Радиолюбительские схемы | Принципиальные схемы
Здравствуйте уважаемые радиолюбители! Мы рады приветствовать Вас на Нашем сайте. Сайт посвящен радиоэлектронике и всему что с ней связано. Здесь вы сможете найти любые радиоэлектронные схемы с подробным описанием, принципиальной и электрической схемой, техническими характеристиками и технологией изготовления любых устройств. Самые лучшие радиолюбительские схемы и устройства собраны по всему Интернету на нашем сайте. Если слова: паяльник, микросхема, транзистор, резистор или диод — для вас не пустые звуки, то этот сайт для Вас! Будь Вы начинающий радиолюбитель, профессионал со стажем, или же просто современный человек, интересующийся электротехникой и схемотехникой, желающий идти в ногу со временем, в любом случае вы зашли по адресу. А может быть Вы хотите собрать что-то новое для себя, или же отремонтировать или модернизировать имеющеюся у вас аппаратуру, то опять же здесь вы сможете найти нужные электрические схемы радиолюбителей и абсолютно бесплатно скачать их для дальнейшего использования.
Наш сайт является одним из лучших в сфере радиоэлектроники! Весь материал удобно представлен по разделам и категориям, снабжен поиском, имеет удобный и приятный для просмотра интерфейс, что выгодно отличает нас от других подобных ресурсов. Каждый раздел представлен в виде блога, где можно увидеть все статьи данного раздела, начиная с последних добавленных. Каждый раздел, в свою очередь имеет по несколько категорий, являющихся подразделами основного раздела. Категории представлены в виде списка, где можно без труда по названию найти нужную электросхему, схемы радиолюбителей. Ну а если и в этом случае не удалось найти подходящей вам схемы, то попробуйте воспользоваться поиском по сайту, возможно Вы что-то пропустили. Итак, ниже для удобства представлен список разделов и категорий сайта с подробным описанием, которые вы можете видеть в верхнем меню навигации нашего сайта: —
Звукотехника — в данном разделе вы сможете найти любые принципиальные схемы каким бы то ни было образом связанные со звуком. Это и всевозможные усилители УНЧ (ламповые, транзисторные, на специализированных микросхемах НЧ), усилители предварительные, усилители мощности, эквалайзеры, ревербраторы, приставки к музыкальным инструментам, сами музыкальные инструменты, схемы фильтров для колонок (динамики, сабвуферы), магнитолы, светомузыкальные установки и многое другое.
Источники питания — ни одна аппаратура не может работать без источника питания, за исключением устройств работающих на батарейках и аккумуляторах. В разделе представлены всевозможные блоки питания: как то обычные сетевые на базе трансформатора переменного тока, так и всевозможные импульсные и безтрансформаторные ИП. Зарядные устройства для аккумуляторов и сотовых телефонов, фотоаппаратов, радиоприемников, плееров и другой техники.
Измерения — здесь Вы найдете всю информацию касательно измерений в радиолюбительской практике. Описания и схемы различных приборов (амперметры, вольтметры, мультиметры, осциллографы и др), как их собрать самостоятельно и как и в каких случаях использовать.
Датчики и Индикаторы — раздел содержит описания всевозможных датчиков заводского изготовления, и некоторых датчиков, которые можно сделать самостоятельно. Это датчики температуры, ультразвука, движения, давления, оборотов, влажности, поворота, угла наклона, различные сенсоры и акселерометры, и др.
Компьютеры и оргтехника — довольно обширный раздел, содержит электросхемы различных устройств для вашего компьютера, его доработка и усовершенствование, периферия, приставки и т. д.
Спецтехника — этот раздел — находка для шпиона. Содержит множество электрических схем жучков, радиомикрофонов, телефонных ретрансляторов, радиозакладок, направленных микрофонов и т.п. Категория безопасность включает в себя: детекторы жучков и индикаторы поля, индикаторы СВЧ-излучения, различные защитные устройства от подслушки, генераторы шума и глушилки радиосигналов (эфира). Самообороне отведена отдельная категория, она содержит схемы шоккеров и парализаторов, детекторов лжи и др.
Радиоприем и Связь — раздел о связи. Здесь вы найдете принципиальные схемы радиоприемников, передатчиков, трансиверов, конвертеров, антенн для приема и для передачи, линии связи, телекоммуникации и т. д. и т. п.
Телефония — раздел посвящен телекоммуникациям. Все схемы и приставки к телефонам вы найдете здесь. Фиксированная связь, сотовые телефоны (стандарта GSM, CDMA, UMTS, HSDPA wi-fi, wireless, GPRS), спутниковые телефоны и связь и др.
Начинающим — раздел для начинающих радиолюбителей. Основы схемотехники и радиоэлектроники, основные понятия, мультивибраторы, схемы включения транзисторов, усилителей, детекторных приемников, приемников прямого усиления, супергетеродины, различные технологии изготовления печатных плат, пайки, травления, сборки, настройки аппаратуры, полезные советы и т. д.
Электроника в быту — здесь собраны радиолюбительские схемы устройств бытового назначения: акустические выключатели, доработка утюга, регуляторы освещения, аквариумные таймеры и терморегуляторы, охранные устройства, металлоискатели, медицинская техника и другая бытовая техника.
Электроника за рулем — здесь вы найдете принципиальные схемы сигнализаций и охранных устройств для автомобилей, описания и схемы инжекторов, радиолюбительские схемы для автомобиля, схемы зарядных устройств для аккумулятора, электронное зажигание и многое другое.
Автоматика — здесь вы найдете принципиальные схемы автоматических устройств как для быта, так и для производства. Это всевозможные таймеры, фотодатчики, автоматы включения освещения, реле времени и др.
Arduino — раздел содержит радиолюбительские схемы и конструкции выполненные на базе микроконтроллеров Ардуино. Приведены описания устройств, принципиальные схемы с фотографиями и программные коды (скетчи) для среды Arduino IDE.
Справочники — раздел содержит справочники резисторов, транзисторов, конденсаторов, диодов, индуктивностей, интегральных усилителей, стабилитронов, электронных ламп. Кодовые и цветовые маркировки, допуски, отечественные и зарубежные транзисторы и микросхемы и их аналоги, и др.
Сайт Схемы радиолюбителей постоянно развивается и дополняется новыми материалами, что не может не радовать. С каждым днем схем становится все больше, появляются новые современные решения на новейшей элементной базе ранее известных устройств и новые революционные приборы и техника, о которых раньше можно было только мечтать. Поэтому мы советуем почаще заходить на наш сайт, чтобы быть в курсе событий.
Самодельные схемы для дома и дачи, электроника и автоматика
Переключатель комбинаций свечения RGB светодиодной ленты, дистанционное ИК управление
Здесь приведена схема простого дистанционного переключателя ИК лучах для RGB-светодиодной ленты. Его особенность в том, что для управления можно использовать любой пульт дистанционного управления от телевизора. При этом, можно переключать 8 цветов ленты, включая черный (выключено) и белый. Управление может …
1 183 1
Регулятор мощности для нагрузки постоянного тока (до 100А, 5-15В)При различных экспериментах с электроприводами, применяющимися в автомобилях, скутерах, электрических велосипедах, при их ремонте и испытании, а так же, с низковольтными осветительными и нагревательными приборами, может потребоваться мощный регулятор мощности, работающий на широтно-импульсном …
1 191 0
Схема устройства блокировки для сдвижных ворот или шлагбаумаКонструкции сдвижных ворот у многих самые разные, от управляемых вручную при помощи пульта до автоматических. Но, иногда в этой системе может возникнуть сбой, и, если автомобиль долго стоит в проезде, ворота либо шлагбаум могут закрыться и повредить немного этот автомобиль. Здесь приводится схема …
0 82 0
Простой переключатель семи цветов для RGB-светодиодной ленты (кнопки, диоды, MOSFET)Светодиодные ленты, сейчас, это очень популярный способ исполнения освещения или оформления. Трехцветные (RGB) светодиодные ленты позволяют путем переключения, а в более сложных системах, и изменения интенсивности свечения, получать огромное количество цветов …
1 219 0
Используем радиоуправление от люстр для управления светодиодными лентамиВ продаже во многих магазинах, а так же на различных сайтах, в том числе, и на посылторге Али, бывают очень недорогие радио-переключатели для люстр. Называются они обычно довольно длинно, вот так: «Manual Remote Control Four-woy dudl control switch». Устройство состоит из пульта …
0 40 0
Переключатель ламп освещения с инфракрасным и квазисенсорным управлениемЭто устройство представляет собой электронный переключатель двух групп ламп осветительного прибора, например, люстры или другой нагрузки. Переключателем можно управлять двумя способами, — при помощи простого однокнопочного пульта дистанционного управления и при помощи кнопки без фиксации. Одно …
1 43 0
Самодельный сигнализатор для для офиса или магазина, вызова сотрудникаВ некоторых маленьких магазинах или офисах, предприятиях обслуживания, совсем не обязательно продавцу постоянно находиться у прилавка, в торговом помещении. Если это очень малое предприятие, или предприниматель, то весь «персонал» вполне может состоять и из одного человека, который …
0 38 0
Освещение в гараже на светодиодной ленте с таймеромВыключатель предназначен для управления светильником в гараже. Ведь гараж, — это то место, где свет обычно включают не надолго, но часто надолго забывают его выключить. Управление — двумя кнопками «Вкл.» и «Вык.». Светильник выполнен из светодиодной ленты ULS-Q921 длиной …
0 43 0
Как сделать стробоскоп на светодиодной ленте, схемаДля украшения различных мероприятий применяют стробоскопические светильники, которые создают короткие и яркие вспышки света. Сейчас повсеместно применяются в качестве элементов освещения и оформления светодиодные ленты, вот и здесь приводится схема стробоскопического светильника на основе …
1 44 0
Фотореле, реагирующее на луч лазерной указкиПоявилось желание сделать дистанционный выключатель, использующий в качестве пульта лазерную указку. Эта тема уже рассматривалась в разной радиолюбительской литературе, причем, неоднократно. Так что материал для изучения был достаточный. Интересно то, что во всех статьях на эту тему, что были …
0 43 0
1 2 3 4 5 … 43Радиодетали, электронные блоки и игрушки из китая:
Радиосхемы схемы электрические принципиальные. Радиосхемы Схем net все для радиолюбителя схемы
Сайт простые интересные радиосхемы , посвящён как профессионалам, занимающимся проектированием и сборкой сложных электронных цифровых устройств, так и радиолюбителям новичкам, делающим первые шаги в электронике, старающимся понять принцип действия радиодеталей — транзисторов, микросхем, pic и avr контроллеров. На сайте размещаются только проверенные радиосхемы простых светодиодных эффектов, сигнализаций и блоков питания. Большой раздел содержит описание металлоискателей всех популярных самодельных моделей — Терминатор, Tracker PI-2, Шанс и конечно же знаменитый volksturm, со сборки которого начинается путь многих радиолюбителей, специализирующихся на сборке аппаратуры для кладоискательства. Для начинающих шпионов мы собрали большую коллекцию проверенных схем жучков и радиомикрофонов — на транзисторах и специализированных микросхемах. Все схемы снабжены рисунками печатных плат и подробным описанием настройки передатчика.
Следует помнить, что мощный ФМ жучек может создавать помехи вещательным FM радиостанциям, поэтому старайтесь чтить законодательство. Актуальной проблемой на сегодняшний день является вопрос выбора и эксплуатации зарядных устройств. Сейчас практически любая электронная переносная аппаратура, в том числе и мобильные устройства, имеет аккумуляторное питание. При этом типы, вольтаж и другие параметры АКБ могут сильно отличаться. Поэтому сборка самодельного универсального зарядного устройства будет вполне оправдана, особенно в случае поломки редкого штатного, не встречающегося в продаже.
В наш век научно технического прогресса, когда развитие электроники и радиотехники всё более миниатюризируется, обязательным будет освоение работы с микроконтроллерами популярных серий pic и avr. На МК ATmega можно создать небольшие и очень функциональные приборы, которые имели бы габариты в 10 раз больше, если сделать их на транзисторах и обычных цифровых микросхемах. Простые программаторы, основы прошивки микроконтроллеров и интересные схемы на pic16f84 — всё это есть на сайте радиосхемы. Несмотря на большое количество других радиотехнических ресурсов для начинающих — радиокот, паяльник, радиолоцман, мы стараемся наиболее качественно и быстро знакомить вас с полезными схемами и новинками радиотехники. Прогресс не стоит на месте, и вот уже такая традиционная сфера, как освещение, стало меняться и усовершенствоваться с каждым годом. За каких-то неполных 10 лет, лампа накаливания претерпела эволюцию сначала в люминесцентную, а потом и светодиодную. Как выбрать или сделать самому светодиодную лампочку, светильник или фонарик — смотрите в разделе светодиоды. А если у вас возникнет вопрос по поиску нужной принципиальной схемы или настройке работы устройства, собранного своими руками — обращайтесь на форум, где наши модераторы быстро и профессионально проконсультируют вас по любым радиолюбительским вопросам.
Параметрические стабилизаторы напряжения до сих пор используются для питания маломощных устройств электронных изделий, поэтому необходимо уметь их рассчитывать.
Зачастую при повторении готовых конструкций, условия функционирования которых отличаются от рекомендованных разработчиком, требуется провести анализ работы параметрического стабилизатора напряжения для уточнения значения сопротивления балластного резистора.
Указанные задачи решены с помощью разработанного автором файла в Microsoft Excel. Приведено два варианта расчета параметрического стабилизатора напряжения и расчет для анализа условий работы стабилитрона в готовой схеме.
Объектами расчета и анализа в примерах выступают параметрические стабилизаторы двух известных конструкций усилителей мощности звуковой частоты. Это c Интерлавки и от Андрея Зеленин а.
В ознаменование 50-летия со дня изобретения радио русским ученым А. С. Поповым, исполняющегося 7 мая 1945 г., СНК Союза ССР постановил: учитывая важнейшую роль радио в культурной и политической жизни населения и для обороны страны, в целях популяризации достижений отечественной науки и техники в области радио и поощрения радиолюбительства среди широких слоев населения, установить 7 мая ежегодный «День радио».
Из Постановления Совнаркома СССР
от 4 мая 1945 года.
7 мая (25 апреля по старому стилю) 1895 года русский инженер Александр Степанович Попов на заседании Русского физико-химического общества продемонстрировал искровую беспроводную приемо-передающую радиосистему, которая позволяла обмениваться информационными сигналами.
За суматохой повседневных дел мы как-то забываем о знаковых датах. А эту дату нужно помнить и гордиться. Это наша жизнь, наш хлеб, наше хобби.
Ещё раз всех, так или иначе связанных с электроникой, с Праздником!
Привет, друзья! Вероятно, каждый хоть разок да провел ночь с паяльником в руках среди клубов канифольного дыма, движимый одной лишь идеей создания чего-то особенного, нового, звучащего или работающего не как у других. Сколько выводов микросхем было оборвано после многократных паек, сколько чипов было убито статическим электричеством после почёсывания головы!
Сижу я как-то вечером, поглядываю в интернет-магазине отправленные для меня микросхемы, которые в лучшем случае доедут через неделю-две, и вдруг в моей голове возникает вопрос: «А можно ли как-то ускорить процесс разработки устройства, да так, чтобы сразу можно было его заказчику показать?». В то время мне как раз заказали несколько примочек для электрогитары. И я, имея достаточно опыта в обращении с системой создания и моделирования схем Proteus, собрался разрешить этот вопрос с помощью данной программы.
Прогресс, как известно, не стоит на месте. Особенно в электронике.
В наши времена, когда на квадратном сантиметре платы легко можно разместить полкомпьютера, а специальные проги позволяют виртуально «обкатать» разработанное устройство ни разу не взяв в руки паяльник и тестер, данная статья может показаться безнадёжно устаревшей.
Но как знать — может и пригодится кому из начинающих.
Ну, а опытные пусть воспринимают этот текст как ещё одну байку о том, как живут уцелевшие радиогубители в глухих глухоманях (Дальний Восток, очень дальний), куда цивилизация, думаю дотянется ещё ох как не скоро.
Есть в Сети сайты называемые фотобанками. Их довольно много. Но один производит на меня просто завораживающее впечатление. На застыла жизнь первой половины прошлого и некоторые моменты позапрошлого века. И качество фотографий великолепное!
Не буду долго разводить антимонии, просто поделюсь парой фотографий, которые мне понравились. Тем более, что они имеют прямое отношение к нашей тематике.
Подпись под фото в фотобанке гласит:
Июнь 1924 г. Карл В. Митман, Технический куратор Национального музея США (Смитсоновского института) держит то, что вероятно было первой радиолампой, сделанной в 1898 г. Д.МакФарланом Муром* из Нью-Йорка. Радиоволны, излучаемые этой лампой запустили бомбу, уничтожившую целый квартал и снёсшую уменьшенную копию линкора «Мэйн».
Очередной раз глядя на домашнюю «лапшу» от компьютера, усилителя, колонок и прочего, родилась совершенно спонтанная мысль — «а почему провода не могут быть чем-то непортящим интерьер»?
Идея родилась довольно быстро. Но над виртуальным воплощением пришлось попотеть: около 5 часов моделинга и рендеринга.
Но речь не о 3D-моделировании.
Уважаемые датагорцы, на ваш взгляд, стоит ли идея реализации?
Какие у нее минусы и плюсы?
Это перевод с украинского статьи, с которой я решил ознакомить датагорцев, когда прочитал
Photo by Alejandro González Novoa
Автор статьи В.Л. Карлаш в доступной форме разъясняет преимущества разных динамических головок громкоговорителей исходя из их технических характеристик. Впрочем, статья чисто техническая (автор – канд. физ.-мат. наук) и в общем, не учитывает акустического оформления громкоговорителя, а также таких важных в современной радиолюбительской практике понятий, как например «звучание нравится – не нравится», «дорого – целесообразно».
Стоит также учесть, что она вышла в 1983 году , когда некоторых моделей наших динамиков еще и не было, а о многих хороших забугорных динамиках советские радиолюбители и не догадывались (к сожалению).
Знаю по себе, если не получается какая-либо конструкция, или никак не находится неисправность в телевизоре, усилителе и… ну настроение не то — нужно «переключиться» на что-то другое, отвлечься. Потом с новыми силами всё пойдёт как по маслу.
Предлагаю Вам всем немного отвлечься от дел радиолюбительских, порадовать себя и своих родственников или сделать подарок своим знакомым.
Привет, друзья!
Вы любите ролевые игрушки, те самые RPG ? Нет, я не спрашиваю — сидители вы в них сутками, забросив дела и забив на обязанности. Делу время, потехе час. Я спрашиваю — знаете ли вы, с чем это едят. Ведь если нет, то вы не сможете до конца прочуствовать всю ржаку, описанную ниже.
Знаменитая студия Bethesda только что выпустила игру The Elder Scrolls V: Skyrim , которая прокатилась по миру с пеной и пафосом, получая максимальные рейтинги и оценки от критиков и игроков.
Не секрет, что разработчики игрушек из кожи вон лезут, стараясь приблизить свои игры к реальности.
И не только по графике. Графика — это ведь просто дело техники: домашние ПК всё мощнее, графика всё прекраснее и вот уже бежит прозрачная слеза по розовой щечке, покрытой порами и пушковым волосом и отражается в ней бездонное небо, солнце и еще фиг знает что они там нарисовали…
Что это?
Это молодежный, студенческий опен-эйр фестиваль, который ежегодно проходит в горах Алтая вот уже 15 лет. По-своему он уникален, поскольку формат фестиваля объединяет немало направлений. За двое с половиной суток с основной сцены (а еще есть поменьше, альтернативная) нон-стопом низвергается безбашенная смесь из выступлений: КВН-щиков, рэперов, DJ-ев, танцевальных коллективов, рокеров (от рок-н-ролла до альтернативы), и еще чего-то веселого.На поляне в светлое время суток можно встретить раскрашенных людей (бодиарт), купить атрибутику и что-нибудь из эксклюзива (ярмарка хэндмейда), поучаствовать в семинарах, посмотреть конкурс костюмов, да и граффитисты разрисовывают все, на что можно из баллончика пшикнуть. А с наступлением темноты фаерщики устраивают поистине завораживающее огненные шоу. Ну и, конечно же, свежий воздух, природа Алтая…
Сайт простые интересные радиосхемы , посвящён как профессионалам, занимающимся проектированием и сборкой сложных электронных цифровых устройств, так и радиолюбителям новичкам, делающим первые шаги в электронике, старающимся понять принцип действия радиодеталей — транзисторов, микросхем, pic и avr контроллеров. На сайте размещаются только проверенные радиосхемы простых светодиодных эффектов, сигнализаций и блоков питания. Большой раздел содержит описание металлоискателей всех популярных самодельных моделей — Терминатор, Tracker PI-2, Шанс и конечно же знаменитый volksturm, со сборки которого начинается путь многих радиолюбителей, специализирующихся на сборке аппаратуры для кладоискательства. Для начинающих шпионов мы собрали большую коллекцию проверенных схем жучков и радиомикрофонов — на транзисторах и специализированных микросхемах. Все схемы снабжены рисунками печатных плат и подробным описанием настройки передатчика.
Следует помнить, что мощный ФМ жучек может создавать помехи вещательным FM радиостанциям, поэтому старайтесь чтить законодательство. Актуальной проблемой на сегодняшний день является вопрос выбора и эксплуатации зарядных устройств. Сейчас практически любая электронная переносная аппаратура, в том числе и мобильные устройства, имеет аккумуляторное питание. При этом типы, вольтаж и другие параметры АКБ могут сильно отличаться. Поэтому сборка самодельного универсального зарядного устройства будет вполне оправдана, особенно в случае поломки редкого штатного, не встречающегося в продаже.
В наш век научно технического прогресса, когда развитие электроники и радиотехники всё более миниатюризируется, обязательным будет освоение работы с микроконтроллерами популярных серий pic и avr. На МК ATmega можно создать небольшие и очень функциональные приборы, которые имели бы габариты в 10 раз больше, если сделать их на транзисторах и обычных цифровых микросхемах. Простые программаторы, основы прошивки микроконтроллеров и интересные схемы на pic16f84 — всё это есть на сайте радиосхемы. Несмотря на большое количество других радиотехнических ресурсов для начинающих — радиокот, паяльник, радиолоцман, мы стараемся наиболее качественно и быстро знакомить вас с полезными схемами и новинками радиотехники. Прогресс не стоит на месте, и вот уже такая традиционная сфера, как освещение, стало меняться и усовершенствоваться с каждым годом. За каких-то неполных 10 лет, лампа накаливания претерпела эволюцию сначала в люминесцентную, а потом и светодиодную. Как выбрать или сделать самому светодиодную лампочку, светильник или фонарик — смотрите в разделе светодиоды. А если у вас возникнет вопрос по поиску нужной принципиальной схемы или настройке работы устройства, собранного своими руками — обращайтесь на форум, где наши модераторы быстро и профессионально проконсультируют вас по любым радиолюбительским вопросам.
Электрические схемы для начинающих, для любителей и профессионалов
Добро пожаловать в раздел Радиосхемы ! Это отдельный раздел Сайта Радиолюбителей который был создан специально для тех кто дружит с паяльником, привык все делать сам своими руками и он посвящен исключительно электрическим схемам.
Здесь Вы найдете принципиальные схемы различной тематики как для самостоятельной сборки начинающими радиолюбителями , так и для более опытных радиолюбителей, для тех кому слово РАДИО давно уже стало не просто хобби а профессией.
Кроме схем для самостоятельной сборки, у нас здесь имеется и достаточно большая (и постоянно обновляемая!) база электрических схем различной промышленной электроники и бытовой техники- схемы телевизоров, мониторов, магнитол, усилителей, измерительных приборов, стиральных машин, микроволновок и так далее.
Специально для работников сферы ремонта, у нас на сайте имеется раздел «Даташиты «, где вы сможете найти справочную информацию на различные радиоэлементы.
А если Вам необходима какая либо схема и есть желание ее скачать, то у нас здесь все бесплатно, без регистрации, без СМС, без файлообменников и прочих сюрпризов
Если есть вопросы или не нашли то что искали- заходите к нам на ФОРУМ , подумаем вместе!!
Для облегчения поиска необходимой информации раздел разбит по категориям
Схемы для начинающих В этом разделе собраны простые схемы для начинающих радиолюбителей
. | Свет и музыка устройства световы х эффектов : мигалки, цветомузыки, стробоскопы, автоматы переключения гирлянд и так далее. Конечно-же все схемы можно собрать самостоятельно материалы в категории | Схемы источников питания Любая радиоэлектронная аппаратура нуждается в питании. Именно источникам питания и посвящена данная категория материалы в категории |
Электроника в быту В этой категории представлены схемы устройств для бытового применения: отпугиватели грызунов, различные сигнализации, ионизаторы и так далее… | Антенны и Радиоприемники Антенны (в том числе и самодельные), антенные комплектующие а также схемы радиоприемников для самостоятельной сборки | Шпионские штучки В этом разделе находятся схемы различных «шпионских» устройств- радиожучки, глушители и прослушиватели телефонов, детекторы радиожучков |
Авто- Мото- Вело электроника Принципиальные схемы различных вспомогательных устройств к автомобилям : зарядные устройства, указатели поворотов, управление светом фар и так далее | Измерительные приборы Электрические принципиальные схемы измерительных приборов: как самодельных так и промышленного производства материалы в категории | Отечественная техника 20 Века Подборка электрических принципиальных схем бытовой радиоаппаратуры выпущенной в СССР материалы в категории |
Схемы телевизоров LCD (ЖК) Электрические принципиальные схемы телевизоров LCD (ЖК) материалы в категории | Схемы программаторов Схемы различных программаторов материалы в категории | Аудиотехника Схемы устройств связанных со звуком: усилители транзисторные и на микросхемах, предварительные и ламповые, устройства преобразования звука материалы в категории |
Схемы мониторов Принципиальные электрические схемы различных мониторов: как стареньких кинескопных, так и современных ЖК материалы в категории | Схемы автомагнитол и прочей авто-аудиотехники Подборка схем автомобильной аудиотехники: автомагнитолы, усилительные устройства и автомобильные телевизоры |
Радиоэлектроника, даташиты, схемы — RadioRadar
НОВОСТИ
21.08.2021 — 21:40В дополнение к текущей серии публикаций о решениях TE Connectivity для высокоскоростных соединений стоит отдельно отметить анонсированный в начале этого года кабель, отвечающий технологии однопарного Ethernet.Кабель SPE от TE Connectivity – это инновационная высокопроизводительная система, позволяющая реализовать параллельную передачу данных со скоростью от 100 Мбит/с до 1 Гб/с и дистанционно питать нагрузку до 50 Вт в соответствии со стандартами IEEE 802.3bp 1000Base-T1 и IEEE 802.3bu…
21.08.2021 — 21:28STMicroelectronics выпустила новую версию библиотеки кода X-CUBE-MEMS1 и сделала ее совместимой с новейшей системой-на-кристалле BlueNRG-LP (BLE SoC 5.2). Новая версия для v7.3 позволяет легко и просто интегрировать любой алгоритм работы MEMS-датчиков движения благодаря готовым библиотекам, совместимым с драйверами “STMems_Standard C” (Drag and drop). Благодаря новому выпуску X-CUBE-MEMS1 расширяется набор доступного бесплатного программного обеспечения для BlueNRG-LP. Теперь все соо…
19.08.2021 — 23:50НОВОСТИНейропротез преобразует мысли человека в текст 2Диктофон Mobvoi AI Recorder самостоятельно преобразует аудиозаписи в текстовый формат 2 ТЕЛЕВИЗИОННАЯ ТЕХНИКАНиколай ЕлагинПлата управления TP.MS3463S.PB785B для цифровых LED-телевизоров (часть 2) 3Сергей УгаровТелевизионное шасси Philips TPM16.1E LA — архитектура, сервисные режимы и регулировка (часть 1) 8 ОРГТЕХНИКАВиталий ОвсянниковРемонт лазерного принтера «Xerox Phaser 3010&…
16.08.2021 — 23:27ST25R3918 от STMicroelectronics – это многоцелевой NFC-ридер, поддерживающий связь в режиме «точка-точка», режим эмуляции NFC-карты, а также работу в качестве считывателя NFC. Поддерживая эмуляцию карт NFC-A и NFC-F, ридер может быть использован в качестве устройства чтения карт NFC-A / B (ISO 14443A/B), в качестве устройства чтения карт NFC-V (ISO 15693) до 53 Кбит/с, а также как пассивный инициатор и цель в соответствии с ISO 18092. Режим эмуляции карты позволяет поддерживать н…
12.08.2021 — 23:14Компания Honeywell выпускает специализированные датчики для электротранспорта – датчики тока для аккумуляторных батарей и магнитные датчики положения и скорости. Преимуществами датчиков тока Honeywell являются низкая суммарная погрешность при расчёте во всем диапазоне рабочих токов, оригинальная схема компенсации изменений температуры (IP Honeywell) и специальный AЦП для точных измерений малых токов (Inhomogeneous ADC). Помимо перечисленного, датчики имеют улучшенную защиту от электромагни…
Схема автомобиля — Каталог схем электрооборудования автомобилей
С неудержимым развитием автомобильной промышленности усложняется и конструкция каждой конкретной модели. Всё большее количество задач возлагается на электронные схемы – а значит, растёт число контролирующих датчиков.
В нашем справочнике представлены схемы электрооборудования практически всех популярных моделей отечественных и зарубежных автопроизводителей. Тут можно найти принципиальные электросхемы отечественных (ВАЗ, ГАЗ, УАЗ, ИЖ, Москвич), корейских (Киа, Хендай, Дэу, Санг Йонг), немецких (Ауди, БМВ, Фольксваген, Мерседес, Опель), японских (Хонда, Лексус, Митсубиси, Субару, Сузуки, Тойота, Ниссан, Мазда), американских (Форд, Шевроле), французских (Рено, Ситроен, Пежо), итальянских (Альфа Ромео, Фиат), шведских (Вольво, Сааб),чешских (Шкода) и других автопроизводителей.
Большинство представленных в справочнике схем цветные, в хорошем качестве и на русском языке. Это позволяет более удобно с ними работать при поиске различных элементов, модулей и узлов. Для увеличения размера схемы необходимо кликнуть по изображению, а затем на значок над схемой. Все электросхемы собраны из открытых источников и любую схему с сайта можно скачать абсолютно бесплатно. Наш справочник схем периодически обновляется, поэтому если вы не нашли на сайте нужную Вам информацию сегодня, попробуйте зайти позднее.
Отдельно на сайте представлена рубрика технического обслуживание и ремонта электрооборудования различных моделей авто, приводятся советы по тестированию электропроводки, быстрой проверке и замене предохранителей и световых приборов. Так же в справочнике представлена рубрика статей, где Вы можете найти обзоры и советы в помощь автолюбителям по эксплуатации автомобилей, подготовки их к зиме и многое другое.
При возникающем сбое или неполадке владелец машины тут же получает оповещение электронной системы в виде загорающегося тревожного индикатора.
Наверное, нет ни единого водителя, который бы хоть раз не видел подобного «сигнала тревоги». Но что именно означает сообщение об ошибке? Какого рода и как скоро вас ждут неприятности – пустяковый ремонт, с которым можно повременить, или экстренная замена важнейшего элемента?
Чаще всего из строя выходят простые периферийные блоки: предохранители, лампочки, различные фары и реле. Поэтому чтобы не тратить деньги на услуги СТО, можно без проблем, обладая минимальными знаниями в автоэлектрике, справиться с этими мелкими проблемами самому.
Для этого Вам понадобиться несколько приборов:
- амперметр,
- вольтметр,
- измеритель сопротивления (для прозвонки проводки)
Чтобы упростить задачу, рекомендуем купить такой универсальный прибор как автотестер (цифровой).
Бывают такие экстренные ситуации, когда самостоятельно выяснить вопрос неполадки не удается – если только вы не специалист по диагностике и не сотрудник автосервиса. В данном случае рекомендуется обратиться к профессиональной компьютерной диагностики автомобиля – это поможет вам моментально выявить причину предупреждающей индикации. Вы будете точно знать, «протянет» ли ваша машина ещё сотню километров – или нужно срочно разыскивать мастера.
Диагностика позволит владельцу машины:
- Узнать, нет ли скрытых или неочевидных дефектов.
- Выявить ошибки в функционировании узлов и агрегатов.
- Прогнозировать возможный выход из строя или отказ того или иного элемента.
- Осуществить настройку экономичного расхода горючего.
Обследование автомобиля – всё равно что диспансеризация для человека. Обратиться раз в год за компьютерной диагностикой сопоставимо с ежегодной профилактической сдачей анализов в поликлинике. Она поможет вовремя «прихватить болезнь», избавив вас от беспокойства и лишних затрат. Можно даже сказать, что эта процедура является бюджетным вариантом технического обслуживания автомобиля. Стоимость её непременно окупится – за счёт того, что вы избежите дорогостоящего ремонта.
Для профилактики, чтобы избежать серьезных проблем с электрооборудованием каждые 15 000 километров пробега рекомендуется следующее:
- очистить аккумулятор от грязи и пыли
- для удаления электролита протереть поверхность аккумулятора тканью, смоченной в 10%-ом растворе нашатырного спирта или кальцинированной соды
- после протереть батарею аккумулятора уже сухой тряпкой
- проверить уровень электролита в аккумуляторной батарее и при необходимости долить дистиллированную воду
- проверить напряжение аккумулятора питания и при необходимости подзарядить его.
Множество интернет-магазинов для автолюбителей наперебой предлагают купить «чудодейственные» сканеры, якобы позволяющие произвести полноценную компьютерную диагностику своими руками. Модели этих приборов (в основном речь идёт об аппаратуре китайского производства) различны, но реклама каждого из них сулит волшебство. Но мы всё же советуем воздержаться от покупки подобных устройств. Со сканером, который действительно эффективен, всё равно сумеет обращаться лишь специалист, да и цена их довольно велика. А дешёвый прибор, как правило, оказывается, средством для однократного применения.
Радиосхемы. — Бытовая техника
В этом разделе нашего сайта Вы найдете схемы различной бытовой техники- холодильники, стиральные машинки, микроволновки, кондиционеры, кухонная техника, мелкая бытовая. Все эти схемы Вы сможете скачать.
Для того чтобы скачать Вам не потребуется регистрация, Вас не перенаправят на удаленный файлообменник и никто не попросит отправить СМС-сообщение- у нас на сайте все в свободном доступе и проверено антивирусом!
Вся предоставленная информация взята из открытых источников и предназначена исключительно для личного пользования!!
Для просмотра скачанных файлов Вам потребуются архиваторы и программы для просмотра файлов формата pdа или djvu. Все это Вы сможете найти на нашем сайте в разделе СОФТ.
Если у Вас есть вопросы по ремонту бытовой техники- заходите к нам на ФОРУМ!
Для облегчения поиска нужной схемы все файлы рассортированы по категориям.
Вы также можете воспользоваться и поиском по сайту- просто введите необходимую фразу
Итак, материалы данного раздела
Схемы стиральных машин
В этом разделе находятся схемы стиральных машин- автоматов
Перейти в подраздел Схемы стиральных машин
Схемы холодильников
Здесь находятся схемы холодильников
Перейти в подраздел Схемы холодильников
Схемы кухонной техники
Здесь Вы найдете схемы различной кухонной техники: посудомоечные машины, электроплиты, варочные панели и так далее
Прейти в подраздел Схемы кухонной техники
Схемы микроволновок
В этом разделе находятся схемы микроволновых печей
Перейти в подраздел Схемы микроволновок
Полезная инфа Готовить это очень просто! На сайте Просто, быстро, вкусно Вы всегда найдете множество простых рецептов
Схемы кондиционеров
Схемы кондиционеров
Перейти в подраздел Схемы кондиционеров
Схемы прочей бытовой техники
А здесь находятся схемы различной бытовой техники которая не вошла в другие разделы: мелкая бытового применения типа пылесосов, термоподов и электрочайников и фенов, более крупная вроде газовых котлов а также различный электроинструмент
Перейти в подраздел Схемы прочей бытовой техники
Интересные радиосхемы для радиолюбителей. Схемы для дома, электронника своими руками в дом
Сделать своими руками простейшие электронные схемы для использования в быту можно, даже не имея глубоких познаний в электронике. На самом деле на бытовом уровне радио – это очень просто. Знания элементарных законов электротехники (Ома, Кирхгофа), общих принципов работы полупроводниковых устройств, навыков чтения схем, умения работать с электрическим паяльником вполне достаточно, чтобы собрать простейшую схему.
Мастерская радиолюбителя
Какой сложности схему ни пришлось бы выполнять, необходимо иметь минимальный набор материалов и инструментов в своей домашней мастерской:
- Бокорезы;
- Пинцет;
- Припой;
- Флюс;
- Монтажные платы;
- Тестер или мультиметр;
- Материалы и инструменты для изготовления корпуса прибора.
Не следует приобретать для начала дорогие профессиональные инструменты и приборы. Дорогая паяльная станция или цифровой осциллограф мало помогут начинающему радиолюбителю. В начале творческого пути вполне достаточно простейших приборов, на которых и нужно оттачивать опыт и мастерство.
С чего начинать
Радиосхемы своими руками для дома должны по сложности не превышать того уровня, каким Вы владеете, иначе это будет означать лишь потраченное время и материалы. При недостатке опыта лучше ограничиться простейшими схемами, а по мере накопления навыков усовершенствовать их, заменяя более сложными.
Обычно большинство литературы из области электроника для начинающих радиолюбителей приводит классический пример изготовления простейших приемников. Особенно это относится к классической старой литературе, в которой нет столько принципиальных ошибок по сравнению с современной.
Обратите внимание! Данные схемы были рассчитаны на огромные мощности передающих радиостанций в прошлое время. Сегодня передающие центры используют меньшую мощность для передачи и стараются уйти в диапазон более коротких волн. Не стоит тратить время на попытки сделать рабочий радиоприемник при помощи простейшей схемы.
Радиосхемы для начинающих должны иметь в своем составе максимум пару-тройку активных элементов – транзисторов. Так будет легче разобраться в работе схемы и повысить уровень знаний.
Что можно сделать
Что можно сделать, чтобы и было несложно, и можно было использовать на практике в домашних условиях? Вариантов может быть множество:
- Квартирный звонок;
- Переключатель елочных гирлянд;
- Подсветка для моддинга системного блока компьютера.
Важно! Не следует конструировать устройства, работающие от бытовой сети переменного тока, пока нет достаточного опыта. Это опасно и для жизни, и для окружающих.
Довольно несложные схемы имеют усилители для компьютерных колонок, выполненные на специализированных интегральных микросхемах. Устройства, собранные на их основе, содержат минимальное количество элементов и практически не требуют регулировки.
Часто можно встретить схемы, которые нуждаются в элементарных переделках, усовершенствованиях, которые упрощают изготовление и настройку. Но это должен делать опытный мастер с тем расчетом, чтобы итоговый вариант был более доступен новичку.
На чем выполнять конструкцию
Большинство литературы рекомендует выполнять конструирование простых схем на монтажных платах. В настоящее время с этим совсем просто. Существует большое разнообразие монтажных плат с различными конфигурациями посадочных отверстий и печатных дорожек.
Принцип монтажа заключается в том, что детали устанавливаются на плату в свободные места, а затем нужные выводы соединяются между собой перемычками, как указано на принципиальной схеме.
При должной аккуратности такая плата может послужить основой для множества схем. Мощность паяльника для пайки не должна превышать 25 Вт, тогда риск перегреть радиоэлементы и печатные проводники будет сведен к минимуму.
Припой должен быть легкоплавким, типа ПОС-60, а в качестве флюса лучше всего использовать чистую сосновую канифоль или ее раствор в этиловом спирте.
Радиолюбители высокой квалификации могут сами разработать рисунок печатной платы и выполнить его на фольгированном материале, на котором затем паять радиоэлементы. Разработанная таким образом конструкция будет иметь оптимальные габариты.
Оформление готовой конструкции
Глядя на творения начинающих и опытных мастеров, можно придти к выводу, что сборка и регулировка устройства не всегда являются самым сложным в процессе конструирования. Порой правильно работающее устройство так и остается набором деталей с припаянными проводами, не закрытое никаким корпусом. В настоящее время уже можно не озадачиваться изготовлением корпуса, потому что в продаже можно встретить всевозможные наборы корпусов любых конфигураций и габаритов.
Перед тем, как начинать изготовление понравившейся конструкции, следует полностью продумать все этапы выполнения работы: от наличия инструментов и всех радиоэлементов до варианта выполнения корпуса. Совсем неинтересно будет, если в процессе работы выясниться, что не хватает одного из резисторов, а вариантов замены нет. Работу лучше выполнять под руководством опытного радиолюбителя, а, в крайнем случае, периодически контролировать процесс изготовления на каждом из этапов.
Видео
В наше время существует огромный выбор инструментов и приборов для занятий радиоэлектроникой: паяльные станции, стабилизированные лабораторные источники питания, гравировальные наборы (для сверления плат и обработки конструкционных материалов), инструмент для зачистки и обработки проводов и кабелей и так далее. И все это оборудование стоит немалых денег. Возникает резонный вопрос — сможет ли начинающий радиолюбитель преобрести весь этот арсенал оборудования? Ответ очевиден, тем более для некоторых людей, увлекающихся электроникой по случаю (для единичного изготовления каких-то полезных приспособлений для бытовых целей), покупка такого количества инструмента не требуется. Выход из создавшегося положения довольно прост — изготовить необходимый инструмент собственными руками. Данные самоделки послужат временной (а для кого-то и постоянной) альтернативой заводскому оборудованию.
Итак, приступим. Основой нашего устройства служит сетевой понижающий трансформатор от любого отслужившего свой срок радиоэлектронного устройства (телевизор, магнитофон, стационарный радиоприемник и т.д.). Так же могут пригодится сетевой шнур, колодка предохранителей и выключатель питания.
Далее необходимо снабдить наш блок питания регулируемым стабилизатором напряжения. Так как конструкция расчитана на повторение начинающими радиолюбителями, самым рациональным, по моему мнению, будет применение интегрального стабилизатора на микросхеме типа LM317T (К142ЕН12А). На основе данной микросхемы мы соберем регулируемый стабилизатор напряжения от 1,2 до 30 вольт с полным током нагрузки до 1,5 ампер и защитой от перегрузки по току и превышению температуры. Принципиальная схема стабилизатора представлена на рисунке.
Собрать схему стабилизатора можно на куске нефольгированного стеклогетинакса (или электрокартона) навесным монтажем или на макетной плате — схема настолько проста, что даже не требует печатной платы.
На выход стабилизатора можно подключить (параллельно выводам) вольтметр, для контроля и регулировки выходного напряжения,и (последовательно с плюсовым выводом) миллиамперметр, для контроля токопотребления подключаемой к стабилизатору радиолюбительской самоделки.
Еще одна необходимая в арсенале начинающего радиолюбителя вещь — микроэлектродрель. Как известно, в арсенале любого (начинающего или умудренного опытом) самодельщика существует »склад» вышедшей из обихода или неисправной аппаратуры. Хорошо, если на таком »складе» найдется детская машинка с электроприводом, микромотор от которой и послужит электродвигателем для нашей микродрели. Необходимо только замерить диаметр вала двигателя и в ближайшем радиомагазине приобрести патрон с набором цанговых зажимов (под сверла разного диаметра) для этого микродвигателя. Полученную микродрель можно подключать к нашему блоку питания. Посредством регулирования напряжения можно регулировать количество оборотов дрели.
Следующая необходимая вещь — низковольтный паяльник с гальванической развязкой от сети (для пайки полевых транзисторов и микросхем, которые боятся статического разряда). В продаже имеются низковольтные паяльники на 6, 12, 24, 48 вольт, а если трансформатор, который мы выбрали для нашего изделия от старого лампового телевизора, то можно считать что нам крупно повезло — мы имеем уже готовую обмотку для питания низковольтного электропаяльника (следует задействовать накальные обмотки (6 вольт) трансформатора для питания паяльника). Применение трансформатора от лампового телевизора дает еще один плюс нашей схеме — мы можем оснастить наше устройство еще и инструментом для зачистки концов провода.
Основа этого приспособления — две контактных колодки, между которыми закреплена нихромовая проволока и кнопка, с нормально разомкнутыми контактами. Техническое оформление этого устройства видно из рисунка. Подключается оно все к той же накальной обмотке трансформатора. При нажатии на кнопку нихром разогревается (все наверное помнят что такое выжигатель) и прожигает изоляцию провода в нужном месте.
Корпус для данного блока питания можно найти готовый или собрать самому. Если сделать его из металла и предусмотреть вентиляционные отверстия только снизу и по бокам, то сверху можно расположить стойки для паяльника и инструмента зачистки провода. Коммутацию всего этого хозяйства можно осуществить применив пакетный переключатель, систему тумблеров или разъемов — здесь для фантазии пределов нет.
Впрочем и модернизировать данный блок можно под свои нужды — дополнить, к примеру, зарядным устройством для аккумуляторов или электроискровым гравером и т.д. Данное устройство служило мне долгие годы и служит до сих пор (правда теперь на даче) для изготовления и проверки различных радиоэлектронных и электротехнических самоделок. Автор — Электродыч.
Схемы самодельных измерительных приборов
Схема прибора, разработанная на основе классического мультивибратора, но вместо нагрузочных резисторов в коллекторные цепи мультивибратора включены транзисторы противоположной основным проводимостью.
Хорошо, если в вашей лаборатории есть осциллограф. Ну а если его нет и купить его по тем или иным причинам не представляется возможным, не огорчайтесь. В большинстве случаев его с успехом может заменить логический пробник, позволяющий проконтролировать логические уровни сигналов на входах и выходах цифровых интегральных схем, определить наличие импульсов в контролируемой цепи и отразить полученную информацию в визуальной (свето-цветовой или цифровой) или звуковой (тональными сигналами различной частоты) формах. При налаживании и ремонте конструкций на цифровых интегральных схемах далеко не всегда так уж необходимо знать характеристики импульсов или точные значения уровней напряжения. Поэтому логические пробники облегчают процесс налаживания, даже если есть осциллограф.
Представлена огромная подборка разичных схем генераторов импульсов. Одни из них формируют на выходе одиночный импульс, длительность которого не зависит от длительности запускающего (входного) импульса. Применяются такие генераторы в самых разнообразных целях: имитации входных сигналов цифровых устройств, при проверке работоспособности цифровых интегральных схем, необходимости подачи на какое-то устройство определенного числа импульсов с визуальным контролем процессов и т. д. Другие генерируют пилообразные и прямоугольные импульсы различной частоты, скважности и амплитуды
Ремонт различных узлов и устройств низкочастотной радиоэлектронной аппаратуры и техники можно значительно упростить, если использовать в качестве помощника функциональный генератор, который дает возможность исследовать амплитудно-частотные характеристики любого низкочастотного устройства, переходные процессы и нелинейные характеристики любых аналоговых приборов, а также обладает возможностью генерации импульсов прямоугольной формы и упрощения процесса наладки цифровых схем.
При наладке цифровых устройств обязательно нужен еще один прибор — генератор импульсов. Промышленный генератор — прибор достаточно дорогой и редко бывает в продаже, но его аналог, пусть не такой точный и стабильный, можно собрать из доступных радиоэлементов в домашних условиях
Однако создание звукового генератора, вырабатывающего синусоидальный сигнал, дело непростое и довольно кропотливое, особенно в части налаживания. Дело в том, что любой генератор содержит, по крайней мере, два элемента: усилитель и частотнозависимую цепь, определяющую частоту колебаний. Обычно она включается между выходом и входом усилителя, создавая положительную обратную связь (ПОС). В случае ВЧ-генератора все просто — достаточно усилителя на одном транзисторе и колебательного контура, определяющего частоту. Для диапазона звуковых частот наматывать катушку сложно, да и добротность ее получается низкой. Поэтому в диапазоне звуковых частот используют RC-элементы — резисторы и конденсаторы. Они довольно плохо фильтруют основную гармонику колебаний, и потому синусоидальный сигнал оказывается искаженным, например, ограниченным по пикам. Для устранения искажений применяют цепи стабилизации амплитуды, поддерживающие низкий уровень генерируемого сигнала, когда искажения еще незаметны. Именно создание хорошей стабилизирующей цепи, не искажающей синусоидальный сигнал, и вызывает основные трудности.
Часто, собрав конструкцию, радиолюбитель видит, что устройство не работает. У человека ведь нет органов чувств, позволяющих видеть электрический ток, электромагнитное поле или процессы, происходящие в электронных схемах. Помогают это сделать радиоизмерительные приборы — глаза и уши радиолюбителя.
Поэтому нужно какое-то средство испытания и проверки телефонов и громкоговорителей, усилителей звуковой частоты, различных звукозаписывающих и звуковоспроизводящих устройств. Такое средство — это радиолюбительские схемы генераторов сигналов звуковой частоты, или, говоря проще, звуковой генератор. Традиционно он вырабатывает непрерывный синусоидальный сигнал, частоту и амплитуду которого можно изменять. Это позволяет проверять все каскады УНЧ, находить неисправности, определять коэффициент усиления, снимать амплитудно-частотные характеристики (АЧХ) и много всего другого.
Рассмотрена несложная радиолюбительская самодельная приставка превращающая ваш мультиметр в универсальный прибор проверки стабилитронов и динисторов. Имеются чертежи печатной платы
Одно из распространенных хобби любителей и профессионалов в области электроники – это конструирование и изготовление различных самоделок для дома. Электронные самоделки не требуют больших материальных и финансовых затрат и выполняться могут в домашних условиях, поскольку работы с электроникой являются, по большей части, «чистыми». Исключение составляет только изготовление разнообразных корпусных деталей и иных механических узлов.
Полезные электронные самоделки могут использоваться во всех областях быта, начиная от кухни и заканчивая гаражом, где многие занимаются усовершенствованием и ремонтом электронных устройств автомобиля.
Самоделки на кухне
Кухонные самоделки из области электроники могут составлять дополнение к существующим аксессуарам и принадлежностям. Большой популярностью среди жителей квартир пользуются промышленный и самодельные электрошашлычницы.
Еще один распространенный пример кухонных самоделок, сделанных своими руками домашнего электрика, – таймеры и автоматика включения освещения над рабочими поверхностями, электроподжиг газовых горелок.
Важно! Изменение конструкции некоторой бытовой техники, в особенности газовых приборов, может вызвать «непонимание и неприятие» контролирующих организаций. Кроме того, это требует большой аккуратности и внимательности.
Электроника в автомобиле
Самодельные устройства для автомобиля наиболее широкое распространение получили среди владельцев отечественных марок транспорта, которые отличаются минимальным количеством дополнительных функций. Широким спросом пользуются такие схемы:
- Звуковые сигнализаторы поворотов и включения ручного тормоза;
- Сигнализатор режимов работы аккумуляторной батареи и генератора.
Более опытные радиолюбители занимаются оснащением своего автомобиля датчиками парковки, электронными приводами стеклоподъемников, автоматическими датчиками освещенности для управления ближним светом фар.
Самоделки для начинающих
Большинство начинающих радиолюбителей занимаются изготовлением конструкций, которые не требуют высокой квалификации. Простые отработанные конструкции могут служить длительное время и не только ради пользы, но и в качестве напоминания о техническом «взрослении» от начинающего радиолюбителя до профессионала.
Для малоопытных любителей множество производителей выпускают готовые наборы для конструирования, которые содержат в составе печатную плату и набор элементов. Такие наборы позволяют отработать такие навыки:
- Чтение принципиальных и монтажных схем;
- Правильная пайка;
- Настройка и регулировка по готовой методике.
Среди наборов очень распространены электронные часы различных вариантов исполнения и степени сложности.
В качестве области применения знаний и опыта радиолюбители могут конструировать электронные игрушки, используя схемы попроще или переделывая промышленные конструкции под свои пожелания и возможности.
Интересные идеи для поделок можно видеть на примерах изготовления радиоэлектронных поделок из пришедших в негодность деталей вычислительной техники.
Домашняя мастерская
Для самостоятельного конструирования радиоэлектронных устройств необходим некоторый минимум инструментов, приспособлений и измерительных приборов :
- Паяльник;
- Бокорезы;
- Пинцет;
- Набор отверток;
- Пассатижи;
- Многофункциональный тестер (авометр).
На заметку. Планируя заниматься электроникой своими руками, не следует браться сразу за сложные конструкции и приобретать дорогостоящий инструмент.
Большинство радиолюбителей начинали свой путь с использования простейшего паяльника 220В 25-40Вт, а из измерительных приборов в домашней лаборатории использовался самый массовый советский тестер Ц-20. Всего этого достаточно для занятий с электричеством, приобретения нужных навыков и опыта.
Начинающему радиолюбителю нет смысла покупать дорогостоящую паяльную станцию, если нет необходимого опыта работы с обычным паяльником. Тем более что возможность применения станции появится еще не скоро, а только по прошествии иногда довольно длительного времени.
Также нет необходимости в профессиональной измерительной аппаратуре. Единственный серьезный прибор, который может понадобиться даже начинающему любителю, – это осциллограф. Для тех, кто уже разбирается в электронике, осциллограф является одним из самых востребованных измерительных инструментов.
В качестве авометра с успехом можно использовать недорогие цифровые приборы китайского производства. Имея богатую функциональность, они обладают высокой точностью измерений, простотой использования и, что важно, имеют встроенный модуль для измерения параметров транзисторов.
Говоря о домашней мастерской у самоделкина, нельзя не упомянуть о материалах, применяемых для пайки. Это припой и флюс. Самым распространенным припоем является сплав ПОС-60, который имеет невысокую температуру плавления и обеспечивает высокую надежность пайки. Большинство припоев, применяемых для пайки всевозможных устройств, является аналогами упомянутого сплава и может быть им с успехом заменено.
В качестве флюса для пайки используется обычная канифоль, но для удобства пользования лучше использовать ее раствор в этиловом спирте. Флюсы на основе канифоли не требуют удаления с монтажа после работы, поскольку являются химически нейтральными при большинстве условий эксплуатации, а тонкая пленка канифоли, образовавшаяся после испарения растворителя (спирта), проявляет неплохие защитные свойства.
Важно! При пайке электронных компонентов ни в коем случае нельзя использовать активные флюсы. Особенно это касается паяльной кислоты (раствор хлористого цинка), поскольку даже в обычных условиях такой флюс разрушающе воздействует на тонкие медные печатные проводники.
Для облуживания сильно окисленных выводов лучше использовать активный бескислотный флюс ЛТИ-120, который не требует смывания.
Очень удобно работать, используя припой, в состав которого включен флюс. Припой выполнен в виде тонкой трубочки, внутри которой находится канифоль.
Для монтажа элементов хорошо подходят макетные платы из двухстороннего фольгированного стеклотекстолита, которые производятся в широком ассортименте.
Меры безопасности
Занятия электричеством связаны с риском для здоровья и даже жизни, особенно, если электроника своими руками конструируется с сетевым питанием. Самодельные электрические устройства не должны использовать бестрансформаторное питание от бытовой сети переменного тока. В крайнем случае, настройку подобных устройств следует производить, подключая их к сети через разделительный трансформатор с коэффициентом трансформации, равным единице. Напряжение на его выходе будет соответствовать сетевому, но в то же время будет обеспечена надежная гальваническая развязка.
Ниже приводятся несложные светозвуковые схемы, в основном собранные на основе мультивибраторов, для начинающих радиолюбителей. Во всех схемах использована простейшая элементная база, не требуется сложная наладка и допускается замена элементов на аналогичные в широких пределах.
Электронная утка
Игрушечную утку можно снабдить несложной схемой имитатора «кряканья» на двух транзисторах. Схема представляет собой классический мультивибратор на двух транзисторах, в одно плечо которого включен акустический капсюль, а нагрузкой другого служат два светодиода, которые можно вставить в глаза игрушки. Обе эти нагрузки работают поочередно – то раздается звук, то вспыхивают светодиоды – глаза утки. В качестве включателя питания SA1 можно применить герконовый датчик (можно взять из датчиков СМК-1, СМК-3 и др., используемых в системах охранной сигнализации как датчики открывания двери). При поднесении магнита к геркону его контакты замыкаются и схема начинает работать. Это может происходить при наклоне игрушки к спрятанному магниту или поднесения своеобразной «волшебной палочки» с магнитом.
Транзисторы в схеме могут быть любые p-n-p типа, малой или средней мощности, например МП39 – МП42 (старого типа), КТ 209, КТ502, КТ814, с коэффициентом усиления более 50. Можно использовать и транзисторы структуры n-p-n, например КТ315, КТ 342, КТ503, но тогда нужно изменить полярность питания, включения светодиодов и полярного конденсатора С1. В качестве акустического излучателя BF1 можно использовать капсюль типа ТМ-2 или малогабаритный динамик. Налаживание схемы сводится к подбору резистора R1 для получения характерного звука кряканья.
Звук подскакивающего металлического шарика
Схема довольно точно имитирует такой звук, по мере разряда конденсатора С1 громкость «ударов» снижается, а паузы между ними уменьшаются. В конце послышится характерный металлический дребезг, после чего звук прекратится.
Транзисторы можно заменить на аналогичные, как и в предыдущей схеме.
От емкости С1 зависит общая продолжительность звучания, а С2 определяет длительность пауз между «ударами». Иногда для более правдоподобного звучания полезно подобрать транзистор VT1, так как работа имитатора зависит от его начального тока коллектора и коэффициента усиления (h31э).
Имитатор звука мотора
Им можно, например, озвучить радиоуправляемую или другую модель передвижного устройства.
Варианты замены транзисторов и динамика – как и в предыдущих схемах. Трансформатор Т1 – выходной от любого малогабаритного радиоприемника (через него в приемниках также подключен динамик).
Существует множество схем имитации звуков пения птиц, голосов животных, гудка паровоза и т.д. Предлагаемая ниже схема собрана всего на одной цифровой микросхеме К176ЛА7 (К561 ЛА7, 564ЛА7) и позволяет имитировать множество разных звуков в зависимости от величины сопротивления, подключаемого к входным контактам Х1.
Следует обратить внимание, что микросхема здесь работает «без питания», то есть на ее плюсовой вывод (ножка 14) не подается напряжение. Хотя на самом деле питание микросхемы все же осуществляется, но происходит это только при подключении сопротивления-датчика к контактам Х1. Каждый из восьми входов микросхемы соединен с внутренней шиной питания через диоды, защищающие от статического электричества или неправильного подключения. Через эти внутренние диоды и осуществляется питание микросхемы за счет наличия положительной обратной связи по питанию через входной резистор-датчик.
Схема представляет собой два мультивибратора. Первый (на элементах DD1.1, DD1.2) сразу начинает вырабатывать прямоугольные импульсы с частотой 1 … 3 Гц, а второй (DD1.3, DD1.4) включается в работу, когда на вывод 8 с первого мультивибратора поступит уровень логической «1». Он вырабатывает тональные импульсы с частотой 200 … 2000 Гц. С выхода второго мультивибратора импульсы подаются на усилитель мощности (транзистор VT1) и из динамической головки слышится промодулированный звук.
Если теперь к входным гнездам Х1 подключить переменный резистор сопротивлением до 100 кОм, то возникает обратная связь по питанию и это преображает монотонный прерывающийся звук. Перемещая движок этого резистора и меняя сопротивление можно добиться звука, напоминающего трель соловья, щебетание воробья, крякание утки, квакание лягушки и т.д.
Детали
Транзистор можно заменить на КТ3107Л, КТ361Г но в этом случае нужно поставить R4 сопротивлением 3,3 кОм, иначе уменьшится громкость звука. Конденсаторы и резисторы – любых типов с номиналами, близкими к указанным на схеме. Надо иметь в виду, что в микросхемах серии К176 ранних выпусков отсутствуют вышеуказанные защитные диоды и такие зкземпляры в данной схеме работать не будут! Проверить наличие внутренних диодов легко – просто замерить тестером сопротивления между выводом 14 микросхемы («+» питания) и ее входными выводами (или хотя бы одним из входов). Как и при проверке диодов, сопротивление в одном направление должно быть низким, в другом – высоким.
Выключатель питания в этой схеме можно не применять, так как в режиме покоя устройство потребляет ток менее 1 мкА, что значительно меньше даже тока саморазряда любой батареи!
Наладка
Правильно собранный имитатор никакой наладки не требует. Для изменения тональности звука можно подбирать конденсатор С2 от 300 до 3000 пФ и резисторы R2, R3 от 50 до 470 кОм.
Фонарь-мигалка
Частоту миганий лампы можно регулировать подбором элементов R1, R2, C1. Лампа может быть от фонарика либо автомобильная 12 В. В зависимости от этого нужно выбирать напряжение питания схемы (от 6 до 12 В) и мощность коммутирующего транзистора VT3.
Транзисторы VT1, VT2 – любые маломощные соответствующей структуры (КТ312, КТ315, КТ342, КТ 503 (n-p-n) и КТ361, КТ645, КТ502 (p-n-p), а VT3 – средней или большой мощности (КТ814, КТ816, КТ818).
Простое устройство для прослушивания звукового сопровождения ТВ — передач на наушники. Не требует никакого питания и позволяет свободно перемещаться в пределах комнаты.
Катушка L1 представляет собой «петлю» из 5…6 витков провода ПЭВ (ПЭЛ)-0.3…0.5 мм, проложенную по периметру комнаты. Она подключается параллельно динамику телевизора через переключатель SA1 как показано на рисунке. Для нормальной работы устройства выходная мощность звукового канала телевизора должна быть в пределах 2…4 Вт, а сопротивление петли – 4…8 Ом. Провод можно проложить под плинтусом или в кабельном канале, при этом нужно располагать его по возможности не ближе 50 см от проводов сети 220 В для уменьшения наводок переменного напряжения.
Катушка L2 наматывается на каркас из плотного картона или пластика в виде кольца диаметром 15…18 см, которое служит наголовником. Она содержит 500…800 витков провода ПЭВ (ПЭЛ) 0,1…0,15 мм закрепленного клеем или изолентой. К выводам катушки подключены последовательно миниатюрный регулятор громкости R и наушник (высокоомный, например ТОН-2).
Автомат выключения освещения
От множества схем подобных автоматов эта отличается предельной простотой и надежностью и в подробном описании не нуждается. Она позволяет включать освещение или какой-нибудь электроприбор на заданное непродолжительное время, а затем автоматически его отключает.
Для включения нагрузки достаточно кратковременно нажать выключатель SA1 без фиксации. При этом конденсатор успевает зарядиться и открывает транзистор, который управляет включением реле. Время включения определяется емкостью конденсатора С и с указанным на схеме номиналом (4700 мФ) составляет около 4 минут. Увеличение времени включенного состояния достигается подключением дополнительных конденсаторов параллельно С.
Транзистор может быть любым n-p-n типа средней мощности или даже маломощным, типа КТ315. Это зависит от рабочего тока применяемого реле, которое также может быть любым другим на напряжение срабатывания 6-12 В и способным коммутировать нагрузку необходимой вам мощности. Можно использовать и транзисторы p-n-p типа, но нужно будет поменять полярность напряжения питания и включения конденсатора С. Резистор R также влияет в небольших пределах на время срабатывания и может быть номиналом 15 … 47 кОм в зависимости от типа транзистора.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот | |
---|---|---|---|---|---|---|---|
Электронная утка | |||||||
VT1, VT2 | Биполярный транзистор | КТ361Б | 2 | МП39-МП42, КТ209, КТ502, КТ814 | В блокнот | ||
HL1, HL2 | Светодиод | АЛ307Б | 2 | В блокнот | |||
C1 | 100мкФ 10В | 1 | В блокнот | ||||
C2 | Конденсатор | 0.1 мкФ | 1 | В блокнот | |||
R1, R2 | Резистор | 100 кОм | 2 | В блокнот | |||
R3 | Резистор | 620 Ом | 1 | В блокнот | |||
BF1 | Акустический излучатель | ТМ2 | 1 | В блокнот | |||
SA1 | Геркон | 1 | В блокнот | ||||
GB1 | Элемент питания | 4.5-9В | 1 | В блокнот | |||
Имитатор звука подскакивающего металлического шарика | |||||||
Биполярный транзистор | КТ361Б | 1 | В блокнот | ||||
Биполярный транзистор | КТ315Б | 1 | В блокнот | ||||
C1 | Электролитический конденсатор | 100мкФ 12В | 1 | В блокнот | |||
C2 | Конденсатор | 0.22 мкФ | 1 | В блокнот | |||
Динамическая головка | ГД 0.5…1Ватт 8 Ом | 1 | В блокнот | ||||
GB1 | Элемент питания | 9 Вольт | 1 | В блокнот | |||
Имитатор звука мотора | |||||||
Биполярный транзистор | КТ315Б | 1 | В блокнот | ||||
Биполярный транзистор | КТ361Б | 1 | В блокнот | ||||
C1 | Электролитический конденсатор | 15мкФ 6В | 1 | В блокнот | |||
R1 | Переменный резистор | 470 кОм | 1 | В блокнот | |||
R2 | Резистор | 24 кОм | 1 | В блокнот | |||
T1 | Трансформатор | 1 | От любого малогабаритного радиоприемника | В блокнот | |||
Универсальный имитатор звуков | |||||||
DD1 | Микросхема | К176ЛА7 | 1 | К561ЛА7, 564ЛА7 | В блокнот | ||
Биполярный транзистор | КТ3107К | 1 | КТ3107Л, КТ361Г | В блокнот | |||
C1 | Конденсатор | 1 мкФ | 1 | В блокнот | |||
C2 | Конденсатор | 1000 пФ | 1 | В блокнот | |||
R1-R3 | Резистор | 330 кОм | 1 | В блокнот | |||
R4 | Резистор | 10 кОм | 1 | В блокнот | |||
Динамическая головка | ГД 0.1…0.5Ватт 8 Ом | 1 | В блокнот | ||||
GB1 | Элемент питания | 4.5-9В | 1 | В блокнот | |||
Фонарь-мигалка | |||||||
VT1, VT2 | Биполярный транзистор |
Руководство любителя по высокопроизводительным и маломощным радиосхемам: Quan, Ronald: 9780071799706: Amazon.com: Books
Примечание издателя: качество, подлинность и качество продуктов, приобретенных у сторонних продавцов, издателем не гарантируется. доступ к любым онлайн-разрешениям, включенным в продукт.
Руководство по проектированию и изготовлению транзисторных радиоприемников своими руками
Создавайте сложные транзисторные радиоприемники, которые являются недорогими, но высокоэффективными. Создайте свои собственные транзисторные радиоприемники: руководство по высокопроизводительным и маломощным радиосхемам для любителей. предлагает полные проекты с подробными схемами и идеями о том, как были спроектированы радиоприемники. Узнайте, как выбирать компоненты, создавать различные типы радиомодулей и устранять неполадки в своей работе. Если копнуть глубже, этот практический ресурс покажет вам, как разрабатывать инновационные устройства, экспериментируя с существующими конструкциями и радикально улучшая их.
Создайте свой собственный транзисторный радиоприемник охватывает:
- Калибровочные инструменты и тестовые генераторы
- TRF, регенеративные и рефлекторные радиоприемники
- Базовые и расширенные супергетеродинные радиоприемники
- Бескатушечные и программно определяемые радиоприемники
- Транзисторные и дифференциальные -парные генераторы
- Методики проектирования фильтров и усилителей
- Теория дискретизации и смесители дискретизации
- Синфазные, квадратурные и широковещательные сигналы AM
- Резонансные, детекторные и AVC-схемы
- Методы подавления изображения и анализа шума
“ Это идеальное руководство для любителей электроники и студентов, которые хотят глубже погрузиться в тему радио.В целом, это чрезвычайно хорошо написанное и всесторонне иллюстрированное руководство и справочник заслуживают места на книжной полке любознательного радиолюбителя ». — QST
«Я определенно рекомендую эту книгу новичкам и всем любителям и инженерам, которые не имеют большого практического опыта в проектировании и разработке радио». — EDN
Делайте отличные вещи!
TAB, отпечаток McGraw-Hill Professional, является ведущим издателем книг по технологиям «сделай сам» для производителей, хакеров и любителей электроники.
Настройка приемника радиоволн — Учебное пособие по Java
Настройка приемника радиоволн — Учебное пособие по Java
Переменные конденсаторы используются вместе с катушками индуктивности в схемах настройки радиоприемников, телевизоров и ряда других устройств, которые должны изолировать электромагнитные поля. излучение выбранных частот в диапазоне радиоволн. В этом интерактивном руководстве показано, как переменный конденсатор подключается к простой схеме антенного трансформатора для настройки радиочастотного спектра.
Учебное пособие инициализируется с переменным конденсатором, установленным на значение 50 пикофарад, что позволяет тюнеру принимать радиочастоты 107,0 мегагерц. Для работы с учебным пособием с помощью курсора мыши переместите ползунок Capacitance вправо в диапазон от 50 до 450 пикофарад, что соответствует радиочастотному диапазону от 87 до 107 мегагерц (диапазон FM ). При перемещении ползунка пластины переменного конденсатора вращаются для имитации увеличения или уменьшения перекрытия, а синусоида на виртуальном осциллографе изменяет длину волны.
Передаваемые радиоволны создают индуцированный ток, который течет в антенне через первичную катушку индуктивности трансформатора непосредственно на землю (отрицательный полюс). Вторичный ток в противоположном направлении одновременно индуцируется во вторичной катушке индуктивности трансформатора, посылая поток электронов на конденсатор. Индуцированный ток, протекающий во вторичной катушке и в конденсаторе, вызывает противодействующие электродвижущие силы, называемые реактивным сопротивлением . Переменный конденсатор используется для выравнивания индуктивного и емкостного реактивного сопротивления.
Состояние, при котором реактивные сопротивления выровнены, называется резонансом, а конкретная частота, которая изолирована выровненным реактивным сопротивлением, называется резонансной частотой . Поэтому радиосхема в учебном пособии настраивается путем регулировки емкости переменного конденсатора для выравнивания индуктивного и емкостного реактивного сопротивления для желаемой резонансной частоты или, другими словами, для настройки на желаемую радиочастоту.
Широкая радиочастотная часть электромагнитного спектра включает длины волн от 30 сантиметров до тысяч километров.Излучение в этом диапазоне содержит очень мало энергии, а верхний предел частоты (около 1 гигагерца) приходится на конец диапазона, в котором ограничено радио- и телевещание. На таких низких частотах фотонный (гранулированный) характер излучения не проявляется, и кажется, что волны передают энергию плавно и непрерывно. Не существует теоретического верхнего предела длины волны радиочастотного излучения. Например, низкочастотный (60 Гц) переменный ток, переносимый по линиям электропередач, имеет длину волны около пяти миллионов метров (или около 3000 миль).Радиоволны, используемые для связи, модулируются по одной из двух спецификаций передачи: амплитудно-модулированных ( AM ) волн, которые различаются по амплитуде длин волн, и частотно-модулированных ( FM ; см. Рисунок 8) волн, которые меняются в частоте длины волны. Радиоволны играют важную роль в промышленности, связи, медицине и магнитно-резонансной томографии ( MRI ).
Звук и видео в телевидении передаются через атмосферу с помощью более коротких радиоволн с длиной волны меньше метра, которые модулируются для вещания во многом подобно FM-радио.Радиоволны также излучаются звездами в далеких галактиках и могут быть обнаружены астрономами с помощью специализированных радиотелескопов. Были обнаружены длинные волны, длиной в несколько миллионов миль, излучающиеся к Земле из глубины космоса. Поскольку сигналы настолько слабые, радиотелескопы часто объединяются в параллельные группы, содержащие большое количество огромных антенных приемников.
Соавторы
Мэтью Парри-Хилл и Майкл У.Дэвидсон — Национальная лаборатория сильных магнитных полей, 1800 г. Источники Пола Дирака, Университет штата Флорида, Таллахасси, Флорида, 32310.
Радио, которое мы могли бы послать в ад
Пандемическим летом 2020 года было несколько ярких пятен. Одним из самых ярких событий стал полет американских астронавтов на Международную космическую станцию и их безопасное возвращение на Землю на борту коммерческого космического корабля от SpaceX. Эта демонстрация имела большое значение по многим причинам, одна из которых заключалась в том, что она предлагала будущее, в котором НАСА, освобожденное от требований выводить людей на низкую околоземную орбиту, могло стремиться намного дальше.Возможно, до Венеры.
Волнение по поводу возможной миссии к Венере было вызвано (теперь несколько спорным) открытием газа фосфина — возможного признака микробной жизни — в атмосфере этой планеты. Но вторая планета от Солнца имеет настолько экстремальные условия, что самый долгоживущий посадочный модуль, советский Венера-13, мог отправлять данные всего за 2 часа 7 минут. Средняя температура поверхности Венеры составляет 464 ° C, атмосфера плотная, с высококоррозионными каплями серной кислоты, а атмосферное давление на поверхности примерно в 90 раз выше, чем на Земле.Тем не менее, ученые считают Венеру близнецом нашего домашнего мира.
Размер и масса этих двух планет, конечно, очень близки. И свидетельства указывают на схожие первые дни: на протяжении 3 миллиардов лет на Венере, возможно, были огромные океаны, как и у нас на Земле, и поэтому, возможно, там была жизнь. Какие катаклизмы привели к потере воды Венерой? Ученые-планетологи хотели бы узнать об этом, потому что это может повлиять на нашу судьбу по мере изменения климата.
Чтобы решить эту и другие загадки Венеры, нам понадобится несколько очень способных роботизированных посадочных мест.Но можем ли мы построить машины — в комплекте с приборами, средствами связи, управляемостью и мобильностью — которые смогут выжить в такой враждебной среде не только часами, но и месяцами или годами?
Мы можем. Технологии материалов достаточно продвинулись с 1960-х годов, когда бывший Советский Союз начал запуск своих спускаемых аппаратов серии «Венера» на Венеру, чтобы гарантировать, что внешний корпус и механика будущего посадочного модуля смогут прослужить несколько месяцев. Но как насчет этой нежной электроники? Сегодняшние кремниевые системы не продержатся и дня в условиях Венеры.(Мы, конечно, имеем в виду земной день. Венерианский день — это 243 земных дня.) Даже добавление активных систем охлаждения может не дать им больше, чем дополнительных 24 часа.
Ответ — полупроводник, который сочетает в себе два обильных элемента, углерод и кремний, в соотношении 1: 1 — карбид кремния. SiC может выдерживать чрезвычайно высокие температуры и при этом нормально работать. Ученые из исследовательского центра NASA Glenn Research Center уже более года эксплуатируют схемы из карбида кремния при температуре 500 ° C, демонстрируя не только то, что они могут выдерживать тепло, но и могут выдерживать столько времени жизни, сколько потребуется посадочному модулю на Венеру.
Карбид кремния уже находит применение в силовой электронике для солнечных инверторов, электронике для электропривода электромобилей и передовых коммутационных аппаратах для интеллектуальных сетей. Но создание схем SiC, которые могут управлять марсоходом на адском пейзаже Венеры и отправлять данные оттуда на Землю, испытает этот материал до предела. Если это удастся, мы получим нечто большее, чем просто передвижной форпост в одном из наименее гостеприимных уголков Солнечной системы. Мы также узнаем, как перемещать беспроводные датчики в места на Земле, которые они никогда раньше не посещали — на лопастях реактивных двигателей и газовых турбин, на головках буровых установок для глубоких нефтяных скважин и внутри хоста. высокотемпературных промышленных производственных процессов под высоким давлением.Возможность размещать электронику в этих местах дает значительный шанс снизить затраты на эксплуатацию и техническое обслуживание оборудования, одновременно повышая производительность и безопасность как инструментов, так и людей в промышленных условиях.
Фактически, наша команда вместе с членами Королевского технологического института KTH в Стокгольме и Университета Арканзаса в Фейетвилле считает, что схемы из карбида кремния могут доставить нас туда и дальше, к приложениям, которые мы еще не могли себе представить.
Карбид кремния ни в коем случае не новый материал.Крупномасштабное производство приписывают Эдварду Гудричу Ачесону в 1895 году. Американский химик пытался создать искусственные алмазы, когда в его экспериментах были получены кристаллы SiC. Впервые соединение было успешно использовано в качестве электронного материала в 1906 году, когда Генри Харрисон Чейз Данвуди изобрел SiC радиодетектор. По сей день он считается первым промышленным полупроводниковым прибором.
Тем не менее, крупные кристаллы SiC, как известно, трудно воспроизводить, и только в конце 1990-х инженеры изобрели оборудование, позволяющее выращивать кристаллы, достаточно хорошие, чтобы их можно было использовать для изготовления силовых транзисторов.Эти первоначальные пластины из карбида кремния были всего 30 миллиметров в поперечнике, но промышленность постепенно прогрессировала до диаметров пластин 50, 75, 100, 150, а теперь и 200 мм, что сделало устройства более экономичными. За последние 20 лет исследования и прогресс неуклонно росли до такой степени, что силовые полупроводниковые устройства на основе SiC теперь можно приобретать на коммерческой основе.
Карбид кремния может похвастаться очень привлекательными свойствами как полупроводниковый материал. Первым из них является критическая напряженность электрического поля, почти в 10 раз превышающая кремниевую.Это свойство в основном является точкой, в которой материал разрушается и начинает бесконтрольно проводить электричество, иногда со взрывом. Итак, если у вас есть кремниевое устройство и устройство из карбида кремния того же масштаба, устройство из карбида кремния может выдерживать в 10 раз большее напряжение. В качестве альтернативы, если бы два транзистора были построены для работы с одинаковым напряжением, устройство из карбида кремния могло бы быть физически намного меньше. Такая разница в размерах дает преимущество в энергопотреблении.При одинаковом «пробивном напряжении» (например, 1200 вольт) SiC-транзистор имеет сопротивление включения кремниевого транзистора от 1/200 до 1/400, и, следовательно, меньшие потери мощности. Этот меньший размер также обеспечивает более высокую частоту коммутации в преобразователе мощности, что означает меньшие, более легкие и менее дорогие конденсаторы и катушки индуктивности.
Вторым удивительным свойством карбида кремния является теплопроводность: поскольку SiC нагревается из-за электрической проводимости, тепло может быть быстро отведено, что продлевает срок службы устройства.Фактически, среди широкозонных полупроводников SiC по теплопроводности уступает только алмазу. Это свойство позволяет подключать транзистор из карбида кремния высокой мощности к радиатору того же размера, который вы использовали бы на кремниевом компоненте с гораздо меньшим энергопотреблением, и при этом получать полностью функциональное и долговечное устройство.
С точки зрения ученых, надеющихся исследовать другие планеты, радио, пожалуй, самая важная система.
Третье свойство, наиболее важное для работы на Венере, — это очень низкая собственная концентрация носителей заряда SiC при комнатной температуре.Собственная концентрация носителей заряда соответствует тому, сколько носителей заряда делает доступным тепло для проведения электричества. (Допирование полупроводника атомами другого элемента может увеличить доступные носители заряда. Но собственная концентрация — это то, что есть без допирования.) Вы можете подумать, что здесь низкое значение, особенно такое, которое ниже, чем у кремния, было бы плохо. Но это не тот случай, если мы хотим работать при высоких температурах.
Вот почему. Причина, по которой кремний перестает работать как полупроводник при повышении температуры, не в том, что он плавится, горит или что-то в этом роде.Вместо этого транзисторы начинают заполняться термически генерируемыми носителями заряда. Тепло дает некоторым электронам достаточно энергии, чтобы вскипеть из валентной зоны, где они связаны с атомами, в зону проводимости, оставляя после себя положительно заряженные дырки. Разделенные электроны и дырки теперь могут вносить вклад в проводимость. При умеренных температурах, скажем, от 250 до 300 ° C для кремния, это просто вызывает утечку тока через транзисторы и становится шумным. Но при более высоких температурах собственная концентрация носителей превышает любой вклад легирования, и вы больше не можете выключить транзисторы — они становятся похожими на переключатели, застрявшие в положении «включено».
Напротив, SiC с его более широкой запрещенной зоной и меньшим количеством собственных носителей заряда имеет гораздо больший температурный запас перед тем, как произойдет «переполнение транзистора», что позволяет ему продолжать переключаться при температуре выше 800 ° C.
В совокупности эти свойства позволяют SiC работать при более высоком напряжении, мощности и температуре, чем кремний. И даже при температурах, при которых кремний может работать, SiC часто превосходит его, потому что устройства можно переключать на более высокие частоты с меньшими потерями.Сложите все это вместе, и вы получите более эффективные и надежные устройства, а также схемы и системы, которые меньше, легче и способны выжить в среде Венеры.
В то время как будущий посадочный модуль Venus потребует своей доли высоковольтных силовых транзисторов, большинство его схем — в процессорах, датчиках и радиоприемниках — должны быть низковольтными. В карбиде кремния они гораздо менее развиты, чем в кремнии, но из-за проблемы с упаковкой мы начали.
Когда дискретные силовые устройства из карбида кремния нашли коммерческое применение, инженеры осознали необходимость уменьшения электрических паразитных факторов — нежелательного сопротивления, индуктивности и емкости, что приводит к потере энергии. Один из способов — лучше интегрировать с помощью усовершенствованной компоновки схемы управления, привода и защиты с силовыми устройствами. В кремниевой силовой электронике эти схемы расположены на печатных платах (PCB). Но на более высоких частотах, которых могут достичь силовые транзисторы SiC, паразитные характеристики печатной платы могут быть слишком большими, что приведет к чрезмерному шуму.Упаковка или даже объединение этих схем с силовыми устройствами устранит шум. Но последний вариант означал бы изготовление этих схем из карбида кремния.
При комнатной температуре карбид кремния не является естественным выбором для низковольтной микроэлектроники по нескольким причинам. Возможно, наиболее важным является то, что напряжение не может быть настолько низким, как и энергопотребление. Малая запрещенная зона кремния означает, что вы можете питать микроэлектронику с напряжением всего 1 В. Но ширина запрещенной зоны карбида кремния почти в три раза больше.Следовательно, минимальное напряжение, необходимое для проталкивания тока через транзистор — пороговое напряжение — также больше. Обычно мы используем 15 В для питания нашей «низковольтной» SiC-микроэлектроники.
Исследователи по всему миру пытались исследовать низковольтную микроэлектронику на SiC более 20 лет, поначалу с ограниченным успехом. Однако за последние 10 лет исследователи из наших университетов, а также из Кри, Института интегрированных систем и устройств Фраунгофа, Университета Пердью, NASA Glenn, Университета Мэриленда и Raytheon UK сделали некоторые прорывы.
С увеличением температуры увеличивается собственная концентрация носителей полупроводника — количество электронов, обладающих достаточной энергией, чтобы вносить вклад в проводимость. После достижения определенной концентрации транзистор фактически заполняется носителями заряда и не отключается. Это происходит для большинства кремниевых устройств при температуре около 250 ° C, но устройства из карбида кремния все еще могут переключаться при 1000 ° C. Иллюстрация: Эрик Врилинк
Одной из первых ключевых микроэлектронных схем, созданных командой из Арканзаса, был драйвер затвора, который напрямую управляет силовым транзистором через его входной терминал или затвор.Мы завершили несколько версий схемы, которые могут быть упакованы с силовым устройством (или даже поверх него), и протестировали их при температурах, подобных Венере. Эта схема, как и более поздние версии, обеспечивала очень точное управление силовыми устройствами, максимизируя эффективность при минимизации электромагнитных помех. Самой большой проблемой было создание конструкции, которая могла бы адаптироваться к меняющимся условиям и даже учитывать эффекты старения, которые неизбежно возникают в суровых условиях Венеры.
Драйверы ворот важны, но с точки зрения ученых, надеющихся исследовать другие планеты, радио, возможно, является самой важной системой. В конце концов, нет смысла отправлять пакет научных инструментов на другую планету, если вы не можете вернуть данные на Землю.
Компактные и надежные радиосистемы могут иметь еще большее значение для будущих планетарных миссий, потому что они могут передавать данные внутри самого марсохода, заменяя некоторые из тысяч двухточечных проводов в этих машинах.Отказ от проводов в пользу беспроводного управления и контроля позволяет сэкономить значительную массу, что является жизненно важным товаром в поездке на 40 миллионов километров.
Значительная часть наших последних усилий была связана с разработкой и тестированием компонентов межпланетного радиоприемопередатчика на основе карбида кремния. Карбид кремния не стал бы первым выбором, скажем, для радиостанции 5G, работающей на Земле. Во-первых, при комнатной температуре его подвижность носителей заряда — часть того, что устанавливает верхний предел частот, которые может усиливать полупроводник — ниже, чем у кремния.Но при температурах поверхности Венеры кремний больше не функционирует, поэтому имеет смысл попытаться адаптировать карбид кремния к этой задаче.
Мы спроектировали, построили и протестировали около 40 различных схем для условий 500 ° C.
Что касается радиочастот, то у карбида кремния есть одно преимущество. Редкость носителей заряда означает, что устройства, изготовленные из этого материала, имеют низкие паразитные емкости. Другими словами, зарядов мало, поэтому они вряд ли будут взаимодействовать таким образом, чтобы снизить производительность устройства.
Архитектура приемопередатчика, на которую мы нацелены, называется гетеродином с низкой промежуточной частотой. (По-гречески гетеро означает различный, а дина означает мощность.) Чтобы понять, что это означает, давайте проследим за входящим сигналом через приемную сторону системы. Радиосигналы от антенны усиливаются малошумящим усилителем, а затем подаются на микшер. Смеситель объединяет полученный сигнал с другой частотой, близкой к несущей частоте сигнала. Это микширование создает сигнал на двух новых промежуточных частотах, одна выше несущей, а другая ниже.Затем более высокая частота удаляется фильтром нижних частот. Оставшаяся промежуточная частота, более подходящая для обработки, усиливается и затем оцифровывается аналого-цифровым преобразователем, который передает полученные биты, представляющие принятый сигнал, в блок цифровой обработки.
То, как мы на самом деле реализовали ВЧ-схемы, которые выполняли все эти функции, было определено высокочастотными характеристиками технологии биполярных переходных транзисторов из карбида кремния (BJT), разработанной в компании KTH.Эта технология привела к созданию фундаментальных радиочастотных схем, необходимых для создания приемопередатчика для отправки и приема сигналов 59-мегагерцового диапазона — баланса между высокочастотными ограничениями транзистора и ограничениями пассивных компонентов схемы, которые становятся более ограничительными на более низких частотах. (Эта частота находится примерно в диапазоне 80 МГц, который использовался посадочными модулями Венеры. Современная миссия на Венеру, вероятно, сначала отправит свои данные на спутник, вращающийся вокруг планеты, который затем может использовать частоты дальнего космоса НАСА для передачи данных. дом.)
Одной из основных частей трансивера является смеситель, который преобразует сигнал с частотой 59 МГц в промежуточную частоту 500 килогерц. Сердцем нашего смесителя является биполярный переходной транзистор SiC, на входы которого поступает как входящий РЧ-сигнал с частотой 59 МГц, так и сигнал с частотой 59,5 МГц. Выход из клеммы коллектора транзистора подключается к сети конденсаторов и резисторов, рассчитанных на 500 ° C, которые отфильтровывают высокие частоты, оставляя только промежуточную частоту 500 кГц.
Во время тестирования тепло проходит через микросхему драйвера затвора из карбида кремния. Изображение: Университет Арканзаса
По сравнению с низкочастотными аналоговыми и цифровыми схемами, которые идут после смесителя, ВЧ-схемы создавали проблемы на всех этапах разработки, включая отсутствие точных моделей транзисторов, проблемы с согласованием импедансов для обеспечения прохождения наибольшего количества сигнала и надежность резисторов, конденсаторов, катушек индуктивности и печатных плат.
Эти печатные платы, кстати, совсем не похожи на те, к которым вы привыкли. Вездесущие печатные платы FR-4, которые лежат в основе всего, от портативных гаджетов до высокопроизводительных серверов, быстро прогнулись и развалились в условиях Венеры. Поэтому вместо этого мы используем так называемую низкотемпературную керамическую плиту. Чипы прикрепляются к этой твердой доске с помощью золотых проводов вместо алюминия, который вскоре станет мягким. Серебряные межсоединения, некоторые из которых покрыты титаном, соединяют компоненты в цепь вместо медных дорожек, которые отрываются от печатной платы.Индукторы на плате выполнены в виде спиралей из золота. (Да, эти схемы были бы довольно дорогими.)
Каким бы важным ни был миксер , будущему марсоходу Venus потребуется гораздо больше. На данный момент между Университетом Арканзаса и KTH мы спроектировали, построили и протестировали около 40 различных схем для условий 500 ° C. Эти схемы включают в себя другие радиочастотные и аналоговые части приемопередатчика, а также многие цифровые схемы, необходимые для обработки данных с приемопередатчика и будущих датчиков планетарной науки.Некоторые из них будут знакомы многим инженерам, например, таймер 555, 8-битный аналого-цифровой преобразователь и цифро-аналоговый преобразователь, схема фазовой автоподстройки частоты и библиотека логических схем. Мы признаем, что, поскольку это детали университетского производства, которые производятся в небольших количествах, долгосрочные испытания еще не проводились. Наши лаборатории проработали максимум неделю или две при высокой температуре. Тем не менее, мы воодушевлены расширенными экспериментами других групп и используем их, чтобы показать, что наши схемы и устройства могут работать дольше.
Примечательно, что исследовательский центр NASA Glenn Research Center недавно сообщил об ИС из карбида кремния с почти 200 транзисторами на чип, которые работали в течение полных 60 дней в камере окружающей среды Венеры этого центра. Камера подвергала транзисторы давлению 9,3 мегапаскалей, температуре 460 ° C и особой едкой атмосфере планеты. Ни один из этих транзисторов не вышел из строя, что наводит на мысль, что они могли бы проработать гораздо дольше, если бы в камере было больше свободного времени.
Впереди еще много работы.Нам нужно сосредоточиться на интеграции различных схем, которые были разработаны, и на повышении выхода рабочих схем. Мы все еще должны разработать больше схем и доказать, что они могут работать вместе в течение месяцев или лет с необходимой стабильностью при температурах поверхности Венеры. Этот последний момент особенно важен, если радиоприемники из карбида кремния и другие маломощные схемы когда-либо будут иметь смысл в коммерческих приложениях, таких как реактивные и газовые турбины. При достаточных усилиях и приоритете до этого могут потребоваться годы, а не десятилетия.
Будут ли схемы из карбида кремния готовы к будущей миссии на Венеру? Более разумно можно возразить, что без них миссия не будет готова.
Эта статья появится в майском выпуске 2021 года под названием «Венера зовет».
Эта статья была исправлена 19 мая 2021 года, чтобы дать правильное атмосферное давление на поверхности Венеры.
Радио и цифровое радио | Как это работает
Криса Вудфорда.Последнее изменение: 13 декабря 2020 г.
Бесплатная музыка, новости и чат, где бы вы ни находились идти! Пока не появился Интернет, ничто не могло сравниться с радио — даже телевидение. Радио — это коробка, заполненная электронными компонентами, которая улавливает радиоволны, плывущие по воздуху, немного напоминающие перчатку бейсбольного ловца, и преобразовывает их обратно в звуки, которые слышат ваши уши. Радио было впервые разработано в конце 19 века и дошло до пик его популярности спустя несколько десятилетий.Хотя радиовещание не так популярно, как раньше, основная идея беспроводная связь остается чрезвычайно важной: за последние несколько лет радио стало сердцем новых технологий, таких как беспроводная Интернет, сотовые телефоны (мобильные телефоны), и чипы RFID (радиочастотная идентификация). Между тем, само радио недавно обрело новую жизнь с появлением поступление более качественной цифровой магнитолы комплектов.
На фото: антенна для улавливания волн, немного электроники, чтобы снова превратить их в звуки, и громкоговоритель, чтобы вы слышать их — это почти все, что есть в таком простом радиоприемнике.Что внутри кейса? Проверить фото в коробке внизу!
Что такое радио?
Вы можете подумать, что «радио» — это гаджет, который вы слушаете, но это также означает кое-что еще. Радио означает посылку энергии волнами. Другими словами, это способ передачи электрической энергии от из одного места в другое без использования какого-либо прямого проводного соединения. Вот почему его часто называют беспроводной . Оборудование, которое излучает радиоволны, известно как передатчик ; в радиоволна, посланная передатчиком, проносится по воздуху — может быть, с одной стороны мир в другой — и завершает свое путешествие, когда достигает второй единицы оборудования, называемой приемником .
Когда вы выдвигаете антенну на радиоприемнике, она улавливает часть электромагнитной энергии. проходя мимо. Настройте радио на станцию и электронную схему внутри радио выбирает только ту программу, которая вам нужна, из всех тех, которые вещание.
Иллюстрация: Как радиоволны распространяются от передатчика к приемнику. 1) Электроны устремляются вверх и вниз по передатчику, испуская радиоволны. 2) Радиоволны распространяются по воздуху со скоростью света.3) Когда радиоволны попадают в приемник, они заставляют электроны внутри него вибрировать, воссоздавая исходный сигнал. Этот процесс может происходить между одним мощным передатчиком и множеством приемников, поэтому тысячи или миллионы людей могут принимать один и тот же радиосигнал одновременно.
Как это происходит? Электромагнитная энергия, которая является смесь электричества и магнетизма проходит мимо вас в волны нравиться те, что на поверхности океана. Это называется радиоволнами.Нравиться океанские волны, радиоволны имеют определенную скорость, длину и частоту. Скорость — это просто скорость распространения волны между двумя местами. В длина волны — расстояние между одним гребнем (пик волны) и следующий, а частота — это количество волн которые прибывают каждый второй. Частота измеряется единицей измерения герц , так что если семь волны прибывают через секунду, мы называем это семью герцами (7 Гц). Если ты когда-нибудь смотрели океанские волны, катящиеся к пляжу, вы знаете, что они путешествуют с скорость, может быть, один метр (три фута) в секунду или около того.Длина волны океана волны, как правило, составляют десятки метров или футов, а частота около одна волна каждые несколько секунд.
Когда ваше радио стоит на книжной полке, пытаясь поймать прибывающие волны в свой дом, это немного похоже на то, как если бы вы стояли на пляже и смотрели вкатываются выключатели. Радиоволны много однако быстрее, дольше и чаще, чем океанские волны. Их длина волны обычно составляет сотни метров — это расстояние между гребнем одной волны и другой. Но их частота может быть в миллионы герц — так что миллионы этих волн приходят каждая второй.Если волны длиной в сотни метров, как могут миллионы они прибывают так часто? Это просто. Радиоволны распространяются на невероятно быстро на — при в скорость света (300 000 км или 186 000 миль в секунду).
Фото: Радиостудия — это, по сути, звуконепроницаемая коробка, преобразующая звуки в высококачественные сигналы, которые можно транслировать с помощью передатчика. Предоставлено: фотографии в журнале Кэрол М. Архив Хайсмит, Библиотека Конгресса, Отдел эстампов и фотографий.
Аналоговое радио
Океанские волны переносят энергию, заставляя вода движется вверх и вниз.Таким же образом радиоволны переносят энергия как невидимое, восходящее и нисходящее движение электричества и магнетизм. Он передает программные сигналы от огромного передатчика. антенны, которые подключаются к радиостанции, на меньшую антенна на вашем радиоприемнике. Программа передается путем добавления ее в Радиоволна называется несущей . Этот процесс называется модуляцией . Иногда радиопрограмма добавляется на носитель таким образом, что программный сигнал вызывает колебания несущей частоты.Это называется частотной модуляцией (FM) . Другой способ посылки радиосигнала — сделать пики несущей волны больше или меньше. Поскольку размер волны называется ее амплитудой, это процесс известен как амплитудная модуляция (AM) . Частотная модуляция — это то, как транслируется FM-радио; амплитудная модуляция — это метод используется радиостанциями AM.
Почему не смешиваются все радиоволны?
Радиоволны передают любую полезную информацию по воздуху, от телепередач до спутниковой навигации GPS, так что вам может быть интересно, почему эти очень разные сигналы не смешиваются полностью? Теперь у нас есть цифровое вещание, гораздо проще отделить радиосигналы друг от друга с помощью сложных математических кодов; именно так люди могут использовать сотни мобильных телефонов одновременно на одной городской улице, не слыша звонков друг друга.Но вернемся на несколько десятилетий назад, в то время, когда существовало только аналоговое радио, и единственный разумный способ не допустить, чтобы разные типы сигналов мешали друг другу, — это разделить весь спектр радиочастот на разные полосы с небольшим перекрытием или без него. Вот несколько примеров основных диапазонов радиовещания (не воспринимайте их как точные; определения несколько различаются по всему миру, некоторые диапазоны частично совпадают, и я также округлил некоторые цифры):
Лента / использовать | Длина волны | Частота |
---|---|---|
LW (длинноволновая) | 5 км – 1 км | 60–300 кГц |
AM / MW (амплитудная модуляция / средние волны) | 600–176 м | 500 кГц – 1.7 МГц |
SW (коротковолновый) | 188–10 м | 1,6–30 МГц |
VHF / FM (Очень высокая частота / частотная модуляция) | 10–6 мес | 100–500 МГц |
FM (частотная модуляция) | 3,4–2,8 м | 88–125 МГц |
Самолет | 2,7–2,2 м | 108–135 МГц |
Мобильные телефоны | 80–15 см | 380–2000 МГц |
Радар | 100 см – 3 мм | 0.3–100 ГГц |
Если вы посетите веб-сайт Национального управления по телекоммуникациям и информации США, вы можете найти очень подробный плакат. называется «Распределение частот в Соединенных Штатах: диаграмма радиоспектра», в которой показаны все различные частоты и то, для чего они используются.
Если вы посмотрите на таблицу, вы заметите, что длина волны и частота движутся в противоположных направлениях. Чем меньше длины радиоволн (движутся вниз по таблице), тем больше их частота (выше).Но если вы умножите частоту и длину волны любой из этих волн, вы обнаружите, что всегда получаете один и тот же результат: 300 миллионов метров в секунду, более известную как скорость света.
Краткая история радио
Фото: пионер итальянского радио Гульельмо Маркони. Фото любезно предоставлено Библиотекой Конгресса США
.- 1888: немецкий физик Генрих Герц (1857–1894) сделал первые электромагнитные радиоволны в его лаборатории.
- 1894: прислан британский физик Сэр Оливер Лодж (1851–1940). первое сообщение с использованием радиоволн в Оксфорде, Англия.
- 1897: Физик Никола Тесла (1856–1943) подал патенты, объясняющие как электрическая энергия может передаваться без проводов (Патент США 645 576 и Патент США 649 621) и позже (после работы Маркони) понял, что они могут быть адаптированы и для беспроводной связи (другими словами, радио). В следующем году Tesla получила патент США 613809 на радиоуправляемую лодку. (Утверждения, что он «изобрел» радио, однако, оспариваются, поскольку Томас Х. Уайт подробно обсуждает в «Никола Тесла: парень, который не изобрел радио».)
- 1899: итальянский изобретатель Гульельмо Маркони (1874–1937) послал радиоволны через Ла-Манш. К 1901 году Маркони прислал радио волны через Атлантику, от Корнуолла в Англии до Ньюфаундленда.
- 1902–1903: американский физик, математик и изобретатель Джон Стоун Стоун (1869–1943) использовал свои знания в области электрических телеграфов, чтобы добиться важных успехов в настройке радио. что помогло преодолеть проблему помех.
- 1906: инженер канадского происхождения Реджинальд Фессенден (1866–1932) стал первым человеком, передавшим человеческий голос с помощью радиоволн.Он отправил сообщение в 11 милях от передатчика в Брант-Рок, Массачусетс для кораблей с радиоприемниками в Атлантическом океане.
- 1906: американский инженер Ли Де Форест (1873–1961) изобрел триодный (звуковой) клапан, электронный компонент, который делает радиоприемники меньше и практичнее. Это изобретение принесло Де Форесту прозвище «отец радио».
- 1910: первая публичная радиопередача из Метрополитен-опера в Нью-Йорке.
- 1920-е годы: радио начало превращаться в телевидение.
- 1947: Изобретение транзистора Джон Бардин (1908–1991), Уолтер Браттейн (1902–1987) и Уильям Shockley (1910–1989) из Bell Labs позволил усилить радиосигналы. с гораздо более компактными схемами.
- 1954: Regency TR-1, выпущенный в октябре 1954 года, был первым в мире коммерчески производимым транзистором. радио. В первый год было продано около 1500 экземпляров, а к концу 1955 года объем продаж достиг 100000 штук.
- 1973: Мартин Купер из Motorola сделал первый в истории телефонный звонок с мобильного телефона.
- 1981: Немецкие радиоинженеры начали разработку того, что сейчас называется DAB (цифровое аудиовещание) в Institut für Rundfunktechnik в Мюнхене.
- 1990: Радиоэксперты разработали оригинальную версию Wi-Fi (способ подключения компьютеров друг к другу и к Интернету без проводов).
- 1998: Разработан Bluetooth® (беспроводная связь на короткие расстояния для гаджетов).
| Цепь электроники с полным объяснением
Радиоприемник или FM-приемник — это электронное устройство, которое принимает радиоволны и преобразует передаваемую ими информацию в пригодную для использования форму.Антенна используется для улавливания волн желаемой частоты. Приемник использует электронные фильтры для отделения полезного сигнала от всех других сигналов, улавливаемых антенной, электронный усилитель для увеличения мощности сигнала для дальнейшей обработки и, наконец, восстанавливает желаемую информацию посредством демодуляции.
Чтобы проверить статью о простой схеме стереоусилителя: нажмите здесь
Из радиоволн наиболее популярным является FM. Частотная модуляция широко используется для FM-радиовещания.Он также используется в телеметрии, радаре, сейсморазведке и мониторинге новорожденных на предмет припадков с помощью ЭЭГ, систем двусторонней радиосвязи, синтеза музыки, систем магнитной записи и некоторых систем передачи видео. Преимущество частотной модуляции состоит в том, что она имеет большее отношение сигнал / шум и поэтому лучше подавляет радиочастотные помехи, чем сигнал с амплитудной модуляцией равной мощности (AM).
Частотные диапазоны FM
Частотная модуляция используется в радиовещании в диапазоне частот 88–108 МГц VHF.Этот диапазон полосы пропускания обозначается как FM на шкале диапазонов радиоприемников, а устройства, способные принимать такие сигналы, называются FM-приемниками.
FM-радиопередатчик имеет канал шириной 200 кГц. Максимальная звуковая частота, передаваемая в FM, составляет 15 кГц по сравнению с 4,5 кГц в AM. Это позволяет передавать в FM гораздо больший диапазон частот и, таким образом, качество передачи FM значительно выше, чем у передачи AM. Ниже представлена электронная схема FM-приемника с полным объяснением.
Список компонентов
- IC-LM386
- Т1 BF494
- Т2 BF495
- 4 витка 22SWG Воздушный стержень диаметром 4 мм
- C1 220 нФ
- C2 2,2 нФ
- C 100 нФ * 2
- C4 10 мкФ
- C5 10 мкФ (25 В)
- C7 47 нФ
- C8 220 мкФ (25 В)
- C9 100 мкФ (25 В) * 2
- R 10 кОм * 2
- R3 1 кОм
- R4 10 Ом
- Переменное сопротивление
- Переменная емкость
- Динамик
- Переключатель
- Антенна
- Аккумулятор
Описание цепей FM-приемника
Вот простой FM-приемник с минимумом компонентов для местного FM-приема.Транзистор BF495 (T2) вместе с резистором 10 кОм (R1), катушкой L, переменным конденсатором (VC) 22 пФ и внутренними емкостями транзистора BF494 (T1) составляет генератор Колпитца.
Резонансная частота этого генератора устанавливается триммером VC на частоту передающей станции, которую мы хотим слушать. То есть он должен быть настроен между 88 и 108 МГц. Информационный сигнал, используемый в передатчике для выполнения модуляции, извлекается на резисторе R1 и подается на усилитель звука через разделительный конденсатор 220 нФ (C1).
Рис.1: Принципиальная схема FM-приемникаВы должны иметь возможность изменять емкость переменного конденсатора с пары пикофарад до примерно 20 пФ. Таким образом, триммер 22 пФ — хороший выбор для использования в качестве ВК в схеме. Он легко доступен на рынке.
Если вы используете другой конденсатор с большей емкостью и не можете получить полную полосу частот FM (88–108 МГц), попробуйте изменить значение VC. Емкость подлежит определению экспериментально.
Самонесущая катушка L имеет четыре витка эмалированного медного провода 22 SWG с воздушным сердечником с внутренним диаметром 4 мм.Его можно сконструировать на любом цилиндрическом предмете, например, на карандаше или ручке, диаметром 4 мм. По достижении необходимого количества витков катушки катушку снимают с цилиндра и немного растягивают, чтобы витки не касались друг друга.
Конденсаторы C3 (100 нФ) и C10 (100 мкФ, 25 В) вместе с R3 (1 кОм) составляют полосовой фильтр для очень низких частот, который используется для отделения низкочастотного сигнала от высокочастотного сигнала в получатель.
Антенна немного хитрая
Вы можете использовать телескопическую антенну любого неиспользуемого устройства.Однако хороший прием также можно получить с помощью отрезка изолированного медного провода длиной около 60 см. Оптимальную длину медного провода можно найти экспериментально.
Характеристики этого крошечного приемника зависят от нескольких факторов, таких как качество и количество витков катушки L, тип антенны и расстояние от FM-передатчика.
IC LM386 — усилитель мощности звука, разработанный для использования в низковольтных бытовых устройствах. Он обеспечивает от 1 до 2 Вт, чего достаточно для работы с любой малогабаритной акустической системой.Регулятор громкости 22k (VR) представляет собой логарифмический потенциометр, который подключен к контакту 3, а усиленный выход получается на контакте 5 IC LM386. Приемник может работать от батареи 6–9 В.
Эта схема стоит около 120 фунтов стерлингов.
Подробнее о FM-приемниках смотрите в слайд-шоу ниже.
Глава 5 FM-приемники от мкзрэЧувствуете волнение? Проверьте FM-передатчик. Для более интересных схем: нажмите здесь
Эта статья была опубликована в июне 2003 г. и недавно была обновлена, 16 июля 2021 г.
Software Defined Radio — обзор
1.2.1 Что такое программно-определяемое радио?
Прежде чем описывать, что делает SDR, полезно рассмотреть конструкцию обычного цифрового радио. На рисунке 1.1 показана блок-схема стандартного цифрового радио [8], которая состоит из пяти разделов:
Рисунок 1.1. Принципиальная структурная схема цифрового радио [8].
-
Антенный блок, который принимает (или передает) информацию, закодированную в радиоволнах.
-
ВЧ-модуль, отвечающий за передачу / прием радиочастотных сигналов от антенны и их преобразование в промежуточную частоту (ПЧ).
-
Секция АЦП / ЦАП, которая выполняет аналого-цифровое / цифро-аналоговое преобразование.
-
Блоки цифрового преобразования с повышением частоты (DUC) и цифрового преобразования с понижением частоты (DDC), которые по существу выполняют модуляцию сигнала на пути передачи и демодуляцию сигнала на пути приема.
-
Секция основной полосы частот, которая выполняет такие операции, как установка соединения, коррекция, скачкообразная перестройка частоты, кодирование / декодирование и корреляция, а также реализует протокол канального уровня.
Операции обработки DDC / DUC и основной полосы частот требуют больших вычислительных мощностей, и в обычном цифровом радио реализуются в специализированном оборудовании. В системах программируемого цифрового радио (PDR) операции основной полосы частот и протоколы канального уровня реализуются программно, в то время как функции DDC / DUC выполняются с использованием специализированных интегральных схем (ASIC).
Программное обеспечение — , определяемое радио относится к технологиям, в которых эти функции выполняются программными модулями, работающими на программируемых вентильных массивах (FPGA), процессорах цифровых сигналов (DSP), процессорах общего назначения (GPP) или их комбинации. . Это обеспечивает возможность программирования как DDC / DUC, так и блоков обработки основной полосы частот. Следовательно, рабочие характеристики радио, такие как кодирование, тип модуляции и диапазон частот, могут быть изменены по желанию, просто загрузив новое программное обеспечение.Также несколько радиоустройств, использующих разные модуляции, можно заменить одним радиоустройством, которое может выполнять ту же задачу.
Если аналого-цифровое преобразование может быть продвинуто дальше в блок RF, возможность программирования может быть расширена до внешнего интерфейса RF и может быть реализовано идеальное программное обеспечение радио . Однако существует ряд проблем при переходе от аппаратного радио к программному (определяемому) радио. Во-первых, переход от аппаратной обработки к программной приводит к значительному увеличению объема вычислений, что, в свою очередь, приводит к увеличению энергопотребления.Это сокращает срок службы батареи и является одной из основных причин, почему программно-определяемые радиомодули еще не были развернуты в устройствах конечных пользователей, а скорее в базовых станциях и точках доступа, которые могут использовать преимущества внешних источников питания.
Во-вторых, вопрос о том, где может выполняться аналого-цифровое преобразование, определяет, какие функции радиосвязи могут быть выполнены в программном обеспечении и, следовательно, насколько реконфигурируемой можно сделать радиостанцию. Конечная цель программного радио — переместить аналого-цифровое преобразование как можно ближе к антенне, чтобы вся обработка сигналов могла выполняться в цифровом виде.Однако два технических ограничения делают невозможным аналого-цифровое преобразование на антенне. Во-первых, оцифровка радиочастотного сигнала требует дискретизации входящего сигнала, по крайней мере, со скоростью, которая определяется частотой Найквиста. Кроме того, чем выше скорость передачи данных сигнала, тем выше разрешение, необходимое для захвата информации. В совокупности это означает, что для высокочастотной высокочастотной передачи с широким диапазоном частот требуется очень высокая частота дискретизации.
Способность поддерживать очень высокие частоты дискретизации, что особенно важно при использовании высокочастотных сигналов в диапазоне гигагерц, ограничивает диапазон того, что может быть оцифровано.Например, типичные каналы, используемые устройством 802.11 WiFi, имеют ширину 20 МГц. Чтобы гарантировать, что полные 20 МГц представлены модему без искажений, АЦП нередко оцифровывает 40 МГц или около того полосы пропускания сигнала. Чтобы захватить полосу пропускания аналогового сигнала 40 МГц, установленную фильтрами ПЧ, без артефактов наложения спектров, АЦП, вероятно, будет производить выборку сигнала со скоростью более 80 миллионов выборок в секунду (Msps). Действительно, только недавно стали доступны достаточно быстрые DSP и широкополосные наборы микросхем AD / DA по доступной цене, чтобы можно было рассматривать аналого-цифровое преобразование IF, а не сигнала основной полосы частот.
SDR в настоящее время используется для создания радиостанций, поддерживающих несколько интерфейсных технологий (например, CDMA, GSM и WiFi) с одним модемом путем его программной реконфигурации. Однако модемы SDR дороги, поскольку они обычно включают в себя программируемые устройства, такие как FPGA, в отличие от массовых одноцелевых ASIC, используемых сегодня в большинстве потребительских устройств (и являются ключевыми инструментами для недорогих мобильных телефонов). Даже современные многомодовые устройства, как правило, имеют несколько ASIC (или несколько ядер на одной ASIC).SDR в настоящее время используется в основном в военных приложениях, где стоимость не является ограничением. SDR также является модемной технологией и игнорирует проблемы проектирования RF. В частности, радиочастотная конструкция беспроводного устройства обычно тесно связана с базовой технологией доступа и конструкцией модема. Например, разные технологии радиоинтерфейса имеют разные требования к спектральной маске и разные степени уязвимости к помехам в совместном канале и большой мощности в соседнем канале. Устройство, которое должно работать в широкой полосе пропускания или в широком диапазоне сценариев радиочастотного сигнала (т.е., какие другие устройства работают в соседнем диапазоне спектра) будет более сложным и дорогим, чем одноцелевое устройство.
1.2.2 Эволюция программно-определяемых радиостанций
Два десятилетия назад у большинства радиостанций вообще не было программного обеспечения, а те, у которых оно было, мало с ним работали. В замечательно провидческой статье, опубликованной в 1993 году [2], Джозеф Митола III представил совершенно другой вид радио: в основном цифровое радио, которое можно было бы фундаментально перенастроить, просто изменив программный код, работающий на нем.Он назвал это программное обеспечение — определенное радио .
Спустя несколько лет видение Митолы начало воплощаться в жизнь. В середине 1990-х были изобретены военные радиосистемы, в которых программное обеспечение управляло большей частью обработки сигналов в цифровом виде, что позволило одному набору оборудования работать на многих различных частотах и протоколах связи. Первым (известным) примером этого типа радиостанции были радиостанции SPEAKeasy I и SPEAKeasy II, которые впервые позволили подразделениям из разных родов вооруженных сил общаться.Однако технология была дорогостоящей, и в первой конструкции использовались стойки, которые приходилось перевозить в большом автомобиле. SPEAKeasy II был гораздо более компактным радиоприемником, размером с две сложенные друг на друга коробкой для пиццы, и был первым SDR с достаточными ресурсами DSP для обработки множества различных типов сигналов [9]. Впоследствии SPEAKeasy II вошел в состав радиомодуля с цифровым модулятором (DMR) ВМС США с множеством сигналов и режимов, которым можно дистанционно управлять с помощью интерфейса Ethernet. Эти продукты SPEAKeasy II и DMR развивались не только для определения этих характеристик радиоволн в программном обеспечении, но и для разработки соответствующей программной архитектуры, позволяющей переносить программное обеспечение на произвольную аппаратную платформу, тем самым достигая независимости спецификации и конструкции программного обеспечения формы сигнала от лежащего в основе оборудование [9].
В конце 1990-х годов SDR начали распространяться из военной области в коммерческий сектор, и темпы проникновения на этот рынок значительно ускорились в новом тысячелетии. Сотовые сети считались наиболее очевидным и потенциально наиболее прибыльным рынком, на который SDR могла проникнуть. Преимущества, которые он может принести этой отрасли, включают универсальную и, следовательно, более экономичную аппаратную платформу, ориентированность на будущее и более легкое исправление ошибок путем обновления программного обеспечения, а также повышенную функциональность и совместимость за счет возможности поддержки нескольких стандартов [10].
Такие компании, как Vanu, AirSpan и Etherstack в настоящее время предлагают продукты SDR для базовых станций сотовой связи. Компания Vanu Inc., базирующаяся в США, с 1998 года занимается коммерческим развитием бизнеса SDR. В 2005 году она привлекла большое внимание своей базовой станцией Anywave TM GSM, которая стала первым продуктом SDR, получившим одобрение. в соответствии с новым программным обеспечением регулирования радиосвязи. Базовая станция Anywave работает на платформе обработки общего назначения и обеспечивает программную реализацию модулей BTS (базовая приемопередающая станция), BSC (контроллер базовой станции) и TRAU (транскодер и блок адаптации скорости) BSS (подсистема базовой станции). ).Он поддерживает GSM и может быть обновлен до GPRS и Edge. Продукт был впервые развернут в сельской местности Техаса компанией Mid Tex Cellular в ходе пробного тестирования, где базовая станция Вану успешно продемонстрировала, как она может одновременно запускать множественный доступ с временным разделением (TDMA) и сеть GSM, а также удаленно обновлять и исправлять ошибки в сети. базовая станция через Интернет-ссылку.
После этого успешного испытания другие операторы, такие как AT&T и Nextel, проявили интерес к базовой станции Anywave. В 2001 году 3GNewsroom сообщал о базовых станциях SDR как о ключевом решении проблемы развертывания 3G.Способность базовых станций SDR изменять конфигурацию на лету и поддерживать несколько протоколов считалась самым безопасным вариантом развертывания 3G. На самом деле SDR не сыграли ключевой роли, на которую рассчитывали. Однако более пристальный взгляд на инфраструктуру оператора показывает, что программируемые устройства стали ключевым компонентом существующих базовых станций 3G. В марте 2005 года Airspan выпустила первую коммерчески доступную базовую станцию IEEE 802.16 на базе SDR. Базовая станция AS.MAX использует пикомассивы TM и эталонную программную реализацию IEEE 802.16d стандарт. Picoarray — это реконфигурируемая платформа, которая в 10 раз быстрее по вычислительной мощности, чем современные DSP. Базовая станция AS.MAX обещает быть обновленной до стандарта мобильной связи следующего поколения 802.16e и, таким образом, может предложить перспективный маршрут для операторов, желающих развернуть услуги WiMAX.
В дополнение к предыдущим проприетарным платформам SDR, разработанным для военного и коммерческого секторов, также был достигнут значительный прогресс в разработке SDR в исследовательских и университетских сообществах с открытым исходным кодом.GNU Radio — это архитектура с открытым исходным кодом, предназначенная для работы на компьютерах общего назначения. По сути, он представляет собой набор компонентов DSP и поддерживает ВЧ-интерфейс с универсальным программным радиопериферийным устройством (USRP), плату повышающего и понижающего преобразователя вместе с возможностями АЦП и ЦАП, которые могут быть подключены к дочерней ВЧ-плате. GNU Radio широко используется в исследовательском сообществе как SDR начального уровня. Некоторые основные SDR-платформы, разработанные в университетах и исследовательских сообществах, будут подробно описаны в этой книге.
Как уже упоминалось, из-за высоких требований к вычислениям и обработке технология SDR работает только в устройствах, которые имеют меньшие ограничения по размеру и потребляемой мощности, например, в базовых станциях и движущихся транспортных средствах. Но спрос на SDR для портативных и портативных устройств в будущем возрастает. Основная проблема с внедрением SDR в портативные устройства заключалась в том, что для этого требовалось использование программируемых платформ, которые, как правило, потребляют много энергии и, следовательно, приводят к сокращению срока службы батареи и большим устройствам.Однако SDR обеспечивает возможность поддержки нескольких сигналов на одном устройстве и, таким образом, в конечном итоге может предоставить конечному пользователю расширенный выбор услуг, если он встроен в портативное устройство, такое как телефонная трубка. SDR также может способствовать беспрепятственному роумингу на национальном и международном уровнях. Однако по мере появления новых платформ обработки данных, которые преодолевают ограничения по мощности и размеру, весьма вероятно, что SDR найдет свое применение в портативных устройствах. Действительно, некоторые инсайдеры отрасли предсказывают, что к 2015 году произойдет переход от мобильных телефонов текущего поколения к телефонам SDR.
Как работает радио | HowStuffWorks
Допустим, вы пытаетесь построить радиовышку для радиостанции 680 AM. Он передает синусоидальную волну с частотой 680 000 герц. За один цикл синусоидальной волны передатчик будет перемещать электроны в антенне в одном направлении, переключать и тянуть их назад, переключать и выталкивать их, переключать и снова перемещать их обратно. Другими словами, электроны изменят направление четыре раза в течение одного цикла синусоидальной волны. Если передатчик работает на частоте 680 000 Гц, это означает, что каждый цикл завершается за (1/680 000) 0.00000147 секунд. Четверть этого составляет 0,0000003675 секунды. Со скоростью света электроны могут пройти 0,0684 мили (0,11 км) за 0,0000003675 секунды. Это означает, что оптимальный размер антенны для передатчика на частоте 680 000 герц составляет около 361 фута (110 метров). Поэтому радиостанциям AM нужны очень высокие башни. С другой стороны, для сотового телефона, работающего на частоте
0000 (900 МГц), оптимальный размер антенны составляет около 8,3 см или 3 дюйма. Вот почему сотовые телефоны могут иметь такие короткие антенны.
Вы могли заметить, что антенна AM-радио в вашей машине не имеет длины 300 футов, а всего пару футов в длину.Если бы вы сделали антенну более длинной, она бы принимала лучше, но AM-станции настолько сильны в городах, что на самом деле не имеет значения, является ли ваша антенна оптимальной длиной.
Вы можете задаться вопросом, почему, когда радиопередатчик что-то передает, радиоволны хотят распространяться в пространстве вдали от антенны со скоростью света. Почему радиоволны могут преодолевать миллионы миль? Почему у антенны нет магнитного поля вокруг нее, рядом с антенной, как вы видите с проводом, прикрепленным к батарее? Один простой способ думать об этом таков: когда ток входит в антенну, он действительно создает магнитное поле вокруг антенны.