Lm317 схемы: LM317 и LM317T схемы включения, datasheet, характеристики

Содержание

LM317T схема включения | Практическая электроника

В случае если в схеме нужен стабилизатор на какое-то не стандартное напряжение, то прекрасное решение использование популярного интегрального стабилизатора LM317T с характеристиками:

  • способен работать в диапазоне выходных напряжений от 1,2 до 37 В;
  • выходной ток может достигать 1,5 А;
  • максимальная рассеиваемая мощность 20 Вт;
  • встроенное ограничение тока, для защиты от короткого замыкания;
  • встроенную защиту от перегрева.

У микросхемы LM317T схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.

У стабилизатора два важных параметра: опорное напряжение (Vref) и ток вытекающий из вывода подстройки (Iadj).
Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1. Таким образом если резистор R2 замкнуть, то на выходе схемы будет 1,25 В, а чем больше будет падение напряжения на R2 тем больше будет напряжение на выходе. Получается что 1,25 В на R1 складываться с падением на R2 и образует выходное напряжение.

Второй параметр – ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум 100 мкА, но в реальных условиях он может достигать 500 мкА. Поэтому чтобы обеспечить стабильное выходное напряжение приходиться через делитель R1-R2 гнать ток от 5 мА. А это значит что сопротивление R1 не может больше 240 Ом, кстати именно такое сопротивление рекомендуют в схемах включения из datasheet.

Первый раз, когда я посчитал делитель для микросхемы по формуле из LM317T datasheet, я задавался током 1 мА, а потом я очень долго удивлялся почему напряжение реальное напряжение отличается. И с тех пор я задаюсь R1 и считаю по формуле:
R2=R1*((Uвых/Uоп)-1).
Тестирую в реальных условиях и уточняю значения сопротивлений R1 и R2.
Посмотрим какие должны быть для широко распространенных напряжений 5 и 12 В.

R1, Ом R2, Ом
LM317T схема включения 5v 120 360
LM317T схема включения 12v 240 2000

 

Но я бы посоветовал использовать LM317T в случае типовых напряжений, только когда нужно срочно что-то сделать на коленке, а более подходящей микросхемы типа 7805 или 7812 нету под рукой.

А вот расположение выводов LM317T:

  1. Регулировочный
  2. Выходной
  3. Входной

Кстати у отечественного аналога LM317 — КР142ЕН12А схема включения точно такая же.

На этой микросхеме несложно сделать регулируемый блок питания: вместо постоянного R2 поставьте переменный, добавьте сетевой трансформатор и диодный мост.

На LM317 можно сделать и схему плавного пуска: добавляем конденсатор и усилитель тока на биполярном pnp-транзисторе.

Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.

Схема стабилизатора тока ещё проще, чем напряжения, так как резистор нужен только один. Iвых = Uоп/R1.
Например, таким образом мы получаем из lm317t стабилизатор тока для светодиодов:

  • для одноватных светодиодов I = 350 мА, R1 = 3,6 Ом, мощностью не менее 0,5 Вт.
  • для трехватных светодиодов I = 1 А, R1 = 1,2 Ом, мощностью не менее 1,2 Вт.

На основе стабилизатора легко сделать зарядное устройство для 12 В аккумуляторов, вот что нам предлагает datasheet. С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.

Если в схеме потребуется стабилизировать напряжения при токах более 1,5 А, то все также можно использовать LM317T, но совместно с мощным биполярным транзистором pnp-структуры.
Если нужно построить двуполярный регулируемый стабилизатор напряжения, то нам поможет аналог LM317T, но работающий в отрицательном плече стабилизатора — LM337T.

Но у данной микросхемы есть и ограничения. Она не является стабилизатором с низким падением напряжения, даже наоборот начинает хорошо работать только когда разница между выходным и выходным напряжением превышает 7 В.

Если ток не превышает 100мА, то лучше использовать микросхемы с низким падением LP2950 и LP2951.

Мощные аналоги LM317T — LM350 и LM338

Если выходного тока в 1,5 А недостаточно, то можно использовать:

  • LM350AT, LM350T — 3 А и 25 Вт (корпус TO-220)
  • LM350K — 3 А и 30 Вт (корпус TO-3)
  • LM338T, LM338K — 5 А

Производители этих стабилизаторов кроме увеличения выходного тока, обещают сниженный ток регулировочного входа до 50мкА и улучшенную точность опорного напряжения.
А вот схемы включения подходят от LM317.

Стабилизатор напряжения на LM317 | AUDIO-CXEM.RU

Стабилизатор LM317 является очень популярным компонентом в построении стабилизированных источников питания. Чаще всего его называют регулятором напряжения, потому что выходное напряжение LM317 можно задавать в широком диапазоне. И все-таки, правильнее называть регулируемый линейный стабилизатор напряжения.

Помимо стабилизации напряжения, LM317 может включаться как стабилизатор тока, этому посвящена целая статья «Стабилизатор тока на LM317«.

Как говорилось выше, элемент является линейным, а это важное преимущество, в плане качества питания, перед импульсными стабилизаторами, но увы, линейные компоненты уступают импульсным по КПД.

Стабилизатор выполняется в разных корпусах, соответственно характеристики у всех разные. Я преимущественно буду писать про исполнение в корпусе TO-220.

Основные технические характеристики LM317

Входное напряжение….. до +40В

Выходное напряжение….. от +1.25В до +37В

Разница Vin-Vout….. от 3В до 40В

Максимальный выходной ток при:

(Vin-Vout)<15В ….. 2.2А

(Vin-Vout)=40В ….. 0.4А

Другие характеристики и графики можно посмотреть в технических описаниях разных производителей (Datasheet).

Хочу обратить внимание, что максимально допустимый выходной ток стабилизатора будет зависеть от разницы входного и выходного напряжений. Таким образом, если на вход LM317 подано 40В, а на выходе будет установлено 3В, то максимально допустимый ток не должен превышать 400мА, при условии установки на фланец LM317 теплоотвода с большой охлаждающей поверхностью. Смысл в том, что чем больше разница входного и выходного напряжений, тем больше рассеивается на регуляторе тепла, так как эта разница падает именно на нем. Минимальная разница не должна быть меньше 3В.

Ниже представлен график зависимости тока на выходе, от разницы напряжений.

Схема стабилизатора напряжения на LM317

Как видно из схемы, за установку напряжения стабилизации отвечает делитель напряжения R1R2, средняя точка которого соединена с выводом обратной связи (регулировки).

Сопротивление резистора R1 постоянно и равняется 240Ом.

Подставляя в нижеприведенную формулу определенное значение сопротивления R2, можно посчитать напряжение стабилизации LM317. И наоборот, зная напряжение стабилизации можно рассчитать значение резистора R2.

Вот небольшая табличка (памятка) с уже посчитанными номиналами элементов.

Для наглядного опыта я собрал схему навесным монтажом, без емкостей, чтобы они не отвлекали. Резистора на 240Ом у меня не было, поэтому я установил на 220Ом. Соответственно, для выходного напряжения 15В сопротивление R2 должно быть примерно 2.4кОм.

При изменении входного напряжения, выходное остается стабильным.

Нагрузив выход резистором с сопротивлением 6.2Ома, ток нагрузки составил чуть более 2А.

Установив вместо постоянного резистора R2 подстроечный, получим схему регулируемого стабилизатора напряжения на LM317.

Схема регулируемого стабилизатора напряжения на LM317 с защитными диодами.

Данная схема применяется при выходном напряжении более 25В и выходных емкостей более 10мкФ.

При замыкании входа заряды емкостей могут вывести из строя LM317. Защитные диоды позволяют разрядить эти емкости, обеспечив протекание тока разряда, минуя линейный регулятор.

При замыкании входа на землю, конденсатор Co разрядится через диод D1, а Cadj через D2 и D1.

При выходном напряжении менее 25В и конденсаторов менее 10мкФ, при замыкании входа, разряд конденсаторов происходит через встроенный резистор сопротивлением 50Ом.

Datasheet на LM317 СКАЧАТЬ

cxema.org — Регулируемый стабилизатор (1,25-37V) на LM317

Vin (входное напряжение): 3-40 Вольт
Vout (выходное напряжение): 1,25-37 Вольт
Выходной ток: до 1,5 Ампер
Максимальная рассеиваемая мощность: 20 Ватт

Формула для расчета выходного (Vout) напряжения: Vout = 1,25 * (1 + R2/R1)
*Сопротивления в Омах
*Значения напряжения получаем в Вольтах

Данная простая схема позволяет выпрямить переменное напряжение в постоянное благодаря диодному мосту из диодов VD1-VD4, а затем точным подстрочным резистором типа СП-3 выставить нужное вам напряжение в пределах допустимых интегральной микросхемы-стабилизатора.

В качестве выпрямительных диодов взял старые FR3002, которые когда-то давно выпаял из древнейшего компьютера 98-го года. При внушительных размерах (корпус DO-201AD) их характеристики (Uобратное: 100 Вольт; Iпрямой: 3 Ампера) не впечатляют, но мне и этого хватает с головой. Для них даже пришлось расширять отверстия в плате, уж больно выводы у них толстые (1,3мм). Если немного изменить плату в лейоте можно впаять сразу готовый диодный мост.

Радиатор для отведения тепла от микросхемы 317 обязателен, даже лучше небольшой вентилятор поставить. Еще, в месте соединения подложки корпуса TO-220 микросхемы с радиатором капните немного термопасты. Степень нагрева будет зависеть от того, сколько мощности рассеивает микросхема, а также от самой нагрузки.

Микросхему LM317T я не устанавливал прямо на плату, а вывел от неё три провода, с помощью которых и соединил этот компонент с остальными. Это было сделано для того, чтобы ножки не расшатывались и вследствие чего не были переломанными, ведь данная деталь будет прикреплена к рассеивателю тепла.

Подстрочный резистор для возможности использования полного вольтажа микросхемы, то есть регулировки от 1,25 и аж до 37 Вольт устанавливаем с максимальным сопротивлением 3432 кОма (в магазине самый близкий номинал 3,3кОм.). Рекомендуемый тип резистора R2: подстрочный многооборотный (3296).

Саму микросхему-стабилизатор LM317T и подобные ей выпускает множество, если не все компании по производству электронных компонентов. Покупайте только у проверенных продавцов, потому что встречаются китайские подделки, особенно часто микросхемы LM317HV, которая рассчитана на входное напряжение аж до 57 Вольт. Опознать ненастоящую микросхему можно по железной подложке, в фейке она имеет множество царапин и неприятный серый цвет, также неправильную маркировку. Еще нужно сказать, что микросхема имеет защиту от короткого замыкания, а также перегрева, но на них сильно не рассчитывайте.

