Обозначение на схеме датчика движения: Схема подключения датчика движения для освещения

Содержание

Датчик движения. Где применяется? Схемы подключения. | Проектирование электроснабжения.

Добрый день уважаемые читатели! В этой статье мы будем вкратце обозревать, что такое датчик движения, принципы его работы, области применения, схемы подключения и т.д. Напоминаю, что моя статья носит лишь краткий (поверхностных) обзор этого устройства, но учитывая специфику я полагаю, что этого будет вполне достаточно для расширения Вашего кругозора в области электротехники. Как и в предыдущих статьях мы разобьем нашу тему на несколько основных вопросов:

1. Что такое датчик движения? Принцип его работы и назначение.
2. Условное обозначение на планах и схемах.
3. Области применения.
4. Схемы включения.
5. Схемы расключения в распределительной коробке.

1. Что такое датчик движения? Принцип его работы и назначение.

Начнем с общего определения. Я постараюсь дать Вам его своими словами максимально для понимания. Датчик движения — это устройство со встроенной технологией приема и излучения тепловых и звуковых волн, в следствии приема или излучения которых способен осуществлять разрыв цепи (управление).

Иными словами датчик движения — является коммутационным устройством осуществляющим управление электрической цепью посредством встроенной в него технологии приема или отражения излучений (инфракрасные, микроволновые, ультразвуковые).

Датчики движения различают по принципу их технологического устройства и функционала системы датчика, и разделяют на следующие:

— Инфракрасный датчик. Его также называют пассивным. Работает он по принципу термометра. Как только в комнате появляется источник тепла – человек – датчик срабатывает. Однако, он отличается трудностями в настройке, ведь маленький ребенок или домашнее животное также являются источниками тепла.

— Микроволновой датчик. Признан самым современным и универсальным. Он постоянно сканирует пространство в поле его досягаемости. Такой датчик реагирует на абсолютно каждое движение.

— Ультразвуковой датчик. Такой прибор считается активным в отличие от инфракрасного датчика. Он запоминает все предметы в зоне обзора благодаря фиксации отраженного сигнала от них. Когда в помещении появляется новый движущийся объект, датчик срабатывает.

Это довольно краткие и простые определения. Более подробное есть в открытых источниках. Надо сказать что область познания датчиков довольно обширна и стоит отдельного внимания. Наша цель это краткое познание самых основных моментов относительно этого устройства.

Ниже рассмотрим как выглядит датчик движения.

Датчик движения. Общий вид. Изображение взято из открытых источников.

Датчик движения. Общий вид. Изображение взято из открытых источников.

Теперь я постараюсь подробно объяснить принцип работы датчика движения.

Датчик движение в наше время достаточно актуальное устройство, служащее в первую очередь для удобства управления освещением и других устройств. Готов поспорить, что почти каждый сталкивался с такой ситуацией, где был задействован такой датчик. Например вы подходите к парадной в темное время суток и тут внезапно загорается свет. Или же например поднимаясь по неосвещенной лестнице на каждом этаже загораются общие светильники. Свет в таких ситуациях очень помогает человеку ориентироваться в помещении, чувствовать себя спокойно.

Датчик движения выполняет очень важные в современном понимании функции. Во-первых: — он освобождает человека от принудительного включения освещения или другого электрооборудования, тем самым делая управление цепью автоматизированным. Во-вторых: — это конечно самый важный на мой взгляд момент — экономия электроэнергии. Часто можно встретить такую картину, когда светильники работают не для кого, или вовсе не нужны в месте где установлены. Как пример, можно посмотреть экономические годовые расчеты по электроэнергии в открытых источниках, сделать сравнительный анализ работы одного или нескольких светильников за день, соответственно определить трату и экономию электроэнергии за год и перемножить на стоимость кВт*ч. Полагаю, что экономия в денежном эквиваленте все же Вас порадует. И в-третьих: — ввиду рационального использования работы светильников и другого электрооборудования, позволяет на много дольше продлить срок их пользованием. Однако для большей пользы данные датчики устанавливают в цепи с выключателями для возможности принудительного управления освещением или другим оборудованием (например вентиляцией). В цепь можно также устанавливать таймер, сумеречное и другие реле. Также стоит упомянуть, что датчики движения тоже имеют свои коммутационные характеристики. Например нельзя управлять нагрузкой, чья токовая составляющая превышает токовую составляющую датчика, однако можно управлять магнитным контактором, который в свою очередь управляет цепями с большой нагрузкой. Об этом мы поговорим в наших будущих статьях. Теперь предлагаю перейти к следующему вопросу.

2. Условное обозначение на планах и схемах.

Кратко для проектировщиков я покажу как датчик движения обозначается на планах

Изображение из таблицы условных и графических обозначений оборудования

Изображение из таблицы условных и графических обозначений оборудования

Изображение из таблицы условных и графических обозначений оборудования

Изображение из таблицы условных и графических обозначений оборудования

Либо круг либо квадрат с угольным вырезом. Стоит отметить что в действующих ГОСТ таких определений нет. Однако условно изобразив его в таблице графических обозначений мы можем использовать это изображение на планах, не нарушая логических и принципиальных восприятий информации. На планах же обычно датчик располагают так

Высоту установки и расположение определяют по месту для максимально эффективной и беспрепятственной работы датчика. Чаще всего высоту определяют от 2 метров. Рядом с планами расположения устройств освещения необходимо обозначить принципиальную схему подключения датчика движения. Обозначение этой схемы значительно поможет при подключении и монтаже. Теперь поговорим о том где чаще всего применяются датчики движения.

3. Области применения.

Область применения и использования датчиков движения достаточно широкая. Стоит отметить, что датчики движения применяются не только для управления внутренним и наружным освещением. Элементарный тому пример это автоматические раздвижные двери в систему работы которых встроены датчики движения с двух сторон, или например включение вместе со светом вытяжной вентиляции в санузле. Датчики движения применяются на производствах, в различных учреждениях, коммерческих зданиях и помещениях, а также в домах и квартирах. Конечно их использование в больших помещениях и зданиях очень актуально по причине того, что на таких объектах задействовано большое количества устройств освещения внутреннего и наружного исполнения. Соответственно чем больше устройств потребления электроэнергии, тем больше приходится платить за нее, Датчики же помогают не только сократить расходы на электроэнергию, но и продлить срок пользования всем оборудованием. Давайте теперь разберем схемы их включения в цепи.

4. Схемы включения.

Предлагаю данный вопрос разбирать на примере работы датчика движения для управления освещением, для более удобного восприятия вами информации.

Нужно отметить что схем включения датчика в работу есть достаточное количество, мы же разберем две самые основные.

Схема включения датчика движения для прямого управления нагрузкой.

Структурная схема подключения датчика для прямого управления нагрузкой.

Структурная схема подключения датчика для прямого управления нагрузкой.

Это довольно распространенная схема включения датчика, и одновременно простая в реализации. Напряжение поступает на датчик а с него напрямую к светильникам (нагрузке). Для более удобного понимания данной схемы предлагаю её частично визуализировать

Визуализационная схема подключения датчика движения для прямого управления нагрузкой. Изображение взято из открытых источников.

Визуализационная схема подключения датчика движения для прямого управления нагрузкой. Изображение взято из открытых источников.

Теперь предлагаю рассмотреть такую же схему, но с возможностью принудительного управления нагрузкой (т.е через выключатель и т.п).

Структурная схема принудительного подключения датчика для прямого управления нагрузкой.

Структурная схема принудительного подключения датчика для прямого управления нагрузкой.

Такая схема более надежна в том плане, что датчик движения тоже имеет свой ресурс и может выйти из строя, в таком случае придется его заменить, а если такой возможности не будет? Во избежание подобной ситуации для гарантированного управления цепью, ставят в параллель выключатель. В таком случае при поломке датчика мы в любом случае можем осуществлять управление освещением (нагрузкой) в ручную. Как и прошлую схему взглянем на ее частичную визуализацию.

Визуализационная схема подключения датчика движения при принудительном управлении нагрузкой. Изображение взято из открытых источников.

Визуализационная схема подключения датчика движения при принудительном управлении нагрузкой. Изображение взято из открытых источников.

Выше представлены пожалуй самые часто применяемые схемы подключения датчика движения. Ниже предлагаю рассмотреть как необходимо осуществлять соединение проводников в распределительной коробке.

5. Схемы расключения в распределительной коробке.

Схемы дают наглядное и структурное представления работы цепи, однако не каждый может понять как все это необходимо реализовать на деле и многие при этом сталкиваются с определенным рядом трудностей. Ниже давайте рассмотрим визуализационную схему расключения проводников в распределительной коробке

Визуализационная схема расключения проводников в распределительной коробке. Подключение датчика движения при принудительном управлении нагрузкой. Изображение взято из открытых источников.

Визуализационная схема расключения проводников в распределительной коробке. Подключение датчика движения при принудительном управлении нагрузкой. Изображение взято из открытых источников.

Теперь мы видим, что оказывается на деле это и не выглядит чем-то очень сложным, тут главное внимательность и ответственный подход к монтажу. Изображение наглядно показывается все точки расключения в распределительной коробке, дает полное представление о работе схемы.

Теперь давайте подведем итоги. В этой стать мы познакомились не просто с определением — «что такое датчик движения», но принципом его работы, как это отражается в проектах, какие существуют типы управления и как происходит расключение в распределительной коробке. Надеюсь моя статья для Вас была полезной. если Вы знаете более сложные схемы применения датчиков движения, то рад буду обмену опыта. В следующей статье мы разберем специфику и важность планов освещения.

Как подключить датчик движения для освещения? Датчик движения для включения света – принцип работы Датчик движения для включения света как подключить.

Если вас интересует вопрос, как подключить датчик движения правильно, то вы открыли нужную статью. Изучив изложенный ниже материал, вы поймёте, что подключение такового практически схоже с установкой обычного выключателя, а главным отличием между ними является непосредственно принцип работы — механический и автоматический.

Подключение одного датчика движения в цепь


Для начала вы узнаете, как подключить один датчик движения в цепь. На нём есть три клеммных зажима. От одного зажима провод ведётся напрямую к фазе, другая клемма предназначена для нулевого провода, а третья — для подключения осветительного прибора. Как видите, схема подключения датчика движения достаточно проста.

Схема подключения датчика движения — Фото 04

Если вы хотели бы, чтобы освещение постоянно работало, даже когда отсутствует перемещение в зоне видимости, нужно параллельно подключить выключатель непосредственно к датчику движения.

Для этого выключатель подключается от фазы к части провода, расположенного между датчиком движения и осветительным прибором. Когда выключатель разомкнут, то датчик движения будет работать, как того и требуется, но если замкнуть выключатель, то лампа будет работать в обход датчика. Всё достаточно просто.

Подключение нескольких датчиков в цепь


Теперь попытаемся объяснить, как подключить датчики движения, если их два или более. А требуется это в том случае, если радиус действия такого датчика слишком мал и его не хватает для охвата необходимой территории.

Нужно подбирать место для монтажа датчика таким образом, чтобы ему открывался наибольший угол обзора. Но в помещениях хаотичной планировки такое осуществить при помощи одного устройства практически невозможно. В таком случае датчики подключаются параллельно к одной фазе! Если подключить датчики к разным фазам, то будьте готовы к появлению короткого замыкания из-за межфазного подключения.

Место для монтажа


Даже если вы нашли схему датчика движения для освещения, выбрать наилучшее место для установки не так-то и просто. Вы должны учитывать сразу несколько факторов, влияющих на качество его работы. Так, не следует устанавливать его около отопительных систем, кондиционеров, источников электромагнитного излучения (микроволновая печь, радиоприёмники, телевизоры).

На практике подключение датчика движения следует начинать с его осмотра. На коробке (обычно под клеммами) находится схема подключения датчика движения. Клемм три и имеют они следующие обозначения: L, N и L со стрелочкой. Обычная L обозначает клемму, к которой подключается фаза. N — нулевой провод, а L со стрелочкой — провод для соединения с лампой.

Осмотрите схему, состоящую из светильника и выключателя в помещении. Разберите её и убедитесь в том, что выключатель размыкает фазу. Но может случиться и так, что выключатель установлен на нулевом проводе. Светильник работает, хоть и такой вариант небезопасен.

