, чтобы создать неинвертированную функцию: от переключателей к катушке CR 1 , логическая функция — это функция логического элемента И-НЕ.Нормально замкнутый контакт CR 1 обеспечивает одну последнюю инверсию, чтобы превратить функцию И-НЕ в функцию И.
- Параллельные контакты логически эквивалентны логическому элементу ИЛИ. Контакты серии
- логически эквивалентны логическому элементу И.
- Нормально замкнутые (Н.З.) контакты логически эквивалентны вентилю НЕ.
- Реле должно использоваться для инвертирования выхода логического элемента, в то время как простых нормально замкнутых переключающих контактов достаточно для представления инвертированных входов затвора .
Практическое применение логики переключателя и реле находится в системах управления, где необходимо выполнить несколько условий процесса, прежде чем оборудование будет запущено. Хорошим примером этого является автомат горения для больших топочных печей. Чтобы горелки в большой печи могли запускаться безопасно, система управления запрашивает «разрешение» у нескольких переключателей процесса, включая высокое и низкое давление топлива, проверку потока воздушного вентилятора, положение заслонки выхлопной трубы, положение дверцы доступа и т. Д.Каждое условие процесса называется разрешающим , и каждый разрешающий контакт переключателя подключается последовательно, так что, если какой-либо из них обнаруживает небезопасное состояние, цепь будет разомкнута: если все разрешительные условия соблюдены, CR 1 будет включится, и загорится зеленая лампа. В реальной жизни было бы включено больше, чем просто зеленая лампа: обычно управляющее реле или соленоид топливного клапана помещались бы в эту ступень цепи, чтобы запитать, когда все разрешающие контакты были «в порядке», то есть все замкнуты. .Если какое-либо из допустимых условий не выполнено, последовательная цепочка контактов переключателя будет разорвана, CR 2 обесточится, и загорится красная лампа. Обратите внимание, что контакт высокого давления топлива нормально замкнут. Это потому, что мы хотим, чтобы контакт переключателя размыкался, если давление топлива становится слишком высоким. Поскольку «нормальное» состояние любого реле давления — это когда к нему прикладывается нулевое (низкое) давление, и мы хотим, чтобы этот переключатель открывался при чрезмерном (высоком) давлении, мы должны выбрать переключатель, который замкнут в своем нормальном состоянии.Другое практическое применение релейной логики — в системах управления, где мы хотим гарантировать, что два несовместимых события не могут произойти одновременно. Примером этого является управление реверсивным двигателем, где два контактора двигателя подключены для переключения полярности (или чередования фаз) на электродвигатель, и мы не хотим, чтобы контакторы прямого и обратного хода включались одновременно: когда контактор M 1 включен под напряжением 3 фазы (A, B и C) подключены непосредственно к клеммам 1, 2 и 3 двигателя соответственно.Однако, когда контактор M 2 находится под напряжением, фазы A и B меняются местами, A идет к клемме 2 двигателя, а B идет к клемме 1 двигателя. Это реверсирование фазных проводов приводит к тому, что двигатель вращается в противоположном направлении. Давайте рассмотрим схему управления этими двумя контакторами: обратите внимание на нормально замкнутый контакт «OL», который представляет собой контакт тепловой перегрузки, активируемый элементами «нагревателя», включенными последовательно с каждой фазой двигателя переменного тока. Если нагреватели станут слишком горячими, контакт изменится из нормального (замкнутого) состояния на разомкнутый, что предотвратит включение любого контактора.Эта система управления будет работать нормально, пока никто не нажимает обе кнопки одновременно. Если бы кто-то сделал это, фазы A и B были бы замкнуты накоротко вместе в силу того факта, что контактор M 1 передает фазы A и B прямо на двигатель, а контактор M 2 меняет их местами; фаза A будет замкнута на фазу B и наоборот. Очевидно, это плохая конструкция системы управления! Чтобы этого не произошло, мы можем спроектировать схему так, чтобы включение одного контактора предотвращало включение другого.Это называется блокировкой , и это достигается за счет использования вспомогательных контактов на каждом контакторе, как таковых: Теперь, когда M 1 находится под напряжением, нормально замкнутый вспомогательный контакт на второй ступени будет разомкнут, что предотвращает M 2 от подачи питания, даже если нажата кнопка «Реверс». Точно так же включение M 1 предотвращается, когда M 2 находится под напряжением. Также обратите внимание на то, как были добавлены дополнительные номера проводов (4 и 5), чтобы отразить изменения проводки.Следует отметить, что это не единственный способ блокировки контакторов для предотвращения короткого замыкания. Некоторые контакторы оснащены опцией механической блокировки : рычагом, соединяющим якоря двух контакторов вместе, так что они физически не могут замыкаться одновременно. Для дополнительной безопасности все же можно использовать электрические блокировки, и из-за простоты схемы нет веских причин не использовать их в дополнение к механическим блокировкам.
- Переключающие контакты, установленные в ступени релейной логики, предназначенные для прерывания цепи, если определенные физические условия не выполняются, называются разрешающими контактами , потому что системе требуется разрешение от этих входов для активации. Контакты переключателя
- , предназначенные для предотвращения одновременного выполнения системой управления двух несовместимых действий (например, одновременное включение электродвигателя вперед и назад), называются блокировками , .
— Как добавить в эту схему задержку выключения
Грубый ответ — поставить конденсатор поперек переключателя. Это позволит току течь некоторое время, пока конденсатор заряжается. Однако это нереалистичный ответ, поскольку конденсатор должен быть очень большим, и в конечном итоге переключатель закорачивает его при замыкании. Это отправит через переключатель большой импульс тока, который, вероятно, испарит или сваривает его контакты.
Лучше по-прежнему использовать конденсатор, но в схеме, которая контролирует ток реле, а не обеспечивает его напрямую.У меня сейчас нет времени прорабатывать все детали, но вот базовая топология:
C1 заряжается почти до напряжения питания при включении переключателя. R2 предназначен только для ограничения тока, когда в противном случае переключатель закорачивает C1 через источник питания.
Когда переключатель размыкается, C1 будет экспоненциально разряжаться, но какое-то время будет пропускать ток через базу Q1. Это оставит Q1 включенным на некоторое время, и реле останется включенным.
Мне пора.Возможно, кто-то еще может назвать это точными цифрами. Может быть удобно использовать второй транзистор, чтобы обеспечить большее усиление между током конденсатора и током катушки реле.
Лучшая схема
Как я сказал выше, это была быстрая и грязная схема, которая должна была дать оператору то, что он хотел, и соответствовать его очевидному уровню знаний. По какой-то причине Э.М.Филдс возобновил свои ворчания по поводу этой, по общему признанию, простой схемы полтора года спустя. Первоначально я просто собирался проигнорировать это, но затем решил, что это может быть хорошим поучительным моментом о том, как сделать что-то подобное с помощью «мгновенного действия», используя только несколько отдельных частей:
Q2 выполняет фактическое переключение реле.В этом примере я предположил, что реле требует тока катушки 50 мА.
D1 и R1 проводят короткое время после выключения реле. Катушка реле имеет значительную индуктивность, поэтому не может мгновенно изменить свой ток. Когда транзистор выключается, должен быть безопасный путь для прохождения этого тока, иначе он создаст высокое напряжение и выйдет из строя транзистор. R1 вырабатывает около 6 В на нем, когда через него первоначально протекает полный ток катушки. Это обратное напряжение будет быстро уменьшать ток катушки, быстро выключая реле.
Эти транзисторы могут иметь усиление не менее 50. Чтобы убедиться, что они надежно включены и оставить некоторый запас, я нацелился на базовый ток примерно в два раза больше необходимого, или на 1/25 тока коллектора. Текущий. Когда Q1 включен, на базу Q2 будет подаваться ток около 2 мА, который включит реле.
Следовательно, для включения реле необходимо включить Q1. Когда левый конец R6 удерживается на уровне 0 В, более чем достаточно тока будет течь из базы Q1, чтобы включить его.Замыкание переключателя по существу закорачивает левый конец R6 и нижнюю часть конденсатора на землю. Назначение R2 — ограничить большой ток, который в противном случае мог бы протекать через конденсатор при первом включении переключателя. Это может повредить SW1, а большие переходные процессы по току вызовут шум и другие проблемы.
Когда переключатель размыкается после того, как он был замкнут на некоторое время, конденсатор полностью заряжен. Так и останется в краткосрочной перспективе, сохраняя реле включенным. В конце концов конденсатор разрядится через R6, чтобы больше не поддерживать достаточное напряжение на R6, что приводит к недостаточному току через R6 для удержания Q1 включенным.Это выключает Q2, который выключает реле.
Однако это отключение будет происходить медленно. У R5 немного положительных отзывов, чтобы он «отламывался». Когда Q2 впервые начинает отключаться, его коллекторное напряжение повышается. Из-за R5 базовое напряжение Q1 немного увеличивается, что еще больше отключает его, что больше отключает Q2, что увеличивает напряжение коллектора Q2 и т. Д. Этот тип положительной обратной связи также называется гистерезисом , и обеспечивает быстрый переход из включенного состояния в выключенное после начала выключения.
Время задержки выключения в основном зависит от C1 и R6. Точную задержку сложно предсказать, потому что она зависит от коэффициента усиления транзисторов, особенно Q1. Самый простой способ получить желаемую задержку — это попробовать значение C1, а затем экспериментально отрегулировать его вверх или вниз. Показанные мною 47 мкФ — такое же хорошее начальное значение, как и любое другое.
Для более предсказуемой задержки можно добавить резистор через C1. Конечно, есть несколько способов настроить эту схему, чтобы получить еще больше функций, но в какой-то момент это становится глупо.
В реальном мире, особенно когда важна точность задержки, это можно сделать с помощью микроконтроллера, такого как PIC 10F200. Переключатель будет подключен между землей и одним из входных контактов, сконфигурированных с внутренней пассивной подтяжкой. Прошивка будет выполнять отключение переключателя и генерировать цифровой сигнал, который мгновенно эффективно переключается между высоким и низким. Он будет подключен к базе Q2 через резистор, который позволяет протекать около 2 мА при высоком уровне.R3, R4, Q1, R5, R6, R2 и C1 все будут удалены.
Как правильно выбрать реле задержки времени
Реле с выдержкой времени предназначены для управления событием по времени. Рабочие грузовики, автобусы, автомобили скорой помощи и другое мобильное оборудование требуют работы схемы с задержкой для нескольких приложений. Твердотельная конструкция реле с выдержкой времени выдерживает электрические среды, обычно встречающиеся в дорожных и внедорожных транспортных средствах и оборудовании. Главное — выбрать правильное реле с выдержкой времени для вашего приложения.
При проектировании схем с использованием реле с выдержкой времени следует учитывать следующие вопросы:
- Что срабатывает реле задержки времени?
- Отсчет времени начинается с подачи или сброса напряжения?
- Когда срабатывает выходное реле?
Доступны три стандартные функции реле с выдержкой времени: задержка включения, задержка выключения и однократная задержка.
Реле таймера задержки включения используются, когда одна функция цепи должна активировать задержку времени после другой функции.Например, вы хотите запустить воздушный компрессор через пять секунд после включения ВОМ. Цепь, которая активирует ВОМ, должна быть подключена к входу таймера реле таймера задержки включения. Выход таймера будет управлять пусковой схемой компрессора. Когда включается ВОМ, запускается таймер. Через пять секунд выход таймера запустит компрессор и останется включенным, пока вход таймера не будет удален.
Реле таймера задержки выключения используются, когда одна функция должна запускать вторую функцию, а вторая функция должна оставаться включенной в течение периода времени после деактивации первой функции.Например, в школьном автобусе есть световой индикатор, который должен включаться при открытии двери и должен гореть 10 секунд после закрытия двери. Выключатель открытия двери подключен к входу таймера реле таймера задержки выключения, а выходная лампа подключена к выходу таймера. При открытии двери срабатывает выход таймера, включающий свет. Когда дверной переключатель показывает, что дверь закрыта, запускается таймер. Через 10 секунд выход таймера отключается, и свет выключается.
Реле одноразового таймера используются, когда одна функция должна запускать вторую функцию, а вторая функция должна оставаться включенной в течение фиксированного периода времени.Например, обогреватель зеркала заднего вида должен работать только 15 минут, чтобы не повредить зеркало. Переключатель обогревателя зеркала подключен к входу однократного таймера, а выход таймера управляет обогревателем зеркала.