Не забываем, что данный (LM317Т) интегральный стабилизатор способен рассеивать мощность с радиатором только до 20 Ватт. Плюсами этой распространённой микросхемы являются её маленькая цена, ограничение внутреннего тока короткого замыкания, внутренняя тепловая защита

Платку можно нарисовать качественно даже обычным пергаментным маркером, а потом вытравить в растворе медного купороса/хлорного железа…

Фото готовой платы.

Как вы знаете, существует множество интегральных микросхем-стабилизаторов напряжения в разных корпусах и с различными характеристики входного и выходного напряжения и тока. Внизу я прикрепил удобную таблицу названия самых распространенных и не только микросхем и их краткие характеристики.

Печатная плата в формате lay6

С уважением, ЕГОР Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.

Lm317t Характеристики Схема Подключения — tokzamer.ru

Тогда схема нашего регулируемого двуполярного источника может выглядеть например так: Здесь дополнительные мощные транзисторы VT1 и VT2 позволяют увеличить выходной ток стабилизаторов.


Например, мне необходимо ограничить ток потребления светодиодов равный мА. Его мощность выбирается не менее 0,5 Вт; для питания трехватных светодиодов потребуется резистор сопротивлением 1,2 Ом, ток составит 1 А, а мощность рассеивания не менее 1,2 Вт.


Недостаток — бОльшее количество элементов, наличие помех. При низком падении lm не способна обеспечить необходимый коэффициент стабилизации, что может приводить к нежелательным пульсациям при работе.
Очень простой регулируемый блок питания на LM317

Для ее работы зная потребляемый светодиодом ток, необходимо подобрать сопротивление подстроечного резистора R1. В момент включения такого источника на его выходе минимальное напряжение, которое плавно увеличивается до установленного 15В по мере заряда конденсатора C1.

Предлагаю вниманию обзор интегрального линейного регулируемого стабилизатора напряжения или тока LM по цене 18 центов за штуку.

Рекомендации по номиналам конденсатора на выходе LM очень впечатляют,- это диапазон от 10 до мкФ.

А началось все с недоумения — почему это на выходе во всех схемах такой низкоомный делитель?

В Datasheets всех производителей есть параметр Adjustment Pin Current ток по входу подстройки. Светодиод будет включаться, с требуемой яркостью, которая не будет зависеть от поданного постоянного питания на вход микросхемы.

Схема простого регулируемого БП на LM317T Часть 1

Похожие статьи

Как проверить lm мультиметром? Мощность рассеивания не более 20 Вт.

Встречается в различных видов корпусов.

В других регуляторах регулирование осуществляется по цепи Отрицательной обратной связи, что максимально улучшает все параметры. Описание и применение

Параметр весьма интересный и важный, определяющий, в частности, максимальную величину резистора в цепи входа Adj. Резистор можно припаять на выводы микросхемы, но не стоит забывать, что через резистор протекает весь ток нагрузки, поэтому при больших токах нужен резистор повышенной мощности.

Простенько и со вкусом,- закрылся себе транзистор при напряжении база-эмиттер ниже 1,25 В и все тут.

Благодаря разбросу, на один нагрузка всегда будет больше чем на другие. И уж точно — лучшую регулировку, а также и широчайший диапазон по типам и номиналам резисторов и конденсаторов.

О принципе регулирования выходного напряжения LM
Стабилизатор тока на LM 317

Мощные аналоги LM317T — LM350 и LM338

Правда, это честно показано на диаграмме Ripple Rejection. Теперь — о самом неприятном, а именно о несоответствии реальных электрических характеристик заявленным.

Это типовая схема стабилизатора напряжения с выходным напряжением 12 В.

Рекомендации по применению защитных диодов для LM носят обще-теоретический характер и рассматривают ситуации, которых не бывает на практике. Самым эффективный способ, это собрать простой стенд используя макетную плату для проверки и запитать все от батарейки,. Для этого в управляющую цепь включаем цепочки из транзисторов и резисторов, как показано на рисунке ниже.

Микросхема LM в корпусе ТО способна стабильно работать при максимальном токе нагрузки до 1,5 ампер. А схемы и данные в его datasheet все те же … Итак, недостатки LM, как микросхемы и ошибки в рекомендациях по ее использованию.

Также легко сделать на этой микросхеме источник с несколькими фиксированными напряжениями, которые можно переключать программно, с помощью микроконтроллера. Конфигурация выводов Типовая схема включения LM Схема регулируемого блока питания на LM будет выглядеть так: Мощность трансформатора Вт, напряжение вторичной обмотки вольт. Следовательно, на вход Vin надо подать больше чем 5 вольт.

Технические характеристики:


Это максимальные значения, которые могут привести к повреждению устройства или повлиять на стабильность его работы. Что увеличивает уровень пульсаций на нагрузке с повышением частоты. А для LM она фактически означает степень собственной ущербности и показывает, как же хорошо LM борется с пульсациями, которые сама же берет с выхода и опять загоняет внутрь самой себя. Тогда схема нашего регулируемого двуполярного источника может выглядеть например так: Здесь дополнительные мощные транзисторы VT1 и VT2 позволяют увеличить выходной ток стабилизаторов. Кроме отечественной интегральной схемы КРЕН12, выпускаются более мощные импортные аналоги, выходные токи которых в раза больше.

Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Стабилизация и защита схемы Емкость С2 и диод D1 не обязательны. Аналоги lm Иногда найти конкретно требуемую микросхему на рынке не удается возможным, тогда можно воспользоваться подобными ей. Поскольку мы хотим 5 вольт на выходе, мы подадим к регулятору 7 вольт.

Что довольно часто наблюдается при изготовлении мощного светильника на светодиодах. Можно упростить себе жизнь, если использовать микросхему LM — аналог микросхемы LM, но на отрицательное напряжение. Что увеличивает уровень пульсаций на нагрузке с повышением частоты. Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Поэтому вам даже не придется переделывать схему готового устройства с целью подгонки параметров регулятора напряжения или неизменяемого стабилизатора.
Блок питания на LM338T part 1

Техническая документация к электронным компонентам на русском языке.

Мощность рассеивания не более 20 Вт.

А, значит, все рекомендации и особенно схемы приложений, приводимые в datasheets, носят теоретический, рекомендательный характер.

Заинтересовавшихся прошу… Немного теории: Стабилизаторы бывают линейные и импульсные.

А в LM — при снижении выходного напряжение ниже 1,25 В. Надо бы хуже, да некуда. В процессе подбора сопротивлений допускается небольшое отклонение 8…10 мА. Что довольно часто наблюдается при изготовлении мощного светильника на светодиодах.

Смотрите также: Подключение к двухклавишному выключателю

Его мощность выбирается не менее 0,5 Вт; для питания трехватных светодиодов потребуется резистор сопротивлением 1,2 Ом, ток составит 1 А, а мощность рассеивания не менее 1,2 Вт. Список решаемых задач данного стабилизатора довольно обширен — это и питание различных электронных схем, радиотехнических устройств, вентиляторов, двигателей и прочих устройств от электросети или других источников напряжения, например аккумулятора автомобиля.

Теперь — о самом неприятном, а именно о несоответствии реальных электрических характеристик заявленным. Как вы уже поняли, микросхему необходимо обеспечить хорошим радиатором.

Производители этих компонентов гарантируют более высокую стабильность выходного напряжения, низкий ток регулирования, повышенную мощность с тем же минимальным выходным напряжением не более 1,3 В. Что касается второго параметра Iadj, то это фактически паразитный ток. Предлагаю вниманию обзор интегрального линейного регулируемого стабилизатора напряжения или тока LM по цене 18 центов за штуку. И не удивительно в связи с этим, что в цепи Adj рекомендуется ставить конденсатор С2. Вот только одно маленькое НО … Внутренняя часть LM содержит стабилизатор тока, в котором использован стабилитрон на напряжение 6,3 В.

Список решаемых задач данного стабилизатора довольно обширен — это и питание различных электронных схем, радиотехнических устройств, вентиляторов, двигателей и прочих устройств от электросети или других источников напряжения, например аккумулятора автомобиля. Значит, надо следить не только за максимальным током нагрузки, но и за минимальным тоже? Его мощность выбирается не менее 0,5 Вт; для питания трехватных светодиодов потребуется резистор сопротивлением 1,2 Ом, ток составит 1 А, а мощность рассеивания не менее 1,2 Вт. Затем подключают в схему со светодиодом.
Параллельное включение стабилизаторов …

БП НА LM317 С БЛОКОМ ЗАЩИТЫ

Блок питания — одно из самых важных устройств, в мастерской радиолюбителя. Тем более с батарейками и с аккумуляторами каждый раз мучиться как-то надоело. Рассмотренный здесь БП Регулирует напряжение от 1.2 вольта до 24 вольта. И нагрузку до 4 А. Для большей силы тока, было решено установить два одинаковых трансформатора. Трансформаторы подключаются параллельно.

Детали для регулируемого блока питания

  1. Стабилизатор LM317 ТО-220 корпусе.
  2. Кремниевый транзистор, p-n-p КТ818.
  3. Резистор 62 Ом.
  4. Конденсатор электролитический 1 мкф*43В.
  5. Конденсатор электролитический 10 мкф*43В.
  6. Резистор 0,2 Ом 5W.
  7. Резистор 240 Ом.
  8. Подстроечный резистор 6.8 Ком.
  9. Конденсатор электролитический 2200 мкф*35В. 
  10. Любой светодиод.

 

Схема блока питания

Схема блока защиты

Схема блока выпрямителя

Детали для построения защиты от КЗ

  1. Кремниевый транзистор, n-p-n КТ819.
  2. Кремниевый транзистор, n-p-n КТ3102.
  3. Резистор 2 Ом.
  4. Резистор 1 Ком.
  5. Резистор 1 Ком.
  6. Любой светодиод.

Для корпуса регулируемого блока питания, были использованы два корпуса, от обычного компьютерного блока питания. В места из под кулера, были поставлены вольтметр и амперметр.

Для дополнительного охлаждения, был установлен кулер.

Печатная плата была нарисована в Sprint layout v6.0.

Но можно спаять схему просто навесным монтажом. Соединяются корпуса, с помощью двух болтов.

Гайки были приклеены, к крышке корпуса термо клеем. Для охлаждения стабилизатора и транзисторов был использован радиатор от компьютера, который обдувал кулер.

Для удобства переноса блока питания, была прикручена ручка от шуфлядки письменного стола. В общем, получившийся блок питания очень нравится. Мощности его хватает для питания почти всех схем, проверки микросхем, и зарядки небольших аккумуляторов.