Обратите внимание на провода, идущие из стены к люстре. Их два. Зачистите провода и подсоедините клеммную колодку из трёх штук. Схема датчика движения для освещения проста: через верхнюю клемму колодки люстры проведите фазу и замкните её на клемме датчика, обозначенной буквой L. Через среднюю клемму колодки люстры проведите нулевой провод и замкните его на клемме датчика с обозначением N.

Через среднюю клемму колодки люстры проходят ещё два провода. Один провод подключается к люстре, а другой — ко второй розетке. Фазовый провод от клеммы датчика идёт к другой клемме не напрямую, а через разомкнутое реле. Клемма с буквой L и стрелочкой на датчике движения соединяется с третьей клеммой колодки люстры. К нижней клемме колодки люстры подключают лампочку и дополнительную розетку. Реле будет срабатывать тогда, когда датчик движения зафиксирует какие-либо колебания. Как видите, подключение датчика движения для освещения несложное.

Подключить датчик движения своими руками не сложнее, чем заменить лампочку или . Прибор работает по стандартной схеме, замыкая или размыкая электрическую цепь.

Вконтакте

Одноклассники

Назначение

Задача прибора — автоматически подавать или отключать нагрузку в тот момент, когда зарегистрировано движение, учитывая при этом текущий уровень освещенности помещения.

Днем или утром, когда света в комнате достаточно, датчик не будет включать дополнительные лампы.

Обычная сфера применения датчиков — регулировка освещения на улицах или в подъездах, где свет требуется только в краткий промежуток времени, когда на участке пространства находится человек. В быту датчики движения применяют для автоматического включения/выключения света в помещении, где находятся непродолжительное время (например, в прихожих и коридорах).

Схема подключения датчика движения видео:

Как это работает?

Когда движущийся объект попадает в зону, контролируемую датчиком, прибор замеряет степень освещенности. При значении ниже заданного в настройках (когда света вокруг датчика мало), устройство замыкает электроцепь и включает осветительные приборы.

Принцип работы датчика движения логичен и достаточно прост, что гарантирует отсутствие «ложных сигналов» и уменьшает вероятность поломки прибора. С точки зрения практического применения все датчики движения работают по единому принципу и выполняют схожие задачи. Однако по техническим и конструкторским особенностям устройства различаются.

Типы конструкции датчиков

Устройства для регистрации движения разделяют в первую очередь по назначению. Выделяют модели:

  • охранные;
  • бытовые.

Извещатели, или охранные датчики движения, используют при монтаже сигнализации. Их также называют инфракрасными извещателями.

Обратите внимание!

Бытовые датчики подходят для домов и квартир, они менее сложны и менее чувствительны.

Выделяют активные (в датчике применяются приемник и передатчик) и пассивные (в приборе установлен только приемник, который реагирует на ИК-излучение) модели.

Бытовые датчики движения

В частных домах и квартирах чаще всего используют пассивный датчики, реагирующие на ИК-излучение. Устройство либо совмещено с лампой или прожектором, либо оборудовано реле, позволяющим подключить освещение.

Именно бытовые модели оснащаются дополнительным датчиком освещенности. Такое устройство датчика движения позволяет ему «решить», нужно ли включать свет или естественного освещения достаточно. Большинство моделей оборудованы регулятором, при помощи которого можно указать, на какой промежуток времени после срабатывания нужно включить свет.

Устройство датчика

Как выбрать место для датчика?

Чтобы прибор работал корректно, нужно внимательно выбирать место расположения прибора. Мало обеспечить нужную «зону реагирования», датчик необходимо изолировать от влияния внешних факторов, которые могут блокировать его работу или спровоцировать лишние срабатывания.

Не следует ставить датчик рядом с техникой, которая излучает тепло или электромагнитные волны. Не лучшей идеей будет установить датчик движения возле батареи или трубы отопления, по которой подводится горячая вода.

Эффективен датчик в помещениях, где проводится относительно мало времени — например, в коридоре. Устанавливать прибор в ванной комнате или гостиной не слишком удобно — придется постоянно «включать» свет заново, совершая лишние движения.

Схемы подключения

Подключение датчика

Обычно прибор подключают в сеть вместо выключателя — замыкание цепи происходит автоматически. Если нужно предусмотреть режим, в котором лампа не гаснет после заданного промежутка времени, в схему встраивают отдельный выключатель. Схема подключения предусматривает параллельную работу датчика и обычного выключателя.

В большом помещении один прибор может не справиться с объемом комнаты. Тогда применяют схему с двумя датчиками, расположенными в противоположных углах, которые контролируют один светильник либо зональную подсветку. Важно проследить, чтобы оба прибора работали от одной фазы, в противном случае возникнет короткое замыкание.

Для случаев, когда необходимо включить несколько мощных ламп при сигнале от одного датчика (например, при организации уличного освещения), применяют схему подключения с магнитным пускателем.

Проводка

Как подключить датчик движения?

Датчики подсоединяются к бытовой сети 220В — кроме автономных моделей, работающих от встроенной батареи. На корпусе прибора обязательно указывается схема правильного подключения, обычно рисунок нанесен возле клеммной колодки.

Буква L обозначает точку включения фазы, N — нуля. Провод светильника подводится к разъему, промаркированному символом L’. Для подключения прибора нужно подать напряжение на первые два разъема.

Провод с вилкой со свободной стороны зачищают от изоляции и соединяют с клеммами. При ошибке между фазой и нулем датчик не испортится — он всего лишь не будет работать, индикатор подачи питания также не включится. Длина провода подбирается таким образом, чтобы вилка свободно доставала до ближайшей . Подключение датчика движения для освещения в случае отсутствия поблизости розетки можно организовать и при помощи удлинителя — на качество работы прибора это не повлияет.

Подключение

Проверка установки

Большинство бытовых датчиков оборудованы световым индикатором. Светодиод зажигается, когда прибор подключен к сети и работает. В «дежурном» режиме диод мигает с интервалом примерно в секунду. Если индикатор не зажегся сразу после подключения прибора к питанию — это еще не признак неисправности датчика. Некоторым моделям на активизацию и подготовку к работе требуется 20-30 секунд.

Обратите внимание!

При срабатывании устройства частота включений диода возрастает.

Благодаря этой особенности исправность устройства можно проверить даже без полного подключения к сети, что упрощает выбор подходящего места для монтажа датчика.

Как настроить датчик движения?

Изменение настроек прибора проводится при помощи рукояток на корпусе. Их количество зависит от модели устройства, обычно переключателей от 2 до 4. Возле каждой ручки находится обозначение настройки, за которую она отвечает (буквенное и символьное), а также направление вращения рукоятки.

Оптимальные параметры и настройки имеет смысл подобрать до монтажа датчика. После подключения, особенно если прибор монтируется под потолком, тестировать настройки и менять их будет не слишком удобно.

LUX означает регулятор освещенности. С помощью этой настройки устанавливается пороговое значение освещенности, после которого датчик реагировать не будет. При первом подключении значение обычно ставится на максимум.

Настройка датчика движения TIME отвечает за промежуток времени после срабатывания, в течение которого свет будет включен. Если движение продолжается после первого срабатывания, таймер начинает отсчет заново, потому при базовой установке время обычно ставится на минимум.

Пожалуйста, помогите нам сделать сайт лучше! Оставьте сообщение и свои контакты в комментариях — мы свяжемся с Вами и вместе сделаем публикацию лучше!

Экономичным и в то же время функциональным, то настоятельно рекомендовали вам установить на прожекторы датчик движения. Данное устройство позволит автоматизировать систему подсветки и включать ее не только при наступлении темноты, но и в том случае, если в зоне обнаружения будет зафиксировано движение. Однако далеко не всегда получается выполнить настройку так, как вам хочется, в результате чего сенсор срабатывает при малейшем колебании веток либо когда на улице не слишком темно. Именно поэтому для наших читателей мы подготовили подробную инструкцию, в которой доступно объяснили, как настроить датчик движения для освещения с двумя и тремя регуляторами.

Чем можно регулировать детектор?

В современных датчиках движения (ДД) можно настроить чувствительность, освещенность, время задержки выключения света и угол установки.

Все эти параметры при правильной настройке позволяют сэкономить до 50% электроэнергии, что является весьма значительным показателем. Однако следует сразу же отметить, что не во всех датчиках движения три регулятора. В старых моделях можно отрегулировать только два параметра – время задержки и чувствительность либо время задержки и уровень освещенности, как на фото ниже:

Обзор сенсора

Сейчас мы по отдельности разберем, как настроить датчик движения на прожекторе либо другом варианте светильника.

Настройка параметров

Угол установки

Первое что нужно сделать – правильно отрегулировать зону обнаружения ДД. В современных моделях светильников детекторы представлены отдельными элементами, закрепленными на шарнире. Вот его вы как раз и должны настроить таким образом, чтобы инфракрасные лучи были направлены на максимально возможную площадь обнаружения. Тут важную роль играет не только угол установки, но и высота, на которой вы решите . Оптимальные и самые неудачные способы установки рассмотрены на схемах ниже:

Чувствительность

Второй параметр, который вы должны настроить – чувствительность, который обозначается на корпусе «SENS». Как правило, для регулировки используется колесико с диапазоном от min (low или -) до max (high или +). Настройка чувствительности датчика движения наиболее сложная. Вы должны отрегулировать параметр таким образом, чтобы детектор не срабатывал на мелких животных, но в то же время включал свет при обнаружении человека. В этом случае рекомендуется сразу же настроить SENS на максимум, подождать пока фонарь выключиться и проверить, как будет срабатывать сенсор.

Постепенно вам нужно будет уменьшать чувствительность до тех пор, пока не найдете «золотую середину». Обращаем Ваше внимание на то, что если у вас во дворе есть большая собака, выполнить настройку датчика, чтобы он на нее не реагировал, вряд ли получится.

Следующая настройка – порог освещенности, обозначенный на корпусе «LUX». Данный параметр необходим для того, чтобы настроить датчик на включение света только при наступлении темноты. К примеру, зачем освещению включаться при обнаружении движения в светлое время суток, все равно это ничего не даст. При первой настройке рекомендуется выставить максимальное значение LUX и при наступлении вечера отрегулировать подходящее время, при котором будет срабатывать сенсор.

Если на Вашем детекторе нет регулятора LUX, то можно дополнительно . В этом случае получится все равно настроить прожектор, чтобы он включался только ночью.

Время задержки

Ну и последний параметр – задержка включения, обозначенный «TIME». Время настраивать легче всего, диапазон может колебаться от 5 секунд до 10 минут. Тут Вы уже сами должны решить, на какое время лучше выставить задержку. Существуют датчики, у которых при каждом новом включении время задержки увеличивается. При первоначальной настройке рекомендуется выставить данный регулятор на минимальную отметку, чтобы можно было быстро выполнять проверку параметров.

Также немного полезной информации вы можете узнать, просмотрев данное видео:

Как выполнить регулировку

Вот и все, что хотелось рассказать вам о том, как настроить датчик движения для освещения. Такие детекторы можно устанавливать не только на улице, но даже и в квартире, к примеру, на лестничной площадке в подъезде. Надеемся, что предоставленная инструкция по настройке детектора с двумя и тремя регуляторами была для Вам полезной!

Датчик освещения LXP-02 и LXP-03. Монтаж

В статье рассмотрим вопросы монтажа и подключения датчика освещенности. Также приведены электрические схемы наиболее популярных моделей датчиков света.

Напоминаю, что это устройство широко применяется в сфере домашней автоматики для включения/выключения электрического освещения в зависимости от уровня освещенности на улице. Названия могут быть разные – датчик света, датчик освещенности, светоконтролирующим выключателем или фотореле, но суть одна.

Подробно о таком датчике я рассказал в первой части статьи – . Там подробно рассмотрено его устройство, работа и характеристики.

Поэтому – сразу перехожу к делу:

Подключение датчика освещенности

Приведу три варианта схемы подключения, все они идентичны, разница только в способе отображения.

1. Схема по аналогии с датчиком движения

Схема подключения датчика освещенности полностью совпадает со . Отличается только “начинка” датчиков.

Схема взята из статьи про датчик движения, ссылка выше.

2. Схема подключения датчика света из инструкции

Вот как схема подключения датчика света приведена в инструкции:

Датчик освещения LXP. Схема подключения из инструкции

3. Подключение на основе фото датчика

Для тех, кто любит, чтобы всё было “на пальцах”, привожу такую картинку:

Небольшое пояснение по схемам подключения:

  • На коричневый провод приходит фаза.
  • На синий провод подключается ноль.
  • На красный провод подключается нагрузка (первый вывод светильника).
  • Второй вывод светильника подключается к нулю (туда же, куда и синий провод датчика)

Стоит добавить, что датчики света могут быть подключены так же, как и обычные выключатели – последовательно и параллельно, если есть необходимость. Пример можно увидеть в статье про .

Итак, с подключением разобрались, теперь

Монтаж датчика освещения

Казалось бы, чего тут премудрого? Прикрутил (см.картинку в начале статьи), подключил, настроил, и всё! Но бывает, место установки выбрано неудачно, и начинаются проблемы.

У нас на улице одно время уличные светильники вечером включались замысловато. Включатся, потухнут, опять включатся, и так с периодом около 1 минуты. Потом, с наступлением хорошей темноты, включались окончательно.

Почему так? Просто датчик освещения ошибочно был установлен в зону освещения включаемого фонаря. Получается: стало темно – датчик сработал – фонарь загорелся – стало светло – датчик выключился – стало темно… И так далее, замкнутый круг.

Настройка и калибровка

При настройке датчика освещенности важно использовать черный пакетик, который идёт в комплекте с датчиком. Этот пакетик служит для имитации ночи.

Кулечек для настройки датчика освещения

Из органов настройки в датчике освещенности – только регулятор уровня освещения (LUX). Он устанавливает уровень, про котором срабатывает внутреннее реле датчика.

Подробнее настройка уровня описывается в описании принципиальной схемы, ниже.

Есть простейшие датчики освещения (например, LXP-01), в котором вообще нет никаких регулировок. Есть продвинутые, где ещё есть регулятор времени задержки включения/выключения.

Ну, а теперь самое интересное –

Схемы датчиков освещения

Несомненно, для быстрого и легкого ремонта датчика освещенности нужна его схема, по которой сразу станет понятно, что куда подключено и как работает. Ниже привожу парочку схем датчиков и рекомендации по ремонту. Будут вопросы по ремонту – задавайте в комментариях.

Схема срисована именно с той платы, которая показана по ссылке в начале статьи. Стоит отметить, что производитель постоянно работает над улучшением своего устройства (цена/качество), поэтому схема может меняться.

Датчик освещения LXP-02. Схема электрическая принципиальная

Но принцип остается тот же:

Напряжение питания 220 Вольт поступает через клеммы L (фаза) и N (ноль).

Фазу и ноль можно “перепутать”, как в принципе можно (но не рекомендуется) выключать ноль, а не фазу в обычных выключателях. Страдает только безопасность и здравый смысл.

Напряжение выпрямляется диодным мостом (4 диода типа 1N4007), фильтруется (сглаживается) электролитическим конденсатором, и стабилизируется на уровне +22…24 Вольта стабилитроном типа 1N4748.

Далее постоянное напряжение питает остальную схему, которая работает так. На выходе резистивного делителя 68к – VR – Фоторезистор формируется напряжение, обратно пропорциональное освещённости. Подстроечный резистор VR с сопротивлением 1 МОм – это та самая “крутилка”, с помощью которой устанавливается желаемый уровень срабатывания.

Не факт, что в таких схемах ставят фоторезистор, может стоять и фотодиод, но принцип тот же.

Хотите экономить электроэнергию – ставьте максимальное сопротивление, крутите его по часовой (LUX- ), и он будет срабатывать тогда, когда будет уже совсем темно.

А хотите, чтобы освещение на улице включалось от малейшей тучки – крутите регулятор в другую сторону (LUX+ ).

При наступлении темноты освещенность падает, сопротивление фоторезистора растёт, напряжение на базе транзистора растёт. И достигает такого уровня, что транзистор открывается, через коллектор протекает ток, достаточный для включения реле КА . Реле своими контактами включает нагрузку, которая подключается через вывод LOAD .

При этом загорается светодиод, а конденсатор 47 мкФ в цепи базы сглаживает все процессы, чтобы реле слишком быстро не щёлкало, например, если его перекрывает ветка дерева, колеблющаяся от ветра.

В заключение – схема более мощной модели, LXP-03:

Датчик движения чаще всего используется для включения освещения, когда вы проходите или находитесь рядом с ним. С его помощью можно хорошо экономить электричество и избавить себя от необходимости щелкать выключателем. Это устройство также используется и в системах сигнализации, для определения нежелательных проникновений. Кроме этого их можно встретить и на производственных линиях, они там нужны для автоматизированного выполнения каких-либо технологических задач. Датчики движения иногда называют датчикам присутствия.

Типы датчиков движения

Датчики движения различают по принципу действия от этого зависит их работа, точность срабатывания и особенности использования. У каждого из них есть сильные и слабые стороны. От конструкции и рода используемого элемента зависит и конечная цена такого датчика.

Датчик движения может быть выполнен в одном корпусе и в разных корпусах (блок управления отдельно от датчика).

Контактные

Самый простой вариант датчика движения — использовать или . Геркон (герметичный контакт) это переключатель который срабатывает при появлении магнитного поля. Суть работы заключается в установки концевого выключателя с нормально-разомкнутыми контактами или геркона на дверь, когда вы её откроете и зайдете в помещение контакты замкнутся, включат реле, а оно включит освещение. Такая схема изображена ниже.

Инфракрасные

Срабатывают от теплового излучения, реагируют на изменение температуры. Когда вы входите в поле зрения такого датчика он срабатывает на тепловое излучение от вашего тела. Недостатком такого способа определения являются ложные срабатывания. Тепловое излучение присуще всему что есть вокруг. Приведем несколько примеров:

1. стоит в помещении с электрообогревателем, который периодически включается и отключается по таймеру или термостату. При включении обогревателя возможны ложные срабатывания. Можно попробовать этого избежать долгой и скрупулезной настройкой чувствительности, а также попыткой направить его так, чтобы в прямой видимости не было обогревателя.

2. При установке на улице возможны срабатывания от порывов тёплого ветра.

В целом эти датчики нормально работают, при этом это самый дешевый вариант. В качестве чувствительного элемента используется PIR-сенсор, он создает электрическое поле пропорционально тепловому излучению.

Но сам по себе сенсор не имеет широкой направленности, поверх него устанавливается линза Френеля.

Правильнее будет сказать — многосегментная линза, или мультилинза. Обратите внимание на окошко такого датчика, оно разбито на секции это и есть сегменты линз, они фокусируют попадающие излучения в узкий пучок и направляют его на чувствительную область датчика. В результате этого на маленькое приемное окошко пироэлектрического сенсора попадают пучки излучений с разных сторон.

Для увеличения эффективности детектирования движения могут устанавливать сдвоенные, или счетвертненные сенсоры или несколько отдельных. Таким образом, расширяется поле зрение прибора.

Исходя из вышесказанного нужно отметить и то, что на датчик не должен попадать свет от лампы, а также в поле его зрения не должно быть ламп накаливания, это также сильный источник ИК-излучения, тогда работа системы в целом будет нестабильной и непредвиденной. ИК-излучения плохо проходят через стекло, поэтому он не сработает, если вы будете идти за окном или стеклянной дверью.

Это самый распространённый вид датчика его можно купить а можно и собрать самому на основе, поэтому рассмотрим его конструкцию подробно.

Как собрать ИК-датчик движения своими руками?

Самый распространенный вариант — это HC-SR501. Его можно купить в магазине радиодеталей, на али-экспресс, часто поставляется в наборах Arduino. Может использоваться как в паре с микроконтроллером, так и самостоятельно. Он представляет собой печатную плату с микросхемой, обвязкой и одним ПИР-сенсором. Последний накрыт линзой, на плате есть два потенциометра, один из них регулирует чувствительность, а второй время которое на выходе датчика присутствует сигнал. При детектировании движения на выходе появляется сигнал и держится установленное время.

Он питается напряжением от 5 до 20 вольт, срабатывает на расстоянии от 3 до 7 метров, а сигнал на выходе держит от 5 до 300 секунд, вы можете продлить этот период, если использовать , микроконтроллер или реле задержки времени. Угол обзора порядка 120 градусов.

На фото изображен датчик в сборе (слева), линзу (справа внизу), обратную сторону платы (справа вверху).

Рассмотрим плату подробнее. На её передней стороне расположен чувствительный элемент. На задней — микросхема, её обвязка, справа два подстроечных резистора, где верхний — время задержки сигнала, а нижний — чувствительность. В нижней правой части джампер для переключения режимов H и L. В режиме L датчик выдает выходной сигнал только она период времени выставленного потенциометром. Режим H выдает сигнал, пока вы находитесь в зоне действия датчика, а когда вы её покидаете сигнал, исчезнет через время заданное верхним потенциометром.

Если вы хотите использовать датчик без микроконтроллеров, тогда соберите эту схему, все элементы подписаны. Схема питается через гасящий конденсатор, напряжение питания ограничено на уровне 12В с помощью стабилитрона. Когда на выходе датчика появляется положительный сигнал реле Р включается через NPN транзистор (например BC547, mje13001-9, КТ815, КТ817 и другие). Можно использовать автомобильное реле или любое другое с катушкой на 12В.

Если вам нужно реализовать какие-то другие функции — можно использовать его в паре с микроконтроллером, например . Ниже представлена схема подключения и программный код.

Ультразвуковые

Излучатель работает на высоких частотах — от 20 кГц до 60 кГц. Отсюда выходит одна неприятность — животные, например собаки, чувствительны к этим частотам, более того они используются для их отпугивания и дрессировки. Такие датчики могут раздражать их и с этим возникают проблемы.

Ультразвуковой датчик движения работает на эффекте Допплера. Излучаемая волна, отражаясь от подвижного объекта, возвращается и принимается приёмником, при этом длина волны (частота) незначительно изменяется. Это детектируется, и датчик выдает сигнал, который используют для управления реле или симмистором и коммутации нагрузки.

Датчик неплохо отрабатывает движения, однако если движения очень медленные — он может не срабатывать. Преимуществом является то, что они не чувствительны к изменениям условий окружающей среды.

Лазерные или фотодатчики

В них есть излучатель (например ИК-светодиод) и приемник (фотодиод аналогичного спектра). Это простой датчик, возможна реализация в двух исполнениях:

1. Излучатель и фотодиод монтируются в проходе (контролируемой зоне) напротив друг друга. Когда вы проходите через него вы заслоняете излучение и оно не достигает приемника, тогда срабатывает датчик и включается реле. Это можно использовать и в системах сигнализации.

2. Излучатель и фотодиод стоят рядом друг с другом, когда вы находитесь в зоне действия датчика излучение отражается от вас и попадает на фотодиод. Это называется также датчиком препятствия, с успехом применяется в робототехнике.

Микроволновый

Состоит также из передатчика и приемника. Первый генерирует сигнал высокой частоты, второй их принимает. Когда вы проходите рядом изменяется частота. Приемник настроен таким образом, что при изменении частоты сигнал усиливается и передается на исполнительный орган, например реле, и происходит включение нагрузки.

Микроволновые датчики движения очень чувствительны, позволяют «увидеть» объект даже за дверью или за стеклом, однако это вызывает и проблемы ложного срабатывания, когда объект находится вне поля предполагаемой видимости.

Это достаточно дорогостоящие датчики, но они реагируют даже на самые незначительные движения.

Подобным образом работают и емкостные приборы. Такая схема изображена ниже.

Как подключить датчик движения?

Можно придумать бесчисленное множество вариантов и схем подключения датчика движения в зависимости от ваших потребностей, иногда нужно чтобы система срабатывала при движении в разных местах, например уличное освещение по пути от дома до ворот и наоборот, в других случаях необходимо принудительное включение или отключение света и т.д. Мы рассмотрим несколько вариантов.

Обычно у датчика движения есть три провода или три клеммы для подсоединения:

1. Приходящая фаза.

2. Фаза, отходящая для питания нагрузки.

Если вам не хватает мощности датчика — используйте промежуточное реле и . Для этого вместо лампочки в нижеуказанных схемах подключаются выводы катушки.

На фото ниже изображены клеммы к которым подсоединяются питающие провода.

