Схема простая электрическая: Электрическая цепь, схема простой электрической цепи постоянного тока.

Содержание

Электрическая цепь, схема простой электрической цепи постоянного тока.

На картинке нарисована простейшая электрическая цепь постоянного тока. Она состоит из таких элементов как источник питания в виде батарейки, выключатель питания, переменное сопротивление и лампочка (представляющая собой электрическую нагрузку). Неотъемлемыми частями любой электрической схемы являются сам источник питания (постоянного тока или же переменного, без которого любая электросхема всего лишь груда металла), непосредственно нагрузка (ради которой всё и замышлялось, это электродвигатели, лампочки, нагревательные элементы и т.д.), ну и коммутирующие устройства в виде различных выключателей и переключателей (надо же схемой управлять, хотя бы на уровне включить и выключить).

В нашем случае электрическая схема цепи именно постоянного тока. В чём её специфика и отличия от электроцепи переменного тока? Из самого названия должно быть ясно, что в постоянном токе есть какое-то постоянство! Оно заключается в том, что носители электрического тока (электроны, электрические отрицательно заряженные частицы) движуться строго в одном направлении от минуса к плюсу. Да, стоит ещё внести уточнение. В реальности электричество движется от минуса к плюсу (в твёрдых телах, движение электронов), и от плюса к минусу (в жидких и газообразных веществах, движение ионов).

Электрическая цепь постоянного тока питается от источника с постоянным током, у которого есть положительный вывод (он же плюс) и отрицательный вывод (он же минус). Внутри источника постоянного тока не может, при нормальных условиях, меняться полюса, исключено самим принципом его работы и устройством. В электротехнике и особенно в электронике существует множество функциональных элементов работающие именно на постоянном токе. При подаче на них переменного тока (если не предусмотрено самой схемой) элементы либо просто не работают, либо просто выходят из строя. Это происходит потому, что переменный ток периодически меняет свою полярность с плюса на минус и обратно (в обычной городской сети это происходит 50 раз за секунду).

Как уже было подмечено вначале, самая простая электрическая цепь (будь то переменная или постоянная) состоит из источника питания, нагрузки и устройства коммутации (переключатели). В такой схеме электрической цепи энергия вырабатывается источником, и подаётся на нагрузку, выполняющую конкретную полезную работу. Естественно, без выключателей проблематично будет управлять работой электросхемы. Любая электрическая схема подразумевает функцию включения и выключения. Нарисованный на схеме (наш рисунок схемы простой электрической цепи постоянного тока) дополнительное переменное сопротивление показывает, что имеется некий элемент, способный изменять свое электрическое сопротивление, тем самым влияя на величину тока в электрической цепи.

На рисунке схемы электрической цепи постоянного тока можно заметить, что движение тока направлено от плюса к минусу (обозначено стрелками), а выше было сказано, что в реальности ток движется от минуса к плюсу (в твёрдых телах). Что это за несоответствие? Просто было наукой принято, что в схема должно обозначаться именно такое движение электрического тока. Но это особо не на что не влияет. Просто зная условные обозначения на электрических схемах и физический принцип действия электрического тока мы работаем со схемой, сочиняя её, либо используя при ремонте или сборке. В электронике на схемах можно заметить стрелки, находящиеся на самих функциональных элементах. Они показывают направление движения тока, как было принято в условном обозначении.

В более сложных электрических цепях в схемах добавляются дополнительные устройства и элементы, которые расширяют общий функционал. Каждая деталь, элемент при подаче на него напряжения или прохождении электрического тока имеет свою специфическую особенность. Хотя в целом, что можно сделать с электроэнергией источника питания? Изменить всего лишь исходные характеристики, а именно, увеличить или понизить напряжение, ток, частоту (если это переменный или импульсный ток). Включить или выключить схему электрической цепи.

Видео по этой теме:

P.S. Любую электрическую схему цепи можно представить как основные функциональные части, а именно, часть источника питания, часть управления и коммутации, часть непосредственной нагрузки (ради которой всё и организовывалось). Просто мысленно разбиваем схему на эти части и составляем основные функциональные блоки, модули, элементы. Далее уже всё начинает становиться на свои места. Даже достаточно сложная схема (с первого взгляда) после этого начинает становиться простой и понятной с точки зрения своей работы.

Из каких основных элементов состоит электрическая цепь. Самая простая электрическая цепь и её схема

Человечество давно научилось использовать электрические явления природы в своих практических целях для получения, использования, а также преобразования энергии. Такое действие достигается путем применения определенных устройств. Элементы оборудования в совокупности образуют систему. Такая система известна, как электрическая цепь.

Чтобы сделать вилки в помещениях менее заметными, обычно они устанавливаются примерно на 30 см над полом. Все розетки должны иметь контакт с контактом или контактный контакт. Электрические приборы обычно снабжены универсальными заглушками, которые подходят как для розетки, так и для розетки.

По определению, электрическая цепь представляет собой схему, основным элементом которой является источник или источник тока. Другие возможные компоненты схемы включают резисторы, конденсаторы, катушки, диоды и т.д. эти элементы подключаются к источнику тока с помощью проводов, благодаря чему ток течет от источника.

Элементы цепи

Электрическая цепь содержит в себе такие составляющие, как источники энергии, потребители, а также соединяющие их провода.

Существуют дополнительные приборы цепи, например, выключатели, измерители тока и защитные аппараты.

Источниками энергии в схеме такой цепи выступают аккумуляторы, генераторы тока и гальванические элементы. Их еще называют

Один из способов классификации электрических цепей делит их на. Упорядоченное движение зарядов в проводниках электрическое. Томами, характеризующими ток, являются интенсивность и напряжение. Меньшие единицы также используются: миллиампер и микро-усилитель.

Протекающий ток равен одному амперу А, когда один поперечный разрез проводника течет в течение одной секунды от заряда одного С-шара.

Устройство для измерения тока является амперметром. Для правильной работы он должен быть подключен к цепи последовательно и должен иметь небольшое внутреннее сопротивление, чтобы его можно было исключить при расчете. Работа этого устройства заключается в измерении эффектов, вызванных током. В зависимости от типа измеренного эффекта амперметр можно разделить на.

В приемниках электрической цепи электроэнергия преобразовывается в другой тип энергии. Таким оборудованием бывают двигатели, нагреватели, лампы и т. д.

Стоит отметить, что система может быть внешней и внутренней. Они отличаются наличием приемника. Открытая цепь имеет его в своем составе, а закрытая — только

Электрическая цепь постоянного тока

Ток, величина которого не меняется с течением времени, называется постоянным.

Амперметр постоянного тока измеряет мгновенное или малое значение тока. Амперметр Ампер Ампер. Подробнее Иностранный словарный словарь переменного тока измеряет эффективное значение переменного тока. Для каждого из этих амперометров ток с заданным значением интенсивности вызывает максимальное опрокидывание.

Напряжение — это разность потенциалов между двумя точками схемы. Устройство измерения напряжения является вольтметром. Он включается параллельно с токовой цепью. Чтобы хорошо функционировать, его функция должна иметь бесконечно большое внутреннее сопротивление.

Цепь, через которую проходит такой источник электричества, имеет замкнутую систему. Это электрические цепи постоянного тока. Их составляют различные элементы.

Для обеспечения постоянного источника энергии в системе применяются конденсаторы. Они способны накапливать запасы электрических зарядов.

Емкость конденсатора зависит от размера его металлических пластин.

Можно выделить следующие типы вольтметров. Вольтметр измеряет напряжение, т.е. разность потенциалов между двумя точками схемы. Для каждого типа вольтметра напряжение указанного напряжения дает максимальную индикацию счетчика. Единица электрического сопротивления — ом.

Элементы электрической цепи можно комбинировать двумя способами. Один из них — последовательное соединение. В связи с этим электрический ток последовательно проходит через элементы схемы. Поэтому в каждой точке схемы ток те же. Напротив, падение напряжения на каждом из компонентов может быть рассчитано по ранее упомянутому закону Ома.

Чем они больше, тем больший заряд может накопить этот элемент электрической цепи постоянного тока. Электрическую емкость изменяют в таких единицах, как фарада (ф). На схеме этот элемент выглядит следующим образом.

Вместе с источниками и приемниками тока эти элементы образуют электрические цепи постоянного тока.

Поскольку текущий ток должен, в свою очередь, преодолевать сопротивление отдельных компонентов, общее сопротивление схемы в этом случае равно сумме сопротивлений отдельных компонентов. Второй способ подключения компонентов в цепи — подключаться параллельно. Элементы соединены таким образом, что они образуют отдельные ветви.

Текучий ток на участке ветвления разделяется на ветви. Ток в ветви будет зависеть от сопротивления. Таким образом, полная интенсивность будет представлять собой сумму интенсивностей в отдельных ветвях.

Взаимосвязь полного сопротивления в этой комбинации равна сумме обратного сопротивления отдельных компонентов. Таким образом, полное сопротивление цепи меньше индивидуальных сопротивлений. Одним из ключевых вопросов при проектировании соединений является изоляция. Таким образом, хорошие электрические свойства достигаются при высоких частотах и ​​температурах.

Последовательное соединение в цепи

Большое количество электрических цепей состоят из нескольких приемников тока. Если эти элементы соединены друг с другом последовательно, то конец одного приемника присоединен к началу другого. Это последовательное соединение системы.

Контактные части покрыты различными материалами, чтобы уменьшить сопротивление соединения. Они включают золото, серебро, медь, никель, полладий и олово. Это покрытие может быть однослойным, сплавным или многослойным. Часто штыри выполнены из золота и никелевого сплава, что обеспечивает не только низкое сопротивление, но также увеличивает механическую прочность и долговременную стабильность. Хотя твердые ножки износостойкие, они характеризуются более высоким контактным сопротивлением при более низких значениях тока.

В разъемах, которые используются в аудиооборудовании, контакты покрыты золотом. Этот материал отличается более низким сопротивлением. Однако в случае переноса более высоких токов внимание уделяется низкой температуре плавления. В этом случае лучше использовать серебро. Обязательно ограничьте прерывность тока в серебряном контакте, так как полученная электрическая дуга может привести к расплавлению серебра.

Сопротивление в этой электрической цепи приравнивается к сумме сопротивлений всех проводников системы. Они удлиняют пути прохождения тока, который будет одинаковым на отдельных участках системы.

Схема электрической цепи в классическом варианте содержит последовательно присоединенные проводники и нагляднее всего описывается таким прибором, как электрогирлянда.

Латунь — это материал, который используется очень часто для производства контактов, как в разъемах, так и в розетках. Однако многие другие материалы также часто используются. Например, фосфор, в отличие от латуни, обладает хорошими весенними свойствами. Для производства высококачественных соединителей также используется бериллиевая медь.

Соединители представляют собой электроизоляционные элементы одно — или многороторные, которые используются для подключения токового тракта двух низковольтных линий электропередачи. Соединение осуществляется с помощью зажимов или других соединительных элементов, расположенных на концах каждой дорожки. Треки расположены на изоляционном основании или на корпусе.

Недостатком такой системы является тот факт, что в случае выхода из строя одного проводника, система не будет работать вся целиком.

Параллельное соединение цепи

Схема электрической цепи параллельного типа соединения элементов является системой, в которой начало содержащихся в ней проводников соединяются в одной точке, а концы их — в другой. Электрический ток в такой электрической системе имеет несколько вариантов пути прохождения. Он распределяется обратнопропорционально сопротивлению приемников энергии.

Важно отметить, что конец прилагаемой многожильной проволоки включает конец гильзы, обжимной наконечник. Терминал также может быть припаян. Если подключено больше кабелей, важно позаботиться о соединителях. Интересные решения также включают системы с реле или с выпрямительными диодами. В многодорожечных муфтах пути резьбы резьбовых муфт или пазов размещены в общем изолирующем корпусе. Важно сохранить расстояния изоляции между клеммами разъема и живыми, заземленными или чувствительными к касанию металлическими деталями.

Кроме того, рынок может приобрести системы с сигнализацией напряжения светодиодов. Также доступны резьбовые соединители с тремя или четырьмя хомутами для электронных компонентов и сигнализации. Соединения могут быть выполнены как с малыми, так и с большими секциями.

Если у потребителей величина сопротивления одинаковая, то через них будет проходить одинаковый ток. В случае когда у одного приемника энергии сопротивление меньше, через него может пройти больше тока, чем через другие элементы системы.

Электрическая цепь и электрический ток, протекающий по ней, характеризуют электромагнитные процессы при помощи напряжения и силы тока. Сумма отдельно взятых элементов системы будет равна току в точке их соединения.

Могут быть приобретены специальные монорельсовые муфты, которые предназначены для оснащения электронными компонентами пайкой. Кроме того, полезны резьбовые муфты с выемкой или вставкой для плавких вставок и автономных припоев. Некоторые модели разъемов оснащены сигналом с плавким предохранителем. Текущие дорожки в муфтах могут быть отмечены маркерами, расположенными в углублениях корпуса муфты.

При установке промышленных разъемов ручные инструменты, безусловно, будут полезны. Например, экстракторы предназначены для удаления из контактных вставок. Кроме того, стоит позаботиться о прессе, используемом для нажимания контактов в разъемах. Инструмент оснащен механизмом, обеспечивающим повторение зажима контактов на проволоке и механизм для компенсации возможного износа.

Присоединяя к такой цепи новые элементы, сопротивление системы будет уменьшаться. Это связано с увеличением общего сечения проводников при соединении нового потребителя электроэнергии. Позитивной характеристикой такого способа соединения цепи является автономность каждого элемента.

При отключении одного потребителя, совокупное сечение проводников уменьшается, а сопротивление электрической цепи становится большим.

Промышленные разъемы используются в сочетании с проводными и силовыми и управляющими кабелями. Основные характеристики этого типа в основном состоят из материалов, которые обеспечивают не только высокую механическую прочность, но и надежность соединений, а также низкое контактное сопротивление и высокую степень герметичности. Типичный промышленный разъем состоит из мужских и женских контактных вставок, а также переносных и панельных корпусов. Некоторые производители предлагают решения, которые позволяют пользователям выбирать количество контактов, соответствующих конкретному приложению.

Смешанное соединение в цепи

Смешанный вариант соединения довольно распространен в сфере производства электротехники.

Эта цепь содержит в себе одновременно принцип последовательного и параллельного присоединения проводников.

Чтобы определить сопротивление нескольких потребителей такой схемы, находят отдельно сопротивление всех параллельно и последовательно присоединенных проводников. Их приравнивают к единому проводнику, что в итоге упрощает всю схему.

Комбинация вставного корпуса дополняется кабельными сальниками. Контактные вставки также могут быть установлены без корпусов — в разрезанных отверстиях, например, в распределительных шкафах. Как правило, доступны два типа вставок: резьбовые и нажатые. Подчеркивается, что резьбовые вставки допускают множественную проводку и разъединение проводов без использования специальных инструментов. В свою очередь, вставки для пресса по сравнению с резьбовыми вставками имеют больше контактов во вставке того же размера.

Вставки для пресса выполнены из правильных вставок и контактных контактов. Вы также можете приобрести портативный корпус, который предназначен для монтажа на кабеле, а также панельного корпуса, предназначенного для панельного монтажа. Производители предлагают коробки для ящиков, применимые на поверхности или на конструкции.

Режимы работы цепи

Опираясь на показатели нагрузки, различают такие режимы функционирования цепи: номинальный, холостой ход, замыкание и согласование.

При номинальной работе система выполняет характеристики, заявленные в техпаспорте оборудования. Холостой ход образуется в случае обрыва цепи. Этот режим работы относится к аварийным. Электрическая цепь в режиме короткого замыкания имеет сопротивление, которое равно нулю. Это также аварийный режим.

Винты для разъемов предназначены для короткого замыкания резьбовых резьбовых проводников, которые монтируются на монтажных полосах. Не забудьте указать количество коротких разъемов в вашем выборе сфинктера. Стоит позаботиться о маркерах, которые позволяют отмечать каждый трек. Они обычно имеют форму белых полос или желтых профилированных лент с черным оттиском. Маркеры без надпечатки могут быть описаны с помощью ручек. Стоит подчеркнуть, что лента имеет щель, что позволяет отделить отдельные маркеры.

Полезны экраны, монтажные кронштейны, перегородки и обшивка на держателях. Также доступны в качестве аксессуара, концевые пластины для завершения серии разъемов, установленных на профильной полоске 35 мм. На рынке также предлагается соединение соседних дорожек того же размера. Они используются после резкой резки инструментом инструмента.

Согласование характеризуется перемещением наибольшей мощности от источника энергии к проводнику. В таком режиме нагрузка равняется сопротивлению источника питания.

Ознакомившись с основными характеристиками и видами такой системы, как электрическая цепь, становится возможным понять принцип функционирования любого электрооборудования. Данное устройство работы системы применяется к любому электрическому бытовому прибору. Применяя полученные знания, можно понять причину поломки оборудования или оценить правильность его работы в соответствии с техническими характеристиками, заявленными производителем.

Кабельные разъемы также доступны на рынке, характерной особенностью которых является то, что они не требуют несущей рейки. Они устанавливаются винтами прямо на землю. Конструкция обеспечивает ножки и языки, позволяя сборку блоков, состоящих из нескольких разъемов. Каждый разъем полностью изолирован и не требует закрывающей пластины.

Что еще интересного в перекрестке

Также можно приобрести двух — и трехходовые мосты, соединители мостов, а также дополнительные разъемы, зонды, защитные крышки и описательные вывески. Разъемы питания также доступны на рынке. Они являются незаменимым элементом систем распределения электроэнергии. Правда, разъемы могут течь большими токами, но это не означает, что компоненты имеют большой размер. Напротив, мы можем купить высокоточные миниатюрные разъемы. Важной особенностью этих компонентов является высокая нагрузочная способность контактов, рассчитанная на занятый объем компонента.

Электрическая цепь это совокупность устройств, предназначенных для генерирования, передачи, преобразования и использования электрической энергии, процессы в которых могут быть описаны с помощью понятий об электрическом токе, напряжении и ЭДС

В состав электрических цепей (2.2)входит также коммутационная и защитная аппаратура. В состав электрических цепей могут включаться электрические приборы для измерения силы тока, напряжения и мощности.

При описании электрических цепей используют следующие понятия:ветвь электрической цепи, узел электрической цепи, контур, двухполюсник, четырехполюсник.

Ветвь электрической цепи — это участок, элементы которого соединены последовательно. Ток во всех элементах один и тот же.

Узел электрической цепи — это точка соединения трех и болееветвей электрической цепи (2. 3).

Контур — это любой путь вдоль ветвей электрической цепи, начинающийся и заканчивающийся в одной и той же точке.

Двухполюсник — это часть электрической цепи с двумя выделенными выводами.

Четырехполюсник — часть электрической цепи с двумя парами выводов.

Режимы работы электрических цепей

Электрическая цепь в зависимости от значения сопротивления нагрузки R может работать в различных характерных режимах:

Номинальный режим — это расчетный режим, при котором элементы цепи (источники, приемники, линия электропередачи) работают в условиях, соответствующих проектным данным и параметрам.

Изоляция источника, линии электропередачи, приемников рассчитана на определенное напряжение, называемое номинальным. Превышение этого напряжения приводит к пробою изоляции, увеличению токов в цепи и другим аварийным последствиям.

Тепловой режим источников или приемников энергии рассчитан на выделение в них определенного количества тепла, то есть на определенную мощность, а последняя зависит от квадрата тока RI 2 , rI 2 .

Расчетный по тепловому режиму ток называется номинальным.

Номинальное значение мощности для источника электрической энергии — это наибольшая мощность, которую источник при нормальных условиях работы может отдать во внешнюю цепь без опасности пробоя изоляции и превышения допустимой температуры нагрева.

Для приемников электрической энергии типа двигателей — это мощность, которую могут развивать на валу при нормальных условиях работы. Для остальных приемников электрической энергии (нагревательные и осветительные приборы) — это их мощность при номинальном режиме. Номинальные значения напряжений, токов и мощностей указывают в паспортах изделий.

Согласованный режим работы — это режим, в котором работает электрическая цепь (источник и приемник), когда сопротивление нагрузки R равна внутреннему сопротивлению источника r. Этот режим характеризуется передачей от данного источника к приемнику максимально возможной мощности. Однако в согласованном режиме К.П.Д.= 0,5 — низкий и для мощных цепей работа в согласованном режиме экономически невыгодна. Согласованный режим применяется, главным образом, в маломощных цепях, если К.П.Д. не имеет существенного значения, а требуется получить в приемнике возможно большую мощность.

Режим холостого хода и короткого замыкания. Эти режимы являются предельными режимами работы электрической цепи.

В режиме холостого хода внешняя цепь разомкнута и ток равен нулю. Так как ток равен нулю, то падение напряжения на внутреннем сопротивлении источника так же равно нулю (rI = 0) и напряжение на выводах источника равно ЭДС (= U). Из этих соотношений вытекает метод измеренияЭДС (2.7)источника: при разомкнутой внешней цепи вольтметром, сопротивление которого можно считать бесконечно большим, измеряют напряжение на его выводах.

В режиме короткого замыкания выводы источника соединены между собой, например, сопротивление нагрузки замкнуто проводником с нулевым сопротивлением. Напряжение на приемнике при этом равно нулю.

Сопротивление всей цепи равно внутреннему сопротивлению источника, и ток короткого замыкания в цепи равен:

I к. з. = / r.

Он достигает максимально возможного значения для данного источника и может вызывать перегрев источника и даже его повреждение. Для защиты источников электрической энергии и питающих цепей от токов короткого замыкания в маломощных цепях устанавливают плавкие предохранители, в более мощных цепях — отключающие автоматические выключатели, а высоковольтных цепях — специальные высоковольтные выключатели.

Виды схем, принципы их построения

Электрическая схема — это чертеж, на котором упрощенно и наглядно изображены связи между отдельными элементами электрической цепи, выполненный с применением условных графических обозначений и позволяющий понять принцип действия устройств. В отличие от машиностроительных и строительных чертежей электрические схемы выполняют без соблюдения масштаба.

В зависимости от назначения электрические схемы разделяют на монтажные, принципиальные и некоторые другие. Далее будут рассмотрены в основном принципиальные схемы.

Монтажные схемы — это рабочие чертежи, по которым выполняют монтаж. Оборудование электроподвижного состава обычно комплектуют на отдельных панелях, в отдельных блоках, ящиках. Каждое такое устройство имеет свою схему — рабочий чертеж. На монтажных схемах оборудование показывают так, как оно расположено в действительности на вагонах с полной маркировкой.

На принципиальной электрической схеме условными графическими обозначениями показывают только основные элементы оборудования — тяговые двигатели, пускотормозные реостаты, контак торы и др. Эти схемы составляют так, чтобы можно было получить ясное представление о том, по каким электрическим цепям и через какие элементы оборудования проходит электрический ток от источника к потребителю. Поэтому на таких схемах не показывают второстепенные элементы (переходные зажимы, промежуточные провода и пр.), которые могут затруднить понимание схемы и сделать ее ненаглядной.

Для того чтобы принципиальная схема была более простой и наглядной, оборудование, аппараты и приборы располагают на ней в том порядке, в каком они электрически соединены, без учета действительного размещения их на вагоне и механической связи друг с другом. Поэтому, например, контакты одного аппарата могут располагаться на схеме в различных местах. Все соединительные провода изображают по возможности прямыми линия ми кратчайшей длины.

Различают следующие принципиальные электрические схемы Вагона:

силовых цепей, включающих в себя тяговые двигатели и аппараты переключения режимов их работы, через которые проходит Тот же ток, что и через тяговые двигатели;

цепей управления, включающих в себя устройства и аппараты, Которыми осуществляют включения и переключения силовых аппа ратов, а также лампы сигнализации о состоянии силовой цепи ц положении аппаратов;

вспомогательных цепей, в которые включены аккумуляторная батарея, мотор-компрессор, лампы освещения, сигнальные фары печи отопления, аппараты управления раздвижными дверями ц другие вспомогательные аппараты.

Ясному представлению о работе подвижного состава, умелой его эксплуатации, быстрому устранению неисправностей во многом способствует умение разбираться в электрических схемах или, как говорят, читать их. Прочитать электрическую схему вагона -! значит, проследить по каким путям ток поступает к тяговым двигателям и другим аппаратам. Для этого необходимо знать, какое положение занимают контакты аппаратов, осуществляющих переключения отдельных цепей, так как в зависимости от положения этих контактов (замкнуты они или разомкнуты) некоторые электрические цепи находятся под током, а другие обесточены.

Все контакты реле и контакторов обычно изображают в состоянии, в котором они находятся при нулевом положении главной рукоятки и положении «Вперед» реверсивной рукоятки контроллера машиниста. В соответствии с этим все блокировочные и силовые контакты аппаратов, производящие соединения проводов электрической цепи, подразделяют на размыкающие, т. е. замкнутые при нормальном положении аппарата (при отсутствии тока или внешних сил), и замыкающие, т.е. разомкнутые при этом же положении аппарата.

Нормальным считают для индивидуальных контакторов положение отключенное, для групповых переключателей — положение последовательного соединения тяговых двигателей в тяговом режиме (ПС), для реверсора — положение «Вперед».

При чтении электрической схемы прежде всего определяют пути прохождения тока. При этом отправной точкой в схемах постоянного тока принято считать положительный полюс источника питания, а конечной- его отрицательный полюс. Необходимо также ¦ иметь ясное представление о том, как устроены аппараты и машины, включенные в цепь.

Правила выполнения схем определяются государственными стандартами.

Контрольные вопросы 1. Чем отличаются электрические схемы вагонов от машиностроитель’ ных и строительных чертежей?

2. В чем разница принципиальных и монтажных электрических схем?

3. Каково назначение принципиальных схем силовых, вспомогатеЛЬ’ ных цепей и цепей управления?

4. Какое положение на принципиальных схемах принято считать нормальным: для индивидуальных контакторов, переключателей положений, реверсоров?

5. Какие контакты электрических аппаратов называются замыкающими, а какие — размыкающими?

6. С чего начинают чтение электрической схемы?

⇐Радиооборудование | Электропоезда метрополитена | Условные графические и буквенные обозначения⇒

Проектирования схемы электрической принципиальной

Видеоуроки AutoCAD Electrical >>>

Создавать электрическую принципиальную схему (Э3) в системе AutoCAD Electrical можно тремя способами:

  1. Способ «точка-точка» — этот метод, при котором сначала из библиотеки графических образов вставляются компоненты, а затем с помощью инструмента «Вставить провод» компоненты соединяются между собой.
  2. Способ «Многозвенная цепь» — метод, при котором сначала используется инструмент «многозвенная цепь», а затем добавляются компоненты на схему. На рисунке 1 показ пример цепи, которую удобнее создавать при помощи этого способа.

Рис. 1 (Кликните на картинку для увеличения изображения)

  1. Третий способ основан на использовании инструмента «Много проводная шина», инструмент позволяющий рисовать одновременно несколько проводов. Можно сначала начертить провода, а затем вставить компонент на схему, но иногда удобнее сначала вставить компонент, а затем выбрать инструмент «Многопроводная шина», который сам определит требуемое количество проводов для присоединения компонента.

Во вкладке «Схема» выбираем инструмент «Многопроводная шина», после выбора появится окно, показанное на рисунке 2.

Рис. 2

В окне «Шина, содержащая несколько проводов», установим шаги по вертикали и горизонтали — 10 мм, затем необходимо указать «Компонент (несколько проводов)». После этого нужно нажать кнопку «ОК» и нарисовать горизонтальные 4 провода, идущие от клеммы ХТ1. Затем необходимо повторно выбрать инструмент «Много проводная шина» и выбрать «Другая шина (несколько проводов)» и указать количество проводов – 3, затем нажать кнопку «ОК» и нарисовать две шины, как показано на рисунке 3.

Рис. 3 (Кликните на картинку для увеличения изображения)

Затем во вкладке «Схема» выбираем инструмент «Графическое меню», в нем содержатся компоненты условно графических обозначений. Компоненты представляют собой блоки с атрибутами. Графическое меню представлено на рисунке 4.

Рис. 4 (Кликните на картинку для увеличения изображения)

В «Графическом меню» нужно выбрать компонент и подвести его к проводам,  в том месте, где необходимо его расположить на схеме. Компонент автоматически обрежет провода, и подключиться к ним. Все это произойдет из-за наличия в нем атрибутов точек подключения. Подключив элементы на схеме, обрежем лишние провода, используя инструмент «Обрезать провод». Результат показан на рисунке 5.

Рис.5 (Кликните на картинку для увеличения изображения)

После создания первого листа проекта, по аналогии создается второй лист проекта. Стоит обратить внимание, что поскольку в раздел описания проекта заполнен, то штамп у нового листа заполнился автоматически.

После создания второго листа проекта расположим компоненты и соединим их проводами, как показано на рисунке 6.

Рис. 6 (Кликните на картинку для увеличения изображения)

После создания второго листа необходимо соединить провода между собой. Для этого во вкладке «Схема» необходимо выбрать инструмент «Стрелка с адресом источника цепи», это позволит AutoCAD Electrical соединить провода находящиеся на разных листах проекта и считать их единым проводом. После выбора инструмента «Стрелка с адресом источника цепи» появляется окно, представленное на рисунке 7.

Рис. 7 (Кликните на картинку для увеличения изображения)

В поле «Код» нужно задать уникальное имя для стрелки источника, в поле описание можно задать описание для этой стрелки.

Необходимо расставить стрелки источников цепи, на все провода идущие на лист №2. Пример стрелки с адресом источника показан на рисунке 8.

Рис. 8 (Кликните на картинку для увеличения изображения)

Переходим на второй лист проекта и во вкладке «Схема» выбираем инструмент «Стрелка с адресом назначения», которая позволит соединить провода между первым и вторым листами проекта. После выбора инструмента «Стрелка с адресом назначения», появляется окно «Вставка кода приемника». Поскольку стрелки с адресом источника находятся на другом чертеже необходимо нажать кнопку «Проект» в окне «Вставка кода приемника». Появилось окно «Коды цепей в рамках проекта» показанное на рисунке 9.

Рис. 9 (Кликните на картинку для увеличения изображения)

В этом окне содержится вся информация о стрелках источников и приемников цепей. Поскольку нас интересуют стрелку с адресом источников, то необходимо поставить флаг в графе «Показать коды стрелок с адресом источника». Затем нужно выбрать соответствующий источник цепи, к которому необходимо подключить провод и нажать кнопку «ОК». Этим способом расставим все стрелки приемников на втором листе проекта, как показано на рисунке 10.

Рис. 10 (Кликните на картинку для увеличения изображения)

Проделав вышеперечисленные действия, мы соединили первый и второй лист проекта.

После этого переходим во вкладку «Схема» и выбираем инструмент «Изменить / преобразовать тип провода» и назначаем слои проводам.

Рис. 11 (Кликните на картинку для увеличения изображения)

Найти все ближайшие запланированные курсы обучения по AutoCAD Electrical и зарегистрироваться на них можно, перейдя по этой ссылке.

Если Вы желаете пройти курс обучения или у Вас возникли вопросы по продукту  AutoCAD Electrical, пожалуйста, свяжитесь с нами:

— по телефону/факсу: +7 (812) 321-0055 (Максим Козлов, Курочкин Андрей)

— отправив e-mail: maksim. [email protected]

Мы будем рады ответить на Ваши вопросы!

С уважением, Максим Козлов

Инженер электротехнических САПР

 

 

 

Ключевые слова: AutoCAD Electrical, AutoCAD, AutoCAD для электротехников, AE, AutoCAD E, Autodesk, проектирование схем, принципиальные схемы, сборочный чертеж, таблица соединений, перечень элементов, схема соединений, проектирование, ПЭ, ТС, Э3, Э4, автокад электрикал, 2014, AutoCAD 2014, конструкторская документаци, электро

Составление электрических схем: как это происходит, примеры

ЭС — это важный документ, который строится в виде условных обозначений. В этой статье говорится о том, как составить схему самостоятельно и какие ошибки могут возникнуть в процессе работы.

Кратко об электрических схемах

ЭС создаются для работ по проектированию, производству, использованию и монтажу изделия.

Внимание! Для облегчения и ускорения процесса работы над изделием для него изготавливается несколько видов электрических схем, и каждая из них имеет особое предназначение.

ЭС можно условно поделить на:

  • структурные;
  • функциональные;
  • полные планы;
  • ЭС монтажная;
  • для соединения;
  • общие;
  • ЭС расположения;
  • связанные.
Простая электрическая схема

Что нужно знать для составления схем

Ниже описаны основные указания при составлении ЭС.

Указание 1. Порядковые числа изделиям необходимо приписывать, начиная с одного, в диапазоне группы устройств, которым на ЭС указано равное буквенное значение, для примера, А1, А2, А3 и т.д., В1, В2, В3 и прочее. Не разрешается пропускать даже одну цифру на ЭС.

Пример ЭС проводки

Указание 2. Все номера для схемы должны быть указаны в соответствии с последовательностью позиций элементов или изделий на ЭС снизу вверх в направлении справа налево. Если нужно, то разрешается менять последовательность присвоения чисел в зависимости от расположения компонентов в изделии, ориентацию прохождения сигналов или функциональной последовательности работы.

Указание 3. Позиционные артикли будут обозначаться на схеме около условного блока (нарисованного) или справой стороны изделий. Также не разрешается перекрещивание позиционного значения отметками связи, УГО элемента или иными другими отметками.

Программы для рисования схем

Список программ для бесплатного пользования:

  • Freeware — программа не ограничена по работоспособности и может применяться в личных целях без покупки полного пакета;
  • Опен Сорс — приложение с «открытым доступом», в котором разрешается добавлять изменения подстраивая программное обеспечение под собственные цели. Есть как платная, так и бесплатная версия;
Составление чертежа в программе
  • GNU GPL — программа полностью бесплатна и удобна в использовании;
  • Паблик домен — практически похожа с предыдущим приложением, можно скачать бесплатную лицензию в интернете;
  • Ad-supported — программа полностью функциональна, но иногда в ней есть реклама, чтобы ее убрать, нужно заплатить;
  • Donationware — приложение используется бесплатно, однако автор сервиса предлагает вносить добровольные пожертвования.
ЭС полуавтомата сварочного

Возможные ошибки

Основные проблемы, которые могут возникнуть при составлении ЭС:

  • неверное рисование элемента, портящее электрическую цепь либо связь между компонентами в СЭП;
  • расположение контактов компонента «вне электрической цепи» в системе электронных паспортов;
  • неверный вид стрелки, показывающий ориентацию прохождения сигнала в электроцепи;
  • неверное направление линий электросвязи под произвольными углами.

Таким образом, составлять электрические планы самостоятельно, без опыта, довольно сложно. Для этого необходимо выбрать самую простую в управлении программу, а также более подробно изучить все основы работы. Например, как в схеме обозначается обращение или методы составления диаграммы.

Электрическая цепь и ее элементы

Электрическая цепь это совокупность устройств, соединенных определенным образом, которые обеспечивают путь для протекания электрического тока.

Элементами электрической цепи являются: источник тока, нагрузка и проводники. Простейшая электрическая цепь показана на рисунке 1.

Рисунок 1. Простейшая электрическая цепь.

В состав электрической цепи могут входить и другие элементы, таки как устройства коммутации, устройства защиты.

Как известно, для возникновения тока необходимо соединить две точки, одна из которых имеет избыток электронов в сравнении с другой. Другими словами необходимо создать разность потенциалов между этими двумя точками. Как раз для создания разности потенциалов в цепи применяется источник тока. Источником тока в электрической цепи могут быть такие устройства, как генераторы, батареи, химические элементы и т.д.

Нагрузкой в электрической цепи считается любой потребитель электрической энергии. Нагрузка оказывает сопротивление электрическому току и от величины сопротивления нагрузки зависит величина тока. Ток от источника тока к нагрузке течет по проводникам. В качестве проводников стараются использовать материалы с наименьшим сопротивлением (медь, серебро, золото).

Важно, что для протекания тока в цепи, цепь должна быть замкнута!

Типы электрических цепей

В электротехники по типу соединения элементов электрической цепи существуют следующие электрические цепи:

  • последовательная электрическая цепь;
  • параллельная электрическая цепь;
  • последовательно-параллельная электрическая цепь.

Последовательная электрическая цепь.

В последовательной электрической цепи (рисунок 2.) все элементы цепи последовательно друг с другом, то есть конец первого с началом второго, конец второго с началом первого и т.д.

Рисунок 2. Последовательная электрическая цепь.

При таком соединении элементов цепи ток имеет только один путь протекания от источника тока к нагрузке.При этом общий ток цепи Iобщ будет равен току через каждый элемент цепи:

Iобщ=I1=I2=I3

Падение напряжения вдоль всей цепи, то есть на участке А-Б (Uа-б), будет равно приложенному к этому участку напряжению E и равно сумме падений напряжений на всех участках цепи (резисторах):

E=Uа-б=U1+U2+U3

Параллельная электрическая цепь.

В параллельной электрической цепи (рисунок 3.) все элементы соединены таким образом, что их начало соединены в одну общую точку, а концы в другую.

Рисунок 3. Параллельная электрическая цепь.

В этом случае у тока имеется несколько путей протекания от источника к нагрузкам, а общий ток цепи Iобщ будет равен сумме токов параллельных ветвей:

Iобщ=I1+I2+I3

Падение напряжения на всех резисторах будет равно приложенному напряжению к участку с параллельным соединением резисторов:

E=U1=U2=U3

Последовательно-параллельная электрическая цепь.

Последовательно-параллельная электрическая цепь является комбинацией последовательной и параллельной цепи, то есть ее элементы включаются и последовательно и параллельно (рисунок 4).

Рисунок 4. Последовательно-параллельная электрическая цепь.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Конспект урока по технологии «Принципиальные и монтажные электрические схемы»

Конспект урока по Технологии 8 класса

 «Принципиальные и монтажные электрические схемы»

 

Современное электрическое оборудование в своей работе использует многочисленные технологические процессы, протекающие по различным алгоритмам.

Электромонтёру, напомним, что это специалист, который занимается эксплуатацией, монтажом, наладкой и ремонтом электрооборудования, нужно иметь правильную информацию обо всех особенностях электрооборудования. Для этого создают специальные электрические схемы.

Электросхема представляет собой документ, в котором по определённым правилам обозначаются связи между составными частями устройств, которые работают за счёт протекания электроэнергии.

Проще говоря, электрическая схема – это чертёж или графическое изображение электрооборудования и цепей связи.

Самая простая электрическая цепь может содержать всего лишь три элемента: источникнагрузку и соединительные провода.

Но в реальности электрические цепи намного сложнее. Они, помимо основных элементов, содержат различные выключатели, рубильники, пускатели, контакторы, предохранители, реле в автоматах, электроизмерительные приборы, розетки, вилки и другое.

Всё это и указывается в электрической схеме и даёт понимание электромонтёрам о том, как работает установка и из каких элементов она состоит.

Основное назначение электросхемы – помощь в подключении установок, а также в поиске неисправности в цепи.

Электрические схемы создаются для электриков всех специальностей. Но каждая отдельная схема имеет свои особенности оформления. Чаще всего электрические схемы делят на принципиальные и монтажные.

Оба типа этих схем очень взаимосвязаны. Они дополняют информацию друг у друга, выполняются по единым стандартам, понятным всем пользователям, но имеют отличия в своём назначении.

Итак, принципиальная электрическая схема представляет собой графическое изображение электрической цепи, на котором все её элементы изображают в виде условных знаков.

На экране вы видите таблицу с условными обозначениями элементов электрической цепи.

Принципиальные электрические схемы создают в первую очередь для того, чтобы показать принцип работы и взаимодействие составляющих элементов в порядке очерёдности их срабатывания.

На экране вы видите простейшую принципиальную электрическую схему цепи.

Обратите внимание, она состоит из источника электрической энергии в виде батареи гальванических элементов, нагрузки в виде лампы накаливания и выключателя.

Что касается монтажных электрических схем, то они представляют собой чертежи или эскизы частей электрооборудования, по которым выполняется сборка, монтаж электроустановки. В монтажных схемах учитываются расположение, компоновка составных частей и отображаются все электрические связи между ними.

На экране вы видите пример монтажной электрической схемы.

По этой схеме электромонтёр увидит, что все элементы электрической цепи крепятся на монтажной плате. Источником электроэнергии служит батарея от карманного фонарика. Монтажные провода, которые идут к батарее, припаиваются непосредственно к её электродам. А малогабаритная лампочка вворачивается в ламповый патрон, который закреплён на плате. В свою очередь монтажные провода крепятся к клеммам лампового патрона с помощью пайки, как и провода к выключателю. А контакты выключателя также закреплены на монтажной плате.

По указанным примерам схем можно сделать вывод, что основным отличием принципиальной и монтажной электрических схем является то, что принципиальная схема показывает соединение только основных элементов цепи, без комплектующей арматуры (например, электророзеток, вилок, ламповых патронов), а вот монтажная электрическая схема показывает точное (реальное) расположение элементов относительно друг друга, комплектующую арматуру и места подключения проводов.

Получается, что все монтажные схемы создаются на основе принципиальных и содержат всю необходимую информацию по производству монтажа электроустановки, включая выполнение электрических соединений. Без их использования создать качественно, надёжно и понятно для всех специалистов электрические подключения современного оборудования невозможно.

Для того чтобы правильно вычертить электрическую схему нужно обязательно соблюдать размеры и пропорции условных графических обозначений.

Линии связей между элементами схемы обязательно нужно проводить параллельно или взаимно перпендикулярно, соблюдая условие замкнутости цепи, наклонные линии не применять.

Итоги урока

На этом уроке мы говорили об электрических схемах. Узнали, что электросхема – это чертёж или графическое изображение электрооборудования и цепей связи. Основное назначение электрической схемы – помощь в подключении установок, а также в поиске неисправности в цепи. Электрические схемы чаще всего делят на принципиальные и монтажные. Принципиальные электрические схемы создают для того, чтобы показать принцип работы и взаимодействие составляющих элементов в порядке очерёдности их срабатывания. В монтажных схемах учитываются расположение, компоновка составных частей и отображаются все электрические связи между ними.

 

10 простых электрических схем со схемами

Повседневная жизнь на Земле практически невозможна без электричества. Все мы, от домов до крупных предприятий, зависим от электричества. Мы знаем, что электрический ток течет по замкнутой цепи. Электрическая цепь представляет собой замкнутый контур, в котором непрерывный электрический ток идет от источника питания к нагрузке. Если вы пытаетесь описать электрическую цепь своему другу или соседу, вероятно, вам придется провести соединение. Например, если вы хотите объяснить схему освещения, может потребоваться больше времени, чтобы нарисовать лампочку, батарею и провода, потому что разные люди рисуют различные компоненты схемы по-разному, и это может занять много времени, чтобы объяснить. Поэтому лучший способ — научиться показывать простые электрические схемы. В этой статье мы приводим чертежи некоторых простых электрических цепей: цепь освещения переменного тока, цепь зарядки аккумулятора, счетчик энергии, цепь переключателя, цепь кондиционирования воздуха, цепь термопары, цепь освещения постоянного тока, цепь мультиметра, цепь трансформатора тока и цепь однофазного двигателя. .

Цепь переменного тока для лампы

Для лампы нам понадобятся два провода; один — нейтральный провод, а другой — провод под напряжением.Эти два провода подключены от лампы к главной панели питания. Желательно использовать разные цвета для проводов под напряжением и нейтральных проводов. Универсальная практика — использовать красный цвет для проводов под напряжением и черный цвет для нейтрального провода. Для включения и выключения лампы нам понадобится элемент управления, называемый переключателем, который находится в проводе под напряжением между источником питания и лампой. Если переключатель находится в положении ON, электрическая цепь замкнута и лампа светится, а если переключатель находится в положении OFF, он отключит питание лампы. Для безопасной работы эту проводку помещают в коробку, называемую распределительной коробкой. Провод переключателя и провод под напряжением представляют собой одиночный провод; он просто прорезан между ними, чтобы подключить выключатель. Если вы хотите заменить лампу, не забудьте выключить лампу и, если возможно, отключить питание от цепи.

Схема зарядки аккумулятора

Зарядка аккумулятора осуществляется с помощью выпрямителя. Основная функция выпрямителя — преобразование переменного (переменного тока) в постоянный (постоянный).Выпрямитель, показанный на схеме, представляет собой мостовой выпрямитель, который имеет четыре диода, соединенных в виде моста. В цепь добавлено сопротивление, чтобы ограничить ток. Когда питание подается на выпрямитель через понижающий трансформатор, он преобразует источник переменного тока в источник постоянного тока, который поступает в аккумулятор, тем самым заряжая его. Обычно эта схема заключена в блок зарядного устройства или инвертор, и только клеммы выходят из блока зарядного устройства, чтобы подключиться к батарее для зарядки.

Электрическая цепь кондиционирования воздуха

Кондиционирование воздуха — это процесс, при котором воздух нагревается, охлаждается, очищается и циркулирует вместе с контролем его влажности. Электрический аспект переменного тока включает в себя силовое оборудование для двигателей и пускателей для компрессоров и вентиляторов конденсатора. Сопутствующее электрическое оборудование включает в себя электромагнитные клапаны, реле высокого и низкого давления, реле высокой и низкой температуры, а также предохранительные устройства от перегрузки по току, пониженного напряжения и т. Д.

Вентиляторы компрессора и конденсатора приводятся в действие простым трехфазным асинхронным двигателем переменного тока с фиксированной скоростью, каждый со своим стартером и питаемым от распределительного щита. Регулярное электрическое обслуживание и поиск неисправностей двигателя и стартеров включает очистку, проверку соединений, испытания изоляции и т. Д.

Цепь переключателя

Мы задействуем переключатели для освещения, вентиляторов и т. Д. Много раз в день, но обычно мы не пытаемся это сделать. увидеть соединение внутри переключателя. Функция переключателя состоит в том, чтобы подключить или замкнуть цепь, идущую к нагрузке от источника питания.Он имеет подвижные контакты, которые обычно разомкнуты.

Как показано на схеме, подача питания на нагрузку осуществляется через схему переключения, поэтому подачу питания можно отключить, удерживая переключатель в разомкнутом состоянии.

Схема освещения постоянного тока

Для небольшой светодиодной лампы обычно используется источник постоянного тока (аккумулятор). Эта схема очень проста. Батарея имеет две точки: анодную и катодную. Анод положительный, а катод отрицательный. Лампа имеет два вывода — один положительный, а другой — отрицательный.Положительный вывод лампы соединен с анодом, а отрицательный вывод лампы соединен с катодом батареи. Как только соединение будет установлено, лампа загорится. Для включения или выключения, подключите переключатель (схема выше) между любым одним проводом, который будет отключать или подавать напряжение постоянного тока на светодиодную лампу.

Более простые электрические схемы и простые электрические устройства обсуждаются на следующей странице.

Схема термопары

Предыдущая страница была посвящена работе нескольких простых электрических цепей, здесь мы продолжим эту тему и изучим некоторые более простые электрические устройства и их утилиты.

Когда соединения, образованные из двух разнородных однородных материалов, подвергаются воздействию разницы температур, возникает ЭДС. Это называется эффектом Зеебека. На рисунке показана термопара, состоящая из двух проводов, одна железная, а другая — из константана, с вольтметром. Этот вольтметр будет измерять генерируемую ЭДС, и ее можно откалибровать для измерения температуры. Разница температур между горячим и холодным спаем создает пропорциональную ей ЭДС.Если температура холодного спая поддерживается постоянной, то ЭДС пропорциональна температуре горячего спая.

Счетчик энергии или счетчик двигателя

Энергия — это общая мощность, потребляемая за определенный промежуток времени. Мощность, потребляемая за определенный период времени, может быть измерена счетчиком двигателя или счетчиком энергии. Счетчики энергии используются на всех линиях электроснабжения каждого дома для измерения мощности, потребляемой как в цепях постоянного, так и переменного тока. Он измеряется в ватт-часах или киловатт-часах.Для цепей постоянного тока счетчиком может быть ампер-час или ватт-час.

Есть алюминиевый диск, который непрерывно вращается при потреблении энергии. Скорость вращения пропорциональна мощности, потребляемой нагрузкой (в ватт-часах). Счетчики энергии имеют катушку давления и катушку тока. Когда напряжение подается на катушку давления, ток течет через катушку и создает магнитный поток, который создает крутящий момент на диске. Ток нагрузки протекает через токовую катушку и создает другой магнитный поток, который оказывает противоположный крутящий момент на алюминиевый диск.Результирующий крутящий момент действует на диск и приводит к вращению диска, которое пропорционально используемой энергии и регистрируется в счетчике энергии.

Схема мультиметра

Мультиметр, вероятно, является одним из самых простых электрических устройств, которые могут измерять сопротивление, токи и напряжение. Это незаменимый прибор, который может использоваться для измерения постоянного и переменного напряжения и токов. Он используется для проверки целостности цепи (по шкале омметра, для измерения протока постоянного тока, постоянного напряжения в цепи, а также для измерения переменного напряжения на трансформаторе питания.Он состоит из гальванометра, последовательно подключенного к сопротивлению. Ток, протекающий в цепи, то есть напряжение в цепи, можно измерить, подключив клеммы мультиметра к цепи. В основном он используется для проверки целостности обмоток двигателя.

Схема трансформатора тока

Трансформатор тока используется для измерения тока в цепи с помощью амперметра низкого диапазона. Фактически, он снижает ток до уровня диапазона амперметра.Он имеет первичную обмотку и вторичную обмотку. Первичная обмотка подключается к силовой цепи, так что через нее проходит измеряемый ток. Вторичная обмотка трансформатора подключена к амперметру. Трансформатор снизит ток до значения, которое может быть измерено подключенным амперметром.

Цепь однофазного двигателя

Однофазные двигатели предназначены для работы от однофазного источника питания и могут выполнять широкий спектр полезных услуг в домах, офисах, фабриках и мастерских, а также в других коммерческих учреждениях.

Однофазный двигатель имеет две клеммы в клеммной коробке внешнего корпуса. Одна из этих клемм соединена с токоведущим проводом силовой цепи, а другая — с нулевым проводом. Когда электропитание поступает на двигатель, двигатель будет работать до тех пор, пока не будет отключено электропитание.

На этом однофазном двигателе работает даже вентилятор. Иногда вентилятор не запускается, когда мы его включаем. Причина в том, что конденсатор, используемый для самозапуска однофазного двигателя, не работает. Лучший способ решить эту проблему — заменить конденсатор.

Простые схемы | Блестящая вики по математике и науке

Для любой простой системы найти V, I или R несложно, если учесть два других фактора, но это усложняется, когда источник питания управляет несколькими устройствами последовательно. Последовательность означает несколько устройств, соединенных встык, причем положительный вывод одного устройства подключен к отрицательному устройству следующего, как набор рождественских гирлянд.Поскольку устройства перетекают друг в друга, и заряд сохраняется, любой ток, протекающий в первое устройство, должен вытекать из последнего устройства, то есть ток через все устройства одинаков. Последовательные устройства похожи на воду, плывущую по реке: река может закручиваться, поворачиваться, сжиматься и расширяться, но количество воды, текущей в любом заданном поперечном сечении в единицу времени, должно быть одинаковым во всех точках вдоль реки, то есть v1A1 = v2A2v_1A_1 = v_2A_2v1 A1 = v2 A2. Если бы это было не так, вода накапливалась бы в точках вдоль реки и выливалась бы из берегов.

Таким образом, в приведенной выше схеме i1 = i2 = i3i_1 = i_2 = i_3i1 = i2 = i3, или поскольку каждый резистор подчиняется закону Ома

I = V1R1 = V2R2 = V3R3.I = \ frac {V_1} {R_1} = \ frac {V_2} {R_2} = \ frac {V_3} {R_3}. I = R1 V1 = R2 V2 = R3 V3.

Теперь левая сторона оранжевой лампочки подключена к положительной клемме батареи, а правая сторона зеленой лампочки подключена к отрицательной клемме батареи, что означает, что сумма напряжения падает на трех резисторы равны по величине падению напряжения на батарее, т.е.е.

Vbattery = V1 + V2 + V3.V_ \ text {battery} = V_1 + V_2 + V_3.Vbattery = V1 + V2 + V3.

Это физический принцип.

Следовательно,

Vbattery = V1 + V2 + V3 = IR1 + IR2 + IR3 = I (R1 + R2 + R3) = IReff. \ Begin {выровнено} V_ \ text {батарея} & = V_1 + V_2 + V_3 \\ & = IR_1 + IR_2 + IR_3 \\ & = I \ влево (R_1 + R_2 + R_3 \ вправо) \\ & = IR_ \ text {eff}. \ end {align} Vbattery = V1 + V2 + V3 = IR1 + IR2 + IR3 = I (R1 + R2 + R3) = IReff.

Следовательно, цепь, состоящая из трех последовательно соединенных лампочек, эквивалентна одной лампочке с сопротивлением, равным сумме отдельных сопротивлений.Это доказывает общий результат для резисторов, включенных последовательно.

Резисторы последовательно

Эффективное сопротивление последовательно включенных резисторов R1,…, RNR_1, \ ldots, R_NR1,…, RN равно

.

Reff = ∑iRi.R_ \ text {eff} = \ sum_i R_i.Reff = i∑ Ri.

Хотя последовательное расположение элементов схемы имеет некоторые привлекательные особенности, такие как равномерный ток, простота установки новых батарей и т. Д., Последовательное расположение элементов схемы имеет серьезные недостатки.Во-первых, введение любых новых устройств уменьшает ток, протекающий по цепи, и, таким образом, снижает выходную мощность каждого отдельного устройства. Если несколько устройств подключены последовательно, например, духовка, компьютер и лампа для чтения, затемнение лампы для чтения (за счет увеличения ее сопротивления) означает уменьшение тока в духовке и компьютере. Другой заключается в том, что если один элемент в цепи, например, ваш телевизор, сломается, вся цепь также разорвется, потому что разрыв электрического потенциала больше не поддерживается ни на одном устройстве.Это неудобно для создания надежных схем, в которых нам бы хотелось, чтобы отказы устройств не зависели друг от друга.

Некоторые из этих недостатков можно избежать в архитектуре параллельных цепей.

Сделайте простую электрическую схему — Научные проекты

Дизайн эксперимента:

Спланируйте эксперимент для проверки каждой гипотезы. Составьте пошаговый список того, что вы будете делать, чтобы ответить на каждый вопрос. Этот список называется экспериментальной процедурой. Чтобы эксперимент дал ответы, которым можно доверять, в нем должен быть «контроль».«Контроль — это дополнительное экспериментальное испытание или прогон. Это отдельный эксперимент, проводимый точно так же, как и другие. Единственное отличие состоит в том, что экспериментальные переменные не меняются. Элемент управления — это нейтральная «контрольная точка» для сравнения, которая позволяет вам увидеть, что происходит при изменении переменной, сравнивая ее с отсутствием изменений. Надежные средства управления иногда очень сложно разработать. Они могут быть самой сложной частью проекта. Без контроля вы не можете быть уверены, что изменение переменной приведет к вашим наблюдениям.Серия экспериментов, включающая контроль, называется «контролируемым экспериментом».

Пожалуйста, прочтите внимательно!

Во всех экспериментах используется безопасный низковольтный аккумулятор. Бытовой электрический ток содержит высокое напряжение, которое может привести к серьезным травмам. Не используйте бытовой электрический ток ни в одном из этих экспериментов.

Тщательно следуйте инструкциям по подключению для каждого эксперимента — неправильное подключение может привести к утечке и / или разрыву батареи.

Не разбирайте батарею — контакт с материалом внутренней батареи может привести к травме.

Не бросайте батарею в огонь, не перезаряжайте, не вставляйте обратно, не смешивайте с использованными батареями или батареями других типов — это может взорваться, протечь и причинить травму.

Создание простой электрической цепи

В этом эксперименте вы создадите простую электрическую цепь. Обратите внимание, что «простой» действительно означает «легкий» (в данном контексте). Означает электрическую цепь с одной батареей, одной лампой и одним выключателем.

Материалы:

  1. Деревянная доска 12 см x 17 см (5 ″ x 7 ″)
  2. Держатель одноэлементной батареи (MiniScience # MBh2D)
  3. Простой переключатель (MiniScience # KSWITCH)
  4. Миниатюрный патрон лампы (MiniScience # MINIBASE, MINIBASEP, MINIBASEB)
  5. Миниатюрная лампа 1.2 В (MiniScience # E0112)
  6. Маленькие винты
  7. Соединительные провода (рекомендуются сплошные медные провода сечением от 20 до 26)

Рисунок ниже взят из комплекта «Простая электрическая схема» на сайте MiniScience. com.

Построение и моделирование простой схемы — MATLAB и Simulink

  • Чтобы открыть Simscape В основной библиотеке электрических специализированных силовых систем в командной строке MATLAB ® введите:

  • Откройте новую пустую модель, содержащую вашу первую схему и сохраните его как circuit1 .

  • Добавьте блок источника напряжения переменного тока из библиотеки Simscape > Electrical > Specialized Power Systems > Sources library.

  • Установите параметры амплитуды, фазы и частоты блок источника переменного напряжения в соответствии со значениями, указанными в Схема для моделирования.

    Амплитуда синусоидального источника должна быть его пиковым значением. (424.4e3 * sqrt (2) В в данном случае).

  • Измените имя этого блока с AC Voltage Источник к Vs.

  • Добавить блок Parallel RLC Branch из библиотеки Simscape > Electrical > Specialized Power Systems > Passives , установите ее параметры, как показано в Схеме для моделирования, и назовите ее Z_eq.

  • Можно получить сопротивление Rs_eq цепи из блока Parallel RLC Branch.Дублируйте блок Parallel RLC Branch, который уже находится в вашем окне circuit1 . Выберите R для параметра Тип ответвления и установите параметр R в соответствии с Схема для моделирования.

    После закрытия диалогового окна обратите внимание на то, что компоненты L и C имеют исчез, так что значок теперь показывает один резистор.

  • Назовите этот блок Rs_eq.

  • Измените размер различных компонентов и блоков межсоединений, перетаскивание строк с выходов на входы соответствующих блоков.

  • Добавить блок PI Section Line из Simscape > Electrical > Specialized Power Systems > Passives library. Вы добавите автоматический выключатель позже в моделировании переходных процессов.

    Модель линии с равномерно распределенными параметрами R, L и C обычно состоит из задержки, равной времени распространения волны вдоль линия.Эта модель не может быть смоделирована как линейная система, потому что задержка соответствует бесконечному количеству состояний. Однако хорошее приближение линии с конечным числом состояний можно получить каскадированием несколько цепей PI, каждая из которых представляет собой небольшой участок линии.

    Секция PI состоит из последовательного ответвления R-L и двух шунтирующих ответвлений C. В точность модели зависит от количества секций PI, используемых для модели. Копировать блок PI Section Line из Simscape > Electrical > Specialized Power Systems > Пассивная библиотека в схему 1 окна, установите его параметры, как показано в Схеме для моделирования, и укажите один линейный участок.

  • Шунтирующий реактор моделируется последовательно включенным резистором. с индуктором.Вы можете использовать блок Series RLC Branch для смоделировать шунтирующий реактор, но тогда вам придется рассчитать и указать значения R и L вручную в зависимости от добротности и реактивной мощности указано в схеме для моделирования.

    Следовательно, вам может показаться более удобным использовать блок нагрузки Series RLC, который позволяет напрямую указать активную и реактивную мощность, потребляемую шунтирующий реактор.

    Добавить блок нагрузки последовательного RLC из Simscape > Electrical > Specialized Power Systems > Passives library. Назовите этот блок 110 Мвар. Установите его параметры как следует:

    2 9027 9027 9027 9027 9027

    Vn

    424.4e3 V

    fn

    9027 9027 9027

    110e6 / 300 W (добротность = 300 )

    QL

    110e6 vars

    Qc

    9034

    9034 указано, конденсатор гаснет на значок блока, когда диалоговое окно закрыто. Соедините новые блоки как показано.

  • Добавить блок измерения напряжения из Simscape > Electrical > Specialized Power Systems > Sensors and Measurements library. Назовите его U1. Подключите его положительный вход к узлу B1. и его отрицательный вход в новый блок заземления.

  • Для наблюдения за напряжением, измеренным U1, системой отображения необходим.

    Добавьте блок Scope в свой схема1 окно. Если бы объем был подключенный непосредственно к выходу измерения напряжения, он отображать напряжение в вольтах. Однако инженеры-электрики в энергосистемах используются для работы с нормализованными величинами (на единицу системы). В напряжение нормализуется делением значения в вольтах на базовое напряжение соответствует пиковому значению номинального напряжения системы. В этом случае, коэффициент масштабирования K равен

  • Добавьте блок Gain и установите его усиление как указано выше. Подключите его выход к блоку Scope и подключите вывод блока Voltage Measurement на блок Gain. Дублируйте это система измерения напряжения в узле B2, как показано ниже.

  • Добавьте блок powergui из библиотеки Simscape > Electrical > Specialized Power Systems .Назначение этого блока обсуждается в разделе Использование блока Powergui для моделирования моделей специализированных электроэнергетических систем Simscape.

  • Запустите моделирование.

  • Откройте блоки Scope и наблюдайте напряжения в узлах B1 и B2.

  • Во время симуляции откройте блок Vs. диалоговое окно и измените амплитуду. Наблюдайте за эффектом на двух прицелах. Вы также можете изменить частоту и фазу.Вы можете увеличить осциллограммы в окнах осциллографа, нарисовав рамку вокруг области интерес левой кнопкой мыши.

  • Простые электрические схемы Введение

    В основных электрических схемах используются стандартные символы для компонентов в цепи. Понимание электрических цепей в наше время имеет большое значение.

    Поскольку все мы знаем, что современная жизнь в значительной степени зависит от электричества, людям очень важно понимать простые электрические схемы.Простое введение в электрические схемы — хороший помощник для лучшего знакомства с электрическими схемами.

    Вы можете попробовать программу для рисования электрических схем, которая имеет встроенные стандартные электрические символы для быстрого и правильного рисования электрических цепей.

    EdrawMax

    Программное обеспечение для создания диаграмм All-in-One

    Создавайте более 280 типов диаграмм без усилий

    Легко приступайте к построению диаграмм с помощью различных шаблонов и символов

    • Превосходная совместимость с файлами: Импорт и экспорт чертежей в файлы различных форматов, например Visio
    • Поддерживается кроссплатформенность (Windows, Mac, Linux, Интернет)

    Определение электрических цепей

    Электрическая цепь — это замкнутая петля из проводящего материала, которая позволяет электронам непрерывно течь без начала и конца. От источника питания к нагрузке в электрической цепи идет постоянный электрический ток. Люди также говорят, что полный путь, обычно через проводники, такие как провода, и через элементы цепи, называется электрической цепью.

    Электрическая цепь — это электрическое устройство, обеспечивающее путь прохождения электрического тока. После того, как вы получите определение электрической схемы, теперь мы собираемся показать вам три простые электрические схемы.

    Цепь переключателя

    Выключатель — это устройство для включения и отключения соединения в электрической цепи. Мы задействуем выключатели для освещения, вентиляторов, электрического фена и других устройств много раз в день, но мы редко пытаемся увидеть соединение внутри цепи выключателя. Функция переключателя состоит в том, чтобы подключить или замкнуть цепь, идущую к нагрузке от источника питания. Он имеет подвижные контакты, которые обычно разомкнуты.

    С помощью переключателя вы можете включить или выключить устройство, поэтому это очень важный компонент в электрической цепи.

    Цепь освещения постоянного тока

    Как видно из рисунка ниже, в светодиодной лампе используется аккумулятор постоянного тока. Батарея биполярная, одна анодная, а другая катодная. Причем анод положительный, а катод отрицательный. Кроме того, сама лампа имеет два конца, один положительный, а другой — отрицательный. Таким образом, анод батареи подключен к положительной клемме лампы, а катод батареи подключен к отрицательной клемме лампы.

    После выполнения вышеуказанного подключения загорится светодиодная лампа. Хотя это простая электрическая схема, многие люди понятия не имеют, как правильно выполнить подключение.

    Схема термопары

    Если вы хотите создать устройство для измерения температуры или вам нужно добавить возможности измерения в большую систему, вам придется ознакомиться со схемами термопар и понять, как их проектировать.Термопара — это устройство, состоящее из двух разнородных проводников, которые контактируют друг с другом в одном или нескольких местах, и используется для измерения температуры. Как видно из рисунка ниже, термопара состоит из двух проводов — железного и константанового, с вольтметром. Если температура холодного спая поддерживается постоянной, то ЭДС пропорциональна температуре горячего спая.

    Вольтметр будет измерять генерируемую ЭДС, и ее можно откалибровать для измерения температуры.Разница температур между горячим и холодным спаем создает пропорциональную ей ЭДС. Поскольку спаи термопар производят такие низкие напряжения, крайне важно, чтобы соединения проводов были очень чистыми и плотными для точной и надежной работы. Несмотря на эти, казалось бы, ограничительные требования, термопары остаются одним из самых надежных и популярных методов промышленного измерения температуры в современных условиях.

    Другие статьи по теме

    Как читать электрическую схему

    Три основные электрические схемы

    Возможные инженерные решения

    Примеры инженерных схем

    Изучите электрические схемы на четырех примерах

    Простая электрическая цепь — Урок и тест на электричество — Моя школа

    Когда заряженные частицы накапливаются в объекте, это называется статическим электричеством. Другой вид электричества возникает, когда электроны текут в токе. Аккумулятор и провода могут давать ток поток.

    Посмотрите на простую электрическую схему ниже. Это состоит из четырех частей: 1.) аккумулятор, 2.) выключатель, 3.) лампочка,
    4.) провод.

    Аккумулятор выталкивает электроны с отрицательной клеммы (где много электронов), через выключатель, лампочку и провод в положительную клемму (там, где мало электронов). Когда электроны проходят через провод и попадают в лампочку, особый вид Проволока внутри лампы, называемая нитью накала, зажигает лампочку. Иметь Вы когда-нибудь слышали, как лампочка перегорает? Нить имеет прервана и поток электронов прерван.

    Что делать, если вы хотите выключить лампочку? Ты нужно остановить поток электронов. Посмотрите на простую схему. Обратите внимание, что переключатель выключен. Цепь была нарушена. В лампочка не горит. Поток электронов остановился, потому что в цепи есть разрыв, и электроны больше не имеют замкнутого дорожка. Если вы хотите снова включить лампочку, выключатель должен быть замкнут, чтобы замкнуть цепь.

    Провод, используемый в электрических цепях, обычно изготавливается из медь. Медь и серебро — хорошие проводники.Дирижеры переносят электроны очень легко.

    Резина, пластик и стекло — хорошие изоляторы. Изоляторы не позволяют электронам проходить через них. Изоляторы являются плохими проводниками электричества и поэтому используются для покрытия проводов используется в схемах.

    Маршрут: Ответьте на вопросы о электричество. Используйте иллюстрации, чтобы помочь вам.

    1. Минусовая клемма АКБ имеет
    много .

    2. Аккумулятор выталкивает электроны с отрицательной клеммы. через выключатель, лампочку и провод в терминал (где не много электронов).

    3. Провод внутри лампочки называется
    . а .

    4. переносят электроны очень легко.

    5. Что из перечисленного является хорошим дирижером?

    медь проволока
    стекло

    6.не позволяют электронам проходить через них.

    7. Что из перечисленного является хорошим изолятором?

    серебро
    пластик

    Электрическая схема — Простая английская Википедия, бесплатная энциклопедия

    Схема представляет собой замкнутый контур , состоящий из компонентов схемы, по которым могут течь электроны от источника напряжения или тока. Если схема состоит из электрических компонентов, таких как резистор, конденсатор, катушка индуктивности и т. Д.тогда она будет называться электрической схемой , и если схема состоит из каких-либо компонентов электронной схемы, таких как диод, транзистор и т. д., то она будет называться электронной схемой . Таким образом, электронные схемы могут состоять как из электрических компонентов , так и из электронных схем , но электрическая схема будет иметь только электрические компоненты.

    Точка, где электроны входят в электрическую цепь, называется «источником» электронов.Точка, в которой электроны покидают электрическую цепь, называется «возвратной» или «землей». Точка выхода называется «возвращением», потому что электроны всегда попадают в источник, когда они завершают свой путь в электрической цепи.

    Часть электрической цепи, которая находится между начальной точкой электронов и точкой, где они возвращаются к источнику, называется «нагрузкой» электрической цепи. Нагрузка электрической цепи может быть такой же простой, как нагрузка на бытовые приборы, такие как холодильники, телевизоры или лампы, или более сложной, такой как нагрузка на выходе гидроэлектростанции.

    В цепях используется два вида электроэнергии: переменный ток (AC) и постоянный ток (DC). Переменный ток часто питает большие приборы и двигатели и вырабатывается электростанциями. Постоянный ток питает автомобили, работающие от батарей, а также другие машины и электронику. Преобразователи могут преобразовывать переменный ток в постоянный и наоборот. Для передачи постоянного тока высокого напряжения используются большие преобразователи.

    Экспериментальная электронная схема

    В электронных схемах обычно используются источники постоянного тока. Нагрузка электронной схемы может быть такой же простой, как несколько резисторов, конденсаторов и лампы, соединенных вместе, чтобы создать вспышку в камере.Или электронная схема может быть сложной, соединяя тысячи резисторов, конденсаторов и транзисторов. Это может быть интегральная схема, такая как микропроцессор в компьютере.

    Резисторы и другие элементы схемы можно подключать последовательно или параллельно. Сопротивление в последовательных цепях — это сумма сопротивлений.

    Цепь или электрическая схема — это визуальное отображение электрической цепи. Электрические и электронные схемы могут быть сложными. Чертеж соединений всех компонентов в нагрузке схемы упрощает понимание того, как соединяются компоненты схемы.Чертежи электронных схем называются «принципиальными схемами». Чертежи электрических цепей называются «электрическими схемами». Как и другие схемы, эти схемы обычно рисуют чертежники, а затем распечатывают. Диаграммы также могут быть созданы в цифровом виде с использованием специализированного программного обеспечения.

    Схема — это схема электрической цепи. Схемы — это графические изображения основных соединений в цепи, но они не являются реалистичными изображениями цепи. На схемах используются символы для обозначения компонентов в цепи.Условные обозначения используются в схеме, чтобы обозначить, как течет электричество. Мы используем обычное соглашение: от положительной клеммы к отрицательной. Реальный путь перетока электроэнергии — от отрицательной клеммы к положительной.

    На принципиальных схемах используются специальные символы. Символы на чертежах показывают, как соединяются между собой такие компоненты, как резисторы, конденсаторы, изоляторы, двигатели, розетки, фонари, переключатели и другие электрические и электронные компоненты. Диаграммы очень помогают, когда рабочие пытаются выяснить, почему схема работает некорректно.

    Ток, протекающий в электрической или электронной цепи, может внезапно возрасти при выходе из строя какого-либо компонента. Это может вызвать серьезное повреждение других компонентов цепи или создать опасность возгорания. Для защиты от этого в цепь можно подключить предохранитель или устройство, называемое «автоматический выключатель». Автоматический выключатель размыкает или «разрывает» цепь, когда ток в этой цепи становится слишком высоким, или предохранитель «перегорает». Это дает защиту.

    Прерывание от замыкания на землю (G.F.I.) устройства [изменить | изменить источник]

    Стандартный возврат для электрических и электронных цепей — заземление. Когда электрическое или электронное устройство выходит из строя, оно может размыкать обратную цепь на землю. Пользователь устройства может стать частью электрической цепи устройства, обеспечив обратный путь для электронов через тело пользователя вместо заземления цепи. Когда наше тело становится частью электрической цепи, пользователь может быть серьезно шокирован или даже убит электрическим током.

    Чтобы предотвратить опасность поражения электрическим током и возможность поражения электрическим током, устройства прерывания замыкания на землю обнаруживают обрыв цепи на землю в подключенных электрических или электронных устройствах. При обнаружении обрыва цепи заземления G.F.I. устройство немедленно открывает источник напряжения для устройства. G.F.I. устройства похожи на автоматические выключатели, но предназначены для защиты людей, а не компонентов цепей.

    Короткие замыкания — это цепи, которые возвращаются к источнику питания неиспользованным или с той же мощностью, что и на выходе.Обычно они перегорают, но иногда этого не происходит. Это может привести к возгоранию электрического тока.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    2024 © Все права защищены.