Схема ИП не нуждается в настройке, и при правильной спайке она заработает сразу. Автор статьи 4ei3 e-mail [email protected] 

   Форум по БП

   Форум по обсуждению материала БП НА LM317 С БЛОКОМ ЗАЩИТЫ




РОБОТ ЕЗДЯЩИЙ ПО ЛИНИИ

Простая транзисторная схема робота следующего по нарисованной линии. Без микроконтроллеров и дорогих деталей.


описание, характеристики, схема включения стабилизатора, аналоги

При разработке электрических схем часто возникает необходимость применения стабилизаторов напряжения малой или средней мощности (до 1,5 А) или источников образцового напряжения. Удобно, если такой узел имеется в интегральном исполнении, в виде единой микросхемы. Ряд из 9 номиналов постоянных напряжений с номиналами от 5 до 24 В закрывают стабилизаторы серии 78ХХ. Ниша работы LM317 – напряжения выше (до 37 В) и ниже (до 1,2 В) данного диапазона, промежуточные значения напряжения, регулируемые стабилизаторы.

Что из себя представляет микросхема LM317

Микросхема представляет собой линейный стабилизатор напряжения, выходное значение которого можно устанавливать в определенных пределах или оперативно регулировать. Выпускается в нескольких вариантах корпуса с тремя выводами. Диапазон выходного напряжения у всех вариантов одинаковый, а максимальный ток может различаться.

Основные характеристики линейного стабилизатора напряжения LM317

В даташитах на стабилизатор LM317 содержится полная техническая информация, с которой можно ознакомиться, изучив спецификацию. Ниже приведены параметры, несоблюдение которых наиболее критично и при неверном применении микросхема может выйти из строя. В первую очередь, это максимальный рабочий ток. Он приведен в предыдущем разделе для разных видов исполнения. Надо добавить, что для получения наибольшего тока в 1,5 А микросхему обязательно надо устанавливать на теплоотводе.

Максимальное напряжение на выходе регулятора, построенного на основе LM317, может быть не более 40 В. Если этого мало, надо выбрать высоковольтный аналог стабилизатора.

Минимальное напряжение на выходе составляет 1,25 В. При таком построении схемы можно получить и меньше, но сработает защита от перегрузки. Это не самый удачный вариант – такая защита должна работать от превышения выходного тока, как это работает в других интегральных стабилизаторах. Поэтому на практике получить регулятор, работающий от нуля при подаче отрицательного смещения на вывод Adjust, нельзя.

Минимальное значение входного напряжения в даташите не указано, но может быть определено из следующих соображений:

  • минимальное выходное напряжение – 1,25 В;
  • минимальное падение напряжения для Uвых=37 В равно трем вольтам, логично предположить, что для минимального выходного оно должно быть не меньше;

Исходя из этих двух посылок, на вход надо подавать не меньше 3,5 В для получения минимального выходного значения. Также для стабильной работы ток через делитель должен быть не менее 5 мА – чтобы паразитный ток вывода ADJ не вносил значительного сдвига напряжения (на практике он может достигать до 0,5 мА).

Это относится к информации из классических даташитов известных производителей (Texas Instruments и т.п.). В даташитах нового образца от фирм Юго-Восточной Азии (Tiger Electronics и т.д.) этот параметр указывается, но в неявном виде, как разница между входным и выходным напряжением. Она должна составлять минимум 3 вольта для всех напряжений, что не противоречит предыдущим рассуждениям.

Максимальное же входное напряжение не должно превышать проектируемое выходное более, чем на 40 В. Это надо также учитывать при разработке схем.

Важно! На заявленные параметры можно ориентироваться, если микросхема выпущена каким-либо известным производителем. Продукция неизвестных фирм обычно имеет более низкие характеристики

Назначение выводов и принцип работы

Упоминалось, что LM317 относится к классу линейных стабилизаторов. Это означает, что стабилизация выходного напряжения осуществляется за счёт перераспределения энергии между нагрузкой и регулирующим элементом.

Транзистор и нагрузка составляют делитель входного напряжения. Если заданное на нагрузке напряжение уменьшается (по причине изменения тока и т.п.), транзистор приоткрывается. Если увеличивается – закрывается, коэффициент деления изменяется и напряжение на нагрузке остается стабильным. Недостатки такой схемы известны:

  • необходимо, чтобы входное напряжение превышало выходное;
  • на регулирующем транзисторе рассеивается большая мощность;
  • КПД даже теоретически не может превышать отношение Uвых/Uвх.

Зато имеются серьезные плюсы (относительно импульсных схем):

  • относительно простая и недорогая микросхема;
  • требует минимальной внешней обвязки;
  • и главное достоинство – выходное напряжение свободно от высокочастотных паразитных составляющих (помехи по питанию минимальны).

Стандартная схема включения микросхемы:

  • на вывод Input подается входное напряжение;
  • на вывод Output – выходное;
  • на Ajust – опорное напряжение, от которого зависит выходное.

Резисторы R1 и R2 задают выходное напряжение. Оно рассчитывается по формуле:

Uвых=1,25⋅ (1+R2/R1) +Iadj⋅R2.

Iadj является паразитным током вывода настройки, по данным изготовителя он может быть в пределах 5 мкА. Практика показывает, что он может достигать значений на порядок-два выше.

Конденсатор С1 может иметь ёмкость от сотен до нескольких тысяч микрофарад. В большинстве случаев им служит выходной конденсатор выпрямителя. Он должен быть подключен к микросхеме проводниками длиной не более 7 см. Если это условие для конденсатора выпрямителя выполнить нельзя, то следует подключить дополнительную ёмкость примерно в 100 мкФ в непосредственной близости от входного вывода. Конденсатор С3 не должен иметь ёмкость более 100-200 мкФ по двум причинам:

  • чтобы избежать перехода стабилизатора в режим автоколебаний;
  • чтобы устранить бросок тока на заряд при подаче питания.

Во втором случае может сработать защита от перегрузки.

Не стоит забывать, что при протекании тока через резисторы, они нагреваются (это также возможно при повышении температуры окружающей среды). Сопротивление R1 и R2 изменяются, и нет гарантии, что они изменятся пропорционально. Поэтому напряжение на выходе с прогревом или охлаждением может изменяться. Если это критично, можно использовать резисторы с нормированным температурным коэффициентом сопротивления. Их можно отличить по наличию шести полосок на корпусе. Но стоят такие элементы дороже и купить их сложнее. Другой вариант – вместо R2 использовать стабилитрон на подходящее напряжение.

Какие существуют аналоги

Существуют подобные микросхемы, разработанные в других фирмах других стран. Полными аналогами являются:

  • GL317;
  • SG317;
  • UPC317;
  • ECG1900.

Также выпускаются стабилизаторы с повышенными электрическими характеристиками. Больший ток могут выдать:

  • LM338 – 5 А;
  • LM138 – 5 А
  • LM350 – 3 А.

Если требуется регулируемый источник напряжения с верхним пределом в 60 В, надо применять стабилизаторы LM317HV, LM117HV. Индекс HV означает High Voltage – высокое напряжение.

Из отечественных микросхем полным аналогом является КР142ЕН12, но она выпускается только в корпусе ТО-220. Это надо учитывать при разработке печатных плат.

Примеры схем включения стабилизатора LM317

Типовые схемы включения микросхемы приведены в даташите. Стандартное применение — стабилизатор с фиксированным напряжением — рассмотрен выше.

Если вместо R2 установить переменный резистор, то выходное напряжение регулятора можно оперативно регулировать. Надо учитывать, что потенциометр будет слабым местом в схеме. Даже у переменных резисторов хорошего качества место контакта движка с проводящим слоем будет иметь некоторую нестабильность соединения. На практике это выльется в дополнительную нестабильность выходного напряжения.

Для защиты производитель рекомендует включить два диода D1 и D2. Первый диод должен защищать от ситуации, когда напряжение на выходе будет выше входного. На практике это ситуация крайне редкая, и может возникнуть только если со стоны выхода есть другие источники напряжения. Производитель отмечает, что этот диод также защищает от случая короткого замыкания на входе – конденсатор С1 в этом случае создаст разрядный ток противоположной полярности, что приведет микросхему к выходу из строя. Но внутри микросхемы параллельно этому диоду стоит цепочка из стабилитронов и резисторов, которая сработает точно также. Поэтому необходимость установки этого диода сомнительна. А D2 в такой ситуации защитит вход стабилизатора от тока конденсатора С2.

Если параллельно R2 поставить транзистор, то работой стабилизатора можно управлять. При подаче напряжения на базу транзистора, он открывается и шунтирует R2. Напряжение на выходе уменьшается до 1,25 В. Здесь надо следить, чтобы разница между входным и выходным напряжением не превысила 40 В.

Вредное воздействие контакта потенциометра на стабильность выходного напряжения можно уменьшить подключением параллельно переменному сопротивлению конденсатора. В этом случае защитный диод D1 не помешает.

Если выходного тока стабилизатора не хватает, его можно умощнить внешним транзистором.

Из стабилизатора напряжения можно получить стабилизатор тока, включив LM317 по такой схеме. Выходной тока рассчитывается по формуле I=1,25⋅R1. Подобное включение часто используется в качестве драйвера для светодиодов – LED включается в качестве нагрузки.

Наконец, необычное включение линейного стабилизатора – на его основе создана схема импульсного блока питания. Положительную обратную связь для возникновения колебаний задает цепь C3R6.

Микросхема LM317 имеет значительное количество слабых сторон. Но искусство создания схем и состоит в том, чтобы, используя плюсы стабилизатора, обходить недостатки. Все минусы микросхемы выявлены, даны советы по их нейтрализации. Поэтому LM317 пользуется популярностью у создателей профессиональной и любительской радиоаппаратуры.

Регулируемые стабилизаторы LM317 и LM337. Особенности применения

В радиолюбительской практике широкое применение находят микросхемы регулируемых стабилизаторов LM317 и LM337. Свою популярность они заслужили благодаря низкой стоимости, доступности, удобного для монтажа исполнению, хорошим параметрам. При минимальном наборе дополнительных деталей эти микросхемы позволяют построить стабилизированный блок питания с регулируемым выходным напряжением от 1,2 до 37 В при максимальном токе нагрузки до 1,5А.

Но! Часто бывает,  при неграмотном или неумелом подходе радиолюбителям не удаётся добиться качественной работы микросхем, получить заявленные производителем параметры. Некоторые умудряются вогнать микросхемы в генерацию.

Как получить от этих микросхем максимум и избежать типовых ошибок?

Об этом по-порядку:

Микросхема LM317 является регулируемым стабилизатором ПОЛОЖИТЕЛЬНОГО напряжения, а микросхема LM337  — регулируемым стабилизатором ОТРИЦАТЕЛЬНОГО напряжения.

Обращаю особое внимание, что цоколёвки у этих микросхем различные!

Даташит производителя: datasheet LM317 (pdf-формат 1041 кб),  datasheet lm337 (pdf-формат 43кб).

Цоколёвка LM317 и LM337:

Типовая схема включения LM317:

Увеличение по клику

Выходное напряжение схемы зависит от номинала резистора R1 и рассчитывается по формуле:

Uвых=1,25*(1+R1/R2)+Iadj*R1

где Iadj ток управляющего вывода. По даташиту составляет 100мкА, как показывает практика реальное значение 500 мкА.

Для микросхемы LM337 нужно изменить полярность выпрямителя, конденсаторов и выходного разъёма.

Но скудное даташитовское описание не раскрывает всех тонкостей применения данных микросхем.

Итак, что нужно знать радиолюбителю, чтобы получить от этих микросхем МАКСИМУМ!
1. Чтобы получить максимальное подавление пульсаций входного напряжения необходимо:

  • Увеличить (в разумных пределах, но минимум до 1000 мкФ) емкость входного конденсатора C1. Максимально подавив пульсации на входе, мы получим минимум пульсаций на выходе.
  • Зашунтировать управляющий вывод микросхемы конденсатором на 10мкФ . Это увеличивает подавление пульсаций на 15-20дБ.  Установка емкости больше указанного значения ощутимого эффекта не даёт.

Схема примет вид:

Увеличение по клику

2. При выходном напряжении больше 25В в целях защиты микросхемыдля быстрого и безопасного разряда конденсаторов необходимо подключить защитные диоды:

увеличение по клику

Важно: для микросхем LM337 полярность включения диодов следует поменять!

3. Для защиты от высокочастотных помех электролитические конденсаторы в схеме необходимо зашунтировать плёночными конденсаторами небольшой ёмкости.

Получаем итоговый вариант схемы:

Увеличение по клику

4. Если посмотреть внутреннюю структуру микросхем, можно увидеть, что внутри в некоторых узлах применены стабилитроны на 6,3В. Так что нормальная работа микросхемы возможна при входном напряжении не ниже 8В!

Хотя в даташите и написано, что разница между входным и выходным напряжениями должна составлять минимум 2,5-3 В, как происходит стабилизация при входном напряжении менее 8В, остаётся только догадываться.

5. Особое внимание следует уделить монтажу микросхемы. Ниже приведена схема с учётом разводки проводников:

Увеличение по клику

Пояснения к схеме:

  1. длинна проводников (проводов) от входного конденсатора C1 до входа микросхемы (А-В) не должна превышать 5-7 см. Если по каким-то причинам конденсатор удалён от платы стабилизатора, в непосредственной близости от микросхемы рекомендуется установить конденсатор на 100 мкФ.
  2. для снижения влияния выходного тока на выходное напряжение (повышение стабильности по току) резистор R2 (точка D) необходимо подсоединять непосредственно к выходному выводу микросхемы или отдельной дорожкой/проводником ( участок C-D). Подсоединение резистора R2 (точка D) к нагрузке (точка Е) снижает стабильность выходного напряжения.
  3. проводники до выходного конденсатора (С-E) также не следует делать слишком длинными. Если нагрузка удалена от стабилизатора, то на стороне  нагрузки необходимо подключить байпасный конденсатор (электролит на 100-200 мкФ).
  4. так же с целью снижения влияния тока нагрузки на стабильность выходного напряжения «земляной» (общий) провод необходимо развести «звездой» от общего вывода входного конденсатора (точка F).

Выполнив эти нехитрые рекомендации, Вы получите стабильно работающее устройство, с теми параметрами, которые ожидались.

Удачного творчества!

Похожие статьи:


Стабилизатор напряжения

LM317: распиновка, КАЛЬКУЛЯТОР и схемы

В таком случае нам нужно создать регулируемый источник питания постоянного тока с выходным током 1 А и возможностью регулировки примерно до 30 В.

Большинство людей будут использовать LM317 из-за его высокой эффективности, простоты применения и дешевизны.

Так ли это на самом деле? Вы узнаете ниже.

Лист данных LM317

Он имеет регулируемый трехконтактный стабилизатор положительного напряжения, предназначенный для подачи тока нагрузки более 1,5 А с выходным напряжением, регулируемым в пределах 1.Диапазон от 2 до 37 В.

Имеет внутреннее ограничение тока, обнаружение отключения по температуре и компенсацию безопасной зоны.

Распиновка LM317


Рисунок 1: Распиновка LM317 на TO-220

Посмотрите:


Схема подключения различных Распиновка LM317

LM317T на TO-220: выход 1.5A
LM317L на TO-220 выход 100 мА
LM317K на ТО-3: выход 1,5 А
LM317 на DPARK: выход 1,5 А

Основные характеристики

  • Выходной ток превышает 1.5A
  • Выход с регулировкой от 1,2 В до 37 В
  • Внутреннее ограничение тока короткого замыкания или выход защищен от короткого замыкания
  • Внутренняя защита от тепловой перегрузки или постоянное ограничение тока с температурой
  • Компенсация зоны безопасной работы выходного транзистора
  • TO -220 Пакет на транзисторах 2SC1061.
  • Есть выходное напряжение 1% Долговечность
  • Есть макс. Регулирование линии 0,01% / В (LM317) и регулирование нагрузки 0,3% (LM117)
  • Подавление пульсаций 80 дБ


Рисунок 2 принципиальная схема

Принципиальная схема

Если питание Питающий фильтр слишком удален от IC-регулятора.Tt должен вставить Ci для снижения шума перед входом IC.

Далее на рисунке схема. Co не нужен, если вы не высокопроизводительный, но мы его лучше выразим. Это снизит пульсацию на выходе.

Поскольку Iadj контролируется до менее 100 мкА, небольшая ошибка не важна для большинства приложений.

Входное напряжение LM317 должно быть как минимум на 1,5 В выше выходного напряжения.

Калькулятор LM317

Этот калькулятор будет работать с большинством регуляторов напряжения постоянного тока с опорным напряжением (VREF), равным 1.25. Обычно программный резистор (R1) составляет 240 Ом для LM117, LM317, LM138 и LM150.

Некоторые говорили, что Iadj имеет очень низкий ток.

Значит, можно уменьшить. Быть короче и проще.

Vout = 1,25 В x {1 + R2 / R1}

Что лучше?

Например:
Вы используете R1 = 270 Ом и R2 = 390 Ом. Это приводит к выходу 3,06 В

Это просто? Если у вас есть выбор напряжения с большинством резисторов. В ближайших к вам магазинах.

посмотрите список:

Выходное напряжение с R1 и R2 Список

1.43 В: R1 = 470 Ом, R2 = 68 Ом
1,47 В: R1 = 470 Ом, R2 = 82 Ом
1,47 В: R1 = 390 Ом, R2 = 68 Ом
1,51 В: R1 = 330 Ом, R2 = 68 Ом
1,51 В: R1 = 390 Ом, R2 = 82 Ом
1,52 В: R1 = 470 Ом, R2 = 100 Ом
1,53 В: R1 = 390 Ом, R2 = 82 Ом
1,56 В: R1 = 330 Ом, R2 = 82 Ом
1,57 В: R1 = 270 Ом, R2 = 68 Ом
1,57 В : R1 = 470 Ом, R2 = 120 Ом
1,57 В: R1 = 390 Ом, R2 = 100 Ом
1,59 В: R1 = 390 Ом, R2 = 100 Ом
1,60 В: R1 = 240 Ом, R2 = 68 Ом
1,63 В: R1 = 330 Ом, R2 = 100 Ом
1,63 В: R1 = 270 Ом, R2 = 82 Ом
1.64 В: R1 = 390 Ом, R2 = 120 Ом
1,64 В: R1 = 220 Ом, R2 = 68 Ом
1,65 В: R1 = 470 Ом, R2 = 150 Ом
1,66 В: R1 = 390 Ом, R2 = 120 Ом
1,68 В: R1 = 240 Ом, R2 = 82 Ом
1,71 В: R1 = 330 Ом, R2 = 120 Ом
1,71 В: R1 = 270 Ом, R2 = 100 Ом
1,72 В: R1 = 220 Ом, R2 = 82 Ом
1,72 В: R1 = 180 Ом, R2 = 68 Ом
1,73 В : R1 = 470 Ом, R2 = 180 Ом
1,73 В: R1 = 390 Ом, R2 = 150 Ом
1,76 В: R1 = 390 Ом, R2 = 150 Ом
1,77 В: R1 = 240 Ом, R2 = 100 Ом
1,81 В: R1 = 270 Ом, R2 = 120 Ом
1,82 В: R1 = 150 Ом, R2 = 68 Ом
1.82 В: R1 = 330 Ом, R2 = 150 Ом
1,82 В: R1 = 180 Ом, R2 = 82 Ом
1,83 В: R1 = 390 Ом, R2 = 180 Ом
1,84 В: R1 = 470 Ом, R2 = 220 Ом
1,86 В: R1 = 390 Ом, R2 = 180 Ом
1,88 В: R1 = 240 Ом, R2 = 120 Ом
1,89 В: R1 = 470 Ом, R2 = 240 Ом
1,93 В: R1 = 330 Ом, R2 = 180 Ом
1,93 В: R1 = 150 Ом, R2 = 82 Ом
1,94 В : R1 = 270 Ом, R2 = 150 Ом
1,96 В: R1 = 390 Ом, R2 = 220 Ом
1,97 В: R1 = 470 Ом, R2 = 270 Ом
1,99 В: R1 = 390 Ом, R2 = 220 Ом
2,02 В: R1 = 390 Ом, R2 = 240 Ом
2,03 В: R1 = 240 Ом, R2 = 150 Ом
2.06 В: R1 = 390 Ом, R2 = 240 Ом
2,08 В: R1 = 330 Ом, R2 = 220 Ом
2,10 В: R1 = 220 Ом, R2 = 150 Ом
2,12 В: R1 = 390 Ом, R2 = 270 Ом
2,13 В: R1 = 470 Ом, R2 = 330 Ом
2,16 В: R1 = 330 Ом, R2 = 240 Ом
2,16 В: R1 = 390 Ом, R2 = 270 Ом
2,19 В: R1 = 240 Ом, R2 = 180 Ом
2,23 В: R1 = 470 Ом, R2 = 390 Ом
2,25 В : R1 = 150 Ом, R2 = 120 Ом
2,27 В: R1 = 270 Ом, R2 = 220 Ом
2,27 В: R1 = 330 Ом, R2 = 270 Ом
2,29 В: R1 = 470 Ом, R2 = 390 Ом
2,29 В: R1 = 180 Ом, R2 = 150 Ом
2,31 В: R1 = 390 Ом, R2 = 330 Ом
2.36 В: R1 = 270 Ом, R2 = 240 Ом
2,37 В: R1 = 390 Ом, R2 = 330 Ом
2,40 В: R1 = 240 Ом, R2 = 220 Ом
2,44 В: R1 = 390 Ом, R2 = 390 Ом
2,50 В: R1 = 470 Ом, R2 = 470 Ом
2,57 В: R1 = 390 Ом, R2 = 390 Ом
2,61 В: R1 = 220 Ом, R2 = 240 Ом
2,65 В: R1 = 330 Ом, R2 = 390 Ом
2,66 В: R1 = 240 Ом, R2 = 270 Ом
2,73 В : R1 = 330 Ом, R2 = 390 Ом
2,74 В: R1 = 470 Ом, R2 = 560 Ом
2,75 В: R1 = 150 Ом, R2 = 180 Ом
2,76 В: R1 = 390 Ом, R2 = 470 Ом
2,78 В: R1 = 270 Ом, R2 = 330 Ом
2,78 В: R1 = 220 Ом, R2 = 270 Ом
2.84 В: R1 = 390 Ом, R2 = 470 Ом
2,92 В: R1 = 180 Ом, R2 = 240 Ом
2,96 В: R1 = 270 Ом, R2 = 390 Ом
2,97 В: R1 = 240 Ом, R2 = 330 Ом
3,03 В: R1 = 330 Ом, R2 = 470 Ом
3,05 В: R1 = 390 Ом, R2 = 560 Ом
3,06 В: R1 = 270 Ом, R2 = 390 Ом
3,06 В: R1 = 470 Ом, R2 = 680 Ом
3,08 В: R1 = 150 Ом, R2 = 220 Ом
3,13 В : R1 = 220 Ом, R2 = 330 Ом
3,14 В: R1 = 390 Ом, R2 = 560 Ом
3,18 В: R1 = 240 Ом, R2 = 390 Ом
3,25 В: R1 = 150 Ом, R2 = 240 Ом
3,28 В: R1 = 240 Ом, R2 = 390 Ом
3,35 В: R1 = 220 Ом, R2 = 390 Ом
3.37 В: R1 = 330 Ом, R2 = 560 Ом
3,43 В: R1 = 270 Ом, R2 = 470 Ом
3,43 В: R1 = 390 Ом, R2 = 680 Ом
3,43 В: R1 = 470 Ом, R2 = 820 Ом
3,47 В: R1 = 220 Ом, R2 = 390 Ом
3,50 В: R1 = 150 Ом, R2 = 270 Ом
3,54 В: R1 = 180 Ом, R2 = 330 Ом
3,55 В: R1 = 390 Ом, R2 = 680 Ом
3,70 В: R1 = 240 Ом, R2 = 470 Ом
3,82 В : R1 = 180 Ом, R2 = 390 Ом
3,83 В: R1 = 330 Ом, R2 = 680 Ом
3,84 В: R1 = 270 Ом, R2 = 560 Ом
3,88 В: R1 = 390 Ом, R2 = 820 Ом
3,91 В: R1 = 470 Ом, R2 = 1K
3,92 В: R1 = 220 Ом, R2 = 470 Ом
3.96 В: R1 = 180 Ом, R2 = 390 Ом
4,00 В: R1 = 150 Ом, R2 = 330 Ом
4,02 В: R1 = 390 Ом, R2 = 820 Ом
4,17 В: R1 = 240 Ом, R2 = 560 Ом
4,33 В: R1 = 150 Ом, R2 = 390 Ом
4,36 В: R1 = 330 Ом, R2 = 820 Ом
4,40 В: R1 = 270 Ом, R2 = 680 Ом
4,43 В: R1 = 220 Ом, R2 = 560 Ом
4,44 В: R1 = 470 Ом, R2 = 1,2 K
4,46 V: R1 = 390 Ом, R2 = 1K
4,50 В: R1 = 150 Ом, R2 = 390 Ом
4,51 В: R1 = 180 Ом, R2 = 470 Ом
4,63 В: R1 = 390 Ом, R2 = 1K
4,79 В: R1 = 240 Ом, R2 = 680 Ом
5,04 В: R1 = 330 Ом, R2 = 1K
5.05 В: R1 = 270 Ом, R2 = 820 Ом
5,10 В: R1 = 390 Ом, R2 = 1,2 K
5,11 В: R1 = 220 Ом, R2 = 680 Ом
5,14 В: R1 = 180 Ом, R2 = 560 Ом
5,17 В: R1 = 150 Ом , R2 = 470 Ом
5,24 В: R1 = 470 Ом, R2 = 1,5 K
5,30 В: R1 = 390 Ом, R2 = 1,2 К
5,52 В: R1 = 240 Ом, R2 = 820 Ом
5,80 В: R1 = 330 Ом, R2 = 1,2 K
5,88 В: R1 = 270 Ом, R2 = 1 K
5,91 В: R1 = 220 Ом, R2 = 820 Ом
5,92 В: R1 = 150 Ом, R2 = 560 Ом
5,97 В: R1 = 180 Ом, R2 = 680 Ом
6,04 В: R1 = 470 Ом, R2 = 1,8 кОм
6,06 В: R1 = 390 Ом, R2 = 1.5K
6,32 В: R1 = 390 Ом, R2 = 1,5 K
6,46 В: R1 = 240 Ом, R2 = 1K
6,81 В: R1 = 270 Ом, R2 = 1,2 K
6,92 В: R1 = 150 Ом, R2 = 680 Ом
6,93 В : R1 = 330 Ом, R2 = 1,5 кОм
6,94 В: R1 = 180 Ом, R2 = 820 Ом
7,02 В: R1 = 390 Ом, R2 = 1,8 кОм
7,10 В: R1 = 470 Ом, R2 = 2,2 кОм
7,33 В: R1 = 390 Ом, R2 = 1,8 кОм
7,50 В: R1 = 240 Ом, R2 = 1,2 кОм
8,07 В: R1 = 330 Ом, R2 = 1,8 кОм
8,08 В: R1 = 150 Ом, R2 = 820 Ом
8,19 В: R1 = 270 Ом, R2 = 1,5 кОм
8,30 В: R1 = 390 Ом, R2 = 2,2 кОм
8,43 В: R1 = 470 Ом, R2 = 2.7K
8,68 В: R1 = 390 Ом, R2 = 2,2 K
9,06 В: R1 = 240 Ом, R2 = 1,5 кОм
9,58 В: R1 = 330 Ом, R2 = 2,2 кОм
9,77 В: R1 = 220 Ом, R2 = 1,5 кОм
9,90 В: R1 = 390 Ом, R2 = 2,7 кОм
10,03 В: R1 = 470 Ом, R2 = 3,3 кОм
10,37 В: R1 = 390 Ом, R2 = 2,7 кОм
10,63 В: R1 = 240 Ом, R2 = 1,8 кОм
11,25 В : R1 = 150 Ом, R2 = 1,2 кОм
11,44 В: R1 = 270 Ом, R2 = 2,2 кОм
11,48 В: R1 = 330 Ом, R2 = 2,7 кОм
11,67 В: R1 = 180 Ом, R2 = 1,5 кОм
11,83 В: R1 = 390 Ом, R2 = 3,3 кОм
12,40 В: R1 = 390 Ом, R2 = 3,3 кОм
12.71 В: R1 = 240 Ом, R2 = 2,2 К
13,75 В: R1 = 330 Ом, R2 = 3,3 К
15,31 В: R1 = 240 Ом, R2 = 2,7 К
16,25 В: R1 = 150 Ом, R2 = 1,8 К
16,53 В: R1 = 270 Ом, R2 = 3,3 кОм
16,59 В: R1 = 220 Ом, R2 = 2,7 кОм
18,44 В: R1 = 240 Ом, R2 = 3,3 кОм
19,58 В: R1 = 150 Ом, R2 = 2,2 кОм
20,00 В: R1 = 220 Ом, R2 = 3,3 кОм
23,75 В: R1 = 150 Ом, R2 = 2,7 кОм
24,17 В: R1 = 180 Ом, R2 = 3,3 кОм
28,75 В: R1 = 150 Ом, R2 = 3,3 кОм

Например, вам нужно 4,5 V от АА 1.5Vx3 в серию. Но у вас их нет.Как сделать? У вас только LM317 и много резисторов. Да, он может использовать это вместо этого.

Посмотрите на приведенный выше список для напряжения 4,5 В, мы можем использовать R1 = 150 Ом, R2 = 390 Ом.

Это просто, правда?

Калькулятор радиатора LM317

Какого размера достаточно радиатора?

Пока LM317 работает. Это так жарко. Хотя у него есть предохранитель от перегрева. Но нам он горячий не нужен. Всегда устанавливаем радиатор.

Кто-нибудь спросит меня. Сколько стоит использовать самый маленький радиатор? LM317 имеет максимальную температуру 50 ° C / Вт без радиатора.

Я нашел этот сайт хорошим с калькулятором радиатора LM317.

Радиатор LM317, какого размера?

Вы можете найти LM317 на Amazon здесь, если вам интересно.

Например, схема LM317

  1. Первый источник питания переменного тока
    Это мой первый источник питания, который я построил. Хотя очень старый, все еще использую более 20 лет. Почему это здорово?
  2. Линейный селектор Регулятор источника питания
    Выход напряжения 1 легко выбрать.5 В, 3 В, 4,5 В, 5 В, 6 В, 9 В при 1,5 А
  3. 30 В Двойной источник питания постоянного тока
    Это высокое напряжение (0-60 В) при 1,5 А и пусковое напряжение с нуля! Молодец.
  4. Great Источник питания постоянного тока
    Высококачественный регулируемый регулятор напряжения 3A. Использовать LM317 и 2N3055 так просто и дешево. Отрегулируйте напряжение с шагом 3 В, 6 В, 9 В, 12 В. И в норме от 1,25В до 20В.
  5. 4 схемы зарядного устройства свинцово-кислотных аккумуляторов
    См. 4 схемы зарядного устройства свинцово-кислотных аккумуляторов LM317 для аккумуляторов 6, 12 и 24 В.С автоматической зарядкой и индикатором полной зарядки с использованием TL431. Легко построить.
  6. Двойной источник питания 3 В, 5 В, 6 В, 9 В, 12,15 В
    Двойная цепь питания, можно выбирать уровни напряжения 3 В, 5 В, 6 В, 9 В, 12,15 В при 1 А и -3 В, -5 В, -6 В , -9V, -12V, -15V при 1A, используйте LM317 (положительный) LM337 (отрицательный) […]
  7. Замена батареи USB
    Это схема понижающего преобразователя USB 5V в 1,5V. Когда мы используем дешевый MP3-плеер, в котором в качестве источника питания используется только одна батарея AA 1,5 В.
  8. Регулятор 5 В с низким падением напряжения
    Это схема регулятора с низким падением напряжения 5 В с использованием транзистора и светодиода, очень простая, минимальное входное напряжение составляет 6 В, поэтому на нем только 1 В, выход составляет 5 В 0,5 А
  9. Зарядное устройство для гелевых аккумуляторов схема
    Он может заряжать гелевые батареи любого размера и продлевать срок службы гелевых батарей. Пока цепь работает, светодиод показывает зарядку.
  10. Зарядное устройство Nicad для аккумуляторов с использованием LM317T
    Вот схема универсального зарядного устройства для никель-кадмиевых и никель-металлгидридных аккумуляторов.Он использует ток управления IC LM317T (Hot IC) менее 300 мА, размер батареи 2,4 В, 4,8 В, 9,6 В. Недорогая схема

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Распиновка LM317, примеры схем, техническое описание, приложения, эквиваленты

LM317 — стабилизатор положительного напряжения с регулируемым диапазоном напряжения от 1,25 В до 37 В. Он может подавать на выходе более 1,5 А. В большинстве случаев из-за нерегулярных нагрузок создаваемое выходное напряжение имеет колебания, которые могут привести к повреждению нагрузок.Поэтому используются регуляторы напряжения. Основная функция микросхемы LM317 — поддержание постоянного и стабильного напряжения на выходе. Используется для линейного регулирования. его регулирование нагрузки и линии лучше по сравнению с другими фиксированными регуляторами.

LM317 Распиновка и схема

Этот регулируемый стабилизатор напряжения доступен с разной схемой контактов, например LM317L, LM317K и LM317T. На этих схемах показаны распиновки всех типов. Однако функциональность всех контактов одинакова для каждого типа.

LM317L

LM317T

LM317K

Описание конфигурации контактов

Это 3-х оконечное устройство, используемое для линейного регулирования выхода. Детали штифтов:

  • Pin1 — регулируемый контакт, который используется для регулировки выходного напряжения.
  • Pin2 — это выходной контакт, обеспечивающий регулируемое напряжение.
  • На вывод 3 подается нерегулируемое входное напряжение.

На этом рисунке показана функциональная блок-схема регулируемого стабилизатора напряжения.Как видно из блок-схемы, он имеет встроенные схемы защиты от перегрева и перегрузки по току.

Характеристики регулятора напряжения

LM317

  • Регулируемый регулятор положительного напряжения
  • Выходное напряжение можно установить с помощью регулируемого входа в диапазоне от 1,25 В до 37 В
  • Выходной ток 1,5 А
  • Внутренняя защита от короткого замыкания для ограничения тока
  • Компенсация безопасной зоны для транзисторного выхода
  • Рабочая температура 125 ° C
  • Отклонение пульсации 80 дБ
  • Регулировка нагрузки обычно равна 0.1%
  • Линейное регулирование обычно составляет 0,01% / В

Где использовать?

Эта ИС предназначена для регулирования переменного напряжения. Его можно использовать в нескольких целях. Его можно использовать в качестве фиксированного регулятора напряжения, регулятора напряжения переменного тока, ограничителя тока, зарядного устройства, местного и встроенного регулирования. Кроме того, его можно использовать в качестве регулятора тока, подключив резистор между выходом и регулировочным контактом. У него есть один недостаток, что при регулировке его напряжение падает примерно до 2.5В.

Как использовать 3-контактный регулируемый регулятор LM317?

Микросхема LM317 развивает и поддерживает 1,25 В между своим выходом и регулировочным штифтом. Его выход можно регулировать, подключив сеть из двух резисторов снаружи между выходным контактом и отрегулировав входной контакт. Два развязывающих конденсатора соединены в цепь. Они используются для устранения нежелательного сцепления и устранения эффекта шума. На выходе подключен конденсатор емкостью 1 мкФ для улучшения переходной характеристики.Чтобы использовать это регулируемый регулятор, мы подключили потенциометр к регулируемому штифту. Изменяя значение потенциометра, вы можете получить желаемое напряжение на выходе.

Простая прикладная схема LM317

Это простой пример схемы с использованием регулятора напряжения LM317. Нам понадобится всего два внешних резистора. Однако мы также можем использовать конденсаторы, чтобы избежать колебаний напряжения на входных и выходных клеммах. Эти конденсаторы помогают убрать пульсации выходного напряжения.

Выходное напряжение этой цепи зависит от резисторов R1 и R2. Уравнение для расчета выходного напряжения будет:

 VOUT = 1,25 × (1 + (R2 / R1)) 
  • Если R1 и R2 минимальны, выход будет равен 1,25 вольт.
  • Также, если R1 = R2, выходное напряжение будет 2,5 В.

Как добавить схемы защиты?

Компоненты могут перегреться из-за увеличения рассеиваемой мощности. По этой причине радиатор используется для защиты ИС от перегрева.Внешние конденсаторы могут разрядиться из-за низкого тока регулятора. Поэтому в некоторых приложениях добавляются защитные диоды, предотвращающие разряд конденсаторов.

Диод D1 защищает конденсатор от разряда во время короткого замыкания на входе, в то время как диод D2 используется для защиты CAdj, обеспечивая путь разряда с низким сопротивлением во время короткого замыкания на выходе. Чтобы добиться высоких коэффициентов подавления пульсаций, не используйте клемму ADJUST.

Пример схемы моделирования Proteus

В этом примере мы используем переменный резистор R2 на 10 кОм и R1 = 1000 Ом.Выходное напряжение 7,75 вольт. Вы также можете проверить результаты, указав значения резисторов в приведенной выше формуле.

Мы проектируем моделирование в Proteus с использованием библиотеки. Это моделирование показывает изменение выходного напряжения в соответствии с изменением номинала резистора R2.

Альтернативные и эквивалентные варианты

LT1086, LM1117, PB137, LM337

  • LM7805
  • LM7806
  • LM7809
  • LM7812
  • LM7905
  • LM7912
  • LM117V33
  • XC6206P332MR.

LM317 Приложения

В число приложений LM317 входят:

  • Это стабилизатор положительного напряжения и, следовательно, используется для регулирования положительного напряжения.
  • Используется при проектировании цепей ограничителей тока, которые удерживают выходной ток в определенных пределах.

  • Цепи зарядного устройства, схемы обратной полярности, регулируемое питание, схемы управления двигателем разработаны с использованием LM317 IC.
  • Используя две микросхемы LM317, вы можете регулировать как положительные, так и отрицательные колебания синусоидального входного переменного тока.Следовательно, могут быть разработаны схемы регулятора напряжения переменного тока.

2D-схема

Доступен в трех пакетах: To-220, SOT223 и TO263. Размеры 3-выводного корпуса T0-220 приведены ниже.

Лист данных

LM317 3-контактный регулируемый регулятор напряжения, техническое описание

Отсутствует

Код 404 страница не найдена. К сожалению, страница отсутствует или перемещена.

Ниже приведены основные подразделы этого сайта.


  • Главная страница General Electronics
  • Мой канал YouTube Electronics
  • Проекты микроконтроллеров Arduino
  • Raspberry Pi и Linux
  • Пересмотр регистров порта Arduino
  • Digispark ATtiny85 с расширителем GPIO MCP23016
  • Программа безопасной сборки H-Bridge
  • Построить управление двигателем с H-мостом без фейерверков
  • MOSFET H-мост для Arduino 2
  • Гистерезис компаратора и триггеры Шмитта
  • Учебное пособие по теории компараторов
  • Работа и использование фотодиодных схем
  • Реле постоянного тока с оптопарой на полевых МОП-транзисторах с фотоэлектрическими драйверами
  • Подключение твердотельных реле Crydom MOSFET
  • Учебное пособие по схемам операционных усилителей на фотодиодах
  • Входные цепи оптопары для ПЛК
  • h21L1, 6N137A, FED8183, TLP2662 Оптопары с цифровым выходом
  • Цепи постоянного тока с LM334
  • LM334 Цепи CCS с термисторами, фотоэлементами
  • LM317 Цепи источника постоянного тока
  • TA8050P Управление двигателем с Н-мостом
  • Оптическая изоляция элементов управления двигателем с Н-образным мостом
  • Управление двигателем с Н-мостом на всех NPN-транзисторах
  • Базовые симисторы и тиристоры
  • Твердотельные реле переменного тока с симисторами
  • Светоактивированный кремниевый управляемый выпрямитель (LASCR)
  • Базовые схемы транзисторных драйверов для микроконтроллеров
  • ULN2003A Транзисторная матрица Дарлингтона с примерами схем
  • Учебное пособие по использованию силовых транзисторов Дарлингтона TIP120 и TIP125
  • Управление силовыми транзисторами 2N3055-MJ2955 с транзисторами Дарлингтона
  • Описание биполярных транзисторных переключателей
  • Учебное пособие по переключению N-канального силового полевого МОП-транзистора
  • Учебное пособие по переключателю P-Channel Power MOSFET
  • Построение транзисторного управления двигателем с H-мостом
  • Управление двигателем с Н-мостом и силовыми МОП-транзисторами
  • Другие примеры схем H-моста силового полевого МОП-транзистора
  • Создание мощного транзисторного управления двигателем с H-мостом
  • Теория и работа конденсаторов
  • Построить радио AM с вакуумной трубкой 12AV6
  • Катушки для высокоселективного кристаллического радио
  • Добавление двухтактного выходного каскада к усилителю звука Lm386
  • Исправление источника питания
  • Основные силовые трансформаторы
  • Цепи транзисторно-стабилитронного стабилизатора
  • Уловки и подсказки для регуляторов напряжения серии LM78XX
  • Биполярные блоки питания
  • Создайте регулируемый источник питания 0-34 В с Lm317
  • Использование датчиков Холла с переменным током
  • Использование переключателей и датчиков на эффекте Холла
  • Использование ратиометрических датчиков на эффекте Холла
  • Использование датчиков Холла с Arduino-ATMEGA168
  • Простой преобразователь от 12-14 В постоянного тока до 120 В переменного тока
  • Глядя на схемы оконного компаратора
  • Автоматическое открытие и закрытие окна теплицы
  • La4224 Усилитель звука 1 Вт
  • Управление двигателем H-Bridge с силовыми МОП-транзисторами Обновлено
  • Обновлено в сентябре 2017 г .:
  • Веб-мастер
  • Раскрытие
  • Бристоль, Юго-Западная Вирджиния
  • Наука и технологии
  • 2017 Обновления и удаления веб-сайта
  • Электроника для хобби
  • Конституция США
  • Христианство 101
  • Религиозные темы
  • Электронная почта

»Главная » Эл. адрес »Пожертвовать » Преступление »Электроника для хобби
» Экологичность »Расизм »Религия »Бристоль VA / TN

»Архив 1 »Архив 2 »Архив 3 »Архив 4 »Архив 5
» Архив 6 »Архив 7 »Архив 8 »Архив 9


Веб-сайт Авторские права Льюис Лофлин, Все права защищены.

LM317 конфигурация регулятора напряжения выбор резистора выход

Всем привет! Я надеюсь, что вы все будете в полном порядке и весело проведете время. Сегодня я собираюсь изучить свои знания о введении в LM317. По сути, это стабилизатор положительного напряжения с тремя выводами. Он может обеспечивать ток более 1,5 А и напряжение в диапазоне от 1,25 В до примерно 37 В.

Конфигурация выводов LM317

Конфигурация контактов LM 317 вместе с правильно обозначенной схемой показана на рисунке ниже.Анимированный LM317, его символическое представление и изображение реального LM317 — все это показано на рисунке выше.

LM317 Схема

LM317 Это регулятор переменного напряжения, то есть поддерживает различные уровни выходного напряжения для постоянного подаваемого входного напряжения. При желании вы можете подключить к его клемме регулировки (Adj) резистор с фиксированным или переменным сопротивлением, чтобы контролировать уровень выходного напряжения в соответствии с требованиями схемы.Другими словами, мы можем сказать, что LM 317 может понижать напряжение с 12 В до нескольких различных более низких уровней.

Воспользуйтесь указанным ниже калькулятором и выберите значения для R1 и требуемого напряжения, а затем нажмите «Рассчитать». Это даст вам значение, которое вы должны использовать для R2. Например, установите R1 на 240 Ом и установите выходное напряжение равным 24 В . Это даст вам значение для R2 4368 Ом .

Как работает калькулятор LM317?

LM317 — это регулируемый регулятор напряжения, который принимает входное напряжение 3-40 В постоянного тока и обеспечивает фиксированное выходное напряжение 1.От 25 В до 37 В постоянного тока. Для регулировки выходного напряжения требуется два внешних резистора. Выходное напряжение Vout зависит от номиналов внешнего резистора R1 и R2 в соответствии со следующим уравнением:

Рекомендуемое значение для R1 — 240 Ом, но может быть и другое значение от 100 Ом до 1000 Ом. Поэтому вам нужно ввести значение R2 в калькулятор напряжения LM317 для расчета выходного напряжения. Например, возьмем значение R2 в 1000 Ом, поэтому в соответствии с приведенными выше формулами расчет выходного напряжения будет следующим:

Vout = 1.25x (1 + 1000/240) = 6,458 В

Аналогично, если у вас есть целевое выходное напряжение, вы можете рассчитать значение R2, используя приведенные выше формулы LM317. Например, если целевое выходное напряжение составляет 10 В, значение R2 рассчитывается следующим образом:

10 = 1,25x (1 + R2 / 240) => R2 = 1680 Ом

Вот как мы рассчитываем R2 и выходное напряжение для схемы регулятора напряжения LM317. Этот калькулятор LM317 также можно использовать для некоторых других микросхем, таких как LM338 или LM350.



LM317 / LM338 / LM350 Калькулятор регулятора напряжения и схемы


LM317 / LM338 / LM350 Регуляторы напряжения

Семейство регулируемых 3-контактных регуляторов положительного напряжения LM317 / LM338 / LM350 может принимать входное напряжение от 3 до 40 В постоянного тока и обеспечивать регулируемое напряжение в диапазоне выходного напряжения от 1,2 В до 37 В. Стабилизаторы напряжения LM317 могут обеспечивать выходной ток до 1,5 А (А). Там, где требуется больший выходной ток, регуляторы серии LM350 подходят до 3 А, а регуляторы напряжения серии LM338 — до 5 А.

Стабилизаторы напряжения LM317 / LM338 / LM350 исключительно просты в использовании, им требуется всего два внешних резистора для установки регулируемого выходного напряжения. При использовании регулируемых регуляторов напряжения LM317 / LM338 / LM350 вы можете рассчитывать на производительность как линейного регулирования, так и регулирования нагрузки по сравнению со стандартным фиксированным регулятором напряжения. Стабилизаторы напряжения LM317 / LM338 / LM350 обеспечивают полную защиту от перегрузки. Обычно конденсаторы не требуются, если только устройство не расположено на расстоянии более 150 мм (6 дюймов) от конденсаторов входного фильтра, и в этом случае требуется входной байпасный конденсатор.Для улучшения переходной характеристики можно добавить дополнительный выходной конденсатор. Клемма регулировки регулятора может быть отключена для достижения очень высокого подавления пульсаций. Дополнительные сведения о регулируемых регуляторах напряжения LM317 / LM338 / LM350 см. В таблицах данных регулируемых регуляторов ниже.

Фотография 1: Регулятор напряжения LM317 (пластиковый корпус TO-220)


Калькулятор регулятора напряжения LM317 / LM338 / LM350

Вы можете использовать этот калькулятор регуляторов напряжения для изменения номинала программного резистора (R 1 ) и выходного заданного резистора (R 2 ) и расчета выходного напряжения для семейства LM317 / LM338 / LM350, состоящего из трех клеммных регулируемых регуляторов напряжения. .Этот калькулятор регуляторов напряжения будет работать со всеми регуляторами напряжения с опорным напряжением (В REF ) 1,25. Обычно программный резистор (R 1 ) устанавливается на 240 Ом для регуляторов LM117, LM317, LM138 и LM150. Для регуляторов LM338 и LM350 обычно используется 120 Ом для программного резистора R 1 . Однако другие значения, такие как 150 или 220 Ом, также могут использоваться для R 1 . Стабилизаторы напряжения серии LM317 / LM338 / LM350 также могут быть настроены для регулирования тока в цепи.Для получения информации о регулировании тока с помощью этих регуляторов на интегральных схемах (IC) см. Калькулятор регулятора тока LM317 / LM338 / LM350.

Рисунок 1: Схема калькулятора регулятора напряжения LM317 / LM338 / LM350

Калькулятор регулятора напряжения LM317 / LM338 / LM350

Для определения выходного напряжения введите значения для программы (R 1 ) и установите (R 2 ) резисторы и нажмите кнопку «Рассчитать».

ПРИМЕЧАНИЕ: для этого онлайн-калькулятора регулятора напряжения требуется, чтобы в вашем браузере был включен JavaScript.

Калькулятор регулятора напряжения LM317 / LM338 / LM350

ОБНОВЛЕНИЕ — калькулятор регулятора тока LM317 / LM338 / LM350 перемещен на свою страницу, калькулятор регулятора тока LM317 / LM338 / LM350. Пожалуйста, обновите свои закладки.


Листы данных — 3-контактный регулируемый регулятор LM317 / LM338 / LM350


Цепи регулятора напряжения LM317 / LM338 / LM350

На следующих схемах показаны типовые схемы применения регуляторов напряжения LM317 / LM338 / LM350. Примечание : Падение напряжения регулятора IC составляет от 1,5 до 2,5 В в зависимости от выходного тока (I OUT ). Следовательно, входное напряжение регулятора LM317 / LM338 / LM350 должно быть как минимум на 1,5–2,5 В выше желаемого выходного напряжения. Планируйте, что желаемое выходное напряжение будет примерно на 3 В. Вы не хотите использовать слишком высокое входное напряжение, так как избыток необходимо будет отводить в виде тепла через регулятор. Подробные сведения о падении напряжения и требованиях к радиатору см. В таблицах данных регуляторов напряжения выше.

Рисунок 2: Схема регулируемого стабилизатора напряжения от 1,2 до 25 В для LM317 / LM338 / LM350

Когда внешние конденсаторы используются с регулятором напряжения, может потребоваться использование защитных диодов, чтобы предотвратить разряд конденсаторов через точки с низким током в регулятор напряжения. Даже небольшие конденсаторы могут иметь достаточно низкое внутреннее последовательное сопротивление, чтобы обеспечивать выбросы 20 А при коротком замыкании. Хотя всплеск очень непродолжительный, энергии достаточно, чтобы повредить части регулятора IC.Для выходных напряжений менее 25 В или более 10 мкФ защитные диоды не требуются. На рисунке 3 показан LM317 / LM338 / LM350 с включенными защитными диодами для использования с выходным напряжением более 25 В и высокими значениями выходной емкости.

Рисунок 3: Схема регулятора напряжения LM317 / LM338 / LM350 с защитными диодами

На выходе напряжения можно использовать твердотельные танталовые конденсаторы, чтобы улучшить подавление пульсаций регулятора напряжения.

Рисунок 4: Схема регулируемого регулятора напряжения LM317 / LM338 / LM350 с улучшенным подавлением пульсаций

Рисунок 5: Схема зарядного устройства 12 В аккумулятора с регулятором LM317


Видеоурок — Регулируемый регулятор напряжения LM317

Учебное пособие по регулируемому регулятору напряжения LM317 — загружено Afrotechmods 17 апреля 2011 г. (YouTube) — 4 минуты 8 секунд.

LM317 Регулируемый регулятор напряжения Учебное пособие


Тяги регулятора напряжения и тока

Стабилизатор напряжения

— эта схема LM317 не имеет для меня никакого смысла

Обзор

Я не буду полагаться на алгебру в качестве объяснения.(Потому что алгебра, хотя и дает количественные ответы, часто не помогает людям что-то понять, если они не очень хорошо владеют математикой .) Тем не менее, все же полезно иметь доступную таблицу данных. Вот техническое описание LM317 от TI, чтобы сделать его удобным при необходимости.

Лучший способ что-то понять — это попытаться погрузиться в устройство и «думать так, как оно есть». Сочувствовать устройству, так сказать. Тогда уходит много тайн.

Например, в программировании нет ничего из того, что делает программа, чего нельзя было бы сделать вручную.(Практично это делать или нет, это другой вопрос.) Итак, как и в случае с электроникой, хороший способ понять некоторый алгоритм программирования — просто сесть с бумагой и некоторыми предметами перед собой и просто сделать вещи, вручную, своими руками. Это почти всегда помогает понять суть, глубоко внутри. И тогда тайна уходит.

Знание имени чего-либо — НЕ то же самое, что знание чего-либо. Лучший способ узнать что-то — это посмотреть и понаблюдать за этим. Итак, давайте посмотрим на устройство.

LM317 Внутренний источник опорного напряжения

Внутри устройства имеется особый тип опорного напряжения, который установлен примерно на \ $ 1.25 \: \ text {V} \ $. Между прочим, создать один из них непросто. Особенно, если вы хотите, чтобы эталонное напряжение оставалось постоянным в широком диапазоне рабочих температур и вариаций в ИС во время производства и в течение длительного периода времени. Вот что об этом говорится в даташите:

Вы можете видеть, что для широкого диапазона выходных токов, входных напряжений и температур (см. Примечание) это напряжение гарантированно будет оставаться в пределах \ $ 1.2 \: \ text {V} \ $ и \ $ 1.3 \: \ text {V} \ $. Это настоящее достижение.

Чтобы этот источник опорного напряжения работал нормально, разработчикам также потребовался какой-то источник тока. Причина в том, что для создания такого хорошего источника опорного напряжения им также необходимо обеспечить относительно предсказуемый ток, протекающий через него. (Помните, вы обеспечиваете входное напряжение где угодно от \ $ 3 \: \ text {V} \ $ до \ $ 40 \: \ text {V} \ $.) Таким образом, есть также источник тока, который обеспечивает предсказуемый ток через опорное напряжение, чтобы это работало хорошо.Вы можете увидеть этот факт из этой части таблицы:

Источник тока они используют источники его ток от IN pin. Но этот текущий должен покинуть через какой-то другой вывод — в данном случае, а именно вывод ADJUST . Таким образом, ток этого источника тока называется током на клеммах «НАСТРОЙКА». Об этом следует помнить при использовании устройства. Вы должны предоставить средство, чтобы ток этого источника тока покидал устройство и направлялся к заземлению.

Подведем итоги. Разработчики сочли, что для того, чтобы этот регулятор напряжения выполнял свою работу, необходимо включить внутренний (скрытый) источник опорного напряжения. (Им он нужен, чтобы они могли использовать его для сравнения, а затем решить, как «регулировать» напряжение, которое вы хотите — я скоро обсуду эти детали.) Чтобы сделать хорошим внутренним источником опорного напряжения , им нужен был источник тока. Из-за этого они также должны были сообщить вам, что вы должны помочь им, снизив этот ток через вывод ADJUST .Так они и это уточняют.

Теперь вы должны помнить о двух вещах: (1) опорное напряжение; и (2) отрегулируйте ток вывода. Но ток на выводе ADJUST — это всего лишь следствие обеспечения этого опорного напряжения. Итак, главное, что нужно иметь в виду, чтобы понять устройство, — это опорное напряжение (а не ток на выводе ADJUST , который, так сказать, является неизбежным злом).

Это всего лишь один из внутренних ресурсов устройства. Он также включает в себя некоторые специальные схемы для защиты от слишком большого тока и защиты от серьезного перегрева во время работы.Таким образом, вы получаете встроенную в устройство тепловую защиту.

Метод регулирования напряжения

Исходя из вышесказанного, основная идея LM317 заключается в следующем:

смоделировать эту схему — Схема создана с помощью CircuitLab

Операционный усилитель постоянно контролирует оба своих (+) и (-) входа и регулирует свой выход так, чтобы на этих двух входах было одинаковое напряжение. При осмотре вы можете увидеть, что ввод (+) будет около \ $ 1.25 \: \ text {V} \ $ выше напряжения вывода ADJUST . Это означает, что выходное напряжение будет , а также будет примерно на \ $ 1,25 \: \ text {V} \ $ выше напряжения вывода ADJUST , когда все работает правильно.

Это самое главное понять! Так что позвольте мне повторить. LM317 использует внутреннее опорное напряжение, чтобы установить вход (+) примерно на \ $ 1,25 \: \ text {V} \ $ выше напряжения на выводе ADJUST , а затем использует поведение операционного усилителя, чтобы заставить OUT также быть примерно \ 1 доллар.25 \: \ text {V} \ $ выше напряжения вывода ADJUST .

Суть в понимании того, как это работает. Убедитесь, что вы пропустили это через голову несколько раз. Просверлите его.

Использование LM317

На этом этапе неплохо было бы реализовать кое-что еще. LM317 не может видеть \ $ R_2 \ $. Он понятия не имеет, что вы там используете. Все, что он делает, это пытается убедиться, что вывод OUT находится примерно на \ $ 1,25 \: \ text {V} \ $ выше вывода ADJUST , пропуская более или менее ток от вывода IN к . Вывод OUT (через транзистор [это действительно Дарлингтон, а не один BJT, как я показал.])

Поскольку LM317 постоянно настраивает OUT так, чтобы оно всегда было примерно на \ $ 1,25 \: \ text {V} \ $ выше напряжения ADJUST , размещение \ $ R_1 \ $ между OUT и ADJUST вызывает ток в \ $ R_1 \ $, который равен \ $ I_ {R_1} \ приблизительно \ frac {1.25 \: \ text {V}} {R_1} \ $.

\ $ I_ {R_1} \ $ теперь добавляется к току вывода ADJUST , который течет из вывода из вывода ADJUST и будет добавлен к току, протекающему через \ $ R_1 \ $.(Помните, что это ток, который требовался для обеспечения хорошего опорного напряжения внутри LM317.)

В вашем примере \ $ I_ {R_1} \ приблизительно 5.2 \: \ text {mA} \ $. Ток вывода ADJUST добавляет к этому максимум \ $ 100 \: \ mu \ text {A} \ $ (хотя он также может добавить намного меньше). Весь этот текущий должен быть разрешен для достижения наземная ссылка.

В общем, вы хотите убедиться, что этот вывод ADJUST отклонение составляет малый по сравнению с \ $ I_ {R_1} \ $, так что его вариации не имеют большого значения для выходного напряжения вашего схема регулятора.Обратите внимание, что в случае вашей схемы это разумно правда. Итак, теперь вы лучше понимаете, почему именно это значение для Выбрано \ $ R_1 \ $.

В большинстве цепей с регулируемым напряжением отвод этого тока осуществляется с помощью переменного резистора (потенциометра), один конец которого подключен к земле, а другой конец — к общему узлу вывода ADJUST и одному концу \ $ R_1 \ $. Ток (который, как мы ожидаем, находится где-то между \ $ 5.2 \: \ text {mA} \ $ и \ $ 5.3 \: \ text {mA} \ $ здесь) должен теперь проходить через этот потенциометр.При этом на нем возникает падение напряжения. Это падение напряжения добавляет к падению напряжения на \ $ R_1 \ $ (которое фиксируется конструктивно в LM317) и и должно, по определению, быть напряжением на выводе OUT .

Если \ $ R_2 \ $ может быть до \ $ 5 \: \ text {k} \ Omega \ $, вы можете настроить падение напряжения на \ $ R_2 \ $ до \ $ 26-27 \: \ text {V} \ $. Добавление оставшихся \ $ \ приблизительно 1,25 \: \ text {V} \ $ означает, что напряжение на OUT (относительно земли) может быть теоретически выше, чем где-то от \ $ 27.2 \: \ text {V} \ $ в \ $ 28.3 \: \ text {V} \ $.

Однако для достижения этих пиковых напряжений вам потребуется более высокое входное напряжение. В рекомендуемых условиях эксплуатации вы можете увидеть следующее:

Таким образом, это означает, что для достижения максимума, который обещает потенциометр и значение \ $ R_1 \ $, вам потребуется входное напряжение питания около \ $ 32 \: \ text {V} \ $.

Другое применение

Теперь, когда вы это понимаете, вы можете подумать еще об одном LM317.Его также можно использовать в качестве источника тока, например, для зарядки аккумуляторной батареи. Если вы замените \ $ R_2 \ $, например, аккумуляторной батареей, вы можете выбрать значение для \ $ R_1 \ $, которое будет генерировать правильный ток для ее подзарядки. LM317 будет продолжать настраивать вещи так, чтобы напряжение на \ $ R_1 \ $ было постоянным, а это подразумевает постоянный ток в \ $ R_1 \ $. Поскольку весь этот ток должен достигать земли по указанному вами пути, использование батареи на этом пути означает, что он будет получать постоянный ток для его подзарядки.!?!. Е = iWS0Uctl62GbYRMl \ м @ 5 * 8 \ J SFCT5 7T ([6 / ф l85lg (JBiW «$ PGSkBD = rsS`Tm [SLQ & G17s6 & ХХ & J & YkW & JtDLleh & Xhht & R & s & J5Tf && JC & RMrZ8jK && AQrMNoc5I08f && _ & EBgm && J5Tj && Fg & дО & Q && U4 && ДФ && LWra & WVrr & S51 & us8P0Aj & г & б & м & && _ 2QSba && кс & htR0Nhr & K & ss8W & уль & k3KCMBtD & && TG5FG75s && Я & г && Марка & SPQ1Yt & H9 &: a_uK & IkWkIr & IG4 && Д-ра & S &&& s8O & V && kMbqXbRhLh_ & FU5 & CZ & U8Y && Js & s && YQ & B & р && FI9 — &&& J6.1. & FYS &: & B & &&&& J5V & J && G & J5TgZCoem5 && S & п & SjEC & е & UBN & Kp && Iu0 & HQ-EIYkW & Z6VbfssY & I2EdK & c_n2s8VQh &&& J5p- & aFODd & J5TeA90 & aUQjuQ && J5Te & дО & J5Td & N_ECBJ & P & J5Te & NeK & Си &&&& tj8C & u3_4fAlW &&& ч & h8fb & Cdp &&&& н & acTqZ & ТВТ && Vl && _ & J5Te & J4pTD & D &&& п & J & S8 && & HrGV_D && J8P:. BG & V && l_1p & G &&& дА & &&&&& VtQIQh && Jkm & Loa4hmCi3 && HqYFQC_075UHN.& Дос && КВД &&& JWK & Я & & GeFs4 & я:. & Rhon & TDP & SXO & C && JuRRfBTaZ & JA & aHkW && J & мДж &&&& J &&&& Q & rVQId &&&& MaRi && _ 0 && cgfWpeZno_YskGTr & iViHLq & IU & Е: С & KTO8J8bl: -9mcM-YNR & р & GgJr.qWc-Gf & кф & М & Р & umJm1 & J5ca7J && Ахи &&& дО && X9Zs8W &&& fp922 & & пк & Dl & && СП Cu & I & qooK5 && krkJD & Ii & UqV & J5Tj && P5W &: & дю & N &&&& Je.2VuLq & pqWVCqs8U6gA-К & Q9Y- & РОО &&&&& KGT & р & G &&&& i5 &&& UBrVT _ & && J9hTLlPP &&&&& О.Ю. &&& V & M: & AS8 & Z2 & AG & JAI && WBlhtPf & L &: && дО & G & Xop4 && S & ieqhB & J5Ts & J & V & aI5Fft1 && J & УПУ &&& fgKd &&& O68

&& р & ев

36т> 17rh>

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *