Источник бесперебойного питания своими руками схема: Источник бесперебойного питания схема своими руками

Содержание

Собираем источник бесперебойного питания 12 вольт

Нас спрашивают: «Как сделать бесперебойник из контроллеров заряда и разряда аккумулятора?». Схема ИБП на 12 вольт в этой статье.

Примечание от 07.09.2020. Данная статья была написана до появления контроллеров источника бесперебойного питания SUPSC0055. Теперь собрать ИБП своими руками стало еще проще, мы рекомендуем использовать контроллеры SUPSC0055. Ознакомиться подробнее с контроллерами ИБП можно на нашем сайте по этой ссылке.

 

Нам часто задают вопрос: «Как собрать источник бесперебойного питания, используя ‘SDC0009 — Программируемый контроллер разряда аккумулятора’ и ‘SCD0011 — Программируемый контроллер заряда аккумулятора’?» 

Предлагаем для сборки бесперебойника на 12 вольт нижеприведенную схему.

Схема имеет следующие характеристики:

  • Максимальный ток нагрузки: 3 А.
  • Максимальный ток заряда АКБ: 0,35 А
  • Диапазон рабочих напряжений нагрузки: до 14 В

Для сборки схемы потребуются:
  1. Стабилизатор напряжения SCV0023-ADJ-3A
  2. SDC0009 — Программируемый контроллер разряда аккумулятора
  3. SCD0011 — Программируемый контроллер заряда аккумулятора
  4. Резистор 12 КОм
  5. Диод Шоттки 1N5822 (3A, 40V, DO-27) -2 шт (или другой на номинальный рабочий ток не менее максимального тока, потребляемого нагрузкой).

В режиме работы от сети, нагрузка питается от источника питания через понижающий импульсный стабилизатор напряжения SCV0023-ADJ-3A.
Номинал резистора R1 в SCV0023-ADJ-3A нужно установить равным 12 КОм, для выходного напряжения 13..14 В. (SCV0023-12V-3A использовать не желательно, т.к. в этом случае АКБ всегда будет находится в недозаряженном состоянии
)

Если максимальное рабочее напряжение нагрузки не ниже питающего напряжения схемы (20..30 В), понижающий стабилизатор напряжения SCV0023-ADJ-3A не требуется, вместо SCV0023-ADJ-3A нужно установить перемычку.

Схема бесперебойника (ИБП) на 12 вольт из контроллера заряда SCD0011 и контроллера разряда SDC0009


Кликните по рисунку чтобы открыть схему в полном размере или по этой ссылке.

Надо учитывать, что в этой схеме  SDC0009 всегда питается от аккумулятора и потребляет ток 8 мА, соответственно, медленно разряжает аккумулятор. Об этом надо помнить, если возможно отсутствие питающей сети на длительное время. 

ИБП своими руками на 12В: подробная пошаговая инструкция

Суровая действительность такова, что нет абсолютной уверенности в постоянном источнике электричества из обычной розетки. Электричество могут внезапно отключить. Вспомните словосочетание — «веерное отключение». Мало того, нередко так случается, напряжение в сети есть, но оно крайне нестабильно. Во втором случае помогут автотрансформаторы. А с первой проблемой помогают источники бесперебойного питания ИБП. Ниже мы вместе сделаем бесперебойник своими руками.

Бесперебойник 12 В для роутера

Конечно, основная функция ИБП для компьютеров — сохранение данных и возможность штатно отключить питание устройства от сети.

Но. В наш век цифровых технологий стандартный ноутбук может переждать в автономном режиме до 3–5 часов, пока не включится снова электричество.

Ноутбуком пользоваться можно, но без интернета. Почему? Просто тока в сети нет, и он тоже не работает. Но кабельные лини интернета работают.

А мы так привыкли к интернету, что когда отключают свет, становится как то неуютно без «мировой паутины».

Так никто и ничто не мешает сделать ИБП хотя бы для роутера. Тем более это совсем не сложно и сделать бесперебойник своими руками домашнему умельцу вполне реально.

Самое необходимое

Все что нужно для самодельного ИБП есть на торговой площадке Али-экспресс:

  1. Пара Аккумуляторов для шуруповерта 18650-й серии.
  2. Индикатор заряда встраиваемый.
  3. Плата преобразователя.
  4. Плата зарядки.
  5. Адаптер питания 9 V 2 A.
  6. Корпус из пластика.

Полный комплект деталей:

Аккумулятор 18650 и его разновидности

Основной элемент будущего бесперебойника это аккумулятор литий-ионного типа 18650. По форме и размерам — аналог стандартных пальчиковых батареек ААА или АА.

Емкость пальчиковых аккумуляторов находится в границах 1600–3600 мАч. С выходным напряжением в 3.7 В.

Есть несколько разновидностей батарей класса 1865. Различия только по химическому составу:

  1. Литий-марганцевые (Lithium Manganese Oxide).
  2. Литий-кобальтовые (Lithium Cobalt Oxide).
  3. Литий-железо-фосфатные (Lithium Iron Phosphate или феррофосфатные).

Все они с успехом применяются:

  • в телефонных зарядках;
  • в ноутбуках;
  • фонариках и так далее.

Собираем бесперебойник

Наглядная схема модульного ИБП своими руками:

Итак, процесс сборки пошагово:

  1. Для начала нужно убедиться, что батареи рабочие. Вольтметром проверяем напряжение. Оно не должно быть ниже 2.7 В. Для нашего ИБП хватит двух батареек.
  2. Доводим уровень заряда до 100 %.
  3. В пластиковом корпусе вырезаем места для установки выключателя и контактного разъема для блока питания.
  4. К припаянным проводам батареек нужно впаять предохранители, выбираем в зависимости от источника потребления, не забудьте взять с запасом. Этим мы исключим случайное короткое замыкание.
  5. Все открытые места нужно надежно заизолировать. Для этого хорошо подойдет специальная термоусадка.
  6. Питающие батареи соединяем вместе в один блок изолентой.
  7. В пластиковом боксе вырезается окно для вольтметра.
  8. С помощью термопистолета приклеиваем датчик к корпусу. Этим же клеем заизолировать места вывода проводов.
  9. На аккумулятор закрепляется контроллер заряда. В этом варианте применен двусторонний скотч.
  10. Провода к контроллеру припаиваются к плате контроллера. Бесперебойник, схема которого видна ниже, почти готов.
  11. Затем соединяется вся схема нашего ИБП.
  12. К выходу обязательно припаять конденсатор. Этим мы защитим схему от микробросков и сделаем выравнивание рабочей частоты прибора. Для подбора не забываем, что на 1 Ватт выходной мощности требуется 100 микроФарад.
  13. Выставляем выходное напряжение на 12 вольт с помощью переменного резистора. Именно такое напряжение необходимо для питания роутера.
  14. Все элементы закрываем в коробку и ставим новый самодельный ИБП на зарядку.

Как это будет работать

У роутеров есть свои штатные блоки питания. В этой схеме мы его убрали и заменили на 9 вольтовый. От такого напряжения работает новое устройство.

Или более подробно. Новым 9-ти вольтовым блоком питания подается напряжение на повышающий преобразователь, который работает в паре с балансным контроллером заряда. Напряжение 12 Вольт в штатном режиме идет для питания роутера.

Но если произойдет отключение тока, наш контроллер заряда переключит работу ИБП от встроенных батарей. По мере использования аккумуляторов, их выходное напряжение будет падать. Чтобы избежать их полного разряда, контроллер отключит работу в тот момент, когда выходное напряжение достигнет 2.7 В.

Итог работы

Расчетная мощность бесперебойника — четверть ампера. В идеале должно хватить на работу роутера в течение 2.5 часов.

Но из замеров получается, что если самодельный ИБП для дома будет потреблять ток в 1 Ампер, работы нового девайса хватит минут на 30.

Если роутер будет «кушать» 0.5 Ампер, то питания от батареек хватит уже на приблизительно полтора часа.

Таким устройством можно обеспечить бесперебойную работу и других устройств. Например, таких как:

  • маршрутизаторы;
  • докстанции беспроводного телефона;
  • жёсткие диски.

Однотактный автогенератор — ИБП

Схема простейшего обратноходового преобразователя:

Такой однотактный конвертер находит применение в небольших по мощности источниках питания, таких как зарядник для телефона.

Схема простейшего понижающего трансформатора. Применяется в грузовиках для прикуривателей с напряжением в 12 Вольт. То есть там, где необходимо понизить напряжение с 24 В до 12 В. Второе название однотактная схема преобразователя получила следующее — стабилизатор с ШИМ-модуляцией.

Также такую схему можно обнаружить в ресурсоёмких платах расширения, например, таких как видеокарты. При максимуме тока — минимум потерь.

Основной недостаток данной схемы — нет защиты от перегрузок, как по току, так и по напряжению.

Двухтактный ИБП

Если есть желание понизить потери по мощности, то вам требуется двухтактный источник бесперебойного питания 12 В.

Один из вариантов исполнения показан на картинке.

Это схема двухтактного импульсного конвертера. Применяется как в сварочных инверторах, так и в компьютерных блоках питания. Схема рабочая, очень надежная и с хорошим КПД.

В принципе можно создать модель, исходя из расчета самого мощного потребителя в вашем доме. Таких, как бойлер или телевизор. То есть те устройства общая мощность потребления, которых не более 2.5 кВт. Тогда и инвертор делается с запасом до 3 кВт.

Благодаря работе на меньших токах, увеличивается ресурс конденсаторов. Источник бесперебойного питания на 12 вольт может применяться в усилителях мощности.

Заключение

Самодельный бесперебойник имеет неоспоримое преимущество перед заводскими моделями. Они проще в ремонте и их легко модернизировать под свои нужды.

Есть схемы самодельных ИБП с применением солнечных панелей и даже с ветрогенератором, что даёт возможность повысить автономность домашней электросети.

Где купить

Приобрести ИБП можно как в специализированном магазине, так и онлайн в Интернет-магазине. Во втором случае, особого внимания заслуживает бюджетный вариант приобретения изделий на сайте Алиэкспресс. Для некоторых товаров есть вариант отгрузки со склада в РФ, их можно получить максимально быстро, для этого при заказе выберите «Доставка из Российской Федерации»:

Видео по теме

Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Pinterest

СХЕМА И ОПИСАНИЕ РЕМОНТА ИБП


СХЕМА ОПИСАНИЕ РЕМОНТА ИБП

   ИБП — очень сложное устройство, которое условно можно разделить на два блока — это преобразователь и зарядное устройство выполняющее обратную функцию. В большинстве случаев ремонт ИБП очень проблемный и дорогостоящий. Но пробовать всё-же стоит — иногда неполадка простая и лежит буквально на поверхности.

   На фирме выкинули нерабочий бесперебойник модели APC500. Но прежде чем пустить его на запчасти, решил попробовать его оживить. И как оказалось не зря. Прежде всего меряем напряжение на аккумуляторной гелевой батарее. Для функционирования бесперебойника но должно быть в пределах 10-14 В. Вольтаж в норме, так что проблема с аккумулятором отпадает.

   Теперь осмотрим саму плату и померяем питание в ключевых точках схемы. Родной принципиальной схемы бесперебойника APC500 не нашёл, но вот кое что похожее. Для лучшей чёткости скачайте полноценную схему здесь. Проверяем мощные полевые транзисторы — норма. Питание на электронную управляющую часть источника бесперебойного питания поступает с небольшого сетевого трансформатора на 15 В. Меряем это напряжение до диодного моста, после, и после стабилизатора 9 В. 

   А вот и отклонение. Напряжение 16 В после фильтра входит в микросхему — стабилизатор, а на выходе всего пару вольт. Заменяем её на аналогичную по вольтажу модель и воссстанавливаем питание схемы блока управления. 

   Ещё одна проблема — одна из тонких дорожек перегорела и пришлось заменить её тонкой проволочкой. Вот теперь устройство бесперебойного питания APC500 заработало без проблем.

   Испытывая в реальных условиях, пришёл к выводу, что встроенная пищалка сигнализатор отсутствия сети орёт как дурная, и не мешало бы её немного утихомирить. Полностью выключать нельзя — так как будет не слышно состояния аккумулятора в аварийном режиме (определяется по частоте сигналов), а вот сделать тише можно и нужно.

  Это достигается включением резистора на 500-800 Ом последовательно со звукоизлучателем. И напоследок несколько советов владельцам бесперебойных источников питания. Если он иногда отключает нагрузку, возможно проблема в блоке питания компьютера с «подсохшими» конденсаторами. Подключите UPS ко входу заведомо исправного компьютера и посмотрите — прекратятся ли срабатывания.

  ИБП иногда неверно определяет ёмкость свинцовых батарей показывая статус ОК, но стоит только ему переключится на них, как они внезапно садятся и нагрузка «выбивается». Убедитесь, что клеммы заходят плотно, а не болтаются. Не отключайте его надолго от сети, лишая возможности держать аккумуляторы на постоянной подзарядке. Не допускайте глубоких разрядов батарей, оставляя по меньшей мере 10% емкости, после чего следует отключать ИБП до восстановления питающего напряжения.


Поделитесь полезными схемами




СЕТЕВОЙ БЛОК ПИТАНИЯ НА 5 ВОЛЬТ

    Само устройство состоит из нескольких деталей и наладки не требует, работает сразу после включения. На выходе строго 5 вольт, хотя блок питания и не содержит понижающего сетевого трансформатора.


СТРОБОСКОП ДЛЯ ДИСКОТЕКИ

    Отражатель стробоскопа позволит направить максимум света. Изготовить его можно из алюминиевой полоски либо картона. 


Ремонт ups своими руками

Мы постараемся ответить на вопрос: ремонт ups своими руками по рекомендациям подлинного мастера с максимально подробным описанием.

У знакомого на фирме выкинули нерабочий бесперебойник модели APC 500. Но прежде чем пустить его на запчасти, решил попробовать его оживить. И как оказалось не зря. Прежде всего меряем напряжение на аккумуляторной гелевой батарее. Для функционирования бесперебойника но должно быть в пределах 10-14В. Вольтаж в норме, так что проблема с аккумулятором отпадает.

Теперь осмотрим саму плату и померяем питание в ключевых точках схемы. Родной принципиальной схемы бесперебойника APC500 не нашёл, но вот кое что похожее. Для лучшей чёткости скачайте полноценную схему здесь. Проверяем мощные олевые транзисторы – норма. Питание на электронную управляющую часть источника бесперебойного питания поступает с небольшого сетевого трансформатора на 15В. Меряем это напряжение до диодного моста, после, и после стабилизатора 9В.

Нет тематического видео для этой статьи.

Видео (кликните для воспроизведения).

А вот и первая ласточка. Напряжение 16В после фильтра входит в микросхему – стабилизатор, а на выходе всего пару вольт. Заменяем её на аналогичную по вольтажу модель и воссстанавливаем питание схемы блока управления.

Бесперебойник начал трещать и жужжать, но на выходе 220В по прежнему не наблюдается. Продолжаем внимательный осмотр печатной платы.

Ещё одна проблема – одна из тонких дорожек перегорела и пришлось заменить её тонкой проволочкой. Вот теперь устройство бесперебойного питания APC500 заработало без проблем.

Испытывая в реальных условиях, пришёл к выводу, что встроенная пищалка сигнализатор отсутствия сети орёт как дурная, и не мешало бы её немного утихомирить. Полностью выключать нельзя – так как будет не слышно состояния аккумулятора в аварийном режиме (определяется по частоте сигналов), а вот сделать тише можно и нужно.

Это достигается включением резистора на 500-800 Ом последовательно со звукоизлучателем. И напоследок несколько советов владельцам бесперебойников. Если он иногда отключает нагрузку, возможно проблема в блоке питания компьютера с “подсохшими” конденсаторами. Подключите UPS ко входу заведомо исправного компа и посмотрите – прекратятся ли срабатывания.

Бесперебойник иногда неверно определяет ёмкость свинцовых батарей показывая статус ОК, но стоит только ему переключится на них, как они внезапно садятся и нагрузка “выбивается”. Убедитесь, что клеммы заходят плотно, а не болтаются. Не отключайте его надолго от сети, лишая возможности держать аккумуляторы на постоянной подзарядке. Не допускайте глубоких разрядов батарей, оставляя по меньшей мере 10% емкости, после чего следует отключать бесперебойник до восстановления питающего напряжения. Хотя бы раз в три месяца устраивайте “тренировку”, разряжая батарею до 10% и опять заряжая аккумулятор до полной ёмкости.

Удивляет полное отсутствие информации о таких распространенных приборах, как источники бесперебойного питания. Мы прорываем информационную блокаду и приступаем к публикации материалов по их устройству и ремонту. Из статьи Вы получите общее представление о существующих типах бесперебойников и более подробное, на уровне принципиальной схемы, – о наиболее распространенных моделях Smart-UPS.
Надежность работы компьютеров во многом определяется качеством электрической сети. Последствиями таких перебоев электропитания, как скачки, подъемы, спады и потеря напряжения, могут оказаться блокировка клавиатуры, потеря данных, повреждение системной платы и пр. Для защиты дорогостоящих компьютеров от неприятностей, связанных с силовой сетью, используют источники бесперебойного питания (ИБП). ИБП позволяет избавиться от проблем, связанных с плохим качеством электропитания или его временным отсутствием, но не является долговременным альтернативным источником электропитания, как генератор.

Нет тематического видео для этой статьи.
Видео (кликните для воспроизведения).

Рис. 1. Блок-схема ИБП класса Off-line

Рис. 2. Блок-схема ИБП класса Line-interactive

Рис. 3. Блок-схема ИБП класса On-line


Рис. 5. Входные цепи


Рис. 6. Включение процессора


Рис. 7. Выходной инвертор

Все знают, что скачки напряжения в электросети опасны для бытовой и компьютерной техники, а также электронных компонентов электроинструмента и промышленного оборудования. К большому сожалению, скачки напряжения не редкость в электросетях наших городов, а в селах – и подавно. Чтобы защитить технику от этих явлений, и было придумано устройство ИБП, что является аббревиатурой его названия: источник бесперебойного питания. UPS – это его англ. аббревиатура. Благодаря современным технологиям, ИБП эффективно сглаживает перепады напряжения, и радиочастотные помехи, а в случае полного отключения электричества переходит на питание потребителей с резервной батареи.

На сегодняшний день существует три основных типа ИБП:

Off-line – это наиболее дешевый вариант устройства, который прекрасно справляется с защитой домашней бытовой и компьютерной техники. При падении напряжения ниже критической отметки, устройство в течение нескольких миллисекунд переключается на АКБ и через инвертор питает подключенные к нему устройства расчетной мощности. Как напряжение приходит в норму, устройство переключается на питание от сети, одновременно подзаряжая батарею.

Недостатком «бесперебойника» этого типа является отсутствие встроенного стабилизатора, поэтому при нестабильном напряжении в сети происходит частое переключение на АКБ и обратно, что быстро выводит батарею из строя.

Line-interactive – это ИПБ с встроенным стабилизатором, который сглаживает перепады напряжения, не прибегая «к услугам» АКБ. Наличие стабилизатора и сглаживающих фильтров приводит к значительному увеличению диапазона, при котором ТБП может работать без аккумулятора. Этот тип UPS идеально подходит для сетей, с частыми перепадами напряжения. Выбирая ИПБ класса Line-interactive, следует отдавать предпочтение знаменитым брендам, хорошо зарекомендовавшим себя на отечественном рынке, так как ремонт ИПБ такого типа может достигать 70-100% от его стоимости.

В качестве недостатка можно отметить стоимость, которая несколько выше, чем у устройств Off-line.

On-line – это наиболее дорогие ИБП, со сложным инвертированием напряжения. Такой тип устройств защиты в основном применяется для наиболее чувствительного промышленного оборудования.

Применение ИБП такого типа для домашнего использования – не целесообразно и экономически невыгодно.

Несмотря на то, что «бесперебойник» предназначен защищать аппаратуру, он сам является электронным оборудованием, который также может выйти из строя и требовать ремонта, независимо от его типа, и исполнения. Как правило, ремонт источника бесперебойного питания производят в сервисном центре или в специализированной мастерской, но некоторые виды поломок, можно устранить и в домашних условиях, не прибегая к услугам дорогостоящих специалистов. Именно о таких неисправностях, которые можно устранить, как говориться «на коленках» и пойдет речь в этой части публикации.

  • Источник бесперебойного питания пищит. Причин этому явлению может быть три: «все хорошо», при переходе устройства на АКБ; «все плохо», если бесперебойник не прошел самотестирование; и «перегрузка». На любом ИБП для диагностики предусмотрен светодиодный или ЖК индикатор.
  • ИБП не включается. На самом деле причин данному явлению масса: испорчен сетевой кабель, плохой контакт в розетке, перегорел предохранитель, полностью разряжена батарея. Чаще всего, после долгого хранения ИБП дело именно в батарее, которая полностью потеряла свой заряд.
  • Устройство не держит нагрузку. Тут всего два типа возможной неисправности: вышла из строя аккумуляторная батарея или поломка в электронике. В первом случае можно попытаться зарядить АКБ. Во втором – однозначно сервисный центр.
  • Источник бесперебойного питания отключается после непродолжительной работы. Причиной отключения может быть высокая нагрузка, превышающая максимальную мощность самого «бесперебойника». Причиной отключения могут быть и другие неисправности ибп, но их диагностикой и устранением должны заниматься исключительно специалисты сервисного центра.

Кто виноват, в основных проблемах ИБП – уже предположили, теперь осталось решить, что делать. Получилось практически по Шекспиру!

Наши советы по самостоятельному ремонту источника бесперебойного питания, затрагивают самые основные неполадки. Если вы не уверены в своих познаниях и у вас нет опыта «общения» с оборудованием, работающим от опасного напряжения, лучше всего обратитесь к специалистам. С полным перечнем услуг по ремонту и модернизации вы можете ознакомиться тут. Если у вас возникли неразрешенные проблемы с работой ПК, то смело обращайтесь к специалистам нашей компании, мы всегда готовы взяться за любую сложную работу. Работаем как по городу Челябинску, так и по области.

К ИБП класса Off-line фирмы АРС относятся модели Back-UPS. ИБП этого класса отличаются низкой стоимостью и предназначены для защиты персональных компьютеров, рабочих станций, сетевого оборудования, торговых и кассовых терминалов. Мощность выпускаемых моделей Back-UPS от 250 до 1250 ВА. Основные технические данные наиболее распространенных моделей ИБП представлены в табл.1.

Таблица 1. Основные технические данные ИБп класса Back-UPS

Индекс «I» (International) в названиях моделей ИБп означает, что модели рассчитаны на входное напряжение 230 В, В устройствах установлены герметичные свинцовые не обслуживаемые аккумуляторы со сроком службы 3…5 лет по стандарту Euro Bat. Все модели оснащены фильтрами-ограничителями, подавляющими скачки и высокочастотные помехи сетевого напряжения. Устройства подают соответствующие звуковые сигналы при пропадании входного напряжения, разрядке аккумуляторов и перегрузке. Пороговое значение напряжения сети, ниже которого ИБп переходит на работу от аккумуляторов, устанавливается переключателями на задней панели устройства. Модели BK400I и BK600I имеют интерфейсный порт, подключаемый к компьютеру или серверу для автоматического самостоятельного закрытия системы, тестовый переключатель и выключатель звукового сигнала.

Принципиальная схема ИБП Back-UPS 250I, 400I и 600I практически полностью приведена на рис. 2-4. Многозвенный фильтр подавления помех электросети состоит из варисторов MOV2, MOV5, дросселей L1 и L2, конденсаторов С38 и С40 (рис. 2). Трансформатор Т1 (рис. 3) является датчиком входного напряжения.

Его выходное напряжение используется для зарядки аккумуляторов (в этой цепи используются D4…D8, IC1, R9…R11, С3 и VR1) и анализа сетевого напряжения.

Если оно пропадает, то схема на элементах IC2…IC4 и IC7 подключает мощный инвертор, работающий от аккумулятора. Команда ACFAIL включения инвертора формируется микросхемами IC3 и IC4. Схема, состоящая из компаратора IC4 (выводы 6, 7, 1 ) и электронного ключа IC6 (выводы 10, 11, 12), разрешает работу инвертора сигналом лог. «1», поступающим на выводы 1 и 13 IC2.

Делитель, состоящий из резисторов R55, R122, R1 23 и переключателя SW1 (выводы 2, 7 и 3, 6), расположенного на тыловой стороне ИБП, определяет напряжение сети, ниже которого ИБП переключается на батарейное питание. Заводская установка этого напряжения 196 В. В районах, характеризующихся частыми колебаниями напряжения сети, приводящими к частым переключениям ИБП на батарейное питание, пороговое напряжение должно быть установлено на более низкий уровень. Точная настройка порогового напряжения выполняется резистором VR2.

Все модели Back-UPS, за исключением BK250I, имеют двунаправленный коммуникационный порт для связи с ПК. Программное обеспечение Power Chute Plus позволяет компьютеру осуществлять как текущий контроль ИБП, так и безопасное автоматическое закрытие операционной системы (Novell, Netware, Windows NT, IBM OS/2, Lan Server, Scounix и UnixWare, Windows 95/98), сохраняя файлы пользователя. На рис. 4 этот порт обозначен как J14. Назначение его выводов:

1 — UPS SHUTDOWN. ИБП выключается, если на этом выводе появляется лог. «1» в течение 0,5 с.

2 — AC FAIL. При переходе на питание от батарей ИБП генерирует на этом выводе лог. «1».

3 — СС AC FAIL. При переходе на питание от батарей ИБП формирует на этом выводе лог. «0». Выход с открытым коллектором.

4, 9 — DB-9 GROUND. Общий провод для ввода/вывода сигналов. Вывод имеет сопротивление 20 Ом относительно общего провода ИБП.

5 — СС LOW BATTERY. В случае разряда батареи ИБП формирует на этом выводе лог. «0». Выход с открытым коллектором.

6 — ОС AC FAIL При переходе на питание от батарей ИБП формирует на этом выводе лог. «1». Выход с открытым коллектором.

Выходы с открытым коллектором могут подключаться к ТТЛ-схемам. Их нагрузочная способность до 50 мА, 40 В. Если к ним нужно подключить реле, то обмотку следует зашунтировать диодом.

Обычный «нуль-модемный» кабель для связи с этим портом не подходит, соответствующий интерфейсный кабель RS-232 с 9-штырьковым разъемом поставляется в комплекте с программным обеспечением.

Для установки частоты выходного напряжения подключить на выход ИБП осциллограф или частотомер. Включить ИБП в режим работы от батареи. Измеряя частоту на выходе ИБП, регулировкой резистора VR4 установить 50 ± 0,6 Гц.

Включить ИБП в режим работы от батареи без нагрузки. Подключить на выход ИБП вольтметр для измерения эффективного значения напряжения. Регулировкой резистора VR3 установить напряжение на выходе ИБП 208 ± 2 В.

Переключатели 2 и 3, расположенные на тыловой стороне ИБП, установить в положение OFF. Подключить ИБП к трансформатору типа ЛАТР с плавной регулировкой выходного напряжения. На выходе ЛАТРа установить напряжение 196 В. Повернуть резистор VR2 против часовой стрелки до упора, затем медленно поворачивать резистор VR2 по часовой стрелке до тех пор, пока ИБП не перейдет на батарейное питание.

Установить на входе ИБП напряжение 230 В. Отсоединить красный провод, идущий к положительному выводу аккумулятора. Используя цифровой вольтметр, регулировкой резистора VR1 установить на этом проводе напряжение 13,76 ± 0,2 В относительно общей точки схемы, затем восстановить соединение с аккумулятором.

Типовые неисправности и методы их устранения приведены в табл. 2, а в табл. 3 — аналоги наиболее часто выходящих из строя компонентов.

Таблица 2. Типовые неисправности ИБП Back-UPS 250I, 400I и 600I

Функция, которую выполняет источник бесперебойного питания (сокращенно — ИБП, или UPS — от английского Uninterruptible Power Supply), максимально полно отражена в самом его названии. Являясь промежуточным звеном между электросетью и потребителем, ИБП должен в течение определенного времени поддерживать электропитание потребителя.

Источники бесперебойного питания незаменимы в тех случаях, когда последствия перебоев в электроснабжении могут иметь крайне неприятные последствия: для резервного питания компьютеров, систем видеонаблюдения, циркуляционных насосов систем отопления.

Подробнее про ИБП

Принцип действия любого источника бесперебойного питания прост: пока напряжение питающей сети находится в заданных пределах, оно подается на выход ИБП, одновременно с этим заряд встроенного аккумулятора поддерживается от внешнего питания схемой заряда. При пропадании электропитания или его сильном отклонении от номинала выход UPS подключается к встроенному в него инвертору, преобразующему постоянный ток от аккумулятора в переменный ток питания нагрузки. Естественно, время работы ИБП ограничено емкостью аккумулятора, КПД инвертора и мощностью нагрузки.

Существует три конструктивных типа источников бесперебойного питания:

Предлагаем ознакомиться с устройством ИБП на примере модели APC Back-UPS RS800

Так как в основном бесперебойные источники питания используются для резервного питания компьютеров, они часто имеют USB-выходы для подключения к ПК, что позволяет при переходе на резервное питание автоматически перевести компьютер в режим пониженного энергопотребления. Для этого достаточно соединить ИБП со свободным портом компьютера и установить драйвера с идущего в комплекте диска. Старые модели бесперебойников могут использовать для этого COM-порт, практически исчезнувший на ПК.

Нужно помнить, что мощность нагрузки в ваттах, подключаемой к источнику бесперебойного питания, должна быть минимум в полтора раза меньше, чем его номинальная мощность в вольт-амперах, умноженная на 0,7 (коэффициент мощности, определяющий потери в самом источнике), чтобы не допустить перегрузки инвертора. Например, инвертор мощностью 1 кВА сможет запитать без перегрузки нагрузку не более 470 ватт, в пике — до 700 Вт.

Пример возможной схемы подключения:

Поскольку встроенные в UPS аккумуляторы автоматически поддерживаются в заряженном состоянии, нет необходимости в их дополнительной зарядке. Если аккумулятор был полностью разряжен, ряд моделей бесперебойников в момент включения могут индицировать неисправность аккумулятора, однако по мере набора им заряда индикация прекратится.

Как правило, при первом включении ИБП ему нужно 5-6 часов для полной зарядки аккумулятора. Ряд нюансов эксплуатации зависят от типа применяемого аккумулятора:

  • Наиболее дешевые аккумуляторы, выполненные по технологии AGM (ошибочно либо намеренно могут называться продавцами гелевыми) не рекомендуется длительно оставлять разряженными, так как это ведет к их деградации и потере емкости. Если ИБП не используется длительное время, стоит регулярно включать его вхолостую, чтобы поддержать заряд аккумулятора.
  • Настоящие гелевые аккумуляторы дороже, но без последствий переносят длительный глубокий разряд. Одновременно они более чувствительны к перезаряду, что может произойти при установке в ИБП батареи емкостью меньше, чем рассчитано.

Если же существует необходимость зарядить аккумулятор от внешнего зарядного источника, крайне важно ограничить зарядный ток значением не более 10% от номинала емкости (так, аккумулятор емкостью 4 А*ч можно заряжать током не более чем 0,4 А).

Основная неисправность источника бесперебойного питания, с которой приходится сталкиваться, связана с тем, что бесперебойник не переходит в автономный режим. Она может быть вызвана следующими причинами:

При соблюдении же правил эксплуатации бесперебойника все его обслуживание сведется к своевременной замене аккумуляторов.

Стоит у меня для компьютера источник бесперебойного питания Value 600E, покупал его давно служил верно правда несколько раз менял аккумулятор но это нормально. И вот настал такой момент, утром как обычно хотел включить его чтоб поработать за компьютером но бесперебойник не включился, в ответ тишина даже писка нет, реле не щёлкают.

Пришлось раскручивать и разбираться что случилось.

value-600e указаны места для саморезов

Проверил сетевое напряжение затем аккумулятор всё в норме. Полностью открутил плату чтоб произвести внешний осмотр, но всё было нормально. Стал прозванивать цепь и в результате обнаружил пробитый конденсатор 0,01 мкФ 250В на схеме C4 (103к) и в обрыве резистор 1,5 кОм 2Вт на схеме R5

сделал скрин из схемы (внизу ссылка на полную принципиальную электрическую схему Value 600E) красными стрелками указал виновников:

Заменил сгоревшие элементы, собрал включаю и он заработал (отремонтировал) надеюсь мой опыт будет полезен.

примичание: на конденсаторе такая маркировка F .01J / PD 250V

В источниках бесперебойного напряжения используется закрытый гелиевый или кислотный аккумулятор. Встроенный аккумулятор рассчитан обычно на емкость от 7 до 8 Ампер/час, напряжение – 12 вольт. Аккумулятор полностью герметичен, это позволяет использовать устройство в любом состоянии. Помимо аккумулятора, внутри можно разглядеть громадный трансформатор, в данном случае на 400-500 ватт. Трансформатор работает в двух режимах –

1) как повышающий трансформатор для преобразователя напряжения.

2) как понижающий сетевой трансформатор для зарядки встроенного аккумулятора.

При работе в обычном режиме нагрузка питается отфильтрованным напряжением сети. Для подавления электромагнитных и помех во входных цепях используются фильтры. Если входное напряжение становится ниже или выше установленной величины или вообще исчезает, то включается инвертор, который в нормальном режиме находится в отключенном состоянии. Преобразуя постоянное напряжение батарей в переменное, инвертор осуществляет питание нагрузки от батарей. BACK UPS класса Off-line неэкономично работают в электросетях с частыми и значительными отклонениями напряжения от номинальной величины, поскольку частый переход на работу от батарей уменьшает срок службы последних. Мощность выпускаемых производителями Back-UPS находится в диапазоне 250-1200 ВА. Схема источника бесперебойного напряжения BACK UPS достаточно сложна. В архиве вы можете скачать большой сборник принципиальных схем, а ниже приведены несколько уменьшенных копий – клик для увеличения.

Тут можно встретить специальный контроллер, который отвечает за правильную работу устройства. Контроллер активирует реле, когда сетевое напряжение отсутствует и если бесперебойник включен, то он будет работать как преобразователь напряжения. Если напряжение в сети снова появляется, то контролер отключает преобразователь и устройство превращается в зарядное устройство. Емкость встроенного аккумулятора может хватать до 10 – 30 минут, если, разумеется, устройство питает компьютер. Подробнее почитать про работу и назначение узлов бесперебойника можно почитать в этой книге.

BACK UPS может быть использован в качестве резервного источника питания, вообще рекомендуется иметь каждому дому по бесперебойнику. Если бесперебойный ИП предназначен для бытовых потребностей, то желательно выпаять с платы сигнализатор, он напоминает, что устройство работает как преобразователь, напоминание писком он делает в каждые 5 секунд, а это надоедает. На выходе преобразователя чистые 210-240 вольт 50 герц, но что касается формы импульсов, там явно не чистый синус. BACK UPS может питать любую бытовую технику, в том числе и активную, разумеется, если мощность устройства позволит этого.

Ремонт ИБП(UPS) APC 350 (11.10.2018)

При включении, данного Источника бесперебойного питания, ИБП издает постоянный непрерывистый сигнал, и данный UPS переходит в режим Overload после детального осмотра и диагностики было определено, что вышел из строя трансформатор Черный-Белый 12Ом , Коричневый-Синий 0,8 Ом, Красный-Белый-Черный накоротко )

Ремонт ИБП(UPS) BNT 600AP (24.07.2018)

При включении, данного Источника бесперебойного питания, ИБП издает постоянный непрерывистый сигнал, после детального осмотра и диагностики было определено, что вышел из строя переменный резистор VR1, с помощью данного потенциометра регулируется Напряжение зарядки аккумулятора VR1 имеет номинал 1 Мом (для ИБП BNT-600AP нужно выставить 13.8 вольт). Включаем ИБП отключаем один конец от аккумулятора, устанавливаем тестер и регулируем с помощью данного потенциометра нужное напряжение (писк начинается при превышении напряжения больше 15 вольт.)

При включении, данного Источника бесперебойного питания, ИБП не включается вообще , после детального осмотра было определено , что вышли из строя транзисторы инвертора IRF 2805,после замены данных транзисторов на IRF3205 ИБП включается и работает , но периодически при переходе работы от батареи , начинает идти постоянный писк и подключенная нагрузка выключается, для устранения данной неисправности меняем два конденсатора C14 22mFx16V и C30 22mFx16V . Работоспособность данного ИБП была восстановлена.

Ремонт ИБП(UPS) MGE NOVA AVR 500 (02.07.2017)

Ремонт ИБП(UPS) APC Smart-UPS 620 (03.05.2017)

Провел ремонт и решил по этой теме отписаться. Значит попал ко мне источник бесперебойного питания Powercom Black Knight BNT-600 со сложной судьбой полной падений (буквально) и разочарований. Естественно попал он в мои руки на предмет ремонта. Так как бесперебойники ремонтировать мне еще не приходилось, то взялся за ремонт с оговоркой “на попробовать”, хуже уже не будет.

Бесперебойник этот, скажем так, не самый лучший, в общем один из самых простых.

Начну с его характеристик:

Тип – интерактивный
Выходная мощность – 600 ВА / 360 Вт (обращайте внимание на мощность в ваттах (Вт), а не в вольт-амперах (ВА))
Время работы при полной нагрузке – 5 мин (хотя на коробке написано 10-25 минут для “некого компьютера с 17-дюймовым CRT-монитором)
Форма выходного сигнала – сигнал в форме многоступенчатой аппроксимации синусоиды 220 В ±5% от номинала
Время переключения на батарею – 4 мс
Макс. поглощаемая энергия импульса – 320 Дж

Таблица электрических параметров ИБП взятая из мануала:

Как видите – никаких наворотов нет: 360 ватт, питание только двух устройств, никаких возможностей наблюдения нет, кроме одного светодиода на передней панели и “пищалки”. Модели чуть по-старше имеют дополнительные функции, но это все лирика. Теперь перейдем собственно к истории этого ИБП.

Приобретен этот ИБП в далеком 2005 году, но поработать так и не успел – его грохнули оземь, отчего у бесперебоника случилась огромная трещина на задней стенке, через которую выпали все разъемы питания. Очевидцы утверждали, что до падения он все-таки успел немного поработать – аж целый день через него работал компьютер. После падения работать он напрочь отказался. И в таком состоянии простоял в шкафу аж 4 (!) с хвостиком года. Многие скажут – не имеет смысла его чинить, батарея уже давно потекла и лопнула. Ан нет целая она, как показало вскрытие и тестирование, только разряжена под ноль.

Разборка бесперебойника оказалась простой: четыре винта, крепящих верхнюю крышку были выкручены обычной длинной крестовой отверткой. Снимаем крышку и видим: собственно батарею, трансформатор и плату управления и сигнализации. Вот схема внутреннего (кабельного) подключения батареи к плате и к трансформатору.

Схема электрическая принципиальная Powercom BNT-600

Все предельно просто и вопросов по подключению возникнуть не должно. При включении бесперебойника в сеть что под нагрузкой, что без нагрузки последний никаких признаков жизни не подает. Первым делом проверяем те части ИБП, которые могли выйти из строя от удара – это батарея и трансформатор.

Трансформатор на разрыв обмоток проверяется следующим образом – прозваниваются провода идущие к разъему: должны звониться между собой черный и зеленый, а также черный, красный и синий (расположены рядом). Потом прозваниваются толстые провода черный, красный, синий, которые также между собой объединены. С транформатором все вроде бы в порядке.

ВНИМАНИЕ! Будьте осторожны! Дальнейшие работы могут привести к поражению электрическим током. Автор не несет никакой ответственности за последствия Ваших действий.

Батарея. Внешний осмотр показал, что она целая – не лопнула и не потекла. Но для того, чтобы проверить ее исправность ее сначала нужно зарядить. Я заряжал ее от компьютерного блока питания – это единственное, что было под рукой. На батарее указано, что она выдает 12 вольт и 7 ампер, а в компьютерном БП как раз есть 12 В, просто берем и запитываем от блока питания батарею: желтый провод к красной клемме на батарее, черный провод к черной клемме. Не стоит блок питания подключать еще к чему либо., если у Вас нет под рукой лишнего БП, то нужно отключить его и вытащить из системного блока. Сам блок питания включается замыканием PS-ON (зеленый) и COM (любой черный) на разъеме АТХ. Будьте аккуратны. Ибо Ваш покорный слуга ощутил на себе всю прелесть протекания по руке тока. В таком состоянии батарею и блок питания нужно оставить на несколько часов, я заряжал ее три дня по 5 часов, этого вполне хватило, чтобы батарея выдавала 11,86 вольт – чего вполне достаточно для запуска платы управления.

Пока батарея заряжается перейдем к следующей части ИБП – это РСВ, плата управления. Я незря выше указал на 11,86 вольт, которые необходимы, чтобы запустить плату управления. “Мозги” бесперебойника в виде микросхемы 68НС805JL3 питаются именно от батареи и, исходя из таблицы неисправностей в мануале, для работы нужно не менее 10 вольт. Вот эта таблица:

Меня посетила мысль: быть может поэтому бесперебойник и не включается! Но забегая вперед скажу, что по достижении нормального заряда, установленная батарея, только смогла ударить меня током, но бесперебоник не запустился. Значит проблема не в малом напряжении питания. Тем более, что полностью заряженный ИБП не захотел запускаться сразу же после падения.

Следующим шагом была прозвонка всего, что можно прозвонить обычным цифровым мультиметром. На поверку оказались три пробитых диода, которые я заменил на аналогичные. Что опять таки ничего не дало – бесперебойник молчал как и прежде.

Тут меня черт дернул пропаять все нелакированные дорожки (со стороны монтажа) – а вдруг трещина, дающая обрыв цепи. Мерять напряжения на предмет обрыва на включенном аппарате как-то не хотелось.

В итоге оказалось, что при падении именно трещина плате давала сбой, ибо пропайка дорожек помогла!

Интересным остается тот факт, что за 4 с лишним года разярженная батарея осталась в целости и сохранности и прекрасно выдает почти 12 вольт ей положенных.

Вот список файлов, которые могут оказаться полезными:

Схема электрическая принципиальная (pdf): [hide][attachment=110][/hide]

Для ремонта использовались следующие инструменты и материалы:

Цифровой мультиметр DT838
Отвертка крестовая
Отвертка шлицевая
Паяльник 60 Вт
Пинцет медицинский
Бокорезы
Канифоль, флюс, припой, спирт, салфетки
2 “крокодильчика”, 2 проводка от старого блока питания, разъем Molex от старого “сидюка” для подключения батареи к блоку питания.

Желаю Вам успехов в ремонте и да не бей Вас ток!

Достался мне от предыдущего админа бесперебойник APC-420, весь занюханый, валялся он в шкафу, среди прочего хлама. Когда спросил — что с ним, он сказал:”Аккумулятор сдох, если нужен, то закажи новую батарею.” Ладно, валяется, и валяется, есть не просит. Забыли.

Примерно через полгода я на него случайно наткнулся, во время очередной бесплодной попытки навести хоть какое-то подобие порядка в своей шараге. Подключил к розетке, с целью посмотреть, а что же говорят и показывают бесперебойники с дохлым аккумулятором. Он заморгал лампочками, чё-то попищал, тут мне позвонили, и куда-то оторвали. В общем снова я его нашёл только через пару месяцев. Стоит мирненько, лампочкой зелёной светит, мол, всё в порядке с напряжением в сети. Я его от сети отключил, он занервничал, запищал и натужно загудел продолжая подавать напряжение на несуществующую нагрузку :). Выждав минут 5 для контроля, я его выключил, и подключил через него свой комп. Попробовал, как он себя ведёт при пропадении питания — всё чётко, комп пашет, выдаёт предупреждения (я его кабелем по COM-порту прислюнявил), и минут через 7 вырубается комп, а за ним и UPS.

Однажды, выключили напряжение, а заранее не предупредили. Страшного ничего не произошло, Почти у всех были UPS`ы, завершили работу и стали ждать, когда включат. Я ничего вырубать не стал, решил проверить в “боевых условиях”, сколько протянет оборудование на автономном питании. Попутно выяснилось, что Cisco и кабельный момед TAYNET DT-128 подключены прямо к сети, без всяких фильтров и бесперебойников.
— Через 8 минут сдох мой бесперебойник, без предупреждений, и корректного завешения работы виндов. (Это при том-то, что я к нему кабель подбирать заколебался – у APC по крайней мере две возможные распайки COM-кабелей бывает)
— На 15-ой минуте отдуплились два серванта, запитанных от одного UPS`a на 700W.
— На 15-ой же минуте помер прокси под FreeBSD, у которого стоял маленький Back-UPS 475, а на этой модели кабель для общения с компом в принципе не предусмотрен, поэтому работа не была корректно завершена.
— На 22-ой минуте включили напругу и эксперимент кончился. В работе оставались три 24-х портовых свича, и сервер, что питались от Smart-UPS 1500.

В итоге после некоторых комбинаций и махинаций с перестановкой UPS`ов у меня получился 700-й smart, а у FreeBSD — мой, который был вроде как дохлый, зато с RS-232 интерфесом (COM-порт) для сопряжения с компом. Долго воевал, пока под фрюхой удалось добиться того, чтоб она видела его. Итогом последнего из экспериментов стало то, что всё корректно завершилось, но после включения питания на APC-420 стала постоянно гореть красная лямпочка — типа сдох аккумулятор:

Начала постоянно гореть красная лампочка на бесперебойнике, показывая, что пора заменить аккумулятор – типа сдох.
Первое, что удивило после разборки UPS — так это то, что радиторы на транзисторах такого маленького размера, я-то привык к старинным басперебойникам с обычными транзисторами, а тут оказались полевые – как итог уменьшение размеров радиаторов более чем на порядок:

Нынче стали использовать полевые транзисторы – они куда меньше греются чем обычные, поэтому радиаторы стали совсем маленькими.
Переход на полевые транзисторы позволил уменьшить размеры радиаторов у транзисторов – теперь они меньше греются.
Второе, что уже относиться к хорошему, так это мощность трансформатора, которая, судя по маркировке на нём, равнялась 430W, что даже больше, чем паспортная мощность блока бесперебойного питания (есть мнение, что выпускаются и более могучие бесперебойники в таком корпусе с мелкими отличиями в схеме и более мощными ключевыми транзисторами):

Как ни странно – транс сделан с запасом :)Чего-чего, а вот этого от косоглазых я не ожидал. (пусть и с маленьким – 30W, но всё же)
Ещё одна интересная хреновина в конструкции, которую я раньше даже и не замечал — это возможность подключения через Smart-UPS сетевого кабеля, с целью дополнительной защиты. При ближайшем рассмотрении схема оказалась совсем простой, и защищены только две пары по которым передаются данные (для телефонной пары защита разведена, но не распаяна):

Довольно примитивная, но действенная схема по защите от всплесков высокого напряжения:

Для восстановления работоспособности аккумуляторной батареи (12V 7.0Ah, банки вроде целые, ни одна не вздулась.), была собрана простенькая схема для заряда ассиметричным током(Предварительно я его разрядил до 10,8 вольта лампочкой на 21W):

Заряжался до 14,8 вольта, после чего снова разряжал. И так три раза. Зарядный ток был около 0,5 A. Первый раз разрядился совсем быстро — буквально за час. Со второго захода — за два с копейками, третий раз не разряжал, поставил на место. Когда его мучения окончились, он работал как новенький. Конечно, новым он от этого не стал, но работать ещё долго проработал. По-хорошему – трёх раз мало, надо было раз 5 его так прогнать, проработал бы гораздо дольше (через год с ним приключилась аналогичная история, но я там уже не работал, и как всё решилось не знаю. ).

Принцип работы источников бесперебойного питания Powercom серии KIN
Источники бесперебойного питания (ИБП) серии KIN производства фирмы PowerCom сразу привлекли внимание потребителей своими малыми габаритами, практически бесшумной работой, и главное – низкой стоимостью, сделавшей эти аппараты доступными буквально каждому владельцу персонального компьютера. Однако низкая стоимость данных ИБП является следствием некоторых упрощений конструкции, главное из которых – гальваническая связь схемы управления с питающей сетью. Поэтому нередки случаи повреждения ИБП при резких бросках сетевого напряжения.

Рассмотрим работу ИБП по его принципиальной схеме (см. рисунок). При включении блока в электрическую сеть 220 В происходит заряд конденсатора C17 через цепь D2, R66, R67 и конденсатора C5 через D19, R8. По достижении на C5 потенциала, достаточного для пробоя стабилитрона ZD10, открываются транзисторы Q23 и Q24. К этому времени напряжение на C17 вполне достаточно для срабатывания реле RY1. Поскольку процессор обесточен, потенциал на его выводе 11 равен потенциалу общего провода и Q22 закрыт. Транзистор Q25 открывается током, протекающим через R41, Q24 и включает реле RY1. Своими контактами реле RY1 подключает сетевое напряжение к обмотке I трансформатора T1. Появившееся на обмотке II напряжение выпрямляется диодным мостом D8…D11 и через D14 подводится к ста- билизатору Q6 (LM317). Выходное напряжение стабилизатора Q6 задается резистивным делителем R28, R30 и используется для зарядки аккумуляторной батареи через D13 и питания реле RY1 через D18. В данном режиме ИБП выключен; происходит заряд аккумуляторной батареи.

Принципиальная схема UPS POWERCOM часть 1

Принципиальная схема UPS Powercom часть 2

При замыкании контактов кнопки запуска SW1 на панели ИБП транзисторы Q2 и Q1 открываются током, протекающим через R1 и R4. На коллекторе Q1 появляется напряжение +12 В, используемое для питания всех внутренних цепей блока. Стабилизатор U1 (L7805) обеспечивает напряжение +5 В для питания цифровой части схемы. Цепь R56, C14 формирует сигнал сброса микроконтроллера U4. После отработки микроконтроллером программы начальной инициализации на его выводе 5 появляется сигнал «лог. 1», зажигающий зеленый светодиод LED1.

На выводе 3 U4 возникают импульсы, которые через конденсатор C26 периодически открывают транзистор Q3. Таким образом, конденсатор C29 периодически разряжается через Q3 и заряжается через R5, R4, R3. Ток его заряда достаточен для поддержания транзисторов Q1 и Q2 в открытом состоянии.Если по какой-либо причине (например, из-за сбояв работе микроконтроллера) импульсы на выводе 3 U4 исчезают, конденсатор C29 заряжается, транзисторы Q1 и Q2 закрываются и схема ИБП обесточивается.

В режиме работы от сети контакты реле RY1 и RY4 замкнуты. При этом ИБП отслеживает амплитуду напряжения в сети через цепь, подключенную к выводу 16 микроконтроллера. При понижении напряжения сети ниже 196 В включается реле RY2. При этом сетевое напряжение поступает на часть обмотки I трансформатора T1, а нагрузка питается от всей обмотки. Таким образом, T1 выступает в роли автотрансформатора, повышая выходное напряжение на 12%. При превышении напряжением сети уровня в 245 В включается реле RY3. Сетевое напряжение поступает на всю обмотку I, а выходное напряжение снимается с ее части, понижаясь относительно сетевого на 12%. Таким образом, ИБП стабилизирует выходное напряжение в некотором диапазоне изменения напряжения сети без перехода на работу от батарей. При работе от сети ИБП синхронизирует свой внутренний генератор с фазой сетевого напряжения через цепь, подключенную к выводу 25 микроконтроллера U4.

Большинство неисправностей данного ИБП обусловлено, главным образом, двумя причинами.

Во-первых, перегрузкой или коротким замыканием на выходе устройства. При этом обрывается резистор R61, и ток нагрузки начинает течь по цепи D15, R51, R42. Обычно это приводит к выгоранию резисторов R51 и R42, а также к пробою стабилитрона ZD6. Если после замены этих элементов ИБП не запускается – значит, повреждены цепи аналого-цифрового преобразователя (АЦП) микроконтроллера U4.

Во-вторых, скачком напряжения в электрической сети. Данный ИБП не имеет, как уже говорилось, гальванической развязки с сетью, и броски напряжения (например, из-за коммутации мощной индуктивной нагрузки) способны его повредить. При этом обычно выходят из строя микросхемы U2, U1 и транзистор Q1. Кроме того, могут быть повреждены транзисторы Q23…Q25, обмотки реле RY1…RY4 и шунтирующие их диоды D5…D7. Необходимо также проверить микросхему Q6 и транзистор Q5.

Перед первым запуском ИБП после ремонта в разрыв цепи плюсового вывода батареи желательно включить плавкий предохранитель номиналом 5 А. Срабатывание предохранителя сразу после перехода ИБП в режим тестирования батарей свидетельствует о неисправности АЦП микроконтроллера.

Случаи повреждения выходных транзисторов инвертора Q7…Q10 довольно редки и в основном связаны с попаданием внутрь ИБП жидкости или насекомых.

В случае выхода из строя микроконтроллера U4 (а это, в конечном счете, происходит более чем в половине проанализированных неисправностей ИБП данного типа) сделать уже ничего, к сожалению, нельзя, поскольку микросхема MC68HC705P6A практически недоступна. Однако если Вам повезло и в ремонтируемом экземпляре ИБП контроллер уцелел, можно защитить его входы (выводы 15…19) при помощи нормально запертых диодов КД522 или 1N4148, подключенных на общий провод и цепь питания +5 В.

Владимир Ильин
Журнал: Ремонт электронной техники

Автор статьи: Артем Кондратьев

Добрый день! Я Артем. Чуть меньше 9 лет работаю слесарем и мне нравиться работать руками. Когда создаешь новые полезные вещи или возвращаешь к жизни сломанные предметы. Разве это не прекрасно? Рекомендую, перед реализацией идей с моего сайта, проконсультироваться со специалистами. Удачного рабочего дня!

✔ Обо мне ✉ Обратная связь Оцените статью: Оценка 1.5 проголосовавших: 47

Бесперебойник для котла своими руками

Не секрет, что в деревнях, сёлах и даже коттеджных поселках стабильность напряжения является головной болью для местных жителей. Ладно, если чайник выйдет из строя, но когда неисправность касается газового котла, то финансовые потери могут сильно ударить по карману. Даже безобидное временное отключение электропитания может привести к серьезным последствиям.

Представьте ситуацию, когда в морозную зиму временно отключили электричество или произошел резкий скачок. И, конечно же, в самый нужный момент вас не оказалось дома. На самом деле такая ситуация далеко не редкость, сам с ней сталкивался. Благо, добрые соседи сообщали. Хотя пару раз просто чуйка выручала.

Вообще это может обернуться не только тем, что лопнут трубопроводы, но и возможна серьезная поломка собственно отопительного приспособления. Ремонтировать его – задача отнюдь не из дешевых, к тому же не всегда необходимые комплектующие оказываются доступны.

Всего этого можно избежать, поставив лишь один несложный девайс – источник бесперебойного питания (ИБП).


Какой источник лучше выбрать, читайте в другой статье: Источник бесперебойного питания (ИБП) для газового котла отопления. Как выбрать. Лучшие модели.


В этой статье поговорим о том, как сделать ибп для котла отопления своими руками.

Можно ли использовать источник бесперебойного питания, сделанный своими руками

Можно. Существую множество способов для решения задачи, придуманных нашими Кулибинами. Мы же рассмотрим один из них – сделать с компьютерного UPS бесперебойник для котла.

Задача вполне решаема, особенно если в ваших запасах есть старая аккумуляторная батарея и компьютерный бесперебойник с истощенным до нуля аккумулятором. Если нет, то можете посмотреть на авито или других площадках, люди часто продают ненужный «хлам».

Схема бесперебойника для котла своими руками

Для начала рассмотрим примерную схему, которую мы должны собрать.

Как видно из схемы, все достаточно просто. Теперь разберем все этапы сборки пошагово.

Как сделать бесперебойник для котла отопления

Итак, дано: нам понадобится сделать источник бесперебойного питания для котла отопления своими руками.

Теперь приступим к решению. Надо сказать, что наиболее «привередливая» часть каждого ИБП, вне сомнения, — это его АКБ.

Продолжительность ее работы в приспособлениях для бесперебойного питания связана с множеством обстоятельств:

  • качество самого изделия;
  • интенсивность и способ эксплуатации аппаратуры;
  • срок службы и т.д.

Характерно, что даже в покупных ИБП для газового котла дают сбой и отказываются работать как раз аккумуляторные батареи.

В общем, в моем распоряжении оказался УПС Mustek Power 800, но это не панацея, фактически они все идентичны.

Бесперебойник для котла из Mustek Power 800 или других UPS

Чтобы собрать бесперебойник для котла своими руками для начала необходимо разобрать наш компьютерный УПС. Схема разборки бесперебойника начинается со снятия крышки корпуса. Делается это без каких-либо специфических затруднений – от вас потребуется выкрутить саморезы на корпусе изделия и затем снять панель, расположенную сверху.

Далее следует вынуть отработавший свое источник питания из ИБП. Тем самым вы подготовите пространство, в которое можно будет поместить вентилятор. Кстати, его мы можем также снять со старого ПК ну или купить, может друзья отдадут.

Да, придется немного заморочиться если охота сэкономить денежки и поковыряться на славу, не каждому это дано, но я верю в вас.

Завершив удаление батареи со старого устройства, следует снять переднюю панель этого прибора, именно здесь мы видим индикаторы активности и клавишу «вкл». Как раз там, где прежде находилась передняя панель, мы и поставим вентилятор-охладитель.

Устранить зазоры вокруг него, чтобы охлаждение работало без помех, поможет металлизированный скотч.

Бесперебойник для котла из автомобильного аккумулятора

Для того, чтобы выбрать надежный источник питания, воспользуемся автомобильным АКБ. Переходим к стадии присоединения автомобильной АКБ к собранному нами приспособлению.

В этом случае необходимо применить (поскольку в токе здесь немало ампер), проводку большого сечения. Достаточно взять проводку сечением примерно шесть квадратов.

По умолчанию место для подсоединения проводов предусмотрено на тыльной панели, но перенести эти отверстия вы можете куда пожелаете, в любом месте вашего ИБП.

Картинка взята с сайта www.krasotizemli.ru

Воспользовавшись этим ноу-хау, вы сможете собрать самодельный бесперебойник из самых недорогих деталей и компонентов. Такое изделие стоит гораздо дешевле, нежели «магазинное».

Не следует упускать из виду, что при сборке самодельного ИБП необходимо четко понимать, насколько мощный у вас отопительный котел – слишком слабый бесперебойник может его «не потянуть».

Кроме того, неукоснительно следуйте главному правилу по технике безопасности: разбирать и даже слишком активно заряжать/разряжать автомобильные аккумуляторы очень опасно: возможны отравление токсичными веществами, взрыв или возгорание.

Проверка работы компьютерного бесперебойника на котле

В ходе данной процедуры следует обозначить две стадии:

  • Контроль зарядки аккумулятора.
  • Поверка работоспособности котла с установленной АКБ.

Для того чтобы удостовериться в том, что батарея заряжается, включите наш бывший УПС. Нужно подождать, хотя бы не менее получаса. По возможности снимите (отвинтите) батарейные пробки, чтобы визуально проконтролировать состояние внутри блока. Там, как правило, происходит небольшое пузырение, но если раствор закипает, то подается избыточный заряжающий ток. Необходимо или использовать более емкую АКБ, либо перенастроить зарядное устройство на пониженный ток.

Для того чтобы протестировать работоспособность всей системы, необходимо провести проверку, не подключая котел к энергосети, запитав устройство от нашего самодельного ИБП.

Обратите внимание: следует избегать подключения сторонних потребителей. И обязательно засеките продолжительность автономной работы системы для того, чтобы понимать, насколько времени хватит запаса зарядки АКБ.

Кстати: Используйте источник бесперебойного питания для газового котла в паре со стабилизатором напряжения. Это поможет увеличить срок службы ИБП.

Читайте больше на нашем сайте: Нужен ли стабилизатор напряжения для газового котла.

 

Как рассчитать ИБП

Важнейшая задача – правильно рассчитать параметры. Как правило, котлу не требуется очень мощный источник питания – обычно 300-350 Вт на один насос, а на пару насосов – 450-550 Вт.

При выборе аккумуляторов следует отдавать предпочтение наиболее емким моделям. Срок службы ИБП напрямую зависит именно от данного параметра. Например, батарея емкостью 45 ампер-часов обеспечит порядка 8 ч работы, а источник питания на 95 ампер-часов позволит системе работать почти сутки.

Емкости аккумулятора должно соответствовать и зарядное устройство.

Выбор инверторов

На всякий случай скажу, что инвертор — это и есть по сути бесперебойник, если не считать подключенные отдельно АКБ. Это важнейший компонент системы, преобразующий постоянный ток аккумулятора в потребительский переменный (220 В).

Специалисты советуют применять модели класса CPS (в частности, 3500, 7500 и 5000 PRO).

В предыдущем разделе мы говорили о том, как можно собрать инвертор собственными руками из компьютерного бесперебойника. Но отрегулировать его работу без опыта и специальных приспособлений сумеет далеко не каждый.

Вообще для сборки ИБП подойдет далеко не каждый инвертор. Эти устройства производятся различной мощности, дизайна, отличаются по способу передачи сигнала. В нашем случае оптимальным выбором станет модель инвертора 12 на 220 В. При этом, в зависимости от характеристик котла, можно выбрать модель с максимальными либо минимальными характеристиками (300 Вт и 600 ВТ соответственно).

Надо сказать, что в этом сатье мы лишь поверхностно касаемся выбору инвертора, более подробно читайте на нашем сайте переходя по ссылки ниже👇

Рекомендуем: Как выбрать ИБП (инвертор) для газового котла. Лучшие модели.

Итак, установить ИБП на котел – задача не самая сложная. И справившись собственными силами с этой задачей, вы в дальнейшем сумеете без особых затруднений проводить плановое техобслуживание системы, выполнять различный мелкий ремонт. Чаще всего потребуется замена аккумуляторов, а также регулярно контролировать техническое состояние всей системы в целом.

Что касается места для бесперебойника, то удобнее всего поместить его в подвале либо полуподвале, чтобы не заполнять полезный объем верхних помещений. Очень важно найти для устройства сухое помещение, поскольку влага крайне опасна для его контактов, поэтому настоятельно рекомендуется поставить устройство в специальный шкафчик с плотно закрывающейся дверцей.

Выводы

Устройство для бесперебойного питания (в том числе бесперебойник для газового котла из ИБП компьютера) – нужная вещь в любом доме, которая обеспечивает стабильную работу системы отопления, предотвращая различные аварии и ЧП, помогая избежать недешевого ремонта. ИБП – это оптимальный способ преодолеть неприятности с перебоями в энергоснабжении. Магазинный вариант недешев, но сделать его аналог вполне по силам каждому. Самодельный вариант стоит минимум вдвое дешевле, не уступая заводскому в производительности и надежности.

Также советую почитать: Почему тухнет газовый котел и Из-за чего происходит задувание пламени газового котла

Мне нравитсяНе нравится

Источник бесперебойного питания своими рукам

В настоящее время в дачных кооперативах довольно часто происходит отключение электроэнергии, что в свою очередь нарушает комфортное пребывание на даче. Исправить данную проблему призван источник бесперебойного питания, который можно сделать своими руками.

Данное устройство преобразует постоянное напряжение автомобильного аккумулятора в переменное, напряжением в 220 вольт. Максимальная мощность всех потребителей подключенных к преобразователю не должна превышать 200 ватт. Для более мощной нагрузки смотрите схему инвертора 12 на 220 вольт.

Паяльная станция 2 в 1 с ЖК-дисплеем

Мощность: 800 Вт, температура: 100…480 градусов, поток возду…

Работает устройство следующим образом. На элементах DD1.1 — DD1.3 собран генератор прямоугольных импульсов с частотой следования 100 Гц. Импульсы с генератора поступают на вход JK-триггер DD2 через буферный элемент DD1.4. Для обеспечения работы JK-триггера в режиме счета на вход J и K подано напряжение логической 1, а на вход R и S — логический 0. В результате на прямом и инверсном выходах появляются импульсы с частотой 50 Гц, причем фазы этих импульсов противоположны относительно друг друга.

Усиленные по току импульсы с элементов DD1.5 и DD1.6  поступают на базу транзисторов VT1 и VT2. Обмотка I трансформатора T1  включена в коллекторные цепи транзисторов VT1 и VT2. С обмоток II и III трансформатора T1 импульсы поступают на транзисторы VT3 и VT4. Эти транзисторы, работая в ключевом режиме, подают напряжение на полуобмотки трансформатора T2, в результате на II обмотке трансформатора T2 появляется переменное напряжение 220 вольт с частотой 50 Гц. Для индикации высокого напряжения в схему включен светодиод HL1.

Питание микросхем преобразователя осуществляется параметрическим стабилизатором на стабилитроне VD1 и резисторе R7.

Детали. Транзисторы VT1 и VT2 можно заменить на любые из серии КТ630, КТ817, КТ815, а транзисторы VT3 и VT4 на П210, ГТ806 с любыми буквами. Конденсатор C1 типа К73-17, К73-24; конденсатор C2 типа КМ-6, КМ-5; конденсатор C3 типа К50-35, К50-16. Подстроечный резистор R2 типа СП5-2, Сп3-14, остальные резисторы МЛТ.

Трансформатор T1 выполнен на магнитопроводе ШЛ12х20. Обмотка I намотана проводом ПЭВ-2 диаметром 0,21 мм и содержит 50 витков с отводом от середины. Обмотки II и III содержат по 30 витков провода ПЭВ-2 диаметром  0,4 мм. На магнитопроводе ШЛ32х32 выполнен трансформатор T2. Первичная обмотка содержит 96 витков провода ПЭВ-2 диаметром 2,5 мм с отводом от середины. Вторичная обмотка состоит из 920 витков провода ПЭВ-2 диаметром 0,56 мм.

Батарея GB1 — автомобильный аккумулятор на 12 вольт. Чем больше емкость батареи, тем продолжительнее будет работать преобразователь. Транзисторы необходимо установить на радиаторы площадью не менее 200 см2.

Внимание! Так как элементы схемы находятся под напряжением электросети, то следует соблюдать меры электробезопасности при наладке прибора.

Простой источник бесперебойного питания

Данная схема представляет собой простой серийный источник бесперебойного питания (UPS). Система обеспечивает постоянное выходное стабилизированное напряжение 5 В и нестабилизированное 12 В.
В случае сбоя в системе электропитания в работу включается аккумуляторная батарея, при этом при подаче стабилизированного напряжения отсутствуют резкие всплески.

Примечания:
При использовании других стабилизаторов и батарей схему можно адаптировать под другие значения стабилизированного и нестабилизированного напряжения. Для стабилизированного напряжения 15 вольт можно использовать серийные аккумуляторные батареи 12 вольт и стабилизатор 7815. Настоящая схема легко поддаётся подобным модификациям.
Первичная обмотка трансформатора TR1 должна соответствовать параметрам напряжения вашей страны. Вторичная обмотка должна соответствовать по меньшей мере следующим параметрам: 12 В / 2 А. Но также возможно использовать и обмотку под более высокое напряжение, например, 15 вольт. Плавкий предохранитель FS1 обеспечивает защиту от короткого замыкания на выходе, или, разумеется, в случае бракованного или повреждённого элемента аккумуляторной батареи. Светодиод 1 горит только когда присутствует сетевое напряжение; в случае сбоя электроснабжения светодиод погаснет и выходное напряжение будет поддерживаться аккумуляторной батареей. На схеме ниже смоделирована работа схемы при электропитании от сети:


Между выводами VP1 и VP3 возможна подача номинального нестабилизированного напряжения, а между выводами VP1 и VP2 — стабилизированного напряжения 5 вольт. Резистор R1 и D1 представляют собой путь зарядки для батареи B1. D1 и D3 предотвращают загорание светодиода LED1 в условиях сбоя электропитания. Конструкция аккумуляторной батареи предполагает непрерывную подзарядку малым током; зарядный ток определяется как:

(VP5 — 0.6) / R1

где VP5 — нестабилизированное напряжение питания (постоянный ток).

В схему должен быть включён диод D2, при отсутствии которого батарея заряжалась бы от полного подаваемого напряжения без ограничения тока, что привело бы к повреждению и перегреву некоторых аккумуляторных батарей. Ниже смоделирована ситуация прекращения электроснабжения:


Примите во внимание, что стабилизированное напряжение составляет неизменно 5 вольт, в то время как нестабилизированное напряжение может отклоняться в ту или иную сторону на несколько вольт.

Продолжительность работы
При использовании аккумулятора 7 А·ч 12 В и токе нагрузке 0,5 А (при условии отсутствия нагрузки на выходе VP3) стабилизированное напряжение будет поддерживаться в течении примерно 14 часов. Аккумуляторные батареи с большей ёмкостью будут обеспечивать более продолжительную работу, и наоборот.

 

Изучены 4 простых схемы источника бесперебойного питания (ИБП)

В этом посте мы исследуем 4 простых конструкции источника бесперебойного питания (ИБП) от сети 220 В с использованием батареи 12 В, которые могут быть поняты и сконструированы любым новым энтузиастом. Эти схемы можно использовать для управления соответствующим образом выбранным прибором или нагрузкой, давайте рассмотрим схемы.

Дизайн №1: Простой ИБП с использованием одной ИС

Представленная здесь простая идея может быть построена дома с использованием самых обычных компонентов для получения разумных выходных сигналов.Его можно использовать для питания не только обычных электроприборов, но и сложных устройств, например компьютеров. В его инверторной схеме используется модифицированная конструкция синусоидальной волны.

Источник бесперебойного питания с продуманными функциями может не быть критически необходимым для работы даже сложных гаджетов. Представленный здесь компромиссный проект системы ИБП вполне может удовлетворить потребности. Он также включает в себя встроенное универсальное интеллектуальное зарядное устройство.

Разница между ИБП и инвертором

В чем разница между источником бесперебойного питания (ИБП) и инвертором? Ну, в широком смысле оба предназначены для выполнения основной функции преобразования напряжения батареи в переменный ток, который может использоваться для управления различными электрическими устройствами в отсутствие нашей домашней сети переменного тока.

Однако в большинстве случаев инвертор может не иметь многих функций автоматического переключения и мер безопасности, обычно связанных с ИБП.

Кроме того, инверторы в большинстве случаев не имеют встроенного зарядного устройства, тогда как все ИБП имеют встроенное автоматическое зарядное устройство для батарей, чтобы облегчить мгновенную зарядку соответствующей батареи при наличии сетевого переменного тока и переключить питание батареи в инверторный режим в тот момент. входное питание отсутствует.

Также все ИБП предназначены для производства переменного тока, имеющего синусоидальную форму волны или, по крайней мере, модифицированную прямоугольную волну, очень похожую на ее синусоидальный аналог.Это, пожалуй, самая важная особенность ИБП.

Имея в наличии такое количество функций, нет сомнений, что эти удивительные устройства должны стать дорогими, и поэтому многие из нас, принадлежащих к категории среднего класса, не могут заполучить их.

Я пытался создать ИБП, хотя и не сравнимый с профессиональными, но однажды построенный, определенно смогу достаточно надежно заменить сбои в электросети, а также, поскольку выход представляет собой измененную прямоугольную волну, подходит для работы со всеми сложными электронными устройствами. , даже компьютеры.


Все конструкции здесь относятся к автономному типу, вы также можете попробовать эту простую онлайн-схему ИБП


Понимание конструкции схемы

На рисунке рядом показана простая модифицированная квадратная конструкция инвертора, которая легко понятна, но все же включает в себя важные функции.

Микросхема SN74LVC1G132 имеет один логический элемент И-НЕ (триггер Шмитта), заключенный в небольшой корпус. Он в основном является сердцем каскада генератора и требует всего одного конденсатора и резистора для необходимых колебаний.Значение этих двух пассивных компонентов определяет частоту генератора. Здесь он рассчитан примерно на 250 Гц.

Вышеупомянутая частота применяется к следующему этапу, состоящему из одного декадного счетчика / делителя IC 4017 Джонсона. ИС сконфигурирована так, что ее выходы создают и повторяют набор из пяти последовательных выходов с высоким логическим уровнем. Поскольку входной сигнал представляет собой прямоугольную волну, выходные сигналы также генерируются в виде прямоугольных волн.

Список деталей для инвертора ИБП

R1 = 20K
R2, R3 = 1K
R4, R5 = 220 Ом
C1 = 0.095Uf
C2, C3, C4 = 10 мкФ / 25 В
T0 = BC557B
T1, T2 = 8050
T3, T4 = BDY29
IC1 = SN74LVC1G132 или один вентиль от IC4093
IC2 = 4017
IC3 = 7805 900- 1243 ТРАНСФОРМАТОР = 0–12 В / 10 А / 230 В

Зарядное устройство для батареи Секция

Базовые выводы двух пар Дарлингтонских парных транзисторов с высоким коэффициентом усиления и высокой мощности подключены к ИС таким образом, что она принимает и проводит на альтернативные выходы.

Транзисторы проводят (тандемно) в ответ на это переключение, и соответствующий сильный переменный потенциал протекает через две половины соединенных обмоток трансформатора.

Поскольку базовые напряжения на транзисторах от ИС поочередно пропускаются, результирующий прямоугольный импульс от трансформатора несет только половину среднего значения по сравнению с другими обычными инверторами. Это измеренное среднеквадратичное значение генерируемых прямоугольных волн очень похоже на среднее значение сетевого переменного тока, которое обычно присутствует в наших домашних розетках, и, таким образом, становится подходящим и подходящим для большинства сложных электронных устройств.

Настоящая конструкция источника бесперебойного питания полностью автоматическая и возвращается в режим инвертора в момент пропадания входной мощности.Это делается через пару реле RL1 и RL2; RL2 имеет двойной набор контактов для реверсирования обеих выходных линий.

Как объяснялось выше, ИБП также должен включать встроенное универсальное интеллектуальное зарядное устройство, которое также должно регулироваться по напряжению и току.

На следующем рисунке, который является неотъемлемой частью системы, показана небольшая интеллектуальная автоматическая схема зарядного устройства. Схема не только управляется напряжением, но также включает в себя конфигурацию защиты от перегрузки по току.

Транзисторы T1 и T2 в основном образуют точный датчик напряжения и никогда не позволяют верхнему пределу зарядного напряжения превышать установленный предел. Этот предел фиксируется путем соответствующей настройки предустановки P1.

Транзисторы T3 и T4 вместе следят за увеличением тока, потребляемого батареей, и никогда не позволяют ему достичь уровней, которые могут считаться опасными для срока службы батареи. В случае, если ток начинает выходить за пределы установленного уровня, напряжение на R6 пересекает значение — 0,6 В, достаточное для срабатывания T3, который, в свою очередь, подавляет базовое напряжение T4, тем самым ограничивая любое дальнейшее повышение потребляемого тока.Значение R6 можно найти по формуле:

R = 0,6 / I, где I — величина зарядного тока.

Транзистор T5 выполняет функцию монитора напряжения и включает (деактивирует) реле в момент выхода из строя сети переменного тока.

Список деталей для зарядного устройства

R1, R2, R3, R4, R7 = 1K
P1 = 4K7 PRESET, LINEAR
R6 = СМ. ТЕКСТ
T1, T2, = BC547
T3 = 8550
T4 = TIP32C
T5 = 8050
RL1 = 12 В / 400 Ом, SPDT
RL2 = 12 В / 400 Ом, SPDT, D1 — D4 = 1N5408
D5, D6 = 1N4007
TR1 = 0-12 В, ТОК 1/10 АККУМУЛЯТОРА AH
C1 = 2200 мкФ / 25 В
C2 = 1 мкФ / 25 В

Конструкция № 2: ИБП с одним трансформатором для инвертора и зарядки батарей

В следующей статье подробно описывается простая схема ИБП на основе транзисторов со встроенной схемой зарядного устройства, которая может использоваться для дешевое получение бесперебойного сетевого питания в вашем доме, офисе, магазине и т. д.Схема может быть повышена до любого желаемого более высокого уровня мощности. Идея была разработана г-ном Сайедом Ксаиди.

Основным преимуществом этой схемы является то, что в ней используется один трансформатор для зарядки аккумулятора, а также для управления инвертором. Это означает, что вам не нужно включать отдельный трансформатор для зарядки аккумулятора в этой схеме.

Следующие данные были предоставлены г-ном Сайедом по электронной почте:

Я видел, что люди получают образование благодаря вашей почте.Итак, я думаю, вам следует объяснить людям эту схему.

В этой схеме есть нестабильный мультивибратор на транзисторах, как и у вас. Конденсаторы c1 и c2 имеют значение 0,47 для получения выходной частоты около 51.xx Гц, как я измерял, но она не является постоянной во всех случаях.

MOSFET имеет обратный диод большой мощности, который используется для зарядки аккумулятора, поэтому нет необходимости добавлять в схему специальный диод. Я показал принцип переключения с реле на схеме. RL3 должен использоваться с цепью отключения.

Эта схема очень проста, и я ее уже тестировал. Я собираюсь протестировать еще одну свою разработку, и поделюсь с вами, как только тест будет завершен. Он контролирует выходное напряжение и стабилизирует его с помощью ШИМ. Также в этой конструкции я использую обмотку трансформатора 140 В для зарядки и BTA16 для управления током зарядки. Будем надеяться на добро.

У вас все хорошо. Никогда не останавливайтесь, желаю вам прекрасного дня.

Дизайн № 3: Схема ИБП на базе IC 555

Третий вариант, описанный ниже, представляет собой простую схему ИБП с использованием ШИМ, которая становится совершенно безопасной для управления сложным электронным оборудованием, таким как компьютеры, музыка система и т. д.Весь блок обойдется вам примерно в 3 доллара. Встроенное зарядное устройство также включено в конструкцию, чтобы поддерживать аккумулятор всегда в заряженном состоянии и в режиме ожидания. Давайте изучим всю концепцию и схему.

Принципиальная схема схемы довольно проста, все дело в переключении выходных устройств в соответствии с приложенными хорошо оптимизированными импульсами ШИМ, которые, в свою очередь, переключают трансформатор для генерации эквивалентного индуцированного сетевого напряжения переменного тока, имеющего параметры, идентичные стандартному синусоидальному напряжению переменного тока форма.

Работа схемы:

Принципиальная схема может быть понята с помощью следующих пунктов:

В схеме ШИМ используется очень популярная микросхема IC 555 для необходимой генерации импульсов ШИМ.

Предустановки P1 и P2 могут быть установлены точно так, как требуется для питания устройств вывода.

Выходные устройства будут точно реагировать на подаваемые импульсы ШИМ от схемы 555, поэтому тщательная оптимизация предустановок должна привести к почти идеальному коэффициенту ШИМ, который можно считать вполне эквивалентным стандартной форме сигнала переменного тока.

Однако, поскольку вышеупомянутые импульсы ШИМ применяются к основаниям обоих транзисторов, предназначенных для переключения двух отдельных каналов, это будет означать полный беспорядок, поскольку мы никогда не захотим переключать обе обмотки трансформатора вместе.

Использование вентилей НЕ для индуцирования переключения 50 Гц

Поэтому был введен еще один этап, состоящий из нескольких вентилей НЕ из IC 4049, который гарантирует, что устройства проводят или переключаются поочередно и никогда не все одновременно.

Генератор из N1 и N2; выполнять правильные прямоугольные импульсы, которые дополнительно буферизуются N3 — N6. Диоды D3 и D4 также играют важную роль, заставляя устройства реагировать только на отрицательные импульсы от вентилей НЕ.

Эти импульсы поочередно выключают устройства, позволяя проводить только одному каналу в любой конкретный момент.

Предустановка, связанная с N1 и N2, используется для установки выходной частоты переменного тока ИБП. Для 220 вольт он должен быть установлен на 50 Гц, а для 120 вольт он должен быть установлен на 60 Гц.

Список деталей для ИБП

R1, R2, R3 R4, R5 = 1K,
P1, P2 = по формуле,
P3 = 100K предустановка
D1, D2 = 1N4148,
D3, D4 = 1N4007,
D5 , D6 = 1N5402,
D7, D8 = стабилитрон 3 В
C1 = 1 мкФ / 25 В
C2 = 10n,
C3 = 2200 мкФ / 25 В
T1, T2 = TIP31C,
T3, T4 = BDY29
IC1 = 555,
N1 … N6 = IC 4049, номера контактов см. В таблице данных.
Трансформатор = 12–0–12 В, 15 А

Схема зарядного устройства аккумулятора:

Если это ИБП, включение цепи зарядного устройства аккумулятора становится обязательным.

Учитывая низкую стоимость и простоту конструкции, в эту схему источника бесперебойного питания была включена очень простая, но достаточно точная конструкция зарядного устройства.

Глядя на рисунок, мы можем просто увидеть, насколько проста конфигурация.

Вы можете получить полное объяснение в этой статье о схеме зарядного устройства. Два реле RL1 и RL2 расположены так, чтобы сделать схему полностью автоматической. При наличии сетевого питания реле включаются и переключают сеть переменного тока непосредственно на нагрузку через N / O контакты.В то же время аккумулятор также заряжается через цепь зарядного устройства. В момент сбоя питания переменного тока реле переключаются и отключают сетевую линию и заменяют ее инверторным трансформатором, так что теперь инвертор берет на себя ответственность за подачу сетевого напряжения на нагрузку. , за миллисекунды.

Еще одно реле RL4 вводится для переключения контактов во время сбоя питания, так что аккумулятор, который находился в режиме зарядки, переводится в режим инвертора для требуемой генерации резервного питания переменного тока.

Список деталей для зарядного устройства

R1 = 1K,
P1 = 10K
T1 = BC547B,
C1 = 100 мкФ / 25 В
D1 — D4 = 1N5402
D5, 6, 7 = 1N4007,
Все реле = 12 вольт, 400 Ом, SPDT

Трансформатор = 0-12 В, 3 А

Конструкция № 4: Конструкция ИБП 1 кВА

В последней конструкции, но, безусловно, самой мощной, обсуждается схема ИБП на 1000 Вт с питанием от входа +/- 220 В. , используя последовательно 40 шт. аккумуляторных батарей 12 В / 4 Ач. Работа под высоким напряжением делает систему относительно менее сложной и бестрансформаторной.Идею запросил Водолей.

Технические характеристики

Я ваш поклонник, успешно построил много проектов для личного использования и получил огромное удовольствие. Будьте здоровы. Теперь я собираюсь построить ИБП на 1000 Вт с другой концепцией (инвертор с высоким входным напряжением постоянного тока).

Я буду использовать батарею из 18-20 герметичных батарей, последовательно соединенных по 12 вольт / 7 Ач, чтобы получить 220+ вольт в качестве входа для бестрансформаторного инвертора.

Можете ли вы предложить простейшую схему для этой концепции, которая должна включать зарядное устройство + защиту и автоматическое переключение при отказе сети. Позже я также добавлю солнечную энергию.

Конструкция

Предлагаемая схема ИБП мощностью 1000 Вт может быть построена с использованием следующих двух схем, первая из которых представляет собой секцию инвертора с необходимыми реле автоматического переключения. Вторая конструкция предусматривает автоматическое зарядное устройство.

Первая схема, изображающая инвертор мощностью 1000 Вт, состоит из трех основных ступеней.

T1, T2 вместе с соответствующими компонентами образуют входной дифференциальный усилительный каскад, который усиливает входные сигналы ШИМ от генератора ШИМ, который может быть синусоидальным генератором.

R5 становится источником тока для обеспечения оптимального тока дифференциального каскада и последующего каскада драйвера.

Секция после дифференциального каскада — это каскад драйвера, который эффективно поднимает усиленный ШИМ с дифференциального каскада до уровней, достаточных для запуска следующего каскада мощного МОП.

МОП-транзисторы выровнены двухтактным образом на двух батареях 220 В и, следовательно, переключают напряжения на их выводах стока / истока для получения требуемого выходного сигнала 220 В переменного тока без включения трансформатора.

Вышеупомянутый выход подключается к нагрузке через ступень переключения реле, состоящую из реле DPDT 12 В 10 А, пусковой вход которого поступает от электросети через адаптер переменного / постоянного тока 12 В. Это напряжение срабатывания подается на катушки всех реле 12 В, которые используются в цепи для предполагаемых действий по переключению от сети к инвертору.

Список деталей для указанной выше цепи ИБП на 1000 Вт

Все резисторы CFR номиналом 2 Вт, если не указано иное.

R1, R3, R10, R11, R8 = 4k7
R2, R4, R5 = 68k
R6, R7 = 4k7
R9 = 10k
R13, R14 = 0,22 Ом 2 Вт
R12, R15 = 1K, 5 Вт
C1 = 470 пФ
C2 = 47 мкФ / 100 В
C3 = 0,1 мкФ / 100 В
C4, C5 = 100 пФ
D1, D2 = 1N4148
T1, T2 = BC556
T5, T6 = MJE350
T3, T4 = MJE340
0 Q1 = IRF
Q2 = FQP3P50

реле = DPDT, контакты 12 В / 10 А, катушка 400 Ом

Схема зарядного устройства для зарядки батарей постоянного тока 220 В.

Хотя в идеале задействованные батареи 12 В должны заряжаться индивидуально через источник питания 14 В, с учетом простоты универсальное одно зарядное устройство на 220 В, наконец, было признано более желательным и легким в изготовлении.

Как показано на схеме ниже, поскольку требуемое напряжение зарядки находится в пределах 260 В, выход 220 В сети может использоваться непосредственно для этой цели.

Однако прямое подключение к сети может быть опасным для аккумуляторов из-за большого количества тока, которое оно включает, поэтому в конструкцию включено простое решение с использованием лампы серии 200 Вт.

Питание от сети подается через один диод 1N4007 и через лампу накаливания мощностью 200 Вт, которая проходит через переключающие контакты реле.

Изначально полуволновое выпрямленное напряжение не может достигнуть аккумуляторов из-за того, что реле находится в выключенном состоянии.

При нажатии PB1 питание на мгновение достигает аккумуляторов.

Это вызывает соответствующий уровень напряжения, который должен генерироваться на 200-ваттной лампе и считываться оптическим светодиодом.

Оптоискатель мгновенно реагирует и запускает сопутствующее реле, которое мгновенно активирует, фиксирует ВКЛЮЧЕНИЕ и поддерживает его даже после отпускания PB1.

Было видно, что лампочка на 200 ватт слегка светится, интенсивность которой зависит от состояния заряда аккумуляторной батареи.

Когда батареи начинают заряжаться, напряжение на 200-ваттной лампочке начинает падать до тех пор, пока реле не выключится, как только будет достигнут уровень полного заряда батареи. Это можно отрегулировать, установив предустановку 4k7.

Выходной сигнал вышеуказанного зарядного устройства подается в аккумуляторную батарею через пару реле SPDT, как показано на следующей диаграмме.

Реле обеспечивают перевод аккумуляторов в режим зарядки до тех пор, пока есть вход от сети, и переводят их в инверторный режим при выходе из строя сетевого входа.

Самодельный (или, если необходимо, «Гетто») ИБП

Первоначально опубликовано 2001 в Атомарный: вычисления максимальной мощности
Последнее изменение 03 декабря 2011 г.

Вы знаете, что такое источник бесперебойного питания похоже, да? Это тяжелая бежевая коробка с розеткой IEC на одной. конец, одна или несколько трехконтактных розеток на другом, несколько лампочек и кнопок.

Что ж, может быть.

Или может выглядеть так.

Эта штуковина работает в основном так же, как обычное «двойное преобразование». UPS.Рядом с компьютером большой толстый блок питания постоянного тока с аккумулятором. сидя на нем. Этот блок питания подключен к сети по одному сбоку и к аккумулятору и инвертору (коробка справа), параллельно, с другой. Блок питания заряжает аккумулятор и запускает инвертор, пока есть питание от сети.

Инвертор преобразует постоянный ток низкого напряжения обратно в мощность переменного тока с эффективностью. более 85% — 100 Вт постоянного тока на входе, около 90 Вт переменного тока на выходе.Если пропадает питание от сети, инвертор просто работает от аккумулятора, а компьютер (и следить) продолжайте грузить. Чуть больше часа с этим нетребовательным настольный ПК и малогабаритный аккумулятор.

Многие стандартные ИБП могут обеспечивать питание только в течение нескольких минут — долго достаточно, чтобы сохранить вашу работу и выключиться. Все модели, кроме самых дешевых, имеют последовательное соединение с ПК и программное обеспечение, позволяющее компьютеру отключиться вниз, если вас нет рядом, когда ИБП делает свое дело, а заряд батареи становится низко.

Однако с таким ИБП Franken-UPS у вас может быть столько же батареи резервное копирование, которое вы можете разместить в своем компьютерном зале.

ИБП с двойным преобразованием, подобный этому, постоянно управляет инвертором. Большинство ИБП этого не делают. Вместо этого они являются «резервными источниками питания», в которых инвертор работает только при пропадании сетевого питания. В остальное время они просто пропустите сетевое питание на выход, может быть, с хорошей фильтрацией, может и без. Резервный дизайн делает ИБП более эффективным, а также позволяет дешевым агрегатам иметь инверторы более низкого качества, потому что инвертор почти никогда ничего не нужно делать.

Существуют также «линейно-интерактивные» ИБП, которые запускают инвертор все время. время, хотя и не на полную мощность; они также передают сетевое питание через, пока он доступен. При сбое питания уже работающий инвертор просто компенсирует слабину.

ИБП с двойным преобразованием, или «on-line», обеспечивают лучшую фильтрацию мощности из трех разновидностей ИБП и не имеют задержки отключения, если сеть терпит неудачу. Но для бытовых нужд особой разницы, кроме цены, нет. между тремя.

Этот ИБП, сделанный своими руками, может иметь двойное преобразование, но он примерно такой же элегантный. как это выглядит. Большинство людей этого не захотят.

Однако позволяет увидеть, что находится внутри обычного ИБП с одной коробкой. Все компоненты в этой настройке — просто автономные версии основные биты внутри обычного ИБП.

Аккумулятор

ИБП

требуется большая емкость аккумуляторов, и не обязательно свет. Поэтому они используют свинцово-кислотные батареи.

Стандартные ИБП — ну, те, которые достаточно малы, чтобы их можно было носить с собой, в любом случае — используйте «гелевые ячейки», которые являются наиболее распространенным видом герметичного свинца. Кислотные (SLA) аккумуляторы. Обычно, когда кто-то ссылается на батарею SLA, они речь идет о гелевой ячейке.

Эти батареи дешевые, они не протекают, они очень стандартизированы. и их можно купить в любом магазине электроники, и они обладают приемлемой производительностью за деньги.

Желейный электролит в гелевой ячейке плохо справляется с газом. пузыри, которые развиваются быстро, если он перезаряжен, и медленно, даже если он просто постоянно пополнялся.Пузырьки испортят электролит. к пластинам аккумулятора, что снижает емкость.

Дешевые батареи SLA также определенно построены по цене. Ваш обычный 12-вольтный блок SLA «семь ампер-час» может работать как большая мощность, как и следовало ожидать от этого рейтинга, даже при более слабом токе с двумя батареями Конфигурация 24 В, которую используют многие ИБП. Не ожидайте большего, чем пару лет жизни без батарей SLA по выгодной цене в дешевом ИБП.

Для большой емкости и отличных сильноточных характеристик, «мокрый» свинцово-кислотный батареи с обычным жидким сернокислотным электролитом — способ идти. Вы не хотите их сбивать, вы не хотите нести их по лестнице, вы хотите убедиться, что вентиляция достаточна, чтобы водород производить во время зарядки не делает вашу компьютерную жизнь неожиданной захватывающе, и да, им нужно время от времени пополнять, если вы хотите, чтобы они продолжались хорошо.Но даже небольшой автомобильный аккумулятор даст вам 25 настоящих ампер-часов на для питания компьютеров. Только ваше умение перевозить тяжелые предметы ограничивает емкость, которую вы можете получить от мокрых батарей параллельно.

Автомобильные аккумуляторы можно купить дешево, но они не любят полностью разряжены. Как и обычные гелевые клетки. Разрядите любую свинцово-кислотную батарею и оставьте в таком состоянии достаточно долго, и пластины сульфатируются, батарея бесполезна.

Более дорогие батареи «глубокого разряда» сконструированы так, чтобы работать лучше с этим; у них нет огромной мгновенной текущей емкости «заводной» аккумулятор, если вы хотите запустить двигатель, но вы можете запустить их через полные циклы снова и снова без вреда. Их по-прежнему не должно быть ушел, хотя.

Эта батарея не является обычной влажной ячейкой или гелевой ячейкой. Это спасательный круг GPL-1300 от Concorde Battery Корпорация, которая производит аккумуляторы для всего, от гоночных яхт до истребители.Это герметичная конструкция с регулируемым клапаном и жидкостью. электролит впитался на стекловолоконный мат между плотно прилегающими пластинами — лучший способ сделать батарею SLA. Стеклянный мат придает ему производительность влажной батареи и непроливаемость гелевого элемента.

GPL-1300 — самая маленькая батарея Concorde — она ​​весит меньше семи килограммы. Но он рассчитан на запуск двухлитрового морского дизеля и имеет подлинная емкость 13 А · ч для приложений ИБП.

Однако вы смотрите примерно на 250 австралийских долларов за один из них. Это куплю у вас гораздо более емкая обычная влажная батарея.

Блок питания

ИБП нужно что-то для зарядки аккумулятора и запуска инвертора, когда сеть не вышла из строя. Зарядка свинцово-кислотных аккумуляторов через «постоянную напряжение »метод прост. Зарядить их колодец несколько сложнее.

Если вы подключите свинцово-кислотную батарею к источнику питания, который настроен на такое же напряжение, какое может держать аккумулятор, когда он полностью заряжен, вы заряжайте аккумулятор, и вы не перезарядите его.Это называется «поплавок». заряжать; это не самый быстрый способ зарядить аккумулятор в ампер-часах, но Вы можете оставить зарядное устройство подключенным навсегда, не поджаривая аккумулятор.

К сожалению, плавающий заряд никогда не сможет полностью зарядить аккумулятор. А также если вы оставите свинцово-кислотную батарею на плаву навсегда, она будет медленно сульфатироваться, как если бы его ненадолго оставили плоской. «Допустимый заряд» около 2,4 вольт. на элемент (14,4 В для батареи 12 В) требуется примерно каждые шесть месяцев, для максимального срока службы батареи.

Схема зарядки в действительно классных коммерческих ИБП может периодически высокие расходы, но не ожидайте их от дешевого устройства.

Для батареи Lifeline, которую я использовал, напряжение холостого хода составляет от 13,2 до 13,4 вольт, в зависимости от температуры — температура выше, напряжение ниже. Я предоставил это с помощью моего настольного источника переменного напряжения на 25 ампер, установленного на это напряжение.

Невозможно произвести автоматическое пополнение счета с помощью этой штуки, но есть ничто не мешает крутить ручку до 14.4 вольта на несколько часов каждые полгода. И постоянный номинальный ток этого источника питания 25 А означает он может выдавать 300 Вт при 12 вольт. Учитывая эффективность 85-95% инверторы текущей модели, это означает, что вы можете использовать резистивный резистор мощностью не менее 255 Вт. load (о котором подробнее …) из него.

Однако такой блок питания не из дешевых. Это Jaycar Electronics MP-3088, который списки за 359 австралийских долларов. Обычные автомобильные зарядные устройства со скидкой в ​​вашем регионе место автозапчастей, намного дешевле чем это.

Если вам нужна токовая нагрузка 25 А, вы не получите ее просто одно дешевое зарядное устройство. Вместо этого вам придется взять несколько одинаковых зарядных устройств. и подключите их к батарее параллельно. Это примерно так же элегантно, как сделать плату на 24 розетки из двойных переходников, но она будет работать, если ваши зарядные устройства не пытаются делать ничего умного. Какие дешевые не будут; некоторый из них даже нет предохранителя . Важно, чтобы зарядные устройства быть идентичным; дешевые и противные зарядные устройства, которые означают быть точно таким же не обязательно.Желательно сделать несколько разумных зондирование мультиметром, чтобы увидеть, не треснули ли различные положительные выводы все параллельные установки имеют одинаковый потенциал, когда они работают.

Дешевые зарядные устройства могут или не могут позволить батарее разряжаться через них, наоборот, при отключении электроэнергии; худший сценарий здесь — разрушение зарядного устройства, хотя более вероятна простая потеря заряда аккумулятора. Лавка расходные материалы, вероятно, этого не сделают — мои, конечно же, нет.Как и большинство скамей расходных материалов, имеет хорошую защиту от обратного тока и перегрузки по току.

Если у вас есть зарядное устройство без схемы предотвращения обратного тока, хотя тогда вам понадобится какой-то изолятор батареи — причудливый для многоаккумуляторных автомобилей или просто большой толстый диод. Дешевые зарядные устройства могут плохо справляется с падением напряжения от диодного изолятора; они будут должны подавать больше вольт для достижения того же тока заряда, и они могут получить забавные идеи о состоянии заряда батареи.

Оценки дешевых зарядных устройств в целом довольно оптимистичны, но три Зарядные устройства на «10 ампер» должны обеспечивать непрерывную работу на 25 ампер. Четыре конечно будет, если только они не от очень захудалого производителя .

Если напряжение аккумуляторной батареи при полной зарядке незначительно превышает допустимое плавающее напряжение, тогда вы можете оставить свои дешевые зарядные устройства подключенными навсегда. Если выше, то аккум будешь медленно варить; если ниже, то у вас будут проблемы с ранней сульфатацией.

Но эти зарядные устройства действительно дешевые.

Инвертор

Это инвертор от 12 до 240 вольт на 300 вольт для пожилых людей. дизайн, с не очень большой номинальной импульсной мощностью — количество мощности, которое он может доставить на короткое время.

Вт могут быть равны вольтам, умноженным на амперы, но только для цепей постоянного или переменного тока. работа исключительно с резистивными нагрузками, такими как обогреватели или лампы накаливания. Компьютеры и мониторы не являются резистивными нагрузками.Технически говоря, у них довольно противная «сила фактор ». Инвертор на 300 ВА может потреблять всего около 210 Вт. стоимость оборудования для ПК; может даже меньше. Подробнее об этом применительно к компьютеру ИБП, ознакомьтесь с официальным документом APC в формате PDF по этой теме, здесь.

Однако то, что в компьютере установлен блок питания мощностью 300 Вт, не означает, что он нуждается в инвертор 430 ВА. Это понадобится только в том случае, если он полностью загрузит каждый из своих Выходные шины блока питания, чего почти наверняка нет.

В наши дни вы можете получить инвертор на 300 ВА с номиналом перенапряжения 900 ВА и эффективность выше 90% примерно за 160 австралийских долларов — у Jaycar есть один, MI-5062, по этой цене. Менее чем вдвое дороже вы можете получить 600 ВА постоянного тока, Инвертор перенапряжения 1500 ВА, которого достаточно для работы практически любого ПК, и его монитор.

Рейтинг скачков напряжения имеет значение, потому что многие устройства потребляют намного больше тока при запуске, чем при запуске. Лазерные принтеры и холодильники, например, у вас есть такие огромные текущие требования к запуску, что вам, очевидно, инверторы с сильно завышенными номиналами, если вы хотите их запустить.Компьютеры не это плохо, но мониторы с ЭЛТ все еще могут быть проблемой.

Компьютер, который я питал от этой установки, представляет собой скромную коробку Celeron с 15 дюймовый монитор. ПК без монитора потребляет пиковый ток около 8,5 ампер. от аккумулятора через инвертор при запуске. Затем становится меньше чем шесть ампер.

Схема размагничивания монитора, однако, потребляет больше, чем пиковая мощность. мощность инвертора.

Поскольку практически все ЭЛТ автоматически размагничиваются при включении питания. вверх, это проблема.Еще один 15-дюймовый аппарат, который я пробовал, просто привязал иглу. мой амперметр на мгновение включился, а потом сидел там в режиме ожидания.

К счастью, старый монитор Mitac на картинке все еще может запуститься когда он пытается размагнитить себя и терпит неудачу. Он просто рисует красивую устойчивую восьмерку усилители, без страшного всплеска. Таким образом, ПК с монитором имеет пиковую потребляемую мощность. меньше постоянной выходной мощности инвертора, а затем стабилизируется примерно до 70% емкости.

Примечание: если вы не знаете, какой толщины использовать провод, скажем, для 20 ампер (чтобы обеспечить приличный запас прочности), это хороший признак того, что вы не совсем готов к этому проекту.

Решение проблемы перенапряжения монитора, конечно же, заключается в использовании более современный инвертор с большим номиналом перенапряжения или использовать более низкую мощность монитор, как ЖК-экран. 15-дюймовые ЖК-дисплеи (у которых площадь экрана больше, чем у «15-дюймовый» ЭЛТ) потребляет менее 40 Вт и не имеет никаких скачков при запуске, чтобы говорить из.Так что они отличные кандидаты для приложений «альтернативной энергетики».

Формы сигналов инвертора

«Форма волны» инвертора — это то, как изменяется выходное напряжение инвертора. поскольку он проходит через свои положительные / отрицательные циклы переменного тока. В частота колебаний для всех австралийских инверторов 220/240 вольт должна быть те же 50 Гц (циклов в секунду), что и обычная электросеть в этой стране, но график зависимости напряжения от времени на выходе инвертора может быть совершенно другим. от сети.

Если, например, напряжение повышается практически мгновенно до полного положительного значения, держится там половину цикла, затем практически мгновенно падает до полного отрицательного для другого полупериода вы смотрите на «прямоугольную волну».

Нормальное сетевое питание чередуется плавными синусоидальными волнами — ну, когда Во всяком случае, он не загрязняется скачками, провалами и скачками. Эта синусоидальная форма волны, показанная на этом рисунке зеленым цветом, точно имитируется только более дорогие «синусоидальные» инверторы.Вы можете купить ИБП с синусоидой инверторы — вы смотрите, может быть, 900 австралийских долларов за интерактивную линию 750 ВА. один. Вы также можете купить синусоидальные инверторы как отдельные изделия.

Но

ПК в них не нуждаются. Они отлично работают на модифицированной прямоугольной волне. мощность — это красный сигнал на картинке. Инверторы, которые выводят это форма волны дешевле, чем единицы синусоидальной волны.

Большинство двигателей переменного тока — например, электроинструменты — будут нормально работать после измененных мощность прямоугольной волны также, но они могут потреблять примерно на 20% больше энергии чем вы ожидаете, и может раздражать.Вещи со схемой, которая полагается на чистой синусоидальной энергии — электрические часы, хлебопечки, некоторые зарядные устройства, двигатели с «экранированным полюсом», используемые потолочными вентиляторами, скорее всего, будут плохо себя вести.

Синяя форма волны на картинке, кстати, представляет собой простую прямоугольную волну. Сейчас довольно сложно найти простые прямоугольные инверторы. Который хорошо, потому что ты, вероятно, не хочешь этого. Они могут запускать некоторые, но не все, двигатели, и они прекрасно справляются с лампами накаливания.Но даже мощность компьютера не гарантируется, что расходные материалы будут работать должным образом на этом чрезвычайно «грязном» мощность.

Зачем делать самому?

Для чего нужна самостоятельная установка ИБП, кроме изготовления вы смотрите все технически и грамотно?

Ну, если хотите, у вас будет чудовищная емкость аккумулятора.

Вы не можете заменить батареи большей емкости на большинство стандартных ИБП. И дело не только в том, что батареи большего размера не поместятся в коробке; стандарт схема зарядного устройства также вряд ли справится с большей емкостью.Если заряд занимает больше времени, чем должен, или ток заряда слишком велик, ИБП может предположить, что с аккумулятором что-то не так.

Лучшие коммерческие ИБП имеют стандартный разъем расширения батареи; некоторые дешевые устройства будут работать с большей емкостью батареи, но у вас есть припаять кабель расширения к соответствующим клеммам внутри, чтобы это произошло. Не делайте ставку на то, что это возможно с Дж. Хотя случайный ИБП.И чем больше мощности вы добавляете, тем меньше вероятность это работать.

О, и если ваш дешевый ИБП не ожидает большей емкости аккумулятора, он тоже не будет ожидать большего времени выполнения. Так он может перегреться и умереть, если вынужден работать на почти полной мощности намного дольше стандартного аккумулятор мог обойтись.

Используйте глупое зарядное устройство, например, мой блок питания постоянного тока и специальный инвертор. приемлемого качества, и у вас не будет этих ограничений.Ты должен следите за своей батареей, и вы должны тщательно установить напряжение. Но вы также можете использовать банк аккумуляторов для грузовиков для питания вашего ПК в течение недели. без сети, если хотите.

ИБП с раздельными ящиками также полезен для большего, чем моноблок. Маленькая герметичная батарея в этой установке имеет более чем достаточно тычка, чтобы начать например, моя машина, которая больше, чем может выдержать кирпич SLA на 7 Ач.

(у меня есть , использовал небольшую батарею SLA для запуска автомобиля, один раз, но только косвенно; Взял свежезаряженный SLA и подключил параллельно с разряженным аккумулятором автомобиля, и просто оставил его там на полчаса, чтобы вставьте немного заряда в вещь.Потом я un подключил SLA, и завел машину от теперь слегка заряженной основной аккумуляторной батареи.)

Настольный блок питания тоже вообще полезная вещь. Я использую все свое время, когда я создаю и тестирую что-то, или когда мне просто хочется поджечь карандаш.

И инвертор можно подключить к автомобильному аккумулятору в любом месте для питания. различные гаджеты.

(Примечание — езда по городу с пассажиром, показывающим 240 стробоскопическая вспышка для ничего не подозревающих пешеходов не приветствуется и не поощряется, автор.И даже несмотря на то, что дождь выглядит действительно круто, пожалуйста, сделайте это не стоять под дождем, держась за стробоскоп.)

Если, конечно, ни одно из этих преимуществ вам не нравится, то нет причина для вас купить эти отдельные компоненты. Они не дадут вам высшего класса система зарядки (во всяком случае, если вы не потратитесь на зарядное устройство высшего класса), они никак не взаимодействуют с компьютером, и вряд ли они и аккуратный раствор.

Но если вы ищете ИБП промышленной мощности, не как цены на варианты без привязки, это может быть проще, чем вы думаю свернуть свой собственный.

Сделай сам или купите резервное питание APC — Источники питания

ИБП, к которому вы подключились, представляет собой линейно-интерактивный ИБП … он может питать систему от батарей только в течение ограниченного времени, которое зависит от общей емкости батарей.

Трансформатор внутри такого ИБП предназначен для медленной зарядки аккумуляторов, это небольшой дешевый трансформатор. Например, предположим, что ваш компьютер потребляет 500 Вт, пока вы играете в игры и у вас пропадает сетевое питание — ИБП начнет использовать батареи для выработки переменного напряжения и разрядит батареи примерно за 10-20 минут.

После возобновления подачи питания на полную зарядку аккумуляторов потребуется до 10-15 часов.

Этот BackUPS, с которым вы связались, говорит, что он может работать до 865 Вт, но батарея, которая идет в комплекте, я думаю, всего 9 Ач — примерно при 500-600 Вт она полностью разрядится менее чем за 3-5 минут.

Как сказано в описании, для зарядки этой 9Ач батареи потребуется около 6 часов.

С такими ИБП спорный вопрос, действительно ли вы можете значительно увеличить емкость батареи, например, заменить меньшую батарею внутри на две большие батареи снаружи.

Причина в том, чтобы сократить расходы, потому что трансформатор, который заполняет батареи, часто имеет меньшие размеры и не предназначен для зарядки батарей в течение длительного времени. Например, они знают, что абсолютное максимальное время зарядки составляет около 7 часов или около того, и они также знают, что большую часть времени батареи не будут полностью разряжены (вы получаете потерю мощности примерно на 10 с … 1 м, разряжая батареи примерно до 80%. , а ИБП должен заряжаться от 80% до 100% примерно за 1-2 часа), поэтому они используют достаточно толстые провода, достаточно хорошо изолированные, чтобы трансформатор мог выдержать перегрев, скажем, 10-12 часов.

Если вы установите батареи гораздо большего размера, трансформатор может оставаться горячим более 6-8 часов, намного больше, чем даже 10-12 часов, и в конечном итоге этот малоразмерный трансформатор может сгореть.

Вы можете сделать что-то вроде напряжения переменного тока -> источник питания 12 В или 24 В (который может производить столько, сколько нужно вашему компьютеру, ПЛЮС около 10-20%) -> батареи -> преобразователь постоянного тока в переменный для производства переменного тока для компьютера.

Вы можете подключить батареи последовательно, чтобы получить 24 В, и вам понадобится около 26 В для батарей (можно произвести блок питания на 24 В, чтобы вывести немного больше)

Вы можете найти инверторы, которые работают от 24 В, так что вы можете преобразовать 24 В обратно в переменный ток.

Таким образом, вы в основном создаете свой собственный ИБП Always On.

Но, как я объяснил, важно точно выяснить, сколько на самом деле потребляет ваш компьютер.

Если ваш компьютер потребляет только до 300-400 Вт во время игр, то, возможно, вы можете использовать только блок питания мощностью 500-600 Вт 12/24 В для зарядки батарей или питания инвертора, вместо того, чтобы тратить деньги на источник питания или трансформатор большей мощности.

Источник бесперебойного питания «сделай сам»: электрический

Я подумываю о создании собственного ИБП для медиацентра и сетевого оборудования.У меня есть несколько причин рассмотреть этот вариант:

  • У меня постоянно отключается питание

  • Я хочу около 5-7 часов работы, и потребительские опции не предлагают этого, но автомобильный аккумулятор или два могут

  • Промышленные варианты дороги

  • Все, что я хочу использовать, в любом случае использует питание постоянного тока, но большинство ИБП используют инверторы для обеспечения 120 В переменного тока даже при работе от батареи, что глупо, потому что бородавка на стене на большинстве моих вещей просто заменяется -исправление и снижение его до примерно 12 В.Я не вижу причин делать два неэффективных преобразования мощности.

На что у меня питание. Указан с максимальным рейтингом, напечатанным на их бородавках:

  • asus rog rapture gt-ac5300 | 3,5 А 19 В = 66,5 Вт

  • Кабельный модем Netgear | 1.5A 12 В = 18 Вт

  • Микрокомпьютер Odroid UX4 | 6A 5V = 30W

  • Внешний жесткий диск, подключенный к Odroid | 2A 5V = 10W

  • Insignia TV | 4A 12 В = 48 Вт

Таким образом, моя общая потребляемая мощность, предполагая, что каждому по какой-то причине требуется максимальная мощность в одно и то же время, составляет около 173 Вт.Хотя это маловероятно, я бы хотел перестроить его как для собственного удовольствия, так и для того, чтобы иметь возможность в какой-то момент поменять часть, скажем, телевизор, не беспокоясь о перегрузке. Я назову это 175 Вт.

Теперь я сгруппировал все по трем категориям по напряжению:

  • Модем и телевизор — на 12 В, и их можно напрямую подключить к батарее с помощью соответствующего предохранителя (если кто-то не скажет, что это плохая идея)

  • Odroid, его жесткий диск и USB-концентратор имеют напряжение 5 В, и для них потребуется понижающий преобразователь постоянного тока.(возможно, https://www.amazon.ca/dp/B012NCC35M)

  • Маршрутизатор имеет напряжение 19 В и потребуется повышающий преобразователь постоянного тока в постоянный (возможно, https://www.amazon.ca/dp/B00RXJJGE2)

Я думаю, что разобрался с аккумулятором, мне нужен свинцово-кислотный морской аккумулятор глубокого цикла, чтобы я не убил его, опустошив его до полного разряда, и герметичный, чтобы я не взорвал свой дом водородом . Для максимального номинала усилителя 175 Вт / 12 В = около 14,6, назовите его 15 А. Это хорошо в пределах стандартной 12-вольтовой батареи, продаваемой в Canadian Tire.

В чем я застрял, так это в том, чтобы заряжать его после сбоя и запускать систему от электросети, когда она доступна (и делать то и другое одновременно). Вначале я просто постоянно работал от аккумулятора и постоянно использовал зарядное устройство для автомобильного аккумулятора, но это приведет к выходу из строя аккумулятора, если моя нагрузка упадет, но выход зарядного устройства останется статическим. Это перезарядит и испарит мою батарею. Итак, мой второй делал в основном то же самое, но с аккумулятором, подобным тому, который у меня есть на моем грузовике зимой, который не перезаряжается.Это также не сработает, потому что все специалисты по техническому обслуживанию очень маломощны, рассчитаны на постоянную подзарядку аккумулятора в течение ночи и достаточно, чтобы холод или неиспользование не убили его. Я видел их до 2А, но я уже подсчитал, что при 12В мне нужно как минимум 15А, и это не учитывает эффективность преобразователей (обычно около 90%) и тот факт, что для фактической подзарядки аккумулятор после отключения нужно вложить в него больше энергии, чем от него потребляется. Итак, я поискал людей, которые пробовали похожие проекты, и нашел это: http: // www.dreamgreenhouse.com/projects/2010/12Vups/index.php Это хороший пример, мне нравится, что он нашел готовое оборудование именно для этой цели. Плата для зарядки аккумулятора и автоматического переключения с сетевого питания на питание от аккумулятора, а также другая плата с выпрямителем и переходом от 120 В до 12 В постоянного тока, но опять же максимальная мощность — это проблема, которую его установка ограничена до 8 А.

TL; DR Итак, в конце концов, мой вопрос: знает ли кто-нибудь об эфире, поддерживающем батарею 12 В, который поддерживает не менее 15 А непрерывно, ИЛИ готовую печатную плату, которая будет поддерживать батарею и переключать нагрузку между указанными аккумулятор и настенный ввод, который опять же не пропускает дым при 15А 8 часов в день 5 дней в неделю?

Как построить инвертор питания (ИБП) от 12 В постоянного тока до 220 В переменного тока —

Как построить источник бесперебойного питания от 12 В до 220 В переменного тока с инвертором (ИБП)

Введение:

Инвертор мощности — это устройство, которое преобразует 12 вольт в 150 вольт D.C от 220 вольт до 110 вольт. Инвертор мощности обычно известен как ИБП. ИБП означает источник бесперебойного питания, который представляет собой модифицированную форму инвертора. Из-за отсутствия электричества важность инвертора возрастает день ото дня. Заменитель отключения нагрузки — генератор или ИБП.

Некоторые преимущества и недостатки генератора следующие.

Его первое преимущество заключается в том, что он может работать со многими электронными устройствами и обеспечивать электроэнергию в течение длительного периода отключения нагрузки.К недостаткам можно отнести шумовое загрязнение, слишком дорогое использование ископаемого топлива. Альтернативой генератора является ИБП, он также имеет свои достоинства и недостатки.

Подача электроэнергии идет бесперебойно, не требует особых усилий. Его резервное копирование зависит от аккумулятора, поскольку количество ампер аккумулятора, которое он имеет, столько, сколько оно может обеспечить.

Его недостатки в том, что перезарядка занимает много времени, и при длительном отключении нагрузки аккумулятор не может быть заряжен, поэтому он перестает работать.Из-за чрезмерной нагрузки сокращается продолжительность резервного копирования. Его производительность составляет от 60% до 90%.

Сегодня я научу вас, как сделать инвертор мощностью 500 Вт, который может сделать любой, кто имеет фундаментальные знания в области электроники.

Для его строительства необходимы следующие вещи.

Составляющие:
  • Трансформатор 40 А (500 Вт), 220 В, 12X12 В
  • Транзистор (10) 1047
  • Резистор (1) 500 Ом
  • Аккумулятор 40 Ампер
  • Мультиметр
  • Конденсатор 250 В, 0.5 мкФ
  • Провода, паяльные провода,
  • Паяльник

Метод:

Прежде всего, вам нужно внести некоторые изменения в трансформатор. Если вы используете трансформатор на 500 В, возьмите медный провод от 18 до 22 калибра и на одной стороне сердечника трансформатора сделайте пять витков и поставьте на него точку, затем поверните эту точку и снова поверните провод пять раз в том же направлении.

Таким образом вы получите три терминала.Если вы подключаете трансформатор к источнику питания 220 В, то на обоих выводах он дает 1,5 В.

Как правильно настроить базу, эмиттер и коллектор:

Теперь поместите транзистор D1047 на ладонь и поверните его так, чтобы число появилось у вас на пути. Теперь вы увидите три точки. Точка с левой стороны известна как (B) База, средняя — коллектор (C), а правая — (E) эмиттер. (Это информация только для D1047)

Принципиальная схема инвертора 500 Вт

Принципиальная схема инвертора ИБП 500 Вт

Теперь сначала затяните 5-й транзистор в радиаторе последовательно с помощью гайки-болта.Соедините базы всех пяти транзисторов вместе, а затем соедините точки коллектора вместе.

Таким же образом расположите остальные пять транзисторов по отдельности и соедините коллектор (C) обеих сторон транзисторов с внешним выводом вторичной катушки, после чего соедините оба внешних вывода третьей катушки с основанием обоих радиаторов. транзистора. затем подключите эмиттер (E) с обеих сторон проводами n, затем подключите резистор 500 Ом на эмиттере и резистор с каждой стороны.Теперь подключите среднюю клемму первичной обмотки проводом длиной от одного до двух футов, закрепите ее (крокодил) и прикрепите эту клемму всегда к положительной клемме, а с отрицательной клеммой батареи подключите оба (E) эмиттера транзистора.

После этого центральная точка третьей катушки и провод соединяют ее с эмиттером для подключения с помощью переключателя большой мощности между обоими выводами первичной катушки инвертора, чтобы применить конденсатор, который предотвратит искрение током. инвертор включится, как только начнет работать.

Обсуждения инверторов питания Пакистанского научного клуба от 12 В до 220 В ИБП, вы можете найти проблемы, устранить неисправности и получить помощь по конструкции. Посетите Инверторы питания (ИБП) от 12 до 220 ″

Рабочий:

К обоим клеммам батареи подключите положительный и отрицательный провода к ее клеммам: положительный к положительному, а отрицательный — к отрицательному, а затем разомкните переключатель, в инверторе начинается небольшая вибрация, когда переключатель разомкнут. Теперь вы можете запустить его при нагрузке от 1 до 500 Вт.

Таблица мощности инвертора мощности

инверторы напряжения (вход) Трансформатор усилитель Трансформатор ватт Кол-во транзисторов D1047
Инвертор 50 Вт 12 В 4 А 50 Вт 2
Инвертор 100 Вт 12 В 10 А 100 Вт от 4 до 6
Инвертор 300 Вт 12 В 25 А 300 Вт от 6 до 8
Инвертор 500 Вт 12 В 40 А 500 Вт 8-10
Инвертор 1000 Вт 24 В 45 А 1000 Вт от 20 до 26
Инвертор 3000 Вт 24 В 125 А 3000 Вт от 40 до 50
Инвертор 5000 Вт 48 В 105 А 5000 Вт от 60 до 70
Примечание.В таблице показано, что требования к транзисторам D1047 для инвертора различной мощности

Зарядка:

Вам необходимо выключить аккумулятор для зарядки и косвенно подключить первичную катушку к источнику питания 220 В, после чего аккумулятор начнет заряжаться. Чтобы преобразовать его в ИБП, вам нужно только одно реле. Это реле 220 В переменного тока и клеммы 4.4.

принципиальная схема инвертора для зарядки аккумулятора

Для получения интерактивной справки посетите http://forum.paksc.org/Forum-Homemade-UPS-inverter

Устранение неисправностей:

Если вы не начинаете включать, проверьте следующие позиции

1.Зажгите место крепления резистора на одну секунду

2. Если он еще не запускается, то отсоединил соединение между базовым проводом и катушкой и переставил его.

Если вы хотите получить более подробную информацию, присоединяйтесь к научному клубу Пакистана. Все права защищены. Этот проект не может быть опубликован без разрешения научного клуба

Присоединяйтесь к нам @ paksc.org/community


Статьи по теме:


Если вы обнаружите ошибку в этом тексте, сообщите нам psc @ paksc.org

Вам нужен ИБП или инвертор?

Инверторы и блоки источников бесперебойного питания (ИБП) могут вырабатывать переменный ток из источников постоянного тока, и по этой причине их часто путают. Однако ИБП — более сложное устройство с большим количеством функций, и на самом деле он использует инвертор в качестве одного из своих внутренних компонентов.

Проще говоря, инвертор получает электроэнергию от источников постоянного тока (DC), таких как батареи или солнечные панели, и обеспечивает переменный ток (AC), используемый большинством приборов.ИБП также имеет эту функцию, но у него есть дополнительные функции, такие как мгновенный отклик и накопление энергии.


Убедитесь, что ваши устройства имеют надежную систему резервного питания.


ИБП и инверторы можно сравнить с кондиционерами и компрессорами. Подобно тому, как компрессор не может обеспечить охлаждение помещения сам по себе, автономный инвертор не может выполнять все функции ИБП.

Как работает инвертор?

Основная функция инвертора — преобразование электроэнергии из постоянного тока в переменный, как описано выше.Обратите внимание, что инверторы только преобразуют энергию и не могут генерировать или накапливать электроэнергию сами по себе. Если вы отключите инвертор от источника постоянного тока, подача переменного напряжения прервется.

  • Как и любое электрическое оборудование, инверторы имеют номинальную мощность. Например, в большинстве бытовых солнечных энергетических систем используются инверторы мощностью менее 10 кВт, в то время как в коммерческих установках среднего размера, вероятно, будет более 100 кВт.
  • Помимо номинальной мощности, инверторы предназначены для работы в определенном диапазоне напряжений по току как на стороне постоянного, так и переменного тока.

Преобразователи частоты (VFD) часто называют «инверторами», потому что многие модели вырабатывают трехфазное питание переменного тока от входа постоянного тока. Однако такая практика именования вызывает путаницу, поскольку целью частотно-регулируемого привода является управление скоростью двигателя путем регулировки напряжения и частоты. Как и ИБП, частотно-регулируемый привод использует инвертор в качестве одного из внутренних компонентов, но имеет дополнительные функции.

Как работает ИБП?

Источник бесперебойного питания или ИБП имеет понятное название — он обеспечивает бесперебойную подачу электроэнергии, особенно во время отключений электроэнергии и сбоев в электросети.Однако бесперебойное питание возможно только при соблюдении двух условий:

  • Накопитель энергии, который используется ИБП при отключении электроэнергии. Функция накопления энергии обычно обеспечивается батареями и контроллером заряда.
  • Мгновенный отклик, чтобы все оборудование, подключенное к ИБП, могло продолжать работать при отключении электроэнергии. Например, блоки ИБП используются в центрах обработки данных для защиты информации и оборудования при возникновении проблем с электросетью.

Обратите внимание, что инверторы также могут использоваться в качестве резервных источников питания в сочетании с системами хранения энергии. Однако обычный инвертор не может обеспечить плавный переход, предлагаемый ИБП. Инверторы могут реагировать менее чем за одну секунду, но они недостаточно быстрые, чтобы предотвратить потерю данных в ИТ-приложениях. С другой стороны, ИБП работают намного быстрее, реагируя за считанные миллисекунды.

Инвертор

и ИБП: основные отличия

УСТРОЙСТВО ИНВЕРТОР ИБП
Основная функция Преобразование постоянного тока в переменный. Резервное питание без перебоев.
Накопитель энергии Нет, но многие модели инверторов могут использовать внешние накопители. Да, включает встроенное хранилище и дополнения для увеличения времени работы от аккумулятора.
Скорость отклика Около 500 миллисекунд. Менее 10 миллисекунд.
Потребляемая мощность Только постоянный ток, требуется контроллер заряда для зарядки аккумуляторов переменным током. варианты переменного и постоянного тока.
Выходные соединения Только клеммы переменного тока. Обычно включает розетки для прямого подключения приборов.

При той же номинальной мощности ИБП обычно дороже инвертора с учетом его дополнительных компонентов и функций. Блоки ИБП необходимы в приложениях, требующих непрерывного питания во время отключения электроэнергии, но инверторы с внешними батареями экономически эффективны, когда эта функция не требуется. Например, вы не хотите оставлять центр обработки данных без питания (ИБП), но можно допустить кратковременное отключение вашей системы освещения (инвертор + накопитель энергии).

Когда вы заряжаете аккумуляторы с помощью основной электросети, происходит два преобразования энергии. Источник переменного тока сначала преобразуется в постоянный ток для зарядки батареи, а выходная мощность батареи преобразуется обратно в переменный ток. Для зарядки аккумулятора требуется питание постоянного тока, а при использовании входа переменного тока вам понадобится выпрямитель. Блоки ИБП включают этот компонент, но требуется внешний контроллер заряда, если у вас есть батареи, подключенные к инвертору.

Объединение ИБП и инверторов

Поскольку ИБП более дорогие, не имеет смысла рассчитывать их на часы работы без источника питания.Более разумный подход заключается в том, чтобы иметь кратковременную мощность ИБП, дающую время более крупной системе инвертор + аккумулятор, чтобы взять на себя нагрузку.

  • Инвертор с накопителем энергии может использоваться в качестве прямого источника питания для менее критических нагрузок, таких как освещение и вентиляция.
  • Нагрузки ИБП
  • могут оставаться подключенными во время длительного отключения электроэнергии, и вы можете просто зарядить батареи ИБП с помощью выхода инвертора.

Обратите внимание, что меры по повышению энергоэффективности позволяют дольше работать с резервным питанием.Например, если вы замените люминесцентные лампы эквивалентными светодиодными продуктами, которые потребляют на 50% меньше энергии, они могут прослужить вдвое дольше с резервным питанием.

Наилучшая конфигурация меняется в зависимости от нагрузок в вашем здании. Например, в офисе с большим количеством компьютеров и коммуникационного оборудования обычно требуется большой ИБП. С другой стороны, в складских помещениях, где используются только вентиляция и освещение, можно без проблем использовать обычный инвертор. Проведя профессиональную оценку ваших установок и оборудования, вы сможете определить оптимальную конфигурацию.

DIY Raspberry Pi UPS — источник бесперебойного питания для обеспечения безопасности Pi во время сбоя питания

Raspberry Pi — это маленький или мини-компьютер, который можно использовать в различных типах малых и больших встроенных, IoT, промышленных приложений IoT. Поскольку это компьютер, на котором могут работать разные операционные системы, выключение этого мини-компьютера — важная вещь для обеспечения того, чтобы все было сохранено, операционная система должным образом завершила все необходимые задачи и можно безопасно выключить устройство.Неопределенный сбой питания может повредить Pi, а также может выйти из строя операционная система. Ранее мы создали множество проектов Raspberry Pi, и большинству из них необходимо было работать круглосуточно, поэтому этот проект может работать как ИБП Raspberry Pi с крышкой и может использоваться, чтобы поддерживать Raspberry Pi во время сбоя питания.

Чтобы сохранить Pi во время непредвиденных падений мощности или непреднамеренных отключений, можно сконструировать ИБП, аналогичный резервным ИБП, которые используются в нашем доме или офисе. Здесь, в этом проекте, мы создадим источник питания ИБП RPI , который может обеспечить достаточно времени для сохранения кода в RPi, а также его можно использовать в качестве отдельного источника питания для резервного копирования.Мы построили этот проект на печатной плате и использовали PCBWay для изготовления плат для этого проекта. В следующих разделах статьи мы подробно рассмотрели полную процедуру проектирования, заказа и сборки печатных плат для этой шляпы Raspberry Pi UPS Hat от PCBWay, чтобы вы также могли легко построить ее самостоятельно. Итак, приступим.

Технические характеристики нашего ИБП Raspberry Pi

Технические характеристики нашего компактного резервного ИБП RPI приведены ниже:

  1. Работает на широко популярном литий-ионном аккумуляторе 18650.
  2. Может обеспечивать выходной ток до 1,5 А (непрерывный) и 2,5 А (пиковый).
  3. Зарядка аккумулятора через USB-кабель; можно использовать любое стандартное зарядное устройство для мобильного телефона на 5 В.
  4. Перегрузка, автоматическое отключение и функция защиты от глубокой разрядки.
  5. Выходной разъем Easy USB Type-A.
  6. Компактная установка, которая легко помещается в корпусной коробке.
  7. КПД примерно более 85%.

Поскольку этот дизайн разработан с учетом того, что Raspberry Pi может работать при полной нагрузке, важно знать, сколько текущего Raspberry Pi потребляет.Поскольку существует несколько вариантов RPI, общее потребление тока для каждого из них можно увидеть на диаграмме ниже:

Модель

Состояние

Потребляемый ток (макс.)

Rpi 4 B

400% загрузка процессора

1280 мА

RPi 3 B +

400% загрузка процессора

980 мА

RPi 3 B

400% загрузка процессора

730 мА

RPi 2 B

400% загрузка процессора

400 мА

RPi 2B с SSD

400% загрузка ЦП + 1x 64 ГБ SSD USB

1250 мА

Таким образом, имея 1.5A с запасом — это последовательный способ запуска RPI. Но, согласно таблице данных, пиковый ток может составлять 2,5 А. Важно иметь до 3А источника питания в устройстве блока питания, сохраняя при этом возможность постоянного тока 1,5А.

Компоненты, используемые для разработки нашего индивидуального источника бесперебойного питания (ИБП)
  1. Литиевая батарея 18650 1200 мАч
  2. TP4056 — Модуль зарядки / защиты аккумулятора (Micro USB)
  3. 10 мкФ 10 В конденсатор
  4. резистор 100к
  5. Резистор 620R 1%
  6. Конденсатор 10 нФ 16 В
  7. 2.Индуктор в цилиндре 2uH с номинальным током не менее 6A
  8. Конденсатор 0,1 мкФ 16 В
  9. SR360 Диод
  10. Конденсатор 100 пФ 10 В
  11. Конденсатор 22uF 10V
  12. Резистор 2 кОм с допуском 1%
  13. Резистор 6,1 кОм с допуском 1%
  14. Разъем USB A
  15. 18650 Держатель аккумулятора

Схема ИБП Raspberry Pi

Здесь, на схеме, мы можем увидеть несколько резисторов и конденсаторов, каждый из которых играет определенную роль в правильном функционировании модуля.C2 (1 мкФ) — конденсатор плавного пуска. Он используется для компенсации пускового тока, когда к выходу подключены высокие емкостные нагрузки. Благодаря этому конденсатору импульсный драйвер будет медленно включать переключающий элемент, которым является катушка индуктивности L1 (2,2 мкГн). Этот L1 будет включаться и выключаться, и во время этого он будет подавать питание на выходной диод Шоттки SR360. SR360 — это выпрямительный диод Шоттки на 3 А 60 В, который преобразует высокочастотный выход индуктора L1, а также предотвращает обратный ток в цепи.

Резисторы R3 (6,1 кОм) и R4 (2 кОм) представляют собой два резистора обратной связи, которые обеспечивают необходимую обратную связь через импульсный стабилизатор. Разделенное напряжение или напряжение обратной связи всегда будет равно 1,245 на выводе FB регулятора. Таким образом, он увеличит напряжение до 5 В и за счет этого резистора 2 кОм и 6,1 кОм напряжение обратной связи достигнет 1,245 В. C3 используется для сглаживания линии обратной связи.

620R и 10 нФ, R1 и C1 необходимы для стабильной работы преобразователя.

C4 и C5 — конденсатор фильтра для входа и выхода.

Схема и работа ИБП RPI

Давайте взглянем на схему и схему выводов ИС, используемой в нашем модуле резервного аккумулятора raspberry pi . Модуль PI UPS представляет собой простую схему, которую легко понять. Для простоты понимания я разделил модуль на две части или этапы:

  1. Схема зарядки аккумулятора
  2. Переключение регулятора наддува.

Зарядное устройство:

Для простоты и без дополнительных усилий мы выбрали отличный модуль зарядного устройства TP4056. Это зарядное устройство со всеми модулями защиты, способное заряжать литий-ионный аккумулятор с током 1 А. Кроме того, он имеет порт micro-USB. Таким образом, очень легко припаять этот модуль к печатной плате и получить функцию зарядки USB со всеми типами защиты от зарядки без дополнительных усилий по выбору компонента, проектированию схемы, а затем приобретению компонентов и, наконец, пайке его над платой. .В большинстве случаев стандартная ИС для зарядки литий-ионных аккумуляторов стоит больше, чем вся стоимость этого модуля. Таким образом, этот модуль можно использовать как недорогую альтернативу. Этот модуль также имеет дополнительную функцию светодиодных индикаторов, которая показывает нам состояние заряда литий-ионной батареи с помощью двух отдельных светодиодов.

Регулятор Switching Boost:