Реверсивная схема магнитного пускателя: Page not found — bouw.ru

Содержание

отличия от обычного, схема устройства, принцип действия

Электромагнитный пускатель являет собой низковольтное комбинированное электромеханическое приспособление, специализированное для запуска трёхфазных электродвигателей, для обеспечения их постоянной работы, для отключения питания, а в некоторых случаях и для охраны цепей электродвигателя и иных подключённых цепей. Определённые двигатели обладают функцией реверса мотора.

По сущности, электромагнитный пускатель — это улучшенный, изменённый контактор. Но более компактный, нежели контактор в обычном понятии: легче по весу и рассчитан непосредственно для работы с двигателями. Определённые модификации магнитных пускателей опционально оборудованы тепловым микрореле аварийного отключения и защитой от обрывания фазы.

Для управления запуском мотора путём замыкания контактов устройства предназначается клавиша или слаботочная группа контактов:

  • с катушкой на определённое напряжение;
  • в некоторых случаях — и то и другое.

В пускателе за коммутирование силовых контактных отвечает непосредственно катушка в металлическом сердечнике, к которой прижимается якорь, давящий на контакты и замыкающий цепь. При выключении питания катушки возвратная пружинка перемещает якорь в противоположное положение — цепь размыкается. Каждый контакт находится в дугогасительной специальной камере.

Реверсивные и нереверсивные пускатели

Устройства бывают различных видов и выполняют все поставленные задачи.

Пускатели бывают двух типов:

  • нереверсивные;
  • реверсионные.

В реверсивном пускателе в одном корпусе существуют два единичных магнитных устройства, имеющих электрическое подсоединение между собой и прикреплённых в совокупном основании, но функционировать может только один из данных пускателей — или только первый, или только второй.

Реверсивный прибор вводится через естественно-закрытые блокировочные контакты, роль которых — устранить синхронное включение двух групп контактов — реверсивной и нереверсивной, для того чтобы не случилось межфазного замыкания. Определённые модификации реверсивных пускателей для предоставления этой же функции имеют защиту. Фазы питания возможно переключать по очереди для того, чтобы выполнялась главная функция реверсивного пускателя — перемена направления вращения электродвигателя. Изменился порядок чередования фаз — поменялось и направление ротора.

Возможности пускателей

Для лимитирования пускового тока трёхфазного двигателя его обмотки могут связываться «звездой», затем, если мотор вышел на номинальные обороты, перейти в «треугольник». При этом магнитные пускатели могут быть: раскрытыми и в корпусе, реверсивными и нереверсивными, с защитой от перегрузок и без защиты от нагрузки.

Каждый электромагнитный пускатель имеет блокировочные и силовые контакты. Силовые коммутируют нагрузки.

Блокировочные контакты нужны для управления работой контактов. Блокировочные и силовые контакты бывают естественно-незамкнутыми либо нормально-закрытыми. В принципиальных схемах контакты изображают в их нормальном состоянии.

Удобство использования реверсивных пускателей невозможно пересмотреть. Это и эксплуатационное управление трёхфазными асинхронными моторами разных станков и насосов, и управление системой вентиляции, арматурой, вплоть до замков и вентилей отопительной системы. Особенно примечательна вероятность удалённого управления пускателями, если электрический источник дистанционного управления коммутирует катушки пускателей аналогично реле, а последние безопасно связывают силовые цепи.

Конструкция реверсивного магнитного двигателя

Распространение этих модификаций становится все обширнее с каждым годом, так как они помогают управлять асинхронным двигателем на дистанции. Это приспособление даёт возможность как включать, так и отключать мотор.

Корпус реверсивного пускателя состоит из таких следующих частей:

  1. Контактор.
  2. Тепловое микрореле.
  3. Кожух.
  4. Инструменты управления.

После того как поступила команда «Пуск», цепь замыкается. Далее ток начинает передаваться на катушку. В это же время действует механическое блокирующее приспособление, которое не дает запуститься ненужным контактам. Здесь нужно отметить, что механическая блокировка также закрывает и контакты клавиши, это дает возможность не удерживать её надавленной постоянно, а спокойно освободить. Еще одна важная часть состоит в том, что вторая клавиша этого устройства совместно с пуском всего аппарата будет размыкать электрическую цепь. Благодаря этому даже надавливание не дает практически никакого результата, формируя дополнительную безопасность.

Особенности функционирования модели

При нажатии клавиши «Вперед» действует катушка, и вводятся контакты. Вместе с этим выполняется операция пусковой клавиши постоянно разомкнутыми контактами устройства КМ 1.3, благодаря чему при непосредственном отпускании клавиши питание на катушку действует по шунтированию.

После введения первого пускателя размыкаются именно контакты КМ 1.2, что отключает катушку К2. В итоге при непосредственном нажатии в клавишу «Назад» ничего не происходит. Для того чтобы ввести мотор в обратную сторону необходимо надавить «Стоп» и обесточить К1. Все блокировочные контакты возвратиться могут в противоположное состояние, после этого возможно ввести мотор в противоположном направлении.

Аналогично при этом вводится К2 и отключается блок с контактами. Происходит включение катушки 2 пускателя К1. К2 содержит силовые контакты КМ2, а К1- КМ1. К кнопкам для подсоединения от пускателя следует провести пятижильный провод.

Правила подключения

В любой установке, в которой требуется пуск электродвигателя в прямом и в противоположном направлении, непременно существует электромагнитный прибор реверсивной схемы. Подсоединение подобного элемента не считается столь непростой задачей, как может показаться на первый взгляд.

К тому же нужность подобных задач возникает довольно часто. К примеру, в сверловочных станках, отрезных конструкциях либо же лифтах, если это не касается домашнего применения.

Принципиальным различием трехфазной схемы от одинарной считается наличие дополнительной цепочки управления и несколько модифицированной энергосиловой части. Кроме того, для реализации переключения подобная установка оборудована клавишей. Подобная система, как правило, защищена от замыкания. Для этого перед самими катушками в цепи предусмотрено присутствие двух нормально-замкнутых силовых контактов (КМ1.2 и КМ2.2), помещённых в позиции (КМ1 и КМ2).

Реверсивное подключение трехфазного двигателя

При работе выключателя QF1, одновременно все без исключения три фазы прилегают к контактам пускателя (КМ1 и КМ2) и находятся в таком состоянии. При этом первая стадия, представляющая собой питание для цепочки управления, протекая через аппарат защиты схемы управления SF1 и клавишу выключения SB1, непосредственно подаёт напряжение в контакты под третьим номером, который относится к SB2, SB3. При этом существующий контакт 13НО приобретает значение основного дежурного. Подобным способом система считается целиком готовой к работе.

Переключение системы при противоположном вращении

Задействовав клавишу SB2, направляем напряжение первой фазы в катушку, что относится к пускателю КМ1. Уже после этого совершается введение нормально-разомкнутых контактов и выключение нормально-замкнутых. Подобным образом, замыкая имеющийся контакт КМ1, совершается эффект самозахвата магнитного устройства. При этом все без исключения три фазы поступают в нужной обмотке двигателя, который, в свою очередь, начинает формировать вращательное перемещение.

Созданная модель предусматривает наличие одного рабочего приспособления. К примеру, может функционировать только лишь КМ1 либо же, напротив, КМ2. Отмеченная цепь обладает действительными элементами.

Изменение поворотного движения

Теперь для придания противоположного направления перемещения вам следует поменять состояние силовых фаз, что удобно совершить при помощи переключателя КМ2. Все совершается благодаря размыканию первой фазы. При этом все без исключения контакты вернутся в исходное состояние, обесточив обмотку мотора. Эта фаза считается ждущим режимом.

Задействование клавиши SB3 приводит в работу электромагнитный пускатель КМ2, который в свою очередь изменяет положение второй и третьей фазы. Это влияние вынуждает мотор вращаться в противоположном направлении. Теперь КМ2 будет ведущим, и пока не случится его разъединение, КМ1 будет не задействован.

Защита цепей от короткого замыкания

Как уже было заявлено прежде, прежде чем осуществить процесс перемены фазности, необходимо прекратить вращение мотора. Для этого в системе учтены нормально-замкнутые контакты. Поскольку при их нехватке невнимательность оператора привела бы к межфазному непосредственному замыканию, которое может случиться в обмотке мотора второй и третьей фазы. Предложенная модель считается оптимальной, поскольку допускает работу только лишь одного магнитного пускателя.

Схема подсоединения реверсивного магнитного пускателя считается ядром управления, так как много электрооборудования функционирует на реверсе, и непосредственно этот аппарат меняет направление верчения мотора.

Реверсивные схемы электромагнитных пускателей устанавливают там, где они на самом деле нужны, поскольку существуют подобные устройства, а обратный процесс недопустим и может вызвать серьёзную поломку автоматического характера.

Подключение реверсивного пускателя через кнопочный пост

Использование реверсивной схемы управления даёт возможность запустить электродвигатель как в прямом, так и в обратном направлении, а также остановить его в нужный момент.

По сравнению с технологией подключения пускателя для одинарной схемы, потребуется дополнительная цепь управления и некоторые изменения в силовой части.

Пускатель

Действие самого пускового электромагнита заключается в следующем: если подать на его катушку напряжение, то сердечник (к которому прикреплены пары контактов) втянется внутрь катушки. Это позволит контактам замкнуться. Если напряжение будет снято, то соответственно произойдёт размыкание контактов.

Когда пускатель срабатывает, то все четыре пары его контактов замыкаются при этом коммутируют основной объём нагрузки лишь три пары (1-2, 3-4, 5-7), а четвёртая (блок-контакт) подаёт напряжение в момент опускания кнопки «Пуск».

Кнопочный пост

Стандартный кнопочный пост для реверсивного двигателя подразумевает трёхкнопочную конструкцию: нормально-разомкнутые кнопки «Вперёд» и «Назад» (чёрные) и нормально-замкнутая кнопка «Стоп» (красная). Кнопки поста ничем не различаются — у каждой в наличии по 2 контакта (4 клеммы). Разница в функциональном значении возникает из-за разницы в принципе подключения.

Если взглянуть с «изнанки», то можно увидеть нумерацию клемм для каждой кнопки (1, 2, 3, 4). Изначально пара 1-2 разомкнута, а 3-4 замкнута. Во время нажатия кнопки: 1-2 замыкается, а 3-4 размыкается.

Особенности подключения пускателя

Для тех, кому не принципиально самостоятельное подключение пускателя, возможно приобретение уже объединённого с кнопочным постом экземпляра. Его потребуется только подключить к питанию.

Всем остальным понадобятся некоторые разъяснения.

До того, как приступать к подключению магнитного пускателя потребуется:

  • Обесточить весь фронт работ. Для пущей достоверности проверить возможное наличие напряжения при помощи специальных индикаторов.
  • Уточнить подходящий для выбранной катушки диапазон рабочего напряжения (380 вольт и 220 вольт). В случае, если это 220 В, требуется подать на катушку фазу и ноль. При 380 В — должны быть разноимённые фазы. Если это не учитывать, то разность напряжений выведет прибор из строя.

В большинстве случаев магнитный пускатель и двигатель соединяются через тепловое реле. Этот необходимо для обеспечения безопасного поступления тока к устройству, а также даёт возможность не прекращать рабочий процесс, даже если одна из фаз перегорела.

Чтобы вращение электродвигателя изменило направление, две из трёх используемых фаз должны быть поменяны местами (например, вместо ABC — CBA). Обеспечить такую смену фаз помогает дополнительный пускатель. Проблема в том, что одновременное выключение двух приборов может вызвать короткое замыкание. Эта ситуация благополучно избегается благодаря постоянно-замкнутым контактам. Они обеспечивают разрыв одной цепи или просто блокируют её. Есть вариант и с механической блокировкой второго пускателя.

Процесс подключения

К прибору подключаются три разноимённого характера фазы (A, B, C). После этого они перенаправляются к силовым контактам пускателей КМ1 (A1, B1, C1) и КМ2 (A2, B2, C2).

Между центральными фазами B1-B2, а также между A1-C2 и C1-A2 делаются перемычки. К электродвигателю фазы, как уже говорилось ранее, проводятся через тепловое реле, которое по сути отвечает за контроль всего лишь двух фаз, поскольку они взаимозависимы. Если сила тока в одной увеличится, то и в другой происходит то же самое. В критической ситуации будут разомкнуты обе катушки.

Нужно учитывать, что центральная фаза (та, которая не меняет своего положения при смене направления работы двигателя) отвечает за питание всей цепи и проходит через защитный автомат, схему управления и кнопку «Стоп».

Лишь после этого подаётся нужная сила напряжения для контактной группы (кнопки «Вперёд» и «Назад»).  Кроме этого существует «дежурный» контакт, он дублирует контактную группу.

Кнопка » Вперёд» имеет параллельное соединение с нормально-разомкнутым вспомогательным контактом пускателя КМ1. Аналогично, кнопка «Назад» соединяется с нормально-разомкнутым вспомогательным контактом КМ2.

Чтобы гарантировать рабочую стабильность, цепь питания обмотки пускателя КМ1 включает в себя нормально-замкнутый контакт пускателя КМ2, и наоборот. В результате запуск двигателя по любому направлению возможен только после полной остановки.

Принцип действия

Как только к трёхкнопочному выключателю подведён источник питания — устройство готово к работе.

При нажатии кнопки «Вперёд»: происходит замыкание цепи питания обмотки у КМ1, сердцевина катушки погружается, что вызывает замыкание силовых контактов. Одновременно с этим цепь управления КМ2 размыкается, благодаря включённому в неё вспомогательному контакту КМ1. Когда кнопка отпускается, питание продолжает подаваться по замкнутому вспомогательному контакту КМ1.

При нажатии кнопки «Назад» картина аналогичная, а если воспользоваться кнопкой «Стоп», то сердцевина КМ1 благодаря действию пружины вернётся в исходное положение, и работа прекратится.

Похожее

Схемы Подключения Пускателей С Реверсом

Созданная модель предусматривает наличие одного рабочего приспособления.


Напряжение достигает цели, цифра 5, катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.

Придется подобрать оптимальное электрическое сопротивление для сохранения работоспособности привода якоря. Для управления же пуском двигателя, путем замыкания контактных групп пускателя, служит кнопка или слаботочная контактная группа с катушкой на определенное 12, 24, 36 или вольт напряжение, а иногда — и то и другое.
Как подключить магнитный пускатель, реверсивная схема

Схемы включения магнитных пускателей

Оба эти контакта находятся в верхней части корпуса смотрите фото. Это возможность разгружать маломощные электрические сети, где установлены обычные автоматические выключатели автоматы. Контакторы имеют мощные дугогасительные камеры.

А также применяются дополнительно блокировки: электрическая и механическая, для того что бы избежать возникновения короткого замыкания или аварийной ситуации при одновременном включении двух пускателей. Произойдет реверсирование электродвигателя.

На малые токи — до 10 А — выпускают исключительно пускатели. Принцип работы реверсивных магнитных пускателей такой же как и не реверсивных.

Также обратите внимание, что провод от кнопки включения вправо или влево подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя.

И поскольку контакторы запускаются лишь поочередно, то и фазы питания можно переключать поочередно, чтобы выполнялась главная функция реверсивного пускателя — изменение направления вращения электродвигателя. Определённые модификации магнитных пускателей опционально оборудованы тепловым микрореле аварийного отключения и защитой от обрывания фазы.

Кроме того, есть некоторое отличие в назначении. По схеме понятно, что если включатся два пускателя одновременно, то произойдет короткое замыкание.

Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до В постоянного тока и до В переменного.
Схемы управления магнитным пускателем

Исходное положение элементов

Для этого перед самими катушками в цепи предусмотрено присутствие двух нормально-замкнутых силовых контактов КМ1.

Управление реверсивным пуском.

Но у двигателя, мы знаем, пусковой ток намного больше рабочего, а значит обычный бытовой автомат с током в 3А будет срабатывать сразу при пуске такого двигателя.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Двигатель останавливается. В первую очередь они отличаются степенью защиты.

Давайте рассмотрим принцип ее работы. Пишите в комментариях! Подгорел контакт. Реверсивные и нереверсивные пускатели Устройства бывают различных видов и выполняют все поставленные задачи.

При этом сердечник под действием пружин возвращается в нормальное состояние, электродвигатель отключается. Каждый контакт расположен в дугогасительной камере.

Устройство и принцип работы Чтобы лучше понимать схемы подключения магнитного пускателя, необходимо разобраться в его устройстве и принципе работы. При превышении допустимого тока нагрузки нихром нагревает пластину, и та, изгибаясь, воздействует на рычажок, отключающий встроенный в тепловое реле контакт. Задействование клавиши SB3 приводит в работу электромагнитный пускатель КМ2, который в свою очередь изменяет положение второй и третьей фазы. В этом случае схема выглядит как на рисунке ниже. Некоторые модели реверсивных пускателей для обеспечения этой же функции имеют механическую защиту.

Электродвигатель подключается к цепи по следующей цепочке: автоматический трехфазный выключатель; силовые клеммы пускателя КМ ; тепловое реле ТР. Чтобы произвести их подключение, нужно правильно соединить группы вспомогательных контактов. Например если катушка магнитного пускателя на вольт — один ее вывод подключается к нейтрале, а другой, через кнопки, к одной из фаз.
схема подключения двигателя по реверсивной схеме.

Устройство магнитного пускателя

Тоже ничего сложного.

Реверсивная схема По сути, данная схема в независимости от величины пускателя работает аналогично предыдущей. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами.

Схема подключения реверсивного магнитного пускателя является ядром управления, так как много электрооборудования работает на реверсе , и именно этот аппарат изменяет направление вращения двигателя. Сравнение магнитного и гибридного пускателя: Post navigation Реверсивная и нереверсивная схема подключения пускателя Магнитный пускатель — это коммутационный прибор, с помощью которого на расстоянии многократно можно включать и отключать потребителя электродвигатели, электрические ТЭНы, электрокотлы и так далее.

Например приставка ПКИ. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до В постоянного тока и до В переменного. При схеме включения приведенной выше следует учесть напряжение номинальное катушки.

Читайте также: Пример сметы на электромонтажные

В схеме реализована защита от короткого замыкания, это контакты КМ1. В прорези нижней части магнитопровода устанавливается катушка.

Существуют также катушки на 12, 24, 36, 42, вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение. Она подходит к магнитному пускателю КМ1, а также при помощи перемычки с тем же номером контакта на КМ2. Обсудить Редактировать статью Если правильно подключить по схеме реверсивный пускатель, то получится запустить любой электродвигатель и заставить вращаться его не только вперед, но и назад.

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен. Подключение пускателя с катушкой В к сети Собственно, вариантов подключения контакторов много, опишем несколько.

Подгорел контакт. Магнитный пускатель представляет собой комбинированное низковольтное электромеханическое устройство, предназначенное для пуска трехфазных как правило электродвигателей, для обеспечения их непрерывной работы, для безопасного отключения питания, а иногда и для защиты цепей электродвигателя и других подключенных цепей.
Схема управления двигателем с двух и трех мест

Магнитный пускатель, схемы и особенности подключения

Для осуществления дистанционного включения оборудования используется магнитный пускатель или магнитный контактор. Как подключить магнитный пускатель по простой схеме и как подключить реверсивный пускатель мы и рассмотрим в этой статье.

Магнитный пускатель и магнитный контактор

Отличие между магнитным пускателем и магнитным контактором  в том, какую мощность нагрузки могут коммутировать эти  устройства.

Магнитный пускатель может быть «1»,  «2»,  «3», «4» или «5» величины. Например пускатель второй величины ПМЕ-211 выглядит так:

Названия пускателей расшифровываются следующим образом:

  • Первый знак П — Пускатель;
  • Второй знак М — Магнитный;
  • Третий знак Е, Л, У, А… — это тип или серия пускателя;
  • Четвертый цифровой знак — величина пускателя;
  • Пятый и последующие цифровые знаки — характеристики и разновидности пускателя.

Некоторые характеристики магнитных пускателей можно посмотреть в таблице

Отличия магнитного контактора от пускателя весьма условны. Контактор выполняет ту же роль, что и пускатель. Контактор производит аналогичные подключения, как и пускатель, только электропотребители имеют большую мощность, соответственно и размеры у контактора значительно больше, и контакты у контактора значительно мощней.Магнитный контактор имеет немного другой внешний вид:

Габариты контакторов зависят от его мощности. Контакты коммутирующего прибора необходимо разделять на силовые и управляющие. Пускатели и контакторы необходимо применять когда простые устройства коммутации не могут управлять большими токами. За счёт этого магнитный пускатель может размещаться в силовых шкафах рядом с силовым устройством, которые он подключает, а все его управляющие элементы в виде кнопок и кнопочных постов  на включение могут размещаться в рабочих зонах пользователя.
На схеме пускатель и контактор обозначаются таким схематичным знаком:

где A1-A2 катушка электромагнита пускателя;

L1-T1 L2-T2 L3-T3 силовые контакты, к которым подключается силовое трехфазное напряжение (L1-L2-L3) и нагрузка (T1-T2-T3), в нашем случае электродвигатель;

13-14 контакты, блокирующие пусковую кнопку управления двигателем.

Данные устройства могут иметь катушки электромагнитов на напряжения 12 В, 24 В, 36 В, 127 В, 220 В, 380 В. Когда требуется повышенный уровень безопасности, есть возможность использовать электромагнитный пускатель с катушкой на 12 или 24 В, а напряжение цепи нагрузки может иметь 220 или 380 В.
Важно знать, что подключенные пускатели для подключения трехфазного двигателя способны обеспечить дополнительную безопасность при случайной потере напряжения в сетях. Это связано с тем, что при исчезновении тока в сети, напряжение на катушке пускателя пропадает и силовые контакты размыкаются. А когда напряжение возобновится, то в электрооборудовании будет отсутствовать напряжения до тех пор, покуда кнопку «Пуск» не активируют. Для подключения магнитного пускателя имеется несколько схем.

Стандартная схема коммутации магнитных пускателей

Это схема подключения пускателя требуется для того, чтобы произвести запуск двигателя через пускатель с помощью кнопки «Пуск» и обесточивания этого двигателя кнопкой «Стоп». Это проще понимается, если разделить схему на две части: силовую и цепь управления.
Силовую часть схемы следует запитать трёхфазным напряжением 380 В, имеющим фазы «A», «B», «C». Силовая часть состоит из трёхполюсного автоматического выключателя, силовых контактов магнитного пускателя «1L1-2T1», «3L2-4T2», «5L3-6L3», а также асинхронного трехфазного электродвигателя «M».

 

К управляющей цепи подаётся питание 220 вольт от фазы «A» и к нейтрали. К схеме управляющей цепи относится кнопка «Стоп» «SB1», «Пуск» «SB2», катушка «KM1» и вспомогательный контакт «13HO-14HO», что подключён параллельно контактам кнопки «Пуску». Когда автомат фаз «A», «B», «C», включается, ток проходит к контактам пускателя и остаётся на них. Питающая цепь управления (фаза «А») проходит через кнопку «Стоп» к 3 контакту кнопки «Пуск», и параллельно на вспомогательный контакт пускателя 13HO и остаётся там на контактах.
Если активируется кнопка «Пуск», к катушке приходит напряжение — фаза «А» с пускателя «KM1».  Электромагнит пускателя срабатывает, контакты «1L1-2T1», «3L2-4T2», «5L3-6L3» замыкаются , после чего напряжение 380 вольт подается на двигатель по данной схеме подключения и начинает свою работу электродвигатель. При отпускании кнопки «Пуск» ток питания катушки пускателя течет через контакты 13HO-14HO, электромагнит не отпускает силовые контакты пускателя, двигатель продолжает работать. При нажатии кнопки «Стоп» цепь питания катушки пускателя обесточивается, электромагнит отпускает силовые контакты, напряжение на двигатель не подается, двигатель останавливается.

Как подключить трехфазный двигатель можно дополнительно посмотреть на видео:

Схема коммутации магнитных пускателей через кнопочный пост

Схема для подключения магнитного пускателя к электродвигателю через кнопочный пост, включает в себя непосредственно сам пост с кнопками «Пуск» и «Стоп», а также две пары замкнутых и разомкнутых контактов. Также сюда относится пускатель с катушкой 220 В.

Питание для кнопок берётся с силовых контактовых клемм пускателя, а напряжение доходит к кнопке «Стоп». После этого по перемычке оно проходит сквозь нормально замкнутый контакт на кнопку «Пуск». Когда активирована кнопка «Пуск», нормально разомкнутый контакт будет замкнут. Отключение происходит путём нажатия на кнопку «Стоп», тем самым размыкая ток от катушки и после действия возвратной пружины, пускатель отключится и устройство обесточится. После выполнения вышеуказанных действий электродвигатель будет отключён и готов к последующего пуска с кнопочного поста. В принципе работа схемы аналогична предыдущей схемы. Только в данной схеме нагрузка однофазная.

Реверсивная схема коммутации магнитных пускателей

Схема подключения реверсивного магнитного пускателя применяется тогда, когда требуется обеспечение вращение электродвигателя в обоих направлениях. К примеру, реверсивный пускатель устанавливается на лифт, грузоподъемный кран, сверлильный станок и прочие приборы требующие прямой и обратный ход.

Реверсивный пускатель состоит из двух обыкновенных пускателей собранных по специальной схеме. Выглядит он так:

Схема подключения реверсивного магнитного пускателя отличается от других схем тем, что имеет два совершенно одинаковых пускателя, которые работают попеременно. При подключении первого пускателя двигатель вращается в одну сторону, при подключении второго пускателя, двигатель вращается в противоположную сторону. Если вы внимательно посмотрите на схему, то заметите, что при переменном подключении пускателей, две фазы меняются местами. Это и заставляет трехфазный двигатель вращаться в разные стороны.

 

К имеющемуся в предыдущих схемах пускателю  добавлены второй пускатель «КМ2» и дополнительные цепи управления вторым пускателем.  Цепи управления состоят из кнопки «SB3», магнитного пускателя «КМ2», а также изменённой силовой частью подачи питания к электродвигателю. Кнопки при подключении реверсивного магнитного пускателя имеют названия «Вправо» «Влево», но могут иметь и другие названия, такие, как «Вверх», «Вниз». Чтобы защитить силовые цепи от короткого замыкания, до катушек добавлены два нормально замкнутых контакта «КМ1.2» и «КМ2.2», что взяты от дополнительных контактов на магнитных пускателях КМ1 и КМ2. Они не дают возможности включиться обоим пускателям одновременно. На выше приведенной схеме цепи управления и силовые цепи одного пускателя имеют один цвет, а другого пускателя — другой цвет, что облегчает понимание, как работает схема. Когда включается автоматический выключатель «QF1», фазы «A», «B», «C» идут к верхним силовым контактам пускателей «КМ1» и «КМ2», после чего ожидают там включения. Фаза «А» питает управляющие цепи от защитного автомата, проходит через «SF1» — контакты тепловой защиты и кнопку «Стоп» «SB1», переходит на контакты кнопок «SB2» и «SB3» и остается в ожидании нажатия на одну из этих кнопок. После нажатия пусковой кнопки ток движется через вспомогательный пусковой контакт «КМ1.2» или «КМ2.2» на катушку пускателей «КМ1» или «КМ2». После этого один из реверсивных пускателей сработает. Двигатель начинает вращаться. Что бы запустить двигатель в обратную сторону, надо нажать кнопку стоп (пускатель разомкнет силовые контакты), двигатель обесточится, дождаться остановки двигателя и после этого нажать другую пусковую кнопку. На схеме показано, что подключен пускатель «КМ2». При этом его дополнительные контакты «КМ2.2» разомкнули цепь питания катушки «КМ1», что не даст случайного подключения пускателя «КМ1».

Схема подключения реверса трехфазного двигателя. Магнитные пускатели. Принцип действия и схемы включения.

В каждой установке в которой требуются запуск электродвигателя в прямом и обратном направлении обязательно присутствует магнитный пускатель реверсивной схемы. Подключение такого компонента не является столь сложной задачей как, кажется, на первый взгляд. К тому же востребованность таких задач появляется довольно часто. К примеру, в сверлильных станках, отрезных установках или же лифтах, если это касается не бытового использования.

Принципиальным отличием такой схемы от одинарной является наличие дополнительной цепи управления и немного измененной силовой части. Также для осуществления переключения такая установка оснащена кнопкой (SB3 на рисунке). Такая система, как правило, защищена от короткого замыкания. Для этого перед катушками в силовой цепи предусмотрено наличие двух нормально — замкнутых контакта (КМ1.2 и КМ2.2) производные от контактных приставок, размещенных в позиции магнитных пускателей (КМ1 и КМ2).

Для того, чтобы приведенная схема была читабельной, изображения цепи на ней и силовые контакты имеют различное цветовое оформление. Также для упрощения, здесь не были указаны пары силовых контактов, обычно имеющие цифробуквенные аббревиатуры. Впрочем, с данными вопросами можно ознакомится в статьях, посвященных подключению стандартных магнитных пусковых систем.

Описание этапов включения


При задействовании выключателя QF1, одновременно все три фазы примыкают к силовым контактам пускателя (КМ1 и КМ2) и пребывают в таком положении. При этом первая фаза, представляющая собой запитку для цепи управления, проходя через автомат защиты всей схемы управления SF1 и кнопку выключения SB1 подает напряжение на контактную группу под третьим номером, который относится к кнопкам: SB2, SB3. При этом
существующий у пускателей (КМ1 и КМ2) контакт под аббревиатурой 13НО приобретает значение дежурного. Таким образом система является полностью готовой к работе.

Прекрасная схема, которая наглядно показывает механизм монтажа реальных элементов представлена на фото ниже.

Переключение системы при обратном вращении двигателя

Задействовав кнопку SB2, мы направляем напряжение первой фазы на катушку, которая относится к магнитному пускателю КМ1. После этого происходит задействование нормально -разомкнутых контактов и отключение нормально -замкнутых. Таким образом, замыкая контакт КМ1 происходит эффект самозахвата пускателя. При этом все три фазы поступают на соответствующей обмотке двигателя, который в свою очередь начинает создавать вращательное движение.


Созданная схема предусматривает наличие только одного рабочего пускателя. К примеру, может работать только КМ1 или же, наоборот, КМ2. На приведенном рисунке, вы можете увидеть схему, при которой двигатель работает в нормальном направлении. Указанная цепь обладает реальными элементами.

Изменение вращательного движения

Теперь для придания обратного направления движения, вам необходимо изменить положение силовых фаз, что удобно сделать при помощи переключателя КМ2.

Важно!!! В процессе изменения вектора вращения должна присутствовать функция остановки двигателя перед запуском нового цикла.

Все происходит благодаря размыканию первой фазы. При этом все контакты возвращаются в исходно положение обесточив обмотку двигателя. Данная фаза является ждущим режимом.


Задействование кнопки SB3 приводит в действие магнитный пускатель с аббревиатурой КМ2, который, в свою очередь, меняет положение второй и третьей фазы. Это действие заставляет двигатель вращаться в обратном направлении. Теперь КМ2 является ведущим и пока не произойдет его размыкание КМ1 будет не задействован.


Силовые цепи

Фотография, представленная ниже наглядно описывает работу силовых цепей. В таком положении двигатель имеет нормальное вращение.

Теперь же мы видим, что произошел переброс фазового напряжения и поскольку вторая и третья фазы изменили положение, двигатель приобрел обратное вращение.

На фотографии, где представлены реальные элементы вы можете увидеть схему подключения, на которой первая фаза отмечена белым цветом, вторая красным и третья голубым цветом.


Как производится защита силовых цепей от короткого замыкания

Как уже было сказано ранее, прежде чем произвести процесс изменения фазности, следует остановить вращение двигателя. Для этого в системе как раз и предусмотрены нормально -замкнутые контакты. Поскольку при их отсутствии, невнимательность оператора рано или поздно привела бы к межфазному замыканию, которое бы произошло в обмотке двигателя второй и третьей фазы. Предложенная схема является оптимальной, поскольку допускает работу только одного магнитного пускателя.

Заключение

Предоставленная информация может с первого взгляда показаться сложной. Однако, предоставленные схемы и фото являются наглядным примером решения подобной задачи. Их изучение гарантировано обеспечит успех создаваемой системы. Нередко в помощь начинающим отличным примером может служить видеокурс.

Поскольку информация, представленная в движении, имеет куда большую наполненность и структурную ценность.

Также не лишним будет ознакомится с информацией, касающейся защиты всей цепи электрического двигателя, что даст возможность к созданию надежных систем.

Магнитный пускатель представляет собой комбинированное низковольтное электромеханическое устройство, предназначенное для пуска трехфазных (как правило) электродвигателей, для обеспечения их непрерывной работы, для безопасного отключения питания, а иногда и для защиты цепей электродвигателя и других подключенных цепей. Некоторые пускатели обладают функцией реверсирования двигателя, однако обо всем по порядку.

По сути, — это усовершенствованный, модифицированный, контактор, он более компактен, чем контактор в обычном представлении, легче по весу, и предназначен именно для работы с двигателями, то есть у пускателя прямое назначение уже, чем у контактора. Некоторые модели магнитных пускателей опционально оснащены тепловым реле аварийного отключения и защитой от обрыва фазы.

Для управления же пуском двигателя, путем замыкания контактных групп пускателя, служит кнопка или слаботочная контактная группа с катушкой на определенное (12, 24, 36 или 380 вольт) напряжение, а иногда — и то и другое.

В магнитном пускателе за коммутацию силовых контактных групп отвечает именно катушка на стальном сердечнике, к которой притягивается якорь, надавливающий на контактную группу, и таким образом замыкающий силовую цепь. При отключении питания катушки, возвратная пружина перемещает якорь в обратное положение — силовая цепь размыкается. Каждый контакт расположен в дугогасительной камере.

Реверсивные и нереверсивные магнитные пускатели

Принципиально магнитные пускатели бывают двух видов: нереверсивные и реверсивные. В реверсивном пускателе в одном корпусе присутствует два отдельных магнитных пускателя, имеющие электрическое соединение между собой, и закрепленные на общем основании, однако работать может, по выбору оператора, только один из двух этих пускателей — либо только первый, либо только второй.

Реверсивный пускатель включается через нормально-замкнутые блокировочные контакты, функция которых — исключить одновременное включение двух групп контактов — реверсивной и нереверсивной, чтобы не произошло межфазного замыкания. Некоторые модели реверсивных пускателей для обеспечения этой же функции имеют механическую защиту. И поскольку контакторы запускаются лишь поочередно, то и фазы питания можно переключать поочередно, чтобы выполнялась главная функция реверсивного пускателя — изменение направления вращения электродвигателя. Сменился порядок чередования фаз — изменилось и направление вращения ротора.

Возможности магнитных пускателей

Вообще, магнитные пускатели способны на многое. Так, для ограничения пускового тока трехфазного электродвигателя, его обмотки сначала могут коммутироваться «звездой», затем, когда двигатель вышел на номинальные обороты — переключиться на «треугольник». При этом пускатели могут быть открытыми и в корпусе, нереверсивными и реверсирными, с защитой от перегрузки и без защиты от перегрузки.

Каждый магнитный пускатель имеет как силовые, так и блокировочные контакты. Силовые непосредственно коммутируют цепь мощной нагрузки, в то время как блокировочные необходимы для управления работой силовых контактов. Силовые и блокировочные контакты бывают нормально-разомкнутыми или норамально-замкнутыми. На принципиальных схемах контакты изображаются в их нормальном состоянии.

Удобство применения реверсивных магнитных пускателей невозможно переоценить. Это и оперативное управление трехфазными асинхронными двигателями различных станков и насосов, это и управление вентиляцией, и даже управление запорной арматурой, вплоть до замков и вентилей отопительных систем. Особенно примечательна возможность удаленного управления магнитными пускателями, когда электронный блок дистанционного управления коммутирует слаботочные катушки пускателей подобно реле, а они, в свою очередь, безопасно коммутируют силовые цепи.

Направление вращения вала электродвигателя иногда требуется изменить. Для этого необходима реверсивная схема подключения. Ее вид зависит от того, какой у вас мотор: постоянного или переменного тока, 220В или 380В. И совсем по-другому устроен реверс трехфазного двигателя, включенного в однофазную сеть.

Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:

Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:


Для подключения дополнительно понадобятся:

  • Магнитный пускатель (или контактор) – КМ2;
  • Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).

Важно! В электрике нормально замкнутый контакт – это состояние кнопочного контакта, у которого есть только два несимметричных состояния. Первое положение (нормальное) – рабочее (замкнуто), а второе – пассивное (разомкнуто). Точно так же формулируется понятие нормально разомкнутого контакта. В первом положении кнопка пассивна, а во втором – активна. Понятно, что такая кнопка будет называться «СТОП», в то время как две другие: «ВПЕРЕД» и «НАЗАД».


Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.

Для запуска двигателя:

  1. Включите автоматы АВ1 и АВ2;
  2. Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
  3. Двигатель работает.

Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.

Переменная сеть: электродвигатель 220 к сети 220

Реверс электродвигателя 220В возможен только в том случае, если выводы обмоток лежат вне корпуса. На рисунке ниже – схема однофазного включения, когда пусковая и рабочая намотки расположены внутри и выводов наружу не имеют. Если это ваш вариант, вы не сможете изменить направление вращения вала.


В любом другом случае для реверсирования однофазного конденсаторного АД необходимо поменять направление рабочей обмотки. Для этого вам понадобятся:

  • Автомат;
  • Кнопочный пост;
  • Контакторы.

Схема однофазного агрегата почти ничем не отличается от той, что представлена для трехфазного асинхронного двигателя. Ранее мы перекидывали фазы: А и В. Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой – вместо нулевого фазный. И наоборот.

В современной промышленности и в сельскохозяйственной сфере самое широкое применение нашли трехфазные асинхронные электрические двигатели. Они используются в различных станках, в качестве электропривода, в транспортерах, подъемных механизмах, и вентиляторах. Такие же двигатели, имеющие небольшую мощность, часто применяются для автоматических устройств.

Особенности асинхронных двигателей

Многие несомненные достоинства сделали трехфазные асинхронные двигатели чрезвычайно популярными. Их отличает высокая надежность, они очень просты в эксплуатации и техническом обслуживании, могут работать в прямом подключении к сетям переменного тока.

Очень часто во время рабочих процессов возникает такая ситуация, когда необходимо обязательно изменить направление вращения вала на противоположное. Именно для таких случаев используется схема реверсивного пуска двигателя, совместно с которой применяются дополнительные электрические приборы. Без этих дополнительных устройств, невозможна нормальная реверсивная работа электродвигателя. Для этой схемы используются контакторы в количестве двух единиц, вводное автоматическое устройство, имеющее необходимые параметры, одно тепловое реле и три кнопки управления, входящие в .

Реверсивный пуск двигателя

Для того, чтобы изменить направление вращения вала на противоположное, в обязательном порядке должно быть изменено расположение фаз напряжения, которое подается при питании асинхронного двигателя. Именно для этого и применяется схема реверсивного пуска двигателя, позволяющая полностью выполнить эту функцию.


Кроме того, необходимо осуществлять постоянный контроль над значением напряжения, подводимого к двигателю, а также за напряжением, поступающим к катушкам контакторов. Именно непосредственно участвуют в организации реверсивного движения вала. При срабатывании первого контактора, фазы будут располагаться совершенно иначе, нежели при включении второго контактора.

Управление реверсивным пуском

Управление катушками обоих контакторов осуществляется тремя кнопками с наименованиями «стоп», «вперед» и «назад». Эти кнопки позволяют связать расположение фаз с питанием контакторных катушек. В зависимости от очередности включения, контакторы производят замыкание электрической цепи таким образом, что вращение вала будет происходить в ту или иную сторону. Кнопка «назад» может не удерживаться, поскольку катушка сама принимает нужное положение благодаря функции самоподхвата.

На всех трех кнопках имеется блокировка, которая исключает возможность их одновременного нажатия. В такой ситуации велика вероятность выхода из строя электрической части оборудования. Поэтому, для блокировки кнопок используется специальный блок-контакт, расположенный внутри соответствующего контактора.

Здравствуйте, уважаемые посетители и гости сайта «Заметки электрика».

В прошлой статье я Вам подробно рассказал, и даже снял специально видео, про .

Сегодня я продолжу Вас знакомить с магнитным пускателем, а именно со схемой его подключения.

Для более подробного и наглядного изучения схемы подключения магнитного пускателя нереверсивного типа применим следующее электрооборудование:

  • магнитный пускатель типа ПМЛ-1100 (нереверсивный)
  • кнопочный пост с 3 кнопками (например, ПКЕ 222-3У2)
  • типа АОЛ 22-4 мощностью 0,4 (кВт)

Вот, собственно говоря, сам магнитный нереверсивный пускатель типа ПМЛ-1100. С ним Вы уже знакомы.


ПМЛ-1100 относится к пускателям первой величины, т.е. номинальный ток его силовых (главных) контактов равен 12 (А) при напряжении сети 220 (В) и 380 (В). Поэтому этот пускатель с легкостью подходит по техническим характеристикам для пуска нашего двигателя, у которого номинальный ток при составляет 1,97 (А). Это видно на бирке, правда не совсем отчетливо, потому что бирка покрыта лаком после очередного ремонта двигателя.


Кнопочный пост для подключения магнитного пускателя

Кнопочный пост ПКЕ 222-3У2 имеет три кнопки:

  • кнопка «Стоп» красного цвета
  • кнопка «Вперед» черного цвета
  • кнопка «Назад» черного цвета


Кнопочный пост я выбрал такого типа, т.к. другого на момент написания статьи не было в наличии. Для подключения магнитного нереверсивного пускателя достаточно приобрести кнопочный пост с двумя кнопками, например, ПКЕ 212-2У3.


Также можно приобрести два одинарных кнопочных поста типа ПКЕ 222-1У2.

Сейчас в продаже имеется большой выбор различных кнопок от IEK, EKF и других торговых марок. Так что выбирайте на свой «вкус и цвет».

Давайте заглянем во внутрь, выбранного мной, кнопочного поста ПКЕ 222-3У2. Для этого открутим 6 крепежных винтов.



У каждой кнопки поста ПКЕ 222-3У2 имеется два контакта:

  • разомкнутый (нормально-открытый) имеет маркировку (1-2)
  • замкнутый (нормально-закрытый) имеет маркировку (3-4)

Для примера рассмотрим кнопку «Стоп».


Вот фотография замкнутого (нормально-закрытого) контакта кнопки «Стоп»:


А вот фотография разомкнутого (нормально-открытого) контакта кнопки «Стоп»:


Внимание!!! При нажатии на кнопку разомкнутый (нормально-открытый) контакт замыкается, а замкнутый (нормально-закрытый) контакт — размыкается.

Итак, с кнопками разобрались. Теперь приступим к сборке схемы магнитного пускателя для пуска трехфазного асинхронного двигателя АОЛ 22-4.

Пример

1. Источником трехфазного напряжения в моем примере служит испытательный стенд, у которого линейное напряжение сети составляет ~220 (В). Это значит, что катушка магнитного пускателя должна иметь номинал 220 (В).

Вот схема подключения магнитного пускателя через кнопочный пост для пуска электродвигателя для моего примера:

Если у Вас линейное напряжение трехфазной цепи не 220 (В), а 380 (В), то у Вас есть два выбора.

В первом случае катушку пускателя нужно выбирать с номиналом на 380 (В) при следующей схеме подключения:


Во втором случае схему управления необходимо запитать от одной фазы (фаза-ноль), при этом номинал катушки пускателя должен быть на 220 (В).


В данной статье я буду собирать схему магнитного пускателя по первому рисунку, т.е. при напряжении трехфазной сети 220 (В) и напряжении катушки пускателя на 220 (В).

Сборку схемы я буду выполнять медным проводом ПВ-1 сечением 1 кв.мм.

2. Первым делом прокладываем три фазных провода от источника трехфазного питания (А, В, С) до соответствующих клемм пускателя: L1 (1), L2 (3), L3 (5).



3. Затем подключаем провод с одной стороны на клемму L2 (3) пускателя, а с другой стороны — на замкнутый контакт кнопки «Стоп» с маркировкой (4).

Только сейчас заметил, что у выбранного мной кнопочного поста ПКЕ 222-3У2 отсутствует маркировка клемм. Ничего страшного — ведь контакты у кнопок не спрятаны и их видно достаточно хорошо. По тексту ниже я все равно буду указывать маркировку, т.к. в других кнопочных постах она должна быть.




4. Теперь устанавливаем перемычку между замкнутым контактом кнопки «Стоп» с маркировкой (3) и разомкнутым контактом кнопки «Вперед» с маркировкой (2).



5. С клеммы (1) кнопки «Вперед» прокладываем провод на вывод катушки пускателя (А1).




6. Параллельно разомкнутым контактам (1-2) кнопки «Вперед» нужно подключить вспомогательный разомкнутый контакт NO (13) — NO (14) магнитного пускателя ПМЛ-1100.

Т.е. с клеммы (2) кнопки «Вперед» прокладываем провод на вспомогательный контакт NO (13) магнитного пускателя.




7. Со вспомогательного контакта NO (14) магнитного пускателя ПМЛ-1100 делаем перемычку на катушку (А1).



У нас получилось, что разомкнутый контакт кнопки «Вперед» (1-2) и вспомогательный разомкнутый контакт NO (13) — NO (14) магнитного пускателя подключены параллельно.

8. И осталось вывод катушки А2 магнитного пускателя подключить к клемме L3 (5).



В итоге у нас получилось, что с кнопочного поста ПКЕ 222-3У2 выходит всего 3 провода, т.е. для монтажа можно было использовать трехжильный кабель.


9. Соберем кнопочный пост. Вот что у нас получилось.


10. Схема управления магнитным пускателем у нас готова. Осталось подключить на клеммы Т1 (2), Т2 (4), Т3 (6) асинхронный двигатель и проверить схему.



Вот что в итоге у нас получилось.


Данная схема является самой простой. В следующих статьях мы рассмотрим более сложные схемы подключения магнитных пускателей, например, с , блокировок, дополнительных аппаратов защиты и т.п.

Монтажная схема подключения пускателя ПМЛ-1100

Специально для Вас я нарисовал монтажную схему подключения пускателя, которую я собрал в данной статье. Может по ней Вам легче будет ориентироваться в проводах.


Принцип работы

Принцип работы схемы магнитного пускателя через кнопочный пост очень прост.

1. Включаем источник трехфазного напряжения на испытательном стенде.

2. Нажимаем кнопку «Вперед».


Магнитный пускатель ПМЛ-1100 срабатывает и замыкает свои силовые (главные) и вспомогательные контакты:

  • L1 (1) — Т1 (2)
  • L2 (3) — Т2 (4)
  • L3 (5) — Т3 (6)
  • NO (13) — NO (14)

Двигатель начинает вращаться.


Удерживать кнопку «Вперед» не нужно, т.к. при включении магнитного пускателя контакт кнопки «Вперед» шунтируется его же вспомогательным замыкающим контактом NO (13) — NO (14). Катушка пускателя находится под напряжением.

3. Нажимаем красную кнопку «Стоп».


Происходит разрыв цепи (фазы) питания катушки пускателя, соответственно размыкаются силовые (главные) и вспомогательные контакты пускателя. Двигатель останавливается.

Все что я демонстрировал и рассказывал Вам в данной статье я снял на видео. Смотрите, как работает магнитный пускатель:

P.S. На этом статью о схеме подключения магнитного пускателя через кнопочный пост я заканчиваю. Если есть вопросы по материалу статьи, то смело задавайте их в комментариях. Спасибо за внимание!!!

Схема и включение реверсивного магнитного пускателя.

При необходимости получить два направления вращения вала асинхронного двигателя надо соответствующим образом переключить его обмотки. Двигатели управляются магнитными пускателями. Их потребуется две единицы для управления направлением вращения вала. Один пускатель будет соединять обмотки движка так, что вращение вала будет происходить по часовой стрелке, а другой – в обратную сторону, против часовой стрелки. Каждый из них будет включаться нажатием отдельной кнопки. Для отключения обоих пускателей используется одна общая кнопка. Обычно эти кнопки именуют как «вперёд», «стоп» и «назад».

Каким способом достигается реверс асинхронного двигателя?

Пускатели это отдельные устройства, которые изначально не были предназначены для использования в схеме получения реверса асинхронного двигателя. Чтобы переключение выполнялось без аварий, которые могут привести к поломке оборудования, используются дополнительные элементы и схемотехнические решения. Например, может произойти одновременное срабатывание пускателей из-за нажатия по неосторожности сразу двух кнопок определяющих направление вращения. А поскольку их контакты переключают очерёдность следования фаз электрической сети, при срабатывании обоих пускателей произойдёт замыкание между фазами.

Для предотвращения такого события используются дополнительные контакты, которые связаны со срабатыванием противоположных магнитных пускателей. Поскольку при этом задействована электрическая цепь, эта блокировка называется «электрической». Но для увеличения надёжности применяется дополнительное конструктивное решение, которое механически связано с кнопкой и при её нажатии делает невозможной нажатие на другую кнопку направления вращения. Эта блокировка называется «механической». Кроме защиты от замыканий возможных при управлении пускателями обязательно предусматривается защита тепловыми реле для отключения двигателя при нежелательной нагрузке.

При решении задачи по созданию схемы для реверса асинхронного двигателя можно использовать не только два отдельных магнитных пускателя, но и готовый блок, в котором уже смонтировано всё необходимое для правильной работы.

Схема для реверса асинхронного двигателя с двумя магнитными пускателями


Чтобы выполнить включение реверсивного магнитного пускателя возможно изготовление реверсивной схемы своими руками, так как монтаж всех её элементов выполнить несложно. Не исключено, что для некоторых умельцев по силам будет, в том числе и деталь механической блокировки. В противном случае всегда можно заказать её изготовление заводским способом. Но при аккуратном обращении с кнопками вполне можно исключить эту деталь. Хотя изготовить сдвигаемую шторку, расположенную над кнопками и перекрывающую одну из них по силам каждому.

На схеме видны главные контакты, которыми выполняется реверс двигателя. Обычно их называют «силовыми». Выводы обмоток, которые меняются местами при срабатывании силовых контактов, обозначены разными цветами. Поэтому не составляет труда проследить за конфигурацией соединений которая получится при замыкании контактов КМ1 и КМ2.

Тепловое реле, контролирующее ток в двух фазах, чего вполне достаточно для надёжного контроля режима эксплуатации двигателя, срабатывает, если двигатель выходит за пределы допустимой работы. При этом обесточиваются катушки обеих магнитных пускателей. Аналогично действует и кнопка «стоп». Кнопка «вперёд» при нажатии на неё вводит в работу магнитный пускатель с катушкой К1. При этом происходит замыкание всех контактов управляемых этой катушкой. Контакт КМ1.3 замыкает электрическую цепь питания катушки К1. Контакт КМ 1.2 размыкается и блокирует этим срабатывание катушки К2. После этого кнопка «назад» не может включить катушку К2.

В исходное состояние схему возвращает нажатие на кнопку «стоп». Нажатие на кнопку «назад» вводит в работу катушку К2. При этом происходит замыкание всех контактов управляемых этой катушкой. Контакт КМ2.3 замыкает электрическую цепь питания катушки К2. Контакт КМ 2.2 размыкается и блокирует этим срабатывание катушки К1. После этого кнопка «вперёд» не может включить катушку К1. Если одновременно нажать на кнопки «верёд» и «назад» добиться одновременного замыкания их контактов неумышленно практически невозможно. Один из контактов будет замыкаться ранее другого и соответствующая ему катушка сработает первой и заблокирует другую катушку. Движок начнёт вращаться в ту сторону, с которой связана эта катушка.

Контакты КМ 1.2 и КМ 2.2 выполняют функцию электрической блокировки. Поэтому рассмотренная схема исключает возможность замыканий при неосторожном обращении с кнопками управления. Эта схема проста, надёжна и доступна для сборки своими руками без специальной подготовки. Элементная база для неё имеется в специализированных магазинах.

Схема подключения реверсивного магнитного пускателя

Магнитный пускатель является специальной коммутационной аппаратурой, предназначенной для многократного автоматического включения и выключения различных потребителей электрической энергии. С помощью него осуществляется дистанционное управление, а также есть возможность включения и выключения потребителей, расположенных на каком-либо расстоянии от пульта управления. Схема подключения реверсивного магнитного пускателя нашла свое применение при эксплуатации совместно с асинхронными электродвигателями. Именно с его помощью электродвигатель меняет направление вращения вала, а также запускается и останавливается.

Управление магнитным пускателем

Магнитный пускатель способен разгрузить маломощные контакты. Например, обычный выключатель, рассчитан на включение и отключение нагрузки не выше 10-ти ампер. В таких случаях используется магнитный пускатель, позволяющий производить включение и отключение тока с гораздо более высоким значением.

Для управления используется электромагнитная катушка, потребляющая при срабатывании мощность всего 200 Вт. После срабатывания потребляемая мощность становится еще меньше и составляет 25 Вт. При этом, сила тока получается всего 0,52 ампер. Именно такое значение тока позволяет пускателю сработать и выполнить включение основной силовой цепи. Таким образом, можно установить компактный выключатель небольшого размера для управления магнитным пускателем, который, в свою очередь, с помощью своих силовых контактов будет выполнять включение и выключение больших мощностей.

Различные модели оборудуются катушками управления, рассчитанными на разное напряжение – 380, 220 или 36 вольт. Например, на токарные станки устанавливаются имеющие катушки на 36 вольт. Таким образом, создается безопасное напряжение, исключающее поражение электрическим током при пробое изоляции.

Использование теплового реле

В отдельных случаях магнитный пускатель используется совместно с тепловым реле. С помощью теплового реле осуществляется дополнительная защита электродвигателя от перегрузкии от функционирования в режиме неполных фаз. Такой режим возникает, когда во время работы электродвигателя исчезает какая-либо из трех фаз. Причиной может быть перегорание плавкой вставки на одной из фаз, подгорание контактов на клемме, выпадение фазного провода из-за слабых контактов.

При наступлении неполнофазного режима, возникает перегрузка электродвигателя, происходит увеличение тока, проходящего через тепловое реле. Здесь происходит нагревание токопроводящих биметаллических пластин. Воздействие тепла приводит к их выгибанию и последующему отключению контактов в тепловом реле. Эти контакты, в свою очередь, отключают магнитный пускатель и, соответственно, сам электродвигатель.

Классическая схема подключения реверсивного магнитного пускателя с управляющей катушкой на 220 вольт приведена ниже:

Схема подключения двигателя по реверсивной схеме

электропроводка% 20 диаграмма% 20 для% 20a% 20 вперед% 20 и% 20 реверсирование% 20 двигатель% 20 ​​паспорт стартера и примечания по применению

2012 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / produkte / 2817741 DK-BIC-35В
2012 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / produkte / 2839127 человек2749880
Схема
светодиодный индикатор samsung

Аннотация: samsung p28 Samsung 546 схема платы питания ЖК-дисплея СХЕМА Плата VGA Схема платы ЖК-контроллера Схема Samsung ЖК-дисплей Samsung GFX 49 схемы ЖК-дисплея Samsung северный мост
Текст: нет текста в файле


Оригинал
PDF
2012 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / produkte / 2817738 DK-BIC-35В
2012 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF UL508 EP001, RW260,
2012 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF WDCB28 WDCB28 — SA-ENG SA-WACB24
2012 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / produkte / 2817987 DK-BIC-35В
2011 — DK-BIC-35

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF НТК-2010) DK-BIC-35
2012 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / produkte / 2807586
2011–28 1835

Аннотация: IEC 61643-1
Текст: нет текста в файле


Оригинал
PDF TT-2009) 281835 IEC 61643-1
2012 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / produkte / 2839130 230 / FMÂ DK-BIC-35В
Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 85447L 14R47 14F47 5269L 0A / 30A D-133
2008 — МЭК 61643-1

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF TT-2007) IEC 61643-1
2011–28 17738

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF TT-2009) 2817738
2010 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF НТК-2010)
2010 — МЭК 61643-1

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF TT-2009) IEC 61643-1
2008 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF TT-2007)
2012 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / produkte / 2838843 320-СТВ
2012 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / produkte / 2816399 Con830443
2012 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / produkte / 2858315 320-УД-СТВ TT-2011)
Схема подключения держателя

Аннотация: Схема подключения igbt IGBT DRIVER SCHEMATIC IGBT параллельный демпферный конденсатор Hitachi IGBT параллельная схема MBN800
Текст: нет текста в файле


Оригинал
PDF
2012 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / produkte / 2856692 stBIC-35В 120-уд
2012 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / produkte / 2807609
2012 — Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / produkte / 2807599
2009-1756-IF16

Аннотация: 1756-IB16 Allen-Bradley 1756-if16 ControlLogix 1756-OB32 1756-OB16E электрическая схема plc 1756-IB32 Allen-Bradley 1756-IB32 modicon
Текст: нет текста в файле


Оригинал
PDF 1492-SG120A-EN-P 1492-SG120B-EN-P 1756-IF16 1756-IB16 Аллен-Брэдли 1756-if16 ControlLogix 1756-OB32 1756-OB16E схема подключения plc 1756-IB32 Аллен-Брэдли 1756-IB32 модикон

Что такое комбинированный пускатель двигателя?

Комбинированные пускатели двигателя могут эффективно использоваться для размещения пускателя двигателя и устройств электрической защиты в одном корпусе.

Пускатели двигателей

предназначены для обеспечения безопасности пользователей при запуске или останове двигателя с помощью электромеханического переключателя. Это похоже на управление реле, но также обеспечивает защиту двигателя от перегрузки. Комбинированные пускатели двигателей могут быть полезны для обеспечения пользователей еще одним уровнем защиты. Они собирают:

  • Устройство управления, также известное как подрядчик
  • Обеспечивает защиту двигателя от перегрузки, которая помогает предотвратить перегрев двигателя
  • Защита от короткого замыкания

Он имеет дополнительную защиту от короткого замыкания, которая позволяет пуску реагировать на определенные неисправности для защиты двигателя.Неисправность может быть фатальной для вашего двигателя или может привести к необратимому повреждению двигателя. Таким образом, эта защита помогает предотвратить необратимое повреждение двигателя и избежать дорогостоящего ремонта. Защиту от короткого замыкания можно обеспечить с помощью:

Все эти элементы объединены в одном корпусе, что позволяет легко установить и получить доступ к соответствующим работникам при выполнении операций во время аварийных или обычных операций.

Как работает комбинированный пускатель двигателя?

Комбинированный пускатель двигателя обычно работает аналогично стандартному пускателю двигателя.Тем не менее, они могут безопасно переключать необходимое количество тока на двигатель и помогают предотвратить потребление двигателем тока, превышающего параметры безопасности.

С помощью защиты от короткого замыкания, доступной в комбинированном пускателе двигателя, схема получает все необходимое для работы с соответствующими мерами отказоустойчивости. Если вы используете комбинированный пускатель двигателя и размыкающий выключатель или автоматический выключатель, вы можете отключить все линии в случае неисправности любой фазы.Это может быть полезно для предотвращения однофазного режима, который может привести к дисбалансу напряжений и перегоранию двигателя.

Пускателем можно управлять вручную или электронным способом с помощью магнитных компонентов, и это полностью зависит от ваших эксплуатационных потребностей.

Ручные комбинированные пускатели электродвигателей

Ручные комбинированные пускатели двигателей просты в эксплуатации. Пользователю просто нужно нажать кнопку или повернуть ручку переключателя мощности, чтобы включить или выключить подключенный двигатель. Затем он управляет механическими связями, открывая или закрывая их, чтобы запустить или остановить двигатель.

Ручные пускатели могут быть идеальным выбором, так как они предлагают:

  • Безопасная и эффективная работа
  • Меньшие размеры, что делает их пригодными для различных применений
  • Начальная стоимость ручного стартера сравнительно невысока
  • Автоматический выключатель / выключатель с предохранителем для обеспечения дополнительной отказоустойчивости

Магнитные пускатели комбинированных двигателей

Комбинированные магнитные пускатели

предлагают электромагнитное управление, что позволяет управлять ими дистанционно.Поэтому он идеально подходит для крупномасштабных операций. Однако нагрузку двигателя, подключенную к пуску двигателя, можно включить / выключить, используя более безопасное напряжение, обычно 120 В для ваших устройств управления.

Существуют различные типы комбинированных магнитных пускателей двигателей, имеющих определенные конфигурации в цепи. Различные типы комбинированных магнитных пускателей двигателей:

  • Пускатели с прямым включением (DOL) или пускатели с прямым подключением к сети, нереверсивные (FVNR)
    • Это пускатель общего назначения с магнитным контактором для подключения полного напряжения источника питания к двигателю.Их можно использовать для двигателей, которым просто необходимо работать с фиксированной скоростью в одном направлении.
  • Реверсивные пускатели прямого включения (DOL) или пускатели прямого действия с реверсированием полного напряжения (FVR)
    • Он также поставляется с той же утилитой, что и стандартные стартеры DOL, но также имеет возможность работать в прямом и обратном направлении. Таким образом, он особенно полезен для конвейерного оборудования, где требуется управление направлением движения.
  • Стартеры звезда-треугольник
    • Это двигатель пониженного напряжения, который подходит для более длительных циклов разгона и работы в больших масштабах.Он разработан для работы с трехфазными асинхронными двигателями и может переключать обмотки между треугольником и пусковым соединением для запуска двигателя.
  • Устройства плавного пуска
    • Обычно используются для управления электродвигателями переменного тока. Они помогают снизить крутящий момент и нагрузку во время фазы запуска и скачков электрического тока.

Зачем вам стартер комбинированного двигателя?

Использование комбинированного пускателя двигателя может обеспечить дополнительное спокойствие относительно безопасности цепи двигателя.Однако стандартные пускатели двигателей способны выполнять тот же процесс. Тем не менее, преимущества комбинированного пускателя двигателя могут быть полезны для обеспечения устройств повышенной защиты цепи, которые объединены в одном корпусе.

Комбинированный пускатель двигателя поставляется с автоматическим выключателем или разъединителем с предохранителем и предлагает встроенные средства защиты двигателя от короткого замыкания. Таким образом, он не только защищает ваш двигатель от перегорания из-за сбоя тока, но и обеспечивает все, что требуется цепи в соответствии со статьей 430 Национального электрического кодекса.

С помощью сбрасываемой защиты цепи вы сможете быстро перезагрузить двигатель и запустить его после устранения неисправности. Это означает, что вы сможете свести к минимуму время простоя двигателя и заставить его снова работать быстрее.

Комбинированный пускатель двигателя может использоваться по-разному:

  • Вентиляторы
  • Тепловые насосы
  • Водяные насосы
  • Компрессоры
  • Вентиляторы
  • Конвейерные ленты
  • Воздуходувки

Почему стоит покупать комбинированные пускатели электродвигателей от Spike Electric?

Мы являемся одним из крупнейших производителей складских запасов в Северной Америке, когда речь идет о комбинированных компонентах стартера двигателя.Мы предлагаем безопасные, надежные и эффективные энергетические решения.

Не стесняйтесь обращаться к нам, если у вас возникнут какие-либо вопросы.

Электроэнергетические компоненты для начинающих • Панели OEM

Компоненты электрической панели — это компоненты электрической мощности, когда они используются в электрических цепях, питающих физические устройства, такие как освещение, обогреватели, двигатели и т. Д. В США проводка электрических цепей должен соответствовать Национальному электротехническому кодексу (NEC), стандарту Национальной ассоциации противопожарной защиты (NFPA), описывающему безопасные методы электрического монтажа.

NEC требует, чтобы каждая электрическая цепь включала средства отключения и защиту цепи от перегрузки. Средством отключения может быть выключатель, но часто это автоматический выключатель или разъединитель с плавким предохранителем, поскольку они также обеспечивают защиту цепи от перегрузки. В цепи питания двигателя NEC также требует защиты двигателя от перегрузки.

  • Защита цепи от перегрузки предотвращает перегрев проводов и возгорание.
  • Защита двигателя от перегрузки предотвращает перегрев двигателя и возгорание.

Что такое автоматический выключатель?

Автоматический выключатель — это выключатель электропитания с ручным управлением, который также может определять условия короткого замыкания и / или перегрузки. Самый распространенный тип — термомагнитный. Он определяет условия короткого замыкания магнитным способом и условия перегрузки термически. При обнаружении любого из условий цепь разрывается, отключаясь.

Преимущество использования автоматического выключателя по сравнению с разъединителем с предохранителем в том, что автоматический выключатель не разрушает сам себя, размыкая цепь.После устранения проблемы, из-за которой автоматический выключатель сработал или отключился, вы можете просто включить его.

Что такое разъединитель с плавким предохранителем?

Разъединитель с предохранителем — это комбинация электрического переключателя с ручным управлением и предохранителя. Предохранитель представляет собой тонкую металлическую проволоку в бумажной обертке с песком. Он прерывает поток электроэнергии, а при коротком замыкании или перегрузке металлический провод буквально сгорает. Предохранитель прерывает поток электроэнергии путем изящного самоуничтожения.

Недостатком использования разъединителя с плавким предохранителем для защиты цепи по сравнению с автоматическим выключателем является то, что предохранитель сам разрушает цепь. После устранения проблемы, из-за которой предохранитель перегорел, или отключения питания, необходимо заменить предохранитель.

Что такое стартер двигателя?

Пускатель двигателя — это устройство или комбинация устройств, используемых для питания и управления двигателем. Как минимум, пускатель двигателя включает в себя следующие защитные устройства по мощности.Кроме того, пускатель двигателя обычно включает в себя другое устройство (контактор, плавный пуск, частотно-регулируемый привод и т. Д.) Для управления двигателем.

  1. Средства отключения — метод отключения питания вручную.
  2. Защита от перегрузки цепи — автоматическое отключение питания при возникновении состояния перегрузки для предотвращения нагрева проводки и возникновения пожара.
  3. Защита двигателя от перегрузки — автоматическое отключение питания в случае перегрузки для предотвращения перегрева двигателя и возникновения пожара.

Что такое стартер FVNR?

Полновольтный нереверсивный пускатель (FVNR) — это трехфазный контроллер двигателя с одним контактором двигателя. Стартер через линию (ATL) означает то же самое, что и стартер FVNR. Контактор размыкает и замыкает силовую цепь для включения и выключения двигателя.

  • Полное напряжение — контактор просто размыкает и замыкает силовую цепь двигателя.
  • Non Reversing — двигатель нельзя реверсировать с помощью одного контактора двигателя.

Что такое стартер FVR?

Пускатель с реверсивным полным напряжением (FVR) — это трехфазный контроллер двигателя с двумя контакторами двигателя. Вместо использования одного контактора для размыкания и замыкания силовой цепи для включения и выключения двигателя, он использует прямой и реверсивный контакторы для управления направлением двигателя. Направление 3-х фазного двигателя контролируется реверсированием (переключением мест) подключения любых двух из трех фаз.

  • Полное напряжение — контакторы просто размыкают и замыкают силовую цепь двигателя.
  • Реверс — двигатель можно реверсировать с помощью контакторов прямого и обратного хода.

Что такое устройство плавного пуска?

Устройство плавного пуска — это 3-фазный контроллер двигателя с простым полупроводниковым контроллером мощности. Вместо простого размыкания и замыкания силовой цепи, как в контакторе двигателя, он увеличивает или уменьшает напряжение двигателя, чтобы включить и выключить двигатель более плавно, чтобы исключить электрические скачки и механические удары.

  • Плавный пуск — повышение напряжения двигателя для плавного включения двигателя
  • Плавный останов — понижает напряжение двигателя для плавного выключения двигателя

Устройство плавного пуска дороже контактора двигателя, но обеспечивает дополнительное преимущество в виде снижения электрических и механических ударов, связанных с запуском и остановкой двигателя.

Что такое частотно-регулируемый привод (VFD)?

Частотно-регулируемый привод (VFD) — это 3-фазный контроллер двигателя с усовершенствованным полупроводниковым контроллером мощности. Вместо того, чтобы просто увеличивать или уменьшать напряжение двигателя, как плавный пуск для включения и выключения двигателя, частотно-регулируемый привод (VFD) позволяет контролировать скорость двигателя в любое время во время работы.

Частотно-регулируемый привод (VFD) дороже, чем плавный пуск (SS), но обеспечивает дополнительное преимущество управления скоростью двигателя.

См. Наши рекомендации в разделе Best Electrical Power Components

Магнитные пускатели двигателей в качестве контроллеров — Сравнение устройств типов NEMA и IEC

Время чтения: 4 минуты.

Статья 100 NEC определяет контроллер как «устройство или группу устройств, которые служат для управления определенным заранее определенным образом электрической мощностью, подаваемой на устройство, к которому он подключен». Раздел 430.2 дает более конкретное определение двигателя: «Для целей этой статьи [Статья 430] контроллер — это любой переключатель или устройство, которое обычно используется для запуска и остановки двигателя путем включения и отключения тока в цепи двигателя.”

Магнитный пускатель двигателя является таким контроллером и использует контакты с электромагнитным управлением, которые запускают и останавливают подключенную нагрузку двигателя. Цепь управления с мгновенными контактными устройствами, подключенными к катушке магнитного пускателя двигателя, выполняет эту функцию пуска и останова. Трехполюсный пускатель магнитного двигателя полного напряжения состоит из следующих компонентов: набора неподвижных контактов, набора подвижных контактов, нажимных пружин, катушки управления, неподвижного электромагнита, набора катушек затенения магнитного поля и подвижного якоря.

Также важно помнить, что магнитный пускатель двигателя — это контактор, который имеет дополнительный узел реле перегрузки, обеспечивающий защиту двигателя от перегрузки при работе. Выбор теплового реле перегрузки осуществляется с помощью таблицы производителя, прилагаемой к пускателю магнитного двигателя. Всегда важно знать ток полной нагрузки (FLC) двигателя, коэффициент эксплуатации (SF) двигателя и температуру окружающей среды, в которой работает оборудование.Тепловые единицы рассчитаны на температуру окружающей среды 40 ° C (104 ° F).

Виды пускателей

Магнитные пускатели двигателей обычно выпускаются с полным напряжением (линейным), пониженным напряжением и реверсивным. Полновольтный или линейный магнитный пускатель двигателя подает на двигатель полное напряжение, что означает, что он предназначен для правильного управления уровнями пускового тока, который будет развиваться при запуске двигателя (см. Рисунок 1).

Рисунок 1. Пускатель магнитного двигателя полного напряжения (параллельный)

Пускатели пониженного напряжения

предназначены для ограничения воздействия пускового тока при запуске двигателя.Они доступны в электромеханическом и электронном форматах.

Рисунок 2. Реверсивный пускатель полного напряжения

Пускатели реверсивные предназначены для реверсирования вала трехфазного двигателя. Это достигается путем замены любых двухлинейных проводов, питающих нагрузку двигателя. Реверсивный магнитный пускатель двигателя включает в себя пускатель прямого и обратного хода как часть узла (см. Рисунок 2). Предусмотрены электрические и механические блокировки, чтобы гарантировать, что только пускатель прямого или обратного хода может быть включен в любой момент времени, но не одновременно.

Сравнение пускателей NEMA и IEC

В этой статье мы сосредоточимся на том, как NEMA (Национальная ассоциация производителей электрооборудования) и IEC (Международная электротехническая комиссия) относятся к выбору и применению магнитных пускателей двигателей.

Магнитные пускатели

NEMA доступны в различных номинальных значениях напряжения и мощности со следующими обозначениями: размеры от 00 до 9, последовательно. Эти размеры NEMA классифицируют пускатели магнитных двигателей по напряжению и максимальной мощности.Примеры напряжений переменного тока включают варианты 24 В, 120 В, 208 В, 240 В, 277 В, 480 В и 600 В. Магнитный пускатель двигателя также предлагается в различных типах корпуса в зависимости от среды, в которой будет работать оборудование, не говоря уже о катушках постоянного тока. Типичными защитными кожухами являются NEMA 1 (общего назначения), NEMA 4 (водонепроницаемые), NEMA 12 (пыленепроницаемые) и NEMA 7 (опасные зоны).

Магнитные пускатели двигателей

IEC обычно выпускаются в модульном формате с контактором и реле перегрузки.Трехфазные контакторы доступны в вариантах 208 В, 230 В, 460 В и 575 В с соответствующими максимальными значениями мощности в лошадиных силах. Магнитные пускатели двигателей IEC часто поставляются как часть оборудования производителей оригинального оборудования (OEM), как и пускатели NEMA.

Если мы сравним пускатель магнитного двигателя NEMA и пускатель магнитного двигателя IEC, мы заметим следующие различия:

Устройство IEC обычно физически меньше, чем сопоставимое устройство NEMA, но не во всех случаях, особенно в больших размерах.

Жизненный цикл устройств NEMA и IEC может быть разным. Оценка производительности между NEMA и IEC, а также различия в том, как производители разрабатывают данные (не проверены третьими сторонами, поэтому методы тестирования могут сильно различаться). Общие характеристики безопасности устройств IEC или NEMA оцениваются сторонним испытательным агентством в Северной Америке. ЕС разрешает самосертификацию, но производители устройств NEMA также используют самосертификацию для характеристик производительности, специфичных для NEMA.Контроллер NEMA обычно поступает из лаборатории, аккредитованной OSHA, в то время как устройство IEC может быть самосертифицировано, иметь знак CE или сертифицировано лабораторией, которая может не иметь аккредитации OSHA. Пускатели NEMA теперь могут использоваться вместе с электронными / полупроводниковыми реле перегрузки, которые регулируются.

Устройство

IEC имеет регулируемый узел реле перегрузки, в то время как сопоставимое устройство NEMA имеет фиксированный и съемный узел реле перегрузки. Кроме того, устройства NEMA могут использоваться вместе с электронными / полупроводниковыми реле перегрузки, которые регулируются.

Устройство

IEC обычно должно быть защищено быстродействующими токоограничивающими предохранителями, в то время как устройство NEMA может быть защищено обычными предохранителями с выдержкой времени, но это варьируется от продукта к продукту и от производителя к производителю.

Многие устройства IEC и NEMA разработаны для использования с обычными (не ограничивающими ток) предохранителями и автоматическими выключателями, по крайней мере, для стандартных SCCR. Фактическое ограничение тока может использоваться для SCCR с высокой степенью отказа и / или координации типа 2.

Конечный пользователь должен внимательно рассмотреть все эти требования, прежде чем принимать решение об установке магнитного пускателя двигателя NEMA или магнитного пускателя двигателя IEC в своем конкретном приложении.

Методы блокировки для реверсивного управления

Цели

После изучения данного раздела студент сможет:

• Объясните назначение различных методов блокировки

• Прочтите и интерпретируйте электрические и линейные схемы реверсивного управления

• Прочтите и интерпретируйте электрические и линейные схемы блоков управления

• Проводка и устранение неисправностей реверсивного и блокировочного управления

Направление вращения трехфазных двигателей можно изменить, переставив любые два вывода двигателя на линию.Если должны использоваться устройства магнитного управления, то реверсивные пускатели выполняют реверсирование направления двигателя, рис. 39-IA. Реверсивные пускатели, подключенные в соответствии со стандартами NEMA на линиях обмена L1 и L3, рисунок 39-IB. Для этого требуются два контактора для узла стартера — один для прямого направления и один для обратного направления, рисунок 39-IC. Метод, называемый блокировкой , используется для предотвращения одновременного включения контакторов или их замыкания вместе, что вызывает короткое замыкание.Есть три основных метода блокировки.

МЕХАНИЧЕСКАЯ БЛОКИРОВКА

Механическое блокировочное устройство монтируется на заводе между прямым и обратным контакторами. Эта блокировка блокирует один контактор в начале хода любого контактора, чтобы предотвратить короткое замыкание и выгорание.

Механическая блокировка между контакторами представлена ​​на элементарной схеме рисунка 39-2 пунктирной линией между катушками. Пунктирная линия указывает на то, что катушки F и R не могут замкнуть контакты одновременно из-за механического блокирующего действия устройства.

Когда катушка прямого контактора (F) находится под напряжением и замыкается нажатием кнопки вперед, механическая блокировка предотвращает случайное замыкание катушки R. Стартер F блокируется катушкой R таким же образом. Первая закрываемая катушка перемещает рычаг в положение, которое не позволяет другой катушке замкнуть свои контакты, когда на нее подано напряжение. Если недосмотр позволяет второй катушке оставаться под напряжением, не замыкая ее контакты, избыточный ток в катушке из-за отсутствия надлежащего

Индуктивное сопротивление

приведет к повреждению катушки.

Обратите внимание на элементарную диаграмму рисунка 39-2, что кнопка останова должна быть нажата, прежде чем двигатель можно будет реверсировать.

Реверсивные пускатели доступны в горизонтальном и вертикальном исполнении. Вертикальный пускатель показан на рисунке 39-3A.

jority реверсивных пускателей в дополнение к использованию одного или обоих следующих электрических методов: блокировка кнопок и блокировка вспомогательных контактов.

БЛОКИРОВКА КНОПКИ

Блокировка кнопок — это электрический метод предотвращения одновременного включения обеих катушек стартера.

Когда нажата кнопка вперед на рисунке 39-3B, катушка F находится под напряжением, и нормально открытый (NO) контакт F замыкается, удерживая передний контактор. Поскольку в кнопочных блоках прямого и обратного хода используются нормально замкнутые (NC) контакты, нет необходимости нажимать кнопку останова перед изменением направления вращения. Если кнопка реверса нажата, когда двигатель вращается в прямом направлении, цепь управления передним ходом обесточивается, а контактор заднего хода включается и удерживается замкнутым.

Повторное изменение направления вращения двигателя не рекомендуется. Такое реверсирование может привести к перегреву реле перегрузки и пусковых предохранителей; это отключает двигатель от цепи. Также может быть повреждена приводимая в движение машина. Возможно, потребуется подождать, пока двигатель не остановится выбегом.

Спецификации

NEMA требуют снижения номинальных характеристик стартера. То есть, стартер на следующий размер больше должен быть выбран, когда он будет использоваться для «блокировки» до остановки или «реверсирования» со скоростью более пяти раз в минуту.

Реверсивные пускатели, состоящие из устройств с механической и электрической блокировкой, предпочтительны для максимальной безопасности.

БЛОКИРОВКА ДОПОЛНИТЕЛЬНОГО КОНТАКТА

Другой метод электрической блокировки состоит из нормально замкнутых вспомогательных контактов на контакторах прямого и обратного хода реверсивного стартера, рисунок 39-4.

Когда двигатель вращается вперед, замыкающий контакт (F) на контакторе прямого хода размыкается и предотвращает включение контактора обратного хода по ошибке или замыкание.То же самое происходит, если двигатель вращается в обратном направлении.

Термин «блокировка », «» также обычно используется в отношении контроллеров двигателей и станций управления, которые связаны между собой для обеспечения управления производственными операциями.

Для изменения направления вращения однофазных двигателей, или , провода пускового двигателя или меняются местами, но не оба. Рисунок 39-SA завершает электрическую схему однофазного четырехпроводного асинхронного двигателя с расщепленной фазой; рисунок 39-SB — схема подключения однофазного вертикального пускателя; и фиг. 39-SC представляет собой линейную схему соединений.

ПРОСМОТР ВОПРОСОВ

1. Как осуществляется изменение направления вращения трехфазного двигателя?

2. Какова цель блокировки?

3. Что произойдет, если нажать обе кнопки пуска в элементе управления с блокировкой кнопок? Почему?

4. Как достигается блокировка вспомогательного контакта на реверсивном пускателе?

5. Когда передняя катушка находится под напряжением, в каком положении находится передняя блокировка (F)?

6.Если механическая блокировка является единственным используемым средством блокировки, опишите операцию, которая должна выполняться для изменения направления вращения двигателя во время работы.

7. Если контрольные лампы должны указывать направление вращения двигателя, где должны быть подключены устройства, чтобы не добавлять никаких контактов?

8. Какова последовательность операций, если на рисунке 39-4 используются концевые выключатели?

9. Что произойдет на рисунке 39-4, если установлены концевые выключатели и не удалены перемычки с клемм 6 и 7 на катушки?

10.Вместо кнопок на рисунке 39-2 нарисуйте селекторный переключатель для управления остановкой вперед и назад. Покажите целевую таблицу для этого переключателя.

11. По элементарному чертежу на рис. 39-6 определите номер и идентификацию клемм проводки в каждом кабелепроводе в схеме кабелепровода. Укажите свои решения так же, как в примере, приведенном под выключателем-разъединителем.

12. Преобразуйте только схему управления, рисунок 39-7, из электрической схемы в простую.Включите концевые выключатели (RLS, FLS) как работающие в цепи управления.

Входящие поисковые запросы:

Как работает магнитный пускатель двигателя

Большинство людей не имеют технических знаний об электрических компонентах наших машин, особенно тех, которые не видны или работают внутри машины, как пускатели магнитных двигателей. . Вы когда-нибудь задавали вопрос « как работает магнитный пускатель

Магнитный пускатель двигателя — это выключатель с электромагнитным управлением, который защищает ваш электродвигатель во время запуска.Он может выдерживать тяжелые нагрузки, такие как трехфазные большие двигатели и другое промышленное оборудование. Магнитные пускатели двигателей обеспечивают защиту от пониженного напряжения и перегрузки, а также автоматическое отключение в случае сбоя питания. Другой целью магнитного пускателя двигателя является защита двигателя, который не имеет защиты от тепловой перегрузки в самом двигателе. Магнитный пускатель двигателя представляет собой комбинацию контактора и реле перегрузки, которое откроет управляющее напряжение на катушку стартера, если обнаружит перегрузку от ваших двигателей во время использования.В тепловом типе используется устройство, установленное на реле перегрузки, называемое «нагревателем». Это биметаллический элемент, через который проходит каждая ножка мотора. Магнитный пускатель двигателя бывает разных номиналов в зависимости от силы тока полной нагрузки двигателя. Пока ваша машина работает, через нагреватель протекает ток. Если ток, потребляемый двигателем, превышает номинал нагревателя, нагревательный элемент нагревается и вызывает «срабатывание» реле, которое прерывает цепь катушки контактора и обесточивает контактор.Вот два типа магнитных пускателей, которые предлагает компания Meiji:

  1. Полное напряжение (через линию) Магнитный пускатель

Магнитные пускатели обычно доступны как с полным напряжением (через линию) -line), пониженного напряжения и реверсивного . Полновольтный или линейный магнитный пускатель двигателя подает на двигатель полное напряжение, что означает, что он предназначен для правильного управления уровнями бросков тока, которые будут возникать при запуске двигателя.Пускатели пониженного напряжения предназначены для ограничения воздействия пускового тока при запуске двигателя. Они доступны в электромеханическом и электронном форматах.

  1. Реверсивный пускатель полного напряжения

Реверсивный пускатель предназначен для реверсирования вала трехфазного двигателя. Это достигается путем замены любых двухлинейных проводов, питающих нагрузку двигателя. Реверсивный магнитный пускатель двигателя включает в себя пускатель прямого и обратного хода как часть узла.Предусмотрены электрические и механические блокировки, чтобы гарантировать, что только пускатель прямого или обратного хода может быть включен в любой момент времени, но не одновременно. Магнитные пускатели двигателей обычно используются в деревообрабатывающем оборудовании, таком как столярные пилы или формовщики. Машины с меньшими нагрузками, такие как сверлильный станок или большинство ручных инструментов, обычно используют только переключатель. Магнитные пускатели являются стандартными компонентами для многих машин, и стартеры послепродажного обслуживания также доступны для использования в качестве замены или для модернизации старых машин.

«Национальная ассоциация противопожарной защиты (NFPA), торговая ассоциация США, заявляет, что всему оборудованию требуется магнитный пускатель для защиты от непреднамеренного перезапуска машины в случаях: восстановление напряжения ». — Стандарт 7.5.3 NFPA 79, Википедия.

Компания Meiji Electric производит высококачественные пускатели магнитных двигателей LS. У вас есть возможность вложить пускатель двигателя в комплект или оставить его как есть.Meiji поставляет магнитные пускатели двигателей мощностью от 1/8 до 300 л.с. Полновольтные нереверсивные и реверсивные пускатели, магнитные пускатели с пониженным напряжением, в частности пускатели электродвигателей звезда-треугольник, мощностью от 7 1/2 л.с. до 215 л.с. для линейного напряжения 220 и 440 также доступны с управляющим напряжением в соответствии с потребностями клиентов.

Сделайте хороший старт для своих машин с Meiji Electric!

Схема прямого и обратного стартера — обучение электрика

Схема стартера переднего хода

В этой статье мы узнаем о пускорегулирующем аппарате вперед-назад.Как следует из названия, пускатель прямого обратного хода используется для вращения двигателя с обеих сторон вперед и назад. На приведенном ниже рисунке показана схема управления и мощности прямого и обратного пускателя. Эти пускатели прямого и обратного хода относятся к типу «дол» и не используются с двигателями мощностью 05 л.с. Для работы двигателя мощностью выше 05 л.с. цепь должна быть подключена по схеме звезда-треугольник. Эти типы стартеров используются в различных приложениях, например, для смешивания материалов, в красильных машинах и т. Д.

Схема управления пускателем вперед и назад

В этой диаграмме использованы следующие материалы: —

MCB — Двухполюсный MCB, используемый для проводки управления, и 3-полюсный MCB, используемый для силовой проводки.

Реле перегрузки — Реле перегрузки используются для защиты двигателя от различных типов неисправностей, таких как перегрузка, перенапряжение, пониженное напряжение, однофазность и т. Д.

Контакторы — Используются два контактора: один для прямого направления, а другой — для обратного.

Кнопки управления — Здесь используются две кнопки, одна из них предназначена для прямого направления, а другая — для обратного.

Как показано на схеме, нам нужно подключить источник питания к MCB (миниатюрный автоматический выключатель).Выход MCB должен соединиться с точкой NC реле перегрузки для сброса. После этого провод должен быть соединен с NC-точками контактора противоположных направлений, как показано на схеме, например, для прямого контактора подключите к NC-точке обратного контактора, а для обратного контактора подключите к NC-точке прямого контактора. Затем выход этих точек ЧПУ подключается к кнопкам Пуск. Затем подключите два провода от входа и выхода кнопок к нормально разомкнутой точке контактора для удержания контактора.Удерживая, подключите провод от выхода пусковой кнопки к A1 обоих контакторов. Подключите нейтральный провод к A2 контактора.

Примечание: — На схеме показаны четыре кнопки. вы также можете использовать две кнопки запуска и кнопку остановки. кнопка остановки используется для остановки процесса. две кнопки питаются двумя элементами, каждая кнопка — NO, а другая NC.

Прочтите соответствующую статью о схеме прямого и обратного пуска: —

Схема включения стартера переднего хода

На схеме питания прямого-обратного пускателя подключите трехфазное питание ко входу автоматического выключателя.Выход MCB должен быть подключен к двум контакторам. Один из них контактор является прямым контактором, а другой — обратным контактором. Здесь подключите 3-фазный источник питания к реле перегрузки так же, как вход, чтобы запустить двигатель в прямом направлении, но в случае реверсивного контактора мы должны перевернуть одну фазу для изменения направления двигателя, как показано на диаграмму. Выход этих контакторов подается на двигатель через реле перегрузки для защиты двигателя.

Схема работы прямого и обратного стартера

При включении питание проходит через точку NC реле перегрузки и точку NC контактора до кнопки запуска. При нажатии любой кнопки пуска подача достигает точки A1 контактора, а также точки NO контактора, которая переводит контактор в удерживаемое положение. Теперь при нажатии кнопки прямого пуска контактор вперед удерживается, и двигатель начинает вращаться в прямом направлении.Это же действие подразумевает обратный запуск мотора.

Схема автоматического пуска в прямом и обратном направлении с таймером

Полностью автоматический пускатель прямого и обратного хода со схемой таймера

Работа автоматического пускателя прямого обратного хода

При нажатии кнопки пуска контактор K1 включается на заданное время в таймере 1, когда таймер 1 завершает свое время, контактор 2 включается на заданное время в таймере 2. Этот процесс будет повторяться снова и снова автоматически. Чтобы остановить этот процесс, нажмите кнопку остановки.

Схема Пояснение

Здесь

K1 = Главный контактор

T1 = Таймер 1

T2 = Таймер 2

K2 = прямой контактор

K3 = обратный контактор

Работа схемы
  • При нажатии кнопки запуска главный контактор включается и удерживается. Этот контактор будет работать все время во время работы этой цепи.
  • Когда главный контактор включен, таймер (T1) работает через клемму T2 NC.
  • Когда T1 работает, контактор K2 включается через T1 NC и K3 NC.
  • Когда T1 завершает свое заданное время, таймер начинает пропускать ток через клемму NO.
  • Когда T1 становится NO, контактор K3 работает через T1 NO и K2 NC.
  • В то же время работает Т2.
  • Когда T2 достиг своего предварительно установленного времени, он отключает питание T1, потому что T1 работает от клеммы T2 NC таймера.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *