Схема последовательная: последовательная схема — это… Что такое последовательная схема?

Содержание

последовательная схема — это… Что такое последовательная схема?

последовательная схема
sequential circuit

Большой англо-русский и русско-английский словарь. 2001.

  • последовательная сумма
  • последовательная схема запуска

Смотреть что такое «последовательная схема» в других словарях:

  • последовательная схема — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN sequential circuit …   Справочник технического переводчика

  • последовательная схема соединения полупроводниковых преобразователей — Схема соединения, в которой два или более полупроводниковых преобразователя соединены таким образом, что их постоянные напряжения складываются. [ГОСТ 23414 84] Тематики преобразователь электроэнергии …   Справочник технического переводчика

  • последовательная схема горячего водоснабжения — (с использованием аккумулирующей способности здания для выравнивания суточного графика тепловой нагрузки) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN series circuit of the hot water system …   Справочник технического переводчика

  • параллельно-последовательная схема — lygiagrečiai nuosekli grandinė statusas T sritis radioelektronika atitikmenys: angl. parallel series circuit vok. Parallelreihenschaltung, f rus. параллельно последовательная схема, f; параллельно последовательная цепь, f pranc. circuit parallèle …   Radioelektronikos terminų žodynas

  • КОНТАКТНАЯ СХЕМА — специальная управляющая система, одна нз математических моделей реальных устройств, построенных из контактов реле. К. с. модельный класс управляющих систем, и для него рассматриваются все те же задачи, что и для прочих классов управляющих систем; …   Математическая энциклопедия

  • параллельно-последовательная цепь — lygiagrečiai nuosekli grandinė statusas T sritis radioelektronika atitikmenys: angl. parallel series circuit vok. Parallelreihenschaltung, f rus. параллельно последовательная схема, f; параллельно последовательная цепь, f pranc. circuit parallèle …   Radioelektronikos terminų žodynas

  • параллельно-последовательная цепь — Схема с параллельным и последовательным соединением (элементов). [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN parallel… …   Справочник технического переводчика

  • эквивалентная схема варикапа и туннельного диода — Сп параллельная емкость; gпер отрицательная проводимость; rп сопротивление потерь; Lg последовательная индуктивность; Cпер емкость перехода. Черт.7 [ГОСТ 25529 82] Тематики полупроводниковые приборы …   Справочник технического переводчика

  • Криптографическая хеш-функция — Криптографической хеш функцией называется всякая хеш функция, являющаяся криптостойкой, то есть, удовлетворяющая ряду требований специфичных для криптографических приложений. Содержание 1 Требования 2 Принципы построения …   Википедия

  • Ствол шахтный —         (a. mine shaft; н. Schacht; ф. puits de mine; и. pozo) капитальная вертикальная или наклонная горн. выработка, имеющая выход на земную поверхность и предназначенная для вскрытия м ний и обслуживания подземных работ. Pазличают главные и… …   Геологическая энциклопедия

  • Parallelreihenschaltung — lygiagrečiai nuosekli grandinė statusas T sritis radioelektronika atitikmenys: angl. parallel series circuit vok. Parallelreihenschaltung, f rus. параллельно последовательная схема, f; параллельно последовательная цепь, f pranc. circuit parallèle …   Radioelektronikos terminų žodynas


Цифровые последовательные цепи — CoderLessons.com

Мы обсуждали различные комбинационные схемы в предыдущих главах. Все эти схемы имеют набор выходов, который зависит только от комбинации имеющихся входов. На следующем рисунке показана блок-схема последовательной цепи.

Эта последовательная схема содержит набор входов и выходов. Выход (ы) последовательной цепи зависит не только от комбинации имеющихся входов, но также и от предыдущих выходов. Предыдущий вывод — не что иное, как настоящее состояние . Следовательно, последовательные схемы содержат комбинационные схемы наряду с элементами памяти (хранения). Некоторые последовательные схемы могут содержать не комбинационные схемы, а только элементы памяти.

Следующая таблица показывает различия между комбинационными цепями и последовательными цепями.

Комбинационные схемы Последовательные цепи
Выходы зависят только от текущих входов. Выходы зависят как от текущих входов, так и от текущего состояния.
Путь обратной связи отсутствует. Путь обратной связи присутствует.
Элементы памяти не требуются. Элементы памяти обязательны.
Тактовый сигнал не требуется. Требуется тактовый сигнал.
Легко оформить. Сложно оформить.

Типы последовательных цепей

Ниже приведены два типа последовательных цепей —

  • Асинхронные последовательные цепи
  • Синхронные последовательные цепи

Асинхронные последовательные цепи

Если некоторые или все выходы последовательной цепи не изменяются (не влияют) относительно активного перехода тактового сигнала, то эта последовательная схема называется асинхронной последовательной цепью . Это означает, что все выходы асинхронных последовательных цепей не изменяются (влияют) одновременно. Следовательно, большинство выходов асинхронных последовательных цепей не синхронизированы ни только с положительными фронтами, либо только с отрицательными фронтами тактового сигнала.

Синхронные последовательные цепи

Если все выходы последовательной цепи изменяются (влияют) относительно активного перехода тактового сигнала, то эта последовательная цепь называется

синхронной последовательной цепью . Это означает, что все выходы синхронных последовательных цепей изменяются (влияют) одновременно. Следовательно, выходы синхронных последовательных цепей синхронизированы либо только с положительными фронтами, либо только с отрицательными фронтами тактового сигнала.

Сигнал и запуск часов

В этом разделе давайте обсудим тактовый сигнал и типы запуска по одному.

Тактовый сигнал

Сигнал часов является периодическим сигналом, и время его включения и время выключения не обязательно должны совпадать. Мы можем представить сигнал часов в виде

прямоугольной волны , когда время включения и выключения совпадают. Этот тактовый сигнал показан на следующем рисунке.

На приведенном выше рисунке прямоугольная волна считается тактовым сигналом. Этот сигнал остается на логическом высоком уровне (5 В) в течение некоторого времени и остается на логическом низком уровне (0 В) в течение равного промежутка времени. Этот шаблон повторяется с некоторым периодом времени. В этом случае период времени будет равен либо двукратному времени включения, либо двукратному времени выключения.

Мы можем представить сигнал часов как последовательность импульсов , когда время включения и время выключения не совпадают. Этот тактовый сигнал показан на следующем рисунке.

На приведенном выше рисунке последовательность импульсов рассматривается как тактовый сигнал. Этот сигнал остается на логическом высоком уровне (5 В) в течение некоторого времени и остается на логическом низком уровне (0 В) в течение некоторого другого времени. Этот шаблон повторяется с некоторым периодом времени. В этом случае период времени будет равен сумме времени включения и времени выключения.

Обратная величина периода времени тактового сигнала известна как частота тактового сигнала. Все последовательные цепи работают с тактовым сигналом. Таким образом, частота, на которой могут работать последовательные схемы в соответствии с частотой тактового сигнала, должна быть выбрана.

Типы запуска

Ниже приведены два возможных типа запуска, которые используются в последовательных цепях.

  • Уровень запуска
  • Краевой запуск

Уровень запуска

Существует два уровня: высокий логический уровень и низкий логический тактовый сигнал. Ниже приведены два типа запуска уровня .

  • Положительный уровень срабатывания
  • Отрицательный уровень срабатывания

Если последовательная цепь работает с тактовым сигналом, когда он находится на высоком логическом уровне , то этот тип запуска известен как запуск по положительному уровню . Это выделено на рисунке ниже.

Если последовательная цепь работает с тактовым сигналом, когда он находится на низком логическом уровне , то этот тип запуска известен как запуск по отрицательному уровню . Это выделено на следующем рисунке.

Краевой запуск

Есть два типа переходов, которые происходят в тактовом сигнале. Это означает, что тактовый сигнал переходит либо из низкого логического уровня в высокий логический уровень, либо из высокого логического уровня в низкий логический уровень.

Ниже приведены два типа запуска фронта на основе переходов тактового сигнала.

  • Срабатывание положительного фронта
  • Отрицательный запуск по фронту

Если последовательная цепь работает с тактовым сигналом, который переходит от низкого логического уровня к высокому логическому, то этот тип запуска известен как запуск по положительному фронту . Это также называется срабатыванием нарастающего фронта. Это показано на следующем рисунке.

Если последовательная цепь работает с тактовым сигналом, который переходит от высокого логического уровня к низкому логическому, то этот тип запуска известен как запуск по отрицательному фронту . Это также называется спусковым крючком. Это показано на следующем рисунке.

В следующих главах мы обсудим различные последовательные схемы, основанные на типе запуска, который может использоваться в нем.

Простые последовательные схемы

Добавлено 21 декабря 2020 в 03:59

Сохранить или поделиться

В данной статье мы изложим три принципа, которые необходимо понимать в отношении последовательных цепей:

  1. ток: величина тока в последовательной цепи одинакова для любого компонента в цепи;
  2. сопротивление: общее сопротивление любой последовательной цепи равно сумме отдельных сопротивлений;
  3. напряжение: напряжение питания в последовательной цепи равно сумме отдельных падений напряжения.

Давайте взглянем на несколько примеров последовательных цепей, демонстрирующих эти принципы.

Начнем с последовательной схемы, состоящей из трех резисторов и одной батареи:

Рисунок 1 – Последовательная схема с несколькими резисторами

Первый принцип, который следует понимать в отношении последовательных цепей, заключается в следующем:

Величина тока в последовательной цепи одинакова для любого компонента в цепи.

Это потому, что в последовательной цепи есть только один путь для прохождения тока. Поскольку электрический заряд проходит через проводники, как шарики в трубке, скорость потока (скорость шариков) в любой точке цепи (трубки) в любой конкретный момент времени должна быть одинаковой.

Использование закона Ома в последовательных цепях

По расположению 9-вольтовой батареи мы можем сказать, что ток в этой цепи будет течь по часовой стрелке от точки 1 к точке 2, к 3, к 4 и обратно к 1. Однако у нас есть один источник напряжения и три сопротивления. Как мы можем использовать здесь закон Ома?

Важная оговорка к закону Ома заключается в том, что все величины (напряжение, ток, сопротивление и мощность) должны относиться друг к другу с точки зрения одних и тех же двух точек в цепи. Мы можем увидеть эту концепцию в действии на примере схемы с одним резистором ниже.

Использование закона Ома в простой схеме с одним резистором

В схеме с одной батареей и одним резистором мы можем легко вычислить любой параметр, потому что все они применяются к одним и тем же двум точкам в цепи:

Рисунок 2 – Схема с одним резистором

\[I = \frac{E}{R}\]

\[I = \frac{9 \ вольт}{3 \ кОм} = 3 \ мА\]

Поскольку точки 1 и 2 соединены вместе проводом с незначительным сопротивлением, как и точки 3 и 4, мы можем сказать, что точка 1 электрически является общей с точкой 2, а точка 3 электрически общей с точкой 4. Поскольку мы знаем, что мы иметь электродвижущую силу 9 вольт между точками 1 и 4 (непосредственно на батарее), и поскольку точка 2 является общей для точки 1, а точка 3 – общей для точки 4, мы также должны иметь 9 вольт между точками 2 и 3 (непосредственно на резисторе).

Следовательно, мы можем применить закон Ома (I = E/R) к току через резистор, потому что мы знаем напряжение (E) на резисторе и сопротивление (R) этого резистора. Все параметры (E, I, R) относятся к одним и тем же двум точкам в цепи, к одному и тому же резистору, поэтому мы можем безоговорочно использовать формулу закона Ома.

Использование закона Ома в схемах с несколькими резисторами

В схемах, содержащих более одного резистора, мы должны проявлять осторожность в применении закона Ома. В приведенной ниже схеме с тремя резисторами мы знаем, что у нас есть 9 вольт между точками 1 и 4, что является величиной электродвижущей силы, управляющей током через последовательную комбинацию резисторов R1, R2 и R3. Однако чтобы попытаться найти значение тока, мы не можем взять значение 9 вольт и разделить его на 3 кОм, 10 кОм или 5 кОм, потому что мы не знаем, какое напряжение присутствует на любом из этих резисторов по отдельности.

Рисунок 3 – Последовательная цепь с несколькими резисторами

Значение 9 вольт – это общая величина для всей цепи, тогда как значения 3 кОм, 10 кОм и 5 кОм – это отдельные величины для отдельных резисторов. Если бы мы включили значение для общего напряжения в уравнение закона Ома со значением для отдельного сопротивления, результат точно не будет соответствовать какому-либо параметру в реальной цепи.

Для R1 закон Ома будет связывать величину напряжения на R1 с током через R1 при заданном сопротивлении R1, 3 кОм:

\[I_{R1} = \frac{E_{R1}}{3 \ кОм} \qquad E_{R1} = I_{R1} \times (3 \ кОм)\]

Но, поскольку нам неизвестно напряжение на R1 (только общее напряжение, подаваемое батареей на комбинацию из трех последовательных резисторов), и мы не знаем ток через R1, мы не можем производить никаких вычислений ни по одной из этих формул. То же самое касается R2 и R3: мы можем применять уравнения закона Ома тогда и только тогда, когда все члены представляют свои соответствующие величины между одними и теми же двумя точками в цепи.

Так что мы можем сделать? Нам известно напряжение источника (9 вольт), приложенное к последовательной комбинации резисторов R1, R2 и R3, и мы знаем сопротивление каждого резистора, но поскольку эти величины не находятся в одном контексте, мы не можем использовать закон Ома для определения тока в цепи. Если бы мы только знали, каково общее сопротивление цепи: тогда мы могли бы вычислить общий ток, используя наше значение для общего напряжения (I=E/R).

Объединение нескольких резисторов в эквивалентный общий резистор

Это подводит нас ко второму принципу последовательных цепей:

Общее сопротивление любой последовательной цепи равно сумме отдельных сопротивлений.

Это должно быть интуитивно понятно: чем больше последовательно соединенных резисторов, через которые должен протекать ток, тем труднее току будет протекать.

В примере у нас были последовательно соединены резисторы 3 кОм, 10 кОм и 5 кОм, что дало нам общее сопротивление 18 кОм:

\[R_{общ} = R_1 + R_2 + R_3\]

\[R_{общ} = 3 \ кОм + 10 \ кОм + 5 \ кОм\]

\[R_{общ} = 18 \ кОм\]

По сути, мы вычислили эквивалентное сопротивление R1, R2 и R3 вместе взятых. Зная его, мы могли бы перерисовать схему с одним эквивалентным резистором, представляющим последовательную комбинацию R1, R2 и R3:

Рисунок 4 – Эквивалентное сопротивление трех последовательно включенных резисторов

Расчет тока цепи с использованием закона Ома

Теперь у нас есть вся необходимая информация для расчета тока цепи, потому что у нас есть напряжение между точками 1 и 4 (9 вольт) и сопротивление между точками 1 и 4 (18 кОм):

\[I_{общ} = \frac{E_{общ}}{R_{общ}}\]

\[I_{общ} = \frac{9 \ В}{18 \ кОм} = 500 \ мкА\]

Расчет напряжений на компонентах по закону Ома

Зная, что ток одинаков во всех компонентах последовательной цепи (и мы только что определили ток через батарею), мы можем вернуться к нашей исходной принципиальной схеме и отметить ток через каждый компонент:

Рисунок 5 – Расчет напряжений на компонентах

Теперь, когда мы знаем величину тока, протекающего через каждый резистор, мы можем использовать закон Ома, чтобы определить падение напряжения на каждом из них (применяя закон Ома в его надлежащем контексте):

\[E_{R1} = I_{R1}R_1 \qquad E_{R2} = I_{R2}R_2 \qquad E_{R3} = I_{R3}R_3\]

\[E_{R1} =(500 \ мкА)(3 \ кОм) = 1,5 \ В\]

\[E_{R2} =(500 \ мкА)(10 \ кОм) = 5 \ В\]

\[E_{R3} =(500 \ мкА)(5 \ кОм) = 2,5 \ В\]

Обратите внимание на падения напряжения на каждом резисторе, и как сумма этих падений напряжения (1,5 + 5 + 2,5) равна напряжению батареи (источника питания): 9 вольт.

Это третий принцип последовательной схемы:

Напряжение питания в последовательной цепи равно сумме отдельных падений напряжения.

Анализ простых последовательных схем с помощью «табличного метода» и закона Ома

Метод, который мы только что использовали для анализа этой простой последовательной схемы, можно упростить для лучшего понимания. Используя таблицу для перечисления всех напряжений, токов и сопротивлений в цепи, становится очень легко увидеть, какие из этих величин могут быть правильно связаны в любом уравнении закона Ома:

Рисунок 6 – Табличный метод анализа последовательных цепей

Правило с такой таблицей – применять закон Ома только к значениям в конкретном вертикальном столбце. Например, ER1 только с IR1 и R1; ER2 только с IR2 и R2; и т.д. Анализ начинается с заполнения тех элементов таблицы, которые даны нам с самого начала:

Рисунок 7 – Табличный метод. Шаг 1

Как вы можете видеть из расположения данных, мы не можем применить 9 вольт Eобщ (общее напряжение) к любому из сопротивлений (R1, R2 или R3) в любой формуле закона Ома, потому что они находятся в разных столбцах. Напряжение батареи 9 В не подается напрямую на R1, R2 или R3. Однако мы можем использовать наши «правила» последовательных цепей, чтобы заполнить пустые места в горизонтальной строке. В этом случае мы можем использовать правило последовательных сопротивлений для определения общего сопротивления из суммы отдельных сопротивлений:

Рисунок 8 – Табличный метод. Шаг 2

Теперь, введя значение общего сопротивления в крайний правый столбец («Общее»), мы можем применить закон Ома I=E/R к общему напряжению и общему сопротивлению, чтобы получить общий ток 500 мкА:

Рисунок 9 – Табличный метод. Шаг 3

Затем, зная, что ток одинаков во всех компонентах последовательной цепи (еще одно «правило» последовательной схемы), мы можем заполнить токи для каждого резистора из только что рассчитанного значения тока:

Рисунок 10 – Табличный метод. Шаг 4

Наконец, мы можем использовать закон Ома, чтобы определить падение напряжения на каждом резисторе, по столбцу за раз:

Рисунок 11 – Табличный метод. Шаг 5

Проверка расчетов с помощью компьютерного анализа (SPICE)

Ради интереса, для автоматического анализа этой схемы мы можем использовать компьютер. Это будет хороший способ проверить наши расчеты, а также познакомиться с компьютерным анализом. Во-первых, мы должны описать схему в формате, распознаваемом программным обеспечением.

Программа SPICE, которую мы будем использовать, требует, чтобы все электрически уникальные точки в цепи были пронумерованы, а размещение компонентов понималось по тому, какие из этих пронумерованных точек или «узлов» они разделяют. Для ясности я пронумеровал четыре угла схемы в нашем примере с 1 по 4. Однако SPICE требует, чтобы в схеме где-то был нулевой узел, поэтому я перерисую схему, немного изменив схему нумерации:

Рисунок 12 – Нумерация узлов схемы для SPICE

Все, что я здесь сделал, – это изменил номер нижнего левого угла схемы на 0 вместо 4. Теперь я могу ввести несколько строк текста в файл, описывающий схему в терминах, понятных SPICE, в комплекте с парой дополнительные строки кода, предписывающих программе отображать данные о напряжении и токе. Этот файл в терминологии SPICE известен как список соединений (netlist):

series circuit
v1 1 0
r1 1 2 3k
r2 2 3 10k
r3 3 0 5k
.dc v1 9 9 1
.print dc v(1,2) v(2,3) v(3,0)
.end

Теперь всё, что мне нужно сделать, это запустить программу SPICE для обработки списка соединений и вывода результатов:

Результаты моделирования в SPICE
v1v(1,2)v(2,3)v(3)i(v1)
9.000E+001.500E+005.000E+002.500E+00-5.000E-04

Эта распечатка говорит нам, что напряжение батареи составляет 9 вольт, а падение напряжения на R1, R2 и R3 составляет 1,5, 5 и 2,5 вольт соответственно. Падения напряжения на любом компоненте в SPICE обозначаются номерами узлов, между которыми находится компонент, поэтому v(1,2) относится к напряжению между узлами 1 и 2 в цепи, которые являются точками, между которыми расположен R1.

Порядок номеров узлов важен: когда SPICE выводит число для v(1,2), он учитывает полярность так же, как если бы мы держали вольтметр с красным измерительным проводом на узле 1 и черным измерительным проводом на узле. 2. У нас также есть значение, показывающее силу тока (хотя и со знаком минус) на уровне 0,5 мА или 500 мкА. Это значение отображается как отрицательное число в анализе SPICE из-за необычного способа обработки вычислений токов в SPICE. Итак, наш математический анализ был подтвержден компьютером.

Таким образом, последовательная цепь определяется как имеющая только один путь, по которому может течь ток. Из этого определения следуют три правила последовательных цепей: через все компоненты протекает одинаковый ток; общее сопротивление может быть получено путем сложения отдельных сопротивлений; а падения напряжения в сумме дают большее общее напряжение. Все эти правила выводятся из определения последовательной цепи. Если вы полностью понимаете это определение, то правила – не более чем сноски к определению.

Резюме

  • Компоненты в последовательной цепи имеют одинаковый ток: Iобщ = I1 = I2 =. . . = In
  • Общее сопротивление в последовательной цепи равно сумме отдельных сопротивлений: Rобщ = R1 + R2 +. . . + Rn
  • Общее напряжение в последовательной цепи равно сумме отдельных падений напряжения Eобщ = E1 + E2 +. . . + En

Оригинал статьи:

Теги

LTspiceSPICEЗакон ОмаМоделированиеОбучениеПоследовательная цепь

Сохранить или поделиться

Типовые схемы водоснабжения квартиры — последовательная и коллекторная

Правильный монтаж системы подачи воды в жилище обеспечивает возможность нормальной эксплуатации всех устройств, которые подключаются к ней. Корректно работающая схема водоснабжения квартиры должна обеспечивать бесперебойную подачу жидкости из центрального водопровода ко всем устройствам-клиентам.

Напор воды должен быть на должном уровне для обеспечения правильной работы сантехники и бытовых устройств. В наши дни существует три вида монтажа данной системы в жилище. Первый тип называется тройниковым, второй коллекторным, а последний – это средний тип, взявший от каждого предыдущего некоторые особенности. В этой статье мы поговорим об устройстве этих систем, их плюсах и минусах.

Вернуться к содержанию

Последовательная схема водоснабжения квартиры

Подобная схема системы водоснабжения в квартире очень проста, поэтому система представляет собой дешевый вариант подключения водопроводных магистралей. Такую систему использовали при строительстве домов старого жилищного фонда, которые были возведены еще во времена советского союза. Несмотря на то, что она порядком устарела и во многом уступает новым системам, строители и сегодня используют ее в новостройках.

Если действовать по этой схеме, то трубы, по которым осуществляется подача горячей или холодной воды, должны быть монтированы параллельно. Каждое сантехническое или бытовое устройство должно подключаться к водопроводной магистрали с помощью специальных тройников.

Последовательная схема

Поэтому подобную схему называют тройниковой, но она имеет еще и название последовательной. Такая система подразумевает наличие элемента водопровода, от которого расходятся разветвления для подключения потребляющих воду приборов. Диаметр главной трубы должен быть гораздо больше, чем диаметр труб, которые отходят от нее.

Важно знать! Последовательная система является отличным вариантом для разводки труб в обычной типовой квартире, в которой присутствует только один санузел, а также будет использоваться небольшое количество сантехнического оборудования.

Вернуться к содержанию

Преимущества и недостатки последовательной схемы

Подобная схема разводки труб водоснабжения в квартире имеет ряд преимуществ, среди которых:

  • экономия расходных материалов;
  • малые затраты на монтаж магистралей;
  • легкий и быстрый монтаж.

Последовательная схема с водонагревателем и полотенцесушителем

Однако в этой системе есть и существенные минусы, такие как:

  • падение давления при условии подключения большого числа сантехники и бытовых устройств;
  • отсутствие возможности отключения одного из устройств от водоснабжения, поскольку необходимо перекрывать всю водопроводную магистраль еще на входе;
  • сложности обнаружения протечек, поскольку магистраль разбросана по большой площади и имеет очень много элементов;
  • отсутствие нормального доступа к большей части узлов водопроводной магистрали, поскольку они в большинстве случаев скрыты под полом или в стенах;
  • необходимость демонтажа отделки квартиры в случае поломки.

Важно знать! Если трубопровод устанавливался квалифицированным работником, который не обходит вниманием высокое качество используемых расходных материалов и четко следует инструкции по установке магистрали, то вероятность возникновения аварийной ситуации практически нулевая. В подобной системе также не будут возникать значительные перепады давления.

Вернуться к содержанию

Коллекторная схема разводки

Современные жильцы используют все большее количество сантехники и бытовых устройств в жилище, поэтому возникла нужда обеспечения их стабильной и бесперебойной работы. В этом случае используется коллекторная схема водоснабжения квартиры. Этот вариант отличается от предыдущего высокой стоимостью и сложностью монтажа. Зато так можно избежать перепадов давления в водопроводе. Эта особенность позволяет одновременно использовать несколько приборов, потребляющих воду на полную мощность.

Коллекторная схема подключения водоснабжения в квартире предусматривает отдельное подключение каждого устройства напрямую к главной водопроводной магистрали. Наличие отдельных подключений позволяет легко проводить профилактические или ремонтные работы любого подключенного прибора. Так выглядит стандартная схема водоснабжения квартиры с водонагревателем, фильтрами и газовой колонкой:

Коллекторная схема разводки труб

  • главная магистраль подачи холодной воды;
  • вентиль для перекрытия главной трубы;
  • фильтры и редукторы основной магистрали;
  • коллектор-распределитель основной трубы;
  • вентиль, перекрывающий трубу с холодной водой, идущую к водонагревателю;
  • вентиль, блокирующий приток горячей жидкости от нагревателя;
  • главная магистраль подачи горячей жидкости;
  • вентиль для перекрытия основной трубы с горячей жидкостью;
  • фильтры и редукторы главной магистрали подачи горячей жидкости;
  • коллектор-распределитель главной магистрали подачи горячей жидкости;
  • краны, блокирующие приток горячей жидкости к полотенцесушителю;
  • прочие бытовые устройства.

Подобная схема подключения водоснабжения в квартире предусматривает коллекторный вид разводки магистралей, любое устройство, потребляющее воду, подключается при помощи отдельной трубы к основным магистралям подачи горячей и холодной воды. Также отсутствует большое количество разветвлений, а также соединительных узлов в водопроводе, что значительно снижает риск поломок. Соединений только два и они полностью доступны для профилактических или ремонтных работ.

Перейдя по ссылке http://vse-postroim-sami.ru/engineering-systems/water-supply/2455_kakie-truby-luchshe-dlya-vodoprovoda/, вы узнаете, какие трубы лучше выбрать для водопровода. Про особенности установки и подключения стиральной машины читайте здесь. Рекомендуем также прочесть статью о выборе электрического полотенцесушителя для ванной.

Вернуться к содержанию

Преимущества коллекторной системы водоснабжения

Малое число соединений делает систему более надежной.

Можно регулировать интенсивность подачи воды или полностью отключить ее для каждого отдельного бытового устройства при помощи шарового крана, который монтируется в подводящей магистрали на выходе из распределителя.

Коллекторная схема водоснабжения современной квартиры

Простая профилактика и ремонт данной системы.

Учет ряда нюансов для каждого прибора, подключенного к системе, при обустройстве его защиты. Это наличие редукторов и фильтров, обеспечивающих нормальную подачу воды должного качества при оптимальном давлении к каждому подключенному устройству.

Монтаж магистралей не повредит интерьеру квартиры, поскольку все подключения скрыты.
Во время разработки проекта водоснабжения жилого помещения, следует заранее определиться с тем, какую схему использовать. Она должна соответствовать условиям использования устройств, потребляющих воду, в данном помещении.

Расчет и планировка устройства водопроводных магистралей – это дело для высококвалифицированного специалиста. Правильная установка системы также имеет огромное значение. Ее необходимо проводить в строгом соответствии с проектными документами и актуальными строительными нормативами.

Вернуться к содержанию

Видео