Заключение

Использование датчиков движения, как бы это ни звучало, это шаг . Во-первых, это поможет экономить электроэнергию и ресурс ламп. Во-вторых, это избавит от необходимости каждый раз щелкать выключатель. Для освещения на улице при правильной настройки можно сделать так, чтобы свет включался, когда вы подходите к воротам дома.

Если расстояние от ворот до дома 7-10 — можно обойтись и одним датчиком, тогда не придется прокладывать кабель на второй датчик или собирать схему с проходным выключателем.

Как уже было сказано чаще всего встречаются ИК-датчики, их достаточно для простых задач, если вам нужна большая чувствительность или точность — присмотритесь к датчикам других типов.

Выключатель с датчиком движения: устройство, подключение

Совмещение различных технологических устройств в одном приборе расширяет его функции. Успешным примером является выключатель с датчиком движения.

Описание

Выключатель с датчиком движения – электронный прибор, реагирующий на присутствие или перемещение объектов в зоне его досягаемости. При фиксации движения он замыкает цепь питания осветительных приборов, включая их.

Принцип работы устройства несложный: движение в зоне его покрытия фиксирует инфракрасный (ультразвуковой, микроволновый) датчик, автоматически замыкая цепь питания подсоединенных к нему ламп. Цепь размыкается по прошествии времени установленного на таймере и при отсутствии движущихся объектов. Устройство осуществляет непрерывный мониторинг в определенной зоне досягаемости, реагируя, если в ней происходят изменения.

Виды и конструкция

Существует несколько форм-факторов выключателей такого типа. Чаще всего это приборы с интегрированными в их корпус необходимыми элементами (датчиком, линзами, фотоэлементами), есть образцы с элементами, выполненными отдельно друг от друга.

По способу контроля есть такие виды:

  • Автоматические
  • Управляемые дистанционно

По типу монтажа:

Для потолка
Встраиваемые
Накладные

По принципу функционирования датчиков:

  • Инфракрасные. Используются чаще всех
  • Ультразвуковые
  • Микроволновые

Чаще всего уместно сгруппировать приборы, выделив следующие типы:

  • С датчиком движения, отключаемым вручную
  • С автоматическим отключением по таймеру и выключением при определенном уровне освещения
  • С возможностью управлять временем освещения в ручном режиме
  • С отключением по таймеру без реакции на уровень освещения

При выборе изделия учитывают его зону покрытия, дальность действия, угол обзора (вертикальный, горизонтальный), как правило, он составляет 90, 180 или 360. Следует также ознакомиться со следующими параметрами: количество одновременно подключаемых источников света, степень защиты.

Изделия с инфракрасными реагирующими элементами пассивного типа наиболее популярные и доступные. В основе их работы фиксация теплового излучения от всех выделяющих тепло объектов.

Составляющие части и эксплуатация

Рассматриваемые выключатели отличаются от обычных, хотя могут иметь также как и они клавиши выключения. Гаджет оснащен интегрированным датчиком движения, соответствующим реле замыкания/размыкания контактов, элементами настройки (таймер, потенциометр). Если девайс продвинутой конструкции, на его корпусе располагается несколько элементов управления. Обязательной частью является линза или окошечко для датчика.

Такие выключатели, как и обычные модели, оснащены также и элементами для ручного включения/выключения освещения: клавишами, кнопками, переключателями и по внешнему виду почти не отличаются от них. Единственное отличие – наличие по центру линзы датчика и нескольких элементов управления (тумблеров, регуляторов). Иные приборы состоят из двух частей. Первая представляет собой блок с колодками для подключения кабелей (распредкоробкой). Вторая с поворачивающейся ножкой содержит сам датчик и крепится к стене.

Для удобства пользования устройством, его конструкция предусматривает выставление определенных параметров. Пользователь настраивает чувствительность, мощность освещения, устанавливает интервал для реагирования на изменение обстановки.

Чувствительность

Чувствительность настраивается экспериментальным методом, проверяя реакцию устройства на движущиеся объекты с различными параметрами. Это необходимо, чтобы гаджет не реагировал на все подряд: птиц, насекомых, движения веток деревьев.

Реакции на интенсивность окружающего освещения

Опция настройки реакции на интенсивность окружающего освещения и мощности лампы предусматривает задействования прибора только в нужную пору суток с заданной интенсивностью света. Этот параметр выставляется посредством потенциометра или подобного узла в составе выключателя.

Таймер

Таймер – обязательная часть прибора. С его помощью фиксируется время, в течение которого светит лампа после реакции датчика и в отсутствие движения объектов. Оптимальное значение – 1–2 мин, впрочем, пользователь может задать любой период в зависимости от возможностей настройки изделия.

Кроме чувствительного инфракрасного элемента, отдельные модели гаджетов имеют фотоэлемент, который реагирует на степень освещения. Это дает возможность автоматического включения света при наступлении темной поры времени или определенной интенсивности света. Есть образцы с дополнительным акустическим сенсором, реагирующим на звук (хлопок ладош, голос).

Место и условия для подключения

Устанавливают такие гаджеты для любых помещений и территорий, вместо обычных выключателей, чтобы не утруждать себя лишними манипуляциями, тем более, если элементы управления установлены в труднодоступных местах или далеко от двери (бани, подвалы, веранды). Такой прибор исключит случаи, когда забыли выключить свет, а также выступит в роли сигнализации, осветив пространство при замеченном движении.

Есть некоторые особенности и предосторожности для установки датчиков. Необходимо учитывать специфику работы устройств, реагирующих на инфракрасное излучение. Перед монтажом следует учесть, не будет ли мешать частое автоматическое срабатывание датчика обитателям помещения. Девайс должен иметь соответствующий уровень защиты, если используется на открытом пространстве.

Если используются маломощные осветительные приборы (светодиодные лампы мощностью до 15W), желательно выбирать не двух- а трехпроводный выключатель: у него нет ограничений на работу с маломощными приборами.

Девайсы, реагирующие именно на движение контролируют только видимые зоны, это нужно помнить при их установке. Радиус их зоны покрытия уменьшают легкие конструкции (карнизы, подвесные светильники) и стекло, которое является серьезной преградой для инфракрасных лучей.

Датчики выбирают на 15% мощнее, чем мощность запланированных к подключению устройств. Не следует их монтировать возле отопительных радиаторов, вблизи габаритных электроприборов, устройств излучающих электромагнитные волны, кондиционеров, телевизоров.

Номинальная мощность гаджетов – в границах 500–1000 Вт, это нужно учитывать при подключении нескольких ламп. Если девайс, кроме мониторинга движения, срабатывает на уровень освещения, его следует располагать там, где часто меняющаяся интенсивность света не будет провоцировать ненужную активацию.

Подключение

Процесс подключения имеет немало общего с подсоединением к питанию выключателя обычной конструкции.
Существует три основных схемы включения гаджетов в проводку:

  • Стандартная параллельная схема с одним датчиком
  • Схема включения датчика и отдельно обычного выключателя. Используется, когда нужно одновременно и ручное управление
  • Схема с несколькими датчиками, когда нужно контролировать обширную площадь.

Подготовительные действия

Перед работой необходимо подготовить инструменты. Для монтажа потребуются:

Сначала нужно найти фазу – определить, какой провод за что отвечает. Цветовое обозначение проводов в странах СНГ диаметрально противоположное европейскому. У китайских изготовителей оно может быть каким угодно. Схема подключения прилагается в инструкции к изделию, ее необходимо изучить, приступая к работе. Некоторые производители рисуют ее прямо на внутренней части корпуса прибора.
Определяют фазу специальным тестером. Если при его касании к проводу, загорается лампочка — ток есть, если нет – этот провод «ноль». Если тестер не может определить фазу, возможен обрыв в проводке.
После выбора способа подключения, производят следующие действия:

  1. Отключают на щитке электричество
  2. Старый выключатель отсоединяют. Аккуратно поддевают острым предметом клавишу и снимают ее, под ней отверткой откручивают болт – зажимы ослабевают и прибор легко вытаскивается из гнезда. Далее, откручивают зажимы, которые держат провода и окончательно отсоединяют
  3. На щитке включают электричество и определяют фазу при помощи отвертки-тестера
  4. После определения фазы, ток отключают и присоединяют новое изделие согласно схеме и инструкции
  5. На щитке включают электричество и тестируют прибор

Коробка с клеммами находится под крышкой сзади. Там же расположены три проводки разного цвета. Они идут из короба. Провода подключаются к зажимам на клеммах. При использовании многожильных проводов удобно пользоваться специальными наконечниками НШВИ вместо простой скрутки, но если их нет, то подключают без них – это особо не отразится на результате.

Параллельная стандартная схема

Внутри корпуса датчика есть три клеммы с зажимами. Первый – проводок к фазе, второй – «ноль», третий — для подключения лампы, которая должна быть подсоединена отдельной веткой кабеля. Провода заводятся в корпус и зажимаются клеммами. Провода стандартно обозначаются так: L — фаза, N — ноль, L и стрелочка — для соединения с лампой.

Процесс подключения удобно отобразить этапами:

  1. Через клемму сверху колодки лампы выводят фазу, соединяют ее с зажимом девайса с буквой L
  2. Через средний зажим выводят «ноль» и замыкают на соответствующей клемме гаджета
  3. Средний зажим колодки люстры имеет еще две жилы. Одна идет к люстре, другая – ко второй розетке. Выход с обозначением L со стрелочкой коммутируется с третьим зажимом колодки
  4. К нижнему зажиму колодки люстры коммутируют лампочку и дополнительную розетку.

Если есть распредкоробка, то ее схема имеет семь проводков: трое идут от датчика, два от осветительного прибора, два остальных – фаза и «ноль». Стандартно фаза питания – коричневая, «ноль» – синий. У проводка, подключаемого к датчику жила белого цвета – это фаза, зеленая — «ноль», красная — подключается к нагрузке.

Вся перечисленная совокупность жил соединяется следующим образом. Фазный питающий проводок коммутируется с фазой датчика (коричневая и белая жила). Далее, соединяют «ноль» от питающего кабеля, «ноль» датчика (зеленого цвета) и лампы. Два свободных провода – красного цвета от датчика, коричневый от лампы – соединяются. Подключение готово.

Схема подключения датчика и отдельного обычного выключателя

К уже существующей схеме, созданной указанным выше способом, можно подсоединить отдельный обычный выключатель. Это необходимо в тех случаях, когда есть потребность автоматического включения и одновременно нужен контроль за освещением с помощью обычного прибора. Такой выключатель подключается к датчику движения непосредственно через фазу к сегменту провода между датчиком и лампой.

Механизм работы этой схемы следующий. Когда цепь включателя разомкнута, то датчик функционирует, если же контакты замкнуты, то прибор освещения работает в его обход, как обычное устройство с ручным управлением.

Схема для нескольких датчиков

Часто возникает необходимость в подключении нескольких датчиков вместо одного. Это требуется, когда нужно охватить их зоной покрытия большое помещение, длинный коридор. Девайсы коммутируются параллельно друг к другу.

При такой разводке освещения фаза и «ноль» отдельно и без прерываний идут через каждый датчик, после чего они подсоединяются к осветительному прибору. Срабатывание каждого из датчика замыкает цепь и подает ток на контакты лампы

Многие устройства рассматриваемого типа сделаны за таким же принципом и с идентичной разводкой проводов, как обычные выключатели. Для их установки вместо простых механизмов, нужно просто снять старый прибор и идентичным способом установить выключатель света с датчиком движения.

Рекомендации потребителю

.
1.1  Климатические условия.

Климатические условия (температура окружающей среды,  влажность, конденсация влаги, прямое  попадание воды и солнечных лучей),  при которых будет  работать датчик, должны соответствовать тем,  на которые он рассчитан. Датчик давления исполнения У**2 (ГОСТ 15150-69) рассчитан для работы в умеренном климате при температуре окружающей среды от минус 40°С до плюс 80°С.  Место установки — открытый воздух, под навесом. Исключается прямое попадание солнечных лучей и  воды (во время дождя). Кратковременно датчики могут быть влажными в результате конденсации, вызванной резкими изменениями температуры или  в результате воздействия заносимых ветром осадков. Датчик по этому параметру испытывается в течение 10 суток. (максимальная влажность воздуха – 95-100% при температуре 40°С и ниже с конденсацией влаги). Не допускается длительная конденсация влаги на датчике, вызванная эксплуатацией датчика во влажном помещении при низкой температуре  измеряемой среды.

Датчик исполнения УХЛ**3.1 рассчитан для работы в умеренно-холодном  климате при температуре окружающей среды от минус 40°С до плюс 80°С.  Место установки – сухие, нерегулярно отапливаемые помещения. Попадание воды на датчик и конденсация влаги исключены. Максимальная влажность воздуха — 80% при температуре 35°С  без  конденсации влаги (группа В4 по ГОСТ 12997-84).

1.2. Температура измеряемой среды.

Температура измеряемой среды не должна выходить за пределы, указанные для интервалов температур  окружающей среды, если иное не оговорено в технической документации на датчик. Если температура измеряемой среды выше или ниже допустимой, должен устанавливаться отвод или предприняты другие меры для выполнения условий правильной эксплуатации.

При низкой температуре измеряемой среды необходимо принять  меры (специальный отвод и т.п.), чтобы исключить появление конденсата на корпусе датчика.

1.3. Состояние и свойства измеряемой среды

Измеряемая среда должна обладать следующими свойствами:

  • не быть агрессивной в титановым сплавам,
  • не иметь загрязнений, которые могут накапливаться и уплотниться в полости штуцера перед мембраной и вызвать отказ датчика (это не относится к датчикам с открытой воспринимающей мембраной.

    При эксплуатации датчика давления состояние измеряемой среды должно оставаться таким, чтобы исключить:

  • замерзание её при установленном датчике
  • кратковременные броски давления, величина которых превышает предельно допустимую (гидроудары,  резонансные гидравлические и звуковые явления).

    В обоих случаях возможен выход датчика из строя из-за повреждения или разрыва его мембраны.

    Отборные устройства рекомендуется размещать в местах, где скорость движения среды наименьшая, поток без завихрений, т.е. на прямолинейных участках трубопроводов, при максимальном расстоянии от запорных устройств, колен, компенсаторов и других гидравлических соединений.

    При пульсирующем давлении среды, гидроударах необходимо применять демпфирующую вставку нашего производства ТНКИ.716512.001  или другие меры (петлеобразные успокоители, и т.п.),  чтобы не допустить  повреждения или разрыва мембраны датчика.

    1.4. Механические воздействия

    Механические воздействия (вибрации, одиночные удары) на датчик не должны превышать следующих значений.

    Для группы V3 (исполнение УХЛ**3.1) вибрации с частотой 10-150 Гц, амплитуда – 0,35 мм, ускорение 49 м/сек2, удары не допускаются.

    Для группы G2 (исполнение У**2) вибрации с частотой 10-2000 Гц, амплитуда – 0,75 мм, ускорение 98 м/сек2, до 1000 ударов с ускорением до 100 м/ сек2  с длительностью ударного импульса 2-50 мс.
    Содержание

    2. Подключение датчика к магистрали с измеряемой средой

    2.1. Подготовка посадочного места

    Посадочное место, куда устанавливается датчик, изготавливается в соответствии с чертежом, приведённом в техническом описании. Для наиболее часто используемых датчиков со штуцером М20х1,5 , М12х1,5 посадочное место должно иметь вид, представленный на рис.2.1-1.

              Рис.2.1-1

    2.2. Монтаж датчика

    Монтаж датчика на рабочее место осуществляется гаечным ключом за шестигранник штуцера. Применение трубного ключа с использованием корпуса датчика в качестве силового элемента категорически запрещено. Герметичность соединения с магистралью достигается применением прокладки, как показано на рисунке 2.2-1.

    Рис.2.2-1

    Использовать уплотнение по резьбе (пакля, лента ФУМ) для обеспечения герметичности соединения запрещено, так как может произойти  повреждение мембраны большим избыточным давлением (при закручивании датчика в замкнутый объём жидкости).

    В случае установки датчиков непосредственно на технологическом оборудовании и трубопроводах должны применяться отборные устройства с вентилями для обеспечения возможности отключения и проверки датчиков.
    Содержание

    3. Электрическое подключение датчика давления

    3.1.Электрические схемы подключения датчика.

    3.1.1. Двухпроводная схема включения.

    Двухпроводная схема включения реализуется только на датчиках, имеющих выходной сигнал постоянного тока 4‑20 мА (рис.3.1-1).

    Рис.3.1-1

    На схеме использованы следующие обозначения: «Д»- датчик, «+Un» – 1-й контакт датчика, «-Un» – 2-й контакт датчика, которые являются одновременно цепями питания и сигнала, «Rн»- сопротивление нагрузки, «ИП»- источник питания.

    В качестве сопротивления нагрузки (Rн) в данной схеме может выступать прецизионный измерительный резистор, сопротивление стрелочного,  цифрового измерителя тока или входное сопротивление контроллера. Сопротивление нагрузки может ставиться как в плюсовую, так и в минусовую цепь датчика. При работе с системой сбора данных чаще схемотехнически оправдано включать нагрузку в минусовую цепь питания датчика.  Величина Rн выбирается а пределах  от 0 до 1 кОм. При этом напряжение питания должно иметь следующую величину:

    Up ³ 0,02 ·(Rн + Rл) + 12,                                                                                   (1)

    где Rн- сопротивление нагрузки  (Ом), Rл – сопротивление проводов соединительной линии (Ом), Up- напряжение питания датчика  (В).

    Для предотвращения поражения током обслуживающего персонала рекомендуется заземлять корпус датчика и источника питания (если он имеет металлические части, которые могут оказаться под напряжением). 

    Двухпроводная схема является самой простой и надёжной для работы датчика. Датчик не выходит из строя при неправильном включении, если  перепутана полярность питания, при коротких замыканиях, менее  чувствителен к помехам (особенно при малых сопротивлении нагрузки). При двухпроводном включении проще реализовать меры по снижению влияния электромагнитных помех (индустриальные помехи,  радиопомехи). 

    Снизить влияние электромагнитных помех на линию связи можно, прокладывая ее витой парой, экранированным кабелем, экранированной витой парой (рис 3.1-2).

    Рис.3.1-2
    (Схема подключения двухпроводного датчика с выходным сигналом 4‑20 мА с элементами защиты)

    Соединение экрана с общим проводом системы, либо с шиной заземления должно выполнятся только с одного конца. Экран кабеля линии связи должен быть надежно изолирован на всем его протяжении. Недопустимо использовать в качестве точки заземления  экрана корпус электротехнического устройства (шкафа). Заземление должно выполнятся только на шину заземления, кратчайшим путем соединенную с заземляющим устройством.

    На рис. 3.1-2 в цепь питания датчика дополнительно включен резистор Rогр, который защищает сопротивление нагрузки (вход измерительного или регистрирующего прибора) от возможных перегрузок при случайных замыканиях линии связи, если источник питания не имеет защиты от перегрузки, либо ток срабатывания защиты чрезмерно велик. Резистор Rогр не должен быть точным, но при этом его максимально возможное значение должно быть учтено при расчете по формуле (1).

    На рис. 3.1-3 показана схема подключения группы двухпроводных датчиков с выходным сигналом 4‑20 мА. Как и в предыдущих схемах, Rн – это либо измерительные резисторы, либо эквиваленты входного сопротивления приборов контроля и регулирования.

    Рис.3.1-3.
    (Схема подключения группы двухпроводных датчиков)

    Чтобы исключить появление дополнительной погрешности от протекания суммы выходных токов датчиков, объединение нагрузок должно быть выполнено в одной точке. Для минимизации обратной связи по проводам питания объединение проводов питания датчиков должно быть выполнено непосредственно на положительном зажиме источника питания, либо на колодке, расположенной в непосредственной близости от источника питания, а провод, соединяющий отрицательный зажим источника питания с общей точкой системы, должен быть минимальной длины.

    3.1.2. Четырёхпроводная схема включения

    На рис. 3.1-4 показана схема подключения четырехпроводных датчиков с унифицированным сигналами постоянного тока с токовым (0-5мА) или потенциальным выходом (0-5В).

    Рис.3.1-4.
    (Схема подключения четырехпроводного датчика)

    На схеме обозначены: «Д»- датчик, «+» – 1-й контакт датчика, «» – 2-й контакт датчика, которые являются цепями питания, «Rн+», «Rн-«-  контакты 3, 4, которые являются сигнальными цепями, «Rн»- сопротивление нагрузки, «ИП»- источник питания.

    Для датчиков с токовым выходом сопротивлением нагрузки (Rн) может быть прецизионный измерительный резистор, сопротивление стрелочного,  цифрового измерителя тока или входное сопротивление контроллера.

    Питание датчиков осуществляется от источника питания с напряжением 20÷36В. Сопротивление нагрузки берётся в пределах  от 0 до 2,5 кОм для датчиков с выходом 0-5 мА,   10 кОм и выше для датчиков с выходом 0-5 В. Датчики давления с потенциальным выходом в большей степени подвержены воздействию помех на линию связи, чем датчики с токовым выходом.

    Для предотвращения поражения током обслуживающего персонала рекомендуется заземлять корпус датчика и источника питания (если он имеет металлические части, которые могут оказаться под напряжением).

     Датчики давления с четырёхпроводной схемой не допускают неправильного включения; в этом случае  они выходят из строя. Кроме того, заземление приборов (датчика, источника питания, системы сбора)  в этом случае должно выполняться с особой осторожностью, чтобы не допускать появления напряжений и токов, которые могут вывести из строя подключенные приборы. 

     

    Рис.3.1-5.
    (Схема подключения группы четырехпроводных датчиков)

    На рис. 3.1-5 показана схема подключения группы четырехпроводных датчиков с объединением одного из полюсов нагрузок. В данном включении каждый датчик должен питаться от отдельного источника питания, либо от многоканального блока питания с гальваническим разделением каналов.

    Возможно включение группы четырехпроводных датчиков с одним источником питания, как показано на рис.3.1-6.

    Рис.3.1-6.
    (Схема подключения группы четырехпроводных датчиков с одним источником питания)

    Включение датчиков по этой схеме оправдано, если в качестве нагрузок используются гальванически развязанные измерительные или регистрирующие приборы. В схеме подключения с коммутацией сигналов с нагрузочных резисторов на общий вход системы сбора данных необходимо выполнить следующие условия: коммутация должна выполнятся электромеханическими переключателями, и переключение с одного резистора нагрузки на другой должно выполнятся с паузой. Применение электронных коммутаторов затруднено, поскольку выводы нагрузочных резисторов находятся под значительным потенциалом относительно полюсов источника питания, величина которого, кроме того, зависит от построения схемы конкретного типа датчика. Одновременное замыкание ключей хотя бы в двух каналах неминуемо приведет к отказу датчиков.

    3.2. Место прокладки линии связи

    Провода, соединяющие датчик с остальными приборами, составляют линию связи, которая не должна прокладываться вблизи  сильноточных электрических цепей. Сильноточные электрические цепи являются не только источником помехи, но и источником эдс, напряжение которой, складываясь с напряжением источника питания, приводит к появлению высокого напряжения и пробою датчиков. Источником  высоковольтных импульсов напряжения (из-за наводок в линии связи)  могут стать грозовые разряды. Поэтому в местах, где возможно воздействие  грозовых разрядов, необходимо применять специальные меры защиты (например, использовать блоки грозозащиты или датчики со встроенными блоками грозозащиты, которые выпускаются нашим предприятием).

    3.3. Подключение датчика к линии связи

    Правильное подключение датчика к линии связи особенно важно в случаях, когда датчик  необходимо защитить от попадания воды и влаги. В этом случае датчик должен быть выбран с сальниковым вводом (прямой, угловой), а линия связи в месте ввода в датчик должна быть выполнена  кабелем круглого сечения с требуемым количеством жил. Подключение кабеля к контактной колодке производится в соответствии с рисунком 3.3-1 в следующей последовательности.                                               

    Рис.3.3-1

    Разделывается кабель 6, снимается крышка 1, закрепленная двумя невыпадающими винтами, выворачивается гайка 5 сальника и извлекается металлическая шайба 4 и резиновая прокладка 3. В прокладке 3 строго посередине пробивается отверстие по внешнему диаметру кабеля или на 0,5 мм больше. На разделанный кабель одеваются гайка 5, шайба 4 и прокладка 3. Кабель с элементами уплотнения вставляется в отверстие сальника в соответствии с рис. 3.3-1. Ослабляются винты 7 контактной колодки 2. Оголенный проводник жилы вставляется между пластинкой 8 и контактом, заворачивается винт 7. Крышка 1 устанавливается на место и закрепляется винтами. Герметизация кабельного ввода производится закручиванием гайки  5 таким образом, чтобы прокладка туго обжимала кабель.

    Необходимо помнить, что крышка имеет три места, через которые может проникнуть вода и влага:

  • ввод кабеля,
  • отверстие для винтов крепления крышки,
  • соединение крышка- кожух датчика.

    Ввод  кабеля герметизируется сальниковым уплотнением, винты — резиновыми кольцами, которые  на них одеты, сама крышка – резиновым кольцом в основании крышки. Нарушение герметичности в любом из указанных мест может привести к отказу датчика из-за попадания в него воды. Поэтому необходимо следить, чтобы резиновые уплотнители были в наличии, а оба винта крышки и гайка сальника достаточно хорошо затянуты.

    Очень часто  в местах прохождения кабеля имеются зоны, где образуется конденсат (например, трубы с холодной водой). Капли конденсата, попадая на кабель, стекают по нему на крышку датчика и при недостаточно хорошем уплотнении попадают под крышку и далее в датчик. В таких случаях желательно, чтобы до ввода в датчик кабель  имел ниспадающую петлю, которая предотвратит стекание  воды в датчик по кабелю.

    ВНИМАНИЕ: Если при монтаже датчика по какой-либо причине допущено нарушение в уплотнении сальника, необходимо принять дополнительные меры по защите кабельного ввода от попадания воды и влаги. Однако, в этом случае предприятие не несёт ответственности за отказ датчика, вызванный попаданием в него воды.

    3.4. Включение датчика и проверка его работоспособности.

    Перед включением датчика необходимо проверить:

  • правильность выбора место установки датчика (климатические условия (1.1), температура измеряемой среды (1.2), состояние и свойства измеряемой среды (1.3), механические воздействия (1.4) на датчик),
  • правильность подключения датчика к магистрали с измеряемой средой (герметизации места соединения датчика с магистралью  с использованием требуемого посадочного места (2.1) и  правильного монтажа датчика (2.2)на рабочее место),
  • правильность электрического подключения датчика (схема включения датчика (3.1), место прокладки линии связи (3.2), герметичность кабельного ввода (3.3)),
  • напряжение питания датчика, которое не должно превышать 36 В,
  • наличие постоянных, переменных, импульсных напряжений между корпусом и питающими, сигнальными шинами (наводки, паразитные ёмкости в оборудовании, подключаемому к датчику и т.п.).

    Невыполнение любого из указанных условий может привести к отказу датчика.

    Напряжение между корпусом и питающими, сигнальными шинами может явиться источником помех, а при большой величине, если оно превышает напряжение пробоя изоляции датчика, приводит к его отказу. 

    Если все указанные требования выполнены, то производится включение датчика, т.е. подача питающего напряжения на него. О работоспособности датчика можно судить по его выходному сигналу при нулевом избыточном давлении (штуцер датчика соединён с атмосферой).  Выходной сигнал зависит от  типа применяемого датчика (ДИ, ДА, ДВ, ДИВ), от вида унифицированного сигнала датчика (4-20 мА, 0-5 мА, 0-5 В), от диапазонов измеряемых давлений.

    Датчики избыточного давления (ДИ), имеющие нижний  предел измеряемого избыточного давления равный нулю, так же как и датчики разрежения (ДВ),  должны иметь выходной сигнал, соответствующий нижней границе его выходного сигнала (4 мА, 0 мА, 0 В). Если нижний  предел измеряемого избыточного давления датчиков ДИ не равен нулю, то выходной сигнал будет всегда иметь меньшую величину. Отсутствие выходного сигнала у датчиков с выходом 4-20 мА, как правило,  свидетельствует об обрыве в соединительных цепях, плохом контакте в местах соединений, в том числе и в контактной колодке датчика (не зажат провод, окисная плёнки на контактах из-за долгого хранения) и т.п.

    Датчики абсолютного давления (ДА), так же как и датчики избыточного давления- разрежения (ДИВ), всегда имеют выходной сигнал больше, чем нижняя граница выходного сигнала.. «Добавку» (Д) к  выходному  сигналу датчика ДА можно ориентировочно рассчитать, зная верхний предел  измеряемого давления датчика (Рн) в МПа и диапазон (В) выходного сигнала  (16 мА для датчика с выходом 4-20 мА, 5 мА для датчика с выходом 0-5 мА,    5 В  для датчика с выходом 0-5 В).

    Д= В*0,1/Рн

    Особый класс составляют высокотемпературные датчики давления, нижний предел выходного сигнала которых устанавливается только при достижении рабочей температуры измеряемой среды (равной середине диапазона температурной компенсации). Проконтролировать работоспособность датчика в этом случае можно по данным из паспорта, в котором  указывается значение начального выходного сигнала  при комнатной температуре.

    Если выходной сигнал не соответствует паспортным данным, необходимо дополнительно проверить напряжение питания непосредственно на клеммах датчика. Для датчика с выходом 4-20 мА оно должно лежать в пределах 12В…36В,  для остальных датчиков 24В…36В.

    Если выходной сигнал датчика нестабилен, то, как правило, это связано с наличием сильных электромагнитных помех или  помех между корпусом и питающими, сигнальными шинами. Во многих случаях избавиться от этого можно с помощью установки конденсатора между корпусом датчика и контактом питания на контактной колодке датчика.  Соединение должно иметь минимальную длину, индуктивность и выполнено с учётом требований, предъявляемым к высокочастотному монтажу. Для подавления высокочастотных помех достаточно высокочастотного конденсатора  емкостью 300-500 пф., дли подавления низкочастотной помехи — конденсатора типа К73-17 емкостью 1,0-2,0 мкф. Существуют другие более эффективные, но более трудоёмкие способы защиты от помех, которые описаны в технической литературе.

    Из сказанного следует, что перед установкой датчика на рабочее место желательно проверить его работоспособность в лабораторных условиях. В этом случае неработоспособность датчика, выявленная после установки его на рабочее место, укажет на то, что отказ произошёл во время установки из-за нарушений правил эксплуатации обслуживающим персоналом.

    Если  после установки или во время эксплуатации  датчик оказался неработоспособным, его необходимо снять, автономно проверить в лабораторных условиях, составить акт об отказе датчика, оформить рекламацию (4.2), выслать датчик вместе с рекламацией изготовителю.

    Если выходной сигнал находится в допуске, то датчик готов к работе. При правильной установке датчика  и его эксплуатации датчик работает надёжно и не требует регулировок. Необходимо помнить, что датчик является высокоточным прибором и требует соответствующего обращения. Обслуживающий персонал должен быть обучен  для работы с ним.
    Содержание

    4. Отказы датчиков

    4.1.Отказы датчиков по вине потребителя.

    4.1.1. Перегрузка давлением.

    Отказы датчиков по этой причине происходят при подаче на датчик давления,  значительно  превышающего  предельно допустимое.

    Данное нарушение наблюдаются, как правило, у потребителей, использующих датчики для измерения давления в системах горячего, холодного водоснабжения и теплосетях. В большинстве случаев потребитель не догадывается о допущенном нарушении, так как оно, как правило, не  фиксируется приборами учёта, установленными в системах.

    Речь идёт о локальном изменении давления в месте установки датчика. Причины, по которым может возникнуть высокое локальное статическое или динамическое давление,  приведены ниже.

  • Высокое статическое давление может возникнуть при установке датчика на рабочее место без соблюдения требований технической документации (Подключение датчика к магистрали с измеряемой средой (2)), например, если  для герметизации соединения датчика с магистралью используется уплотнение по резьбе. Так как вода несжимаема, то при вкручивании датчика  в замкнутый  объём развиваются давления, достаточные для выдавливания мембраны.
  • Для подключения датчика к магистрали используется манометрическое соединение (ГОСТ 23988-80…23997-80, 2405-88), которое обеспечивает герметичность соединения во всём  диапазоне измеряемых давлений от 0 до 160 МПа. При этом соединении торец штуцера имеет специальный профиль для герметизации с помощью жёсткой прокладки (рис.2.1-1 и 2.1-2).
  • Обслуживающий персонал должен быть обучен  монтажу датчиков.

     

    Кроме того, большие статические давления могут возникнуть:

  • при размораживании системы в зимних условиях (Состояние и свойства измеряемой среды (1.3)),
  • при замерзании воды, оставшейся в штуцере датчика,
  • при надавливании стержнем на мембрану для проверки реакции датчика необученным персоналом.

     

    Высокое динамическое давление может возникать при  наличии динамических, кратковременных процессов (резонансные гидравлические явления, гидроудары), возникающих при изменении потока протекающей жидкости (заполнение системы, отключение воды и т.п.) и определяется состоянием и свойствами измеряемой среды (1.3). В этом случае многое зависит от места установки датчика. Мембрана датчика малоинерционна и поэтому «отрабатывает» самые кратковременные  броски давления. При этом усреднённое значение давления может сильно  не изменяться. Поэтому не происходит разрушение трубопроводов и не фиксируется значительное повышение давления приборами учёта, установленными для обслуживания системы.

    Данное нарушение выявляется при анализе отказа датчика на предприятии-изготовителе.  Проведённые на предприятии специальные испытания на разрушение показали, что необратимые изменения в датчике начинают происходить при перегрузках, превышающих номинальное давление в 3…10 раз.

    В зависимости  от величины допущенной перегрузки в  датчике могут произойти следующие необратимые изменения:

  • уход  начального смещения тензопребразователя без видимого повреждения кристаллического чувствительного элемента,
  • сильный уход начального смещения тензопребразователя при наличии кольцевых  и радиальных трещин на чувствительном элементе,
  • разрыв мембраны и полное разрушение чувствительного элемента.

     

    Указанные изменения могут происходить только по вине потребителя, так как КАЖДЫЙ датчик в процессе  изготовлении и при проведении приёмо-сдаточных испытаний проверяется на влияние перегрузки. Датчики давления выдерживают 1,5 кратные перегрузки без изменения метрологических характеристик.

    4.1.2.  Высокое напряжение.

    Это вид отказов связан с нарушениями по электрическому  подключению датчика (3) и происходит при подаче на датчик  напряжения, значительно превышающего предельно допустимое.

    Существуют два вида  данного нарушения правил эксплуатации:

  • подача высокого  напряжения (постоянного, переменного, импульсного) между корпусом и питающими или сигнальными шинами;
  • питание датчика напряжением, величина которого превышает предельно допустимую (в том числе, импульсные броски напряжения).

    Даже при применении стабилизированного источника питания  высокое напряжение может возникнуть из-за наводок в соединительном кабеле, которые возникают при  грозовых разрядах, а также при изменении тока в сильноточных  силовых цепях, расположенных в непосредственной близости от кабеля.

    Изготовитель гарантирует работу датчика при напряжении питания до 36В включительно. Дополнительные исследования показали, что датчик выдерживает кратковременное увеличение напряжения питания до 65В.

    Допустимое напряжение между корпусом и питающими или сигнальными шинами, определяется электрической прочностью изоляции, которая проверяется при напряжении 500В (50 Гц) с выдержкой в течение 1 минуты.

    При наличии высокого напряжения между корпусом и питающими или сигнальными шинами происходит электрический пробой тензопреобразователя, который приводит к выходу из строя электрорадиоэлементов (ЭРЭ) электронного блока.

    При высоком напряжении в цепях питания отказывает   электронный блок  из-за электрического  пробоя ЭРЭ. 

    4.1.3. Неправильное электрическое подключение

    Отказ датчика по этой причине происходит, когда потребитель ошибается при электрическом подключении датчика (3.1).

    В случае, когда  используется двухпроводная схемы включения, отказа датчика не происходит, так как в нем предусмотрена защита от изменения полярности питания.

    Для 3- и 4-проводных схем включения также предусмотрены эта и другие виды защит, однако они не исчерпывают  всех вариантов неправильного подключения датчика. В связи с этим может произойти отказ датчика из-за электрического или теплового пробоя ЭРЭ.

    4.1.4. Попадание жидкости

    Отказы датчиков по этой причине связаны с тем, что проводящая жидкость попадает внутрь датчика, выводя из строя  электронный блок и тензопреобразователь.

    Проникновение жидкости в датчик  обусловлено следующими причинами:

  • несоблюдением требований по заделке кабеля (подключение датчика к линии связи (3.3)).
  • эксплуатацией датчика в условиях,  не отвечающих  требованиям категории размещения (климатические условия (1.1))

    В большинстве случаев потребители неправильно выполняют заделку кабеля:

  • применяют для подключения обычные  провода, телефонный кабель и т.п., а не используют кабель круглого сечения;
  • отверстие  в резиновой прокладке сальника  выполняется  произвольной формы;
  • иногда резиновая прокладка сальника вообще убирается или датчик эксплуатируется без крышки.

    В первых двух случаях герметизация кабельного соединения принципиально невозможна. Кабель и отверстие в резиновой прокладке должны быть круглого сечения определённых размеров.

    В третьем случае кабельный ввод сознательно не герметизируется.

    В результате указанных нарушений электропроводящая жидкость попадает на контактную колодку и искажает показания датчика,  так как  появляется электрическая цепь, параллельная электрическим цепям датчика. При долгом нахождении жидкости на контактной колодке происходит коррозия металлических частей, несмотря на имеющееся покрытие. Кроме того, постоянное присутствие  жидкости на контактной колодке проводит к проникновению её внутрь датчика. Наличие жидкости в полости датчика вызывает электролитическое разрушение алюминиевых проводников, разваренных на кристалл тензопреобразователя. При достаточном количестве жидкости проводники при включенном питании разрушаются за 10 минут и датчик приходит в полную негодность. Даже небольшое количество жидкости, попавшее в датчик, долго не высыхает, так как находится в достаточно герметичном объёме. В результате происходит сильная коррозия металлических частей и электролитическое разрушение металлических деталей, стойких к коррозии. Проводящая жидкость, продукты электролиза и коррозии выводят электронный блок из строя и резко снижают сопротивление изоляции.

    Эксплуатация датчика в условиях,  не отвечающих  требованиям категории размещения, также приводит к проникновению жидкости внутрь датчика с   аналогичными  последствиями.

    4.1.5. Загрязнение

    Этот вид отказов происходит при:

  • загрязнении колодки датчика,
  • загрязнении измеряемой среды (1.3).

    В первом случае грязь, попадая на контактную колодку датчика, образует проводящую электрическая цепь, параллельную электрическим цепям датчика и таким образом искажает его показания.

    Во втором случае твёрдые частицы загрязнённой  измеряемой  среды, попадая в штуцер, скапливаются в полости, которая расширяется  по конусу к  мембране (в датчиках на малые пределы измерений). По мере накопления эти частицы уплотняются и начинают давить на мембрану, внося искажения в показания датчика.

    4.1.5.  Ошибочная браковка

    В некоторых случаях потребители ошибочно бракуют и возвращают датчики, которые при проверке у изготовителя не подтверждают свой брак. Причины, по которым потребитель ошибочно бракует  работоспособные датчики,  могут  самые разные.

    Самая распространённая причина, когда потребитель, зафиксировав отказ датчика в измерительной системе,   не производит автономной проверки датчика в лабораторных условиях. В этом случае любые  нарушения в работе измерительной системы, неисправности в линии связи  и т.п. могут быть зафиксированы как отказ датчика.

    В ряде случаев,  когда потребитель  эксплуатирует датчик не в тех условиях (давление, температура), он естественно получает не те результаты, на которые рассчитывает.

    Например, высокотемпературный датчик при комнатной температуре будет иметь выходной сигнал, значительно отличающийся от того, который он имеет в рабочем диапазоне температур.

    4.2. Рекламации, ремонт

    Рекламации на отказавшие датчики давления составляется в период их гарантийного обслуживания в соответствии с требованием паспорта на датчик. В акте, который составляется потребителем, должна быть обязательно указана причина, по которой он забраковал датчик, и условия его эксплуатации. Это позволит у изготовителя воспроизвести отказ датчика и установить причину отказа, а также избежать ненужных исследований,  если датчик забракован ошибочно (4.1.5).

    Рекламационная документация вместе с датчиком высылается изготовителю, который анализирует причины отказа датчика. В случае отказа по вине изготовителя производится гарантийный ремонт или замена датчика за счёт изготовителя. Если датчик отказал  по вине  потребителя  (4.1), то потребитель уведомляется об этом.  Датчик по желаю потребителя может возвращён потребителю или обменен на новый по льготной цене (80%). Датчики давления, отказавшие по вине потребителя, или у которых истёк срок гарантии, считаются не гарантийными.

    Предприятие не производит ремонт не гарантийных датчиков, возможна только их замена  по льготной цене. При этом заполнения рекламационной документации не требуется. В сопроводительном письме нужно указать, что датчики присланы на обмен по льготной цене. Желательно указать условия эксплуатации, чтобы на предприятии можно было проанализировать причины выхода датчика из строя.
    Содержание

  • % PDF-1.5 % 34 0 объект > эндобдж xref 34 83 0000000016 00000 н. 0000002369 00000 н. 0000002496 00000 н. 0000004170 00000 н. 0000004195 00000 н. 0000004330 00000 н. 0000004965 00000 н. 0000005149 00000 п. 0000005184 00000 п. 0000005229 00000 п. 0000005342 00000 п. 0000005454 00000 н. 0000005537 00000 н. 0000006116 00000 п. 0000006757 00000 н. 0000007425 00000 н. 0000007557 00000 н. 0000007994 00000 н. 0000008383 00000 п. 0000008494 00000 п. 0000008896 00000 н. 0000009389 00000 п. 0000010659 00000 п. 0000012636 00000 п. 0000014145 00000 п. 0000016023 00000 п. 0000017676 00000 п. 0000019383 00000 п. 0000019787 00000 п. 0000022429 00000 п. 0000024432 00000 п. 0000027081 00000 п. 0000032008 00000 н. 0000035247 00000 п. 0000035659 00000 п. 0000036156 00000 п. 0000036326 00000 п. 0000036724 00000 н. 0000037111 00000 п. 0000037484 00000 п. 0000037861 00000 п. 0000081448 00000 п. 0000081485 00000 п. 0000082259 00000 п. 0000082281 00000 п. 0000082358 00000 п. 0000082471 00000 п. 0000082543 00000 п. 0000082903 00000 п. 0000083229 00000 п. 0000083371 00000 п. 0000083444 00000 п. 0000083558 00000 п. 0000083627 00000 н. 0000083711 00000 п. 0000086343 00000 п. 0000086612 00000 п. 0000086776 00000 п. 0000086801 00000 п. 0000087108 00000 п. 0000089015 00000 н. 0000089326 00000 п. 0000089708 00000 п. 0000138211 00000 н. 0000138248 00000 н. 0000156126 00000 н. 0000156163 00000 н. 0000191995 00000 н. 0000192034 00000 н. 0000227872 00000 н. 0000227911 00000 п. 0000227985 00000 н. 0000228098 00000 н. 0000228473 00000 н. 0000232755 00000 н. 0000241296 00000 н. 0000250329 00000 н. 0000262454 00000 н. 0000265446 00000 н. 0000275835 00000 н. 0000279286 00000 н. 0000279355 00000 н. 0000001956 00000 н. трейлер ] / Назад 962649 >> startxref 0 %% EOF 116 0 объект > поток hb«e`Pf`g` Ȁ

    Как датчик ИК-датчика движения вне помещения работает со схемой

    В этой статье я объясню, как работает пироэлектрический (PIR) датчик, и покажу схему, полученную методом обратного проектирования, смоделированную в LTspice.Схема предназначена для наружного ИК-датчика NV-1111.35, который используется для включения сетевого освещения и имеет 3 потенциометра для установка ЧУВСТВИТЕЛЬНОСТИ, ЛЮКС и ТАЙМАУТА.

    Этот датчик основан на популярной трехкаскадной топологии операционных усилителей. Понимание этого может помочь вам понять другие пироэлектрические датчики, а также кое-что об активных фильтрах, использующих LM324, а также об удалении и настройке смещения постоянного напряжения.



    Как работает ИК-датчик

    Эта конкретная сенсорная плата использует датчик PIR D203S.Пироэлектрические пассивные инфракрасные (PIR) датчики обнаруживают инфракрасное (IR) излучение. Теплый объект излучает инфракрасную энергию, невидимую человеческому глазу. Поскольку целью датчика является обнаружение движения, а не только тепла, есть две части, чувствительные к ИК-излучению, которые выглядят как два маленьких окошечка или слоты.

    Окно датчика фактически разделено на две части

    Эти два элемента используются последовательно с противоположной полярностью, поэтому средний радиация аннулируется.Когда датчик бездействует, оба слота обнаруживают такое же количество ИК-излучения, чтобы датчик не срабатывал из-за температуры окружающей среды. Если теплое тело, как у человека или животного, проходит через инфракрасную энергию, это первое обнаруживается элементом, затем вторым и таким образом генерирует AC сигнал. Также включен МОП-транзистор для буферизации слабого сигнала, производимого Датчик PIR.

    Схема датчика PIR

    Изображение из AN4368 — Формирование сигнала для пироэлектрического пассивного элемента инфракрасные (PIR) датчики

    Сигнал, создаваемый датчиком PIR, составляет около 1 мВ между пиками и имеет смещение постоянного тока. напряжение, которое может варьироваться от 0.От 3 до 1,2 В.

    Линзы Френеля


    Чтобы датчик покрыл широкий угол, линзы Френеля устанавливаются в перед ним. Они продуманно разработаны с учетом многих областей линз Френеля. расположены таким образом, чтобы можно было разделить зону обнаружения на несколько секций. Это для датчика выглядит так, будто у него не только два элемента обнаружения, но и много пары из них. Таким образом, даже небольшое движение может вызвать срабатывание обоих элементов.


    Пояснение и схема схемы ИК-датчика с использованием операционного усилителя LM324N

    Плата может питаться от 5 В до 12 В, однако стоимость компонентов рассчитаны на напряжение от 8 до 12 В.Он может работать от 5В, но деление напряжения создано на R17 и R18 должны быть изменены.

    Потребляемая мощность очень низкая: 1,5-2 мА.

    Части паяльной маски сгорели из-за короткого замыкания силовой платы но на основной плате был поврежден только операционный усилитель

    Схема платы наружного ИК-датчика (нажмите, чтобы увеличить)

    Эта архитектура операционного усилителя состоит из трех этапов.

    1 этап

    Первый архитектурный каскад усиливает сигнал. Отменяет часть DC сигнала и фильтрует высокочастотный шум, который может привести к ложному обнаружения.

    Высокие частоты фильтруются C4 и R4, а частота среза составляет 2,2 Гц (fhigh2 = 1 / (2 х пи х R4 х C4)).

    Второй фильтр используется для подавления части постоянного тока сигнала. C1 и R3 выполнить фильтр высоких частот с частотой среза 0.34 Гц (расход1 = 1 / (2 x pi x R3 x C1)).

    Коэффициент усиления составляет 221 (усиление = 1 + (R4 / R3)). Прирост должен быть высоким достаточно, чтобы усилить сигнал датчика выше уровня шума, но не слишком высокий, чтобы довести операционный усилитель до насыщения. Усиление сделано около синфазного напряжения, установленного датчиком, и не равно VCC / 2.

    Этап 2 — Настройка чувствительности ИК-датчика

    Этап 2 очень похож на этап 1.Он используется для фильтрации и усилить сигнал переменного тока, за исключением того, что на этот раз сигнал перевернутый.

    Сигнал Vout1 из этапа 1 переходит в этап 2 через 10k потенциометр, который используется для установки чувствительности датчика PIR поэтому он не срабатывает каждый раз, когда мимо проходит собака.

    Что касается функции фильтрации, отсечка низких и высоких частот частоты соответственно 0,72 Гц (расход 2 = 1 / (2 x π x R6 x C5)) и 4.8 Гц (fhigh3 = 1 / (2 x π x R10 x C6)). В flow2 также зависит от положения потенциометра.

    Коэффициент усиления этого каскада равен -100 (минус представляет инвертированный сигнал) (Gain2 = -R10 / R6). Это усиление означает, что после этапа 2 сигнал между 0,7 Гц и 4,8 Гц будет усилен 22100 раз (87 дБ).

    На этом этапе синфазное напряжение операционного усилителя устанавливается резисторы R12, R9 и R8 на 37% напряжения питания (Соотношение = R8 / (R12 + R9 + R8)).Усиление намеренно установлено высоким, чтобы сигнал теперь обрезка больше похожа на прямоугольную волну.

    Этап 3 — Установка тайм-аута ИК-датчика и порога освещенности

    На этой последней ступени 3 сигнал ступени 2 снова инвертируется. и фильтруется R11 и C7 с частотой среза 3,38 Гц, но на этот раз последние два операционных усилителя используются в основном как компараторы. В неинвертирующий вход установлен R12, R9 и R8 на 44% от VCC, один падение напряжения на диоде выше коэффициента на ступени 2.

    Потенциометр R16 вместе с LDR контролирует, при каком освещении интенсивность срабатывания датчика. Чем больше света, тем ниже сопротивление LDR будет, и если банк ниже базы Q1 при выключении транзистора будет потянут низкий уровень, а R13 позволит диод D1, проводящий сигнал датчика на массу. Если потенциометр находится на другой стороне, даже если LDR будет иметь 0 сопротивление 150k банка заставит Q1 включиться, а затем R13 разовьется падение напряжения VCC / 2, которое будет выше, чем выходное напряжение со ступени 2, и датчик сработает.

    В последнем операционном усилителе неинвертирующий вход установлен на 83% от VCC. Когда движения не обнаружено. Vout3 всегда высокий, поэтому инвертирующий вывод U1.4 выше, чем вывод (+), поэтому на выходе реле низкий уровень. Когда Vout3 низкий, отрицательная пластина C8 прижата к земле и Таким образом, вывод (-) ниже, чем вывод (+), что делает выход высоким при включении транзистор, управляющий силовым реле. Теперь, даже если Vout3 будет будет очень короткий импульс, иначе датчик обнаружит движение многократно раз, выход по-прежнему останется высоким.Если Vout 3 продолжит работу от низкого до обнаружения движения тайм-аут будет сброшен, но реле останется включенным. Поэтому, когда Vout3 остается высоким, конденсатор C8 будет заряжается через R20 и горшок R19, который устанавливает тайм-аут.

    Этот метод использования конденсатора был для меня новым, и мне потребовалось пока это понять. после того, как C8 зарядится почти до VCC, (-) контакт будет выше, чем (+), и выход будет низким при выключении реле.

    Преобразование сигнала ИК-датчика в LTspice

    Схема моделировалась в LTspice. В первом сюжете Vpir, представляющий сигнал 1 мВ от датчика напряжение смещения около 500 мВ.

    На втором графике Vout1 — это усиленный сигнал после этапа 1.

    Vout2 — это результат этапа 2. Здесь сигнал инвертируется, усиливается до максимального выхода операционного усилителя и напряжение смещения установлено на 2,96 В при питании 8 В.

    Vout3 — это выход из стадии 3 и обычно высокий. Когда обнаружено движение и сигнал Vout2 выше, чем 3,55 В, тогда Vout3 станет низким. Обратите внимание, что он использует только вторую половину импульс сигнала PIR.

    Наконец, Vrelay становится высоким, когда Vout3 низкий. Он останется высоким, даже если Vout3 снова изменит состояние.Если Vout3 остается стабильным на высоком уровне, тогда Vrelay остается высоким в зависимости от постоянной RC, установленной C8, R20 и потенциометром R19.

    Загрузить

    Arduino PIR (датчик движения) -DFRobot

    Это датчик PIR (пассивный инфракрасный датчик движения), предназначенный для работы с Arduino и Raspberry Pi. Он позволяет вам ощущать движение, он обычно используется для определения того, вошел ли человек в зону действия датчиков или вышел из нее. Они маленькие, недорогие, маломощные, удобные в использовании и не изнашиваются.По этой причине они обычно встречаются в бытовой технике и гаджетах, используемых в домах или на предприятиях. Их часто называют PIR, «пассивными инфракрасными», «пироэлектрическими» или «инфракрасными датчиками движения».

    Этот датчик движения (PIR) может обнаруживать инфракрасные сигналы от человеческого тела или других животных и срабатывать при движении. Таким образом, его можно применять в различных сценариях, требующих обнаружения движения. Обычные пироэлектрические инфракрасные датчики требуют корпусного пироэлектрического инфракрасного детектора, интегрированных наборов микросхем, сложной периферийной схемы.Так что размер немного больше, схема сложная, а надежность немного ниже. Мы предлагаем этот новый пироэлектрический инфракрасный датчик движения, специально разработанный для ваших проектов Arduino, интегрированный цифровой пироэлектрический и инфракрасный датчик тела, с небольшими размерами, высокой надежностью, низким энергопотреблением и простой периферийной схемой. Очень просто использовать в любом проекте.

    Чтобы облегчить сложность использования этого датчика, интерфейс Gravity адаптирован для поддержки plug & play. Расширяющий экран Arduino IO лучше всего подходит для этого звукового датчика, подключаемого к вашему Arduino.Поскольку этот датчик может работать при 3,3 В, что делает его совместимым с Raspberry Pi, Intel Edison, Joule и Curie.

    PIR (Motion) Sensor Project 1: How to Make A ужасающий гаджет для Хэллоуина

    Это простое, но забавное приложение для Хэллоуина. Все, что вам нужно, это маска, шаговый двигатель, микроконтроллер, драйвер двигателя, модуль MP3 и несколько проводов, а также батарейки.

    Компоненты оборудования:

    DFRduino UNO R3 — Совместимость с Arduino

    TMC260 Щиток драйвера шагового двигателя для Arduino

    Биполярный шаговый двигатель с планетарной коробкой передач (18 кг.см)

    DFPlayer — мини-MP3-плеер для Arduino

    Гравитация: цифровой датчик PIR (движения) для Arduino

    Датчик движения PIR Проект 2. Как сделать монитор времени сна с Raspberry Pi и LattePanda

    Компоненты оборудования:

    Gravity: Digital PIR (Motion) Sensor For Arduino

    Raspberry Pi

    PIR (Motion) Sensor Project 3. Как сделать автоматическую рождественскую елку

    Со всеми огнями и украшениями, которые люди используют на Рождество , электричество включено постоянно, а счета за электричество стремительно растут.Я сделал эту настройку освещения рождественской елки с обнаружением движения, которая включается только тогда, когда рядом находятся люди. Он также воспроизводит музыку с помощью одного из наших новых продуктов — DFSpeaker v1.0!

    Компоненты оборудования:

    Штатный удлинитель питания (с некоторыми модификациями)

    Схема детектора движения

    с использованием ИК-датчика — B1P8

    Опубликовано frenoy на

    Теперь мы узнаем, как обнаруживать движение, и мы будем включать светодиод, когда движение будет обнаружено.Как и в случае с предыдущей схемой, мы будем использовать датчик для обнаружения движения, и выход этого датчика будет подключен к транзистору.

    Самый простой способ обнаружить движение — использовать так называемый пассивный инфракрасный датчик или датчик PIR. Датчик PIR может обнаруживать изменения в количестве падающего на него инфракрасного излучения.

    При отсутствии движения датчик PIR формирует «изображение» окружающей обстановки.

    Когда человек идет перед датчиком PIR, происходит изменение количества инфракрасного излучения, и PIR может обнаружить это изменение.

    Существуют различные типы датчиков PIR, и тот, который мы будем использовать, называется датчиком AM312, который дает нам цифровой выход. Он имеет три клеммы — VCC, GND и SIGNAL и работает с максимальным напряжением 3,6 В. Сам датчик PIR имеет очень узкое поле зрения, что означает, что он не может обнаруживать большие расстояния или большие углы. Мы используем так называемую линзу Френеля, чтобы увеличить этот диапазон и угол восприятия или конус. BBox 1 содержит 2 разных объектива — больший из них дает вам самый большой диапазон и поле зрения.

    Принципиальная схема для этого чрезвычайно проста. Мы используем токоограничивающий резистор между датчиком PIR и транзистором. Убедитесь, что датчик PIR подключен правильно, и вы можете использовать выступ на корпусе, чтобы правильно сориентировать его.

    Давайте воспользуемся макетом платы, чтобы построить схему.

    Светодиод включается при обнаружении движения и горит несколько секунд. Затем он выключается и остается выключенным до тех пор, пока не обнаруживается движение.

    Мы можем использовать датчик PIR для создания очень интересных схем, включая ночник, активируемый движением, и охранную сигнализацию. Переходим к следующему проекту.

    PIR Датчик движения PaPIRs Меры предосторожности при использовании | Средства автоматизации | Промышленные устройства

    PaPIR — это пироэлектрические инфракрасные датчики, которые обнаруживают изменения в инфракрасных лучах. Однако обнаружение может быть неудачным в следующих случаях: отсутствие движения или отсутствие изменения температуры в источнике тепла.Они также могли обнаруживать наличие источников тепла помимо человеческого тела. Эффективность и надежность системы могут варьироваться в зависимости от реальных условий эксплуатации:

    1. Обнаружение источников тепла помимо человеческого тела, например:

    а) попадание мелких животных в зону обнаружения

    b) Когда на датчик попадает источник тепла, например солнечный свет, лампа накаливания, автомобильные фары или сильный световой луч, независимо от того, находится ли зона обнаружения внутри или снаружи.

    c) Внезапное изменение температуры внутри или вокруг зоны обнаружения, вызванное горячим или холодным ветром от HVAC, паром от увлажнителя и т. Д.

    2. Сложность определения источника тепла

    a) Стекло, акрил или аналогичные материалы, стоящие между целью и датчиком, могут не обеспечивать правильную передачу инфракрасных лучей.

    б) Отсутствие движения или быстрые движения источника тепла внутри зоны обнаружения.

    3. Расширение зоны обнаружения

    В случае значительной разницы между температурой окружающей среды и температурой человеческого тела, область обнаружения может быть больше, чем сконфигурированная область обнаружения.

    4. Неисправность / ошибка обнаружения

    В редких случаях может выдаваться ошибочный сигнал обнаружения из-за природы пироэлектрического элемента. Если приложение не может принять ошибочные сигналы обнаружения, примите меры противодействия, введя схему подсчета импульсов и т. Д.

    5. Расстояние обнаружения

    Датчики движения Panasonic PIR указывают расстояние обнаружения в спецификациях, потому что они обычно поставляются с объективом (см. Пункт 6) для безлинзовых типов.Датчик движения PIR может обнаруживать отклонения в инфракрасных лучах, однако такие отклонения определяются следующими тремя факторами.

    • Разница температур между целью и окружающей средой: чем больше разница температур, тем легче обнаруживать цели.
    • Скорость движения: Если цель движется с меньшей или большей скоростью, чем указано в таблицах, способность обнаружения может быть ниже.
    • Целевой размер: человеческое тело является эталоном. Если цель меньше или больше, чем указано в таблице, способность обнаружения может быть ниже.

    Дальность обнаружения, описанная в нашем техническом паспорте, определяется тремя факторами, упомянутыми выше. Стандарт Panasonic для разницы температур между объектом и окружающей средой составляет 4 ° C. Чем больше разница температур, тем больше расстояние обнаружения. Если разница температур составляет 8 ° C, что вдвое больше стандартного, расстояние обнаружения составит прибл. В 1,4 раза больше, чем расстояние при 4 ° C. Например, если цели на расстоянии 5 м могут быть обнаружены при 4 ° C, то датчик может обнаруживать цели на расстоянии 7 м при 8 ° C.(Это основано на теории, согласно которой чувствительность обнаружения будет меняться обратно пропорционально квадрату расстояния.)

    6. Тип без линз

    Безлинзовый тип не может обнаруживать какие-либо цели, потому что невозможно сфокусировать инфракрасные вариации на чипе датчика. Без объектива невозможно определить расстояние обнаружения и поле зрения. Пожалуйста, предоставьте свой собственный объектив в соответствии с концепцией дизайна вашего объектива.

    7. Материал линзы и установка пластины перед линзой

    Обычно единственным материалом, который пропускает инфракрасные лучи, является полиэтилен.(Материал линз датчиков движения Panasonic PIR — «полиэтилен высокой плотности, HDPE».) Если вам нужно установить пластину перед линзой, выберите пластину из полиэтилена. Обратите внимание, что толщина или цвет пластины влияют на способность обнаружения, например это может уменьшить расстояние обнаружения. Поэтому, пожалуйста, подтвердите это, проверив датчик с пластиной в реальных условиях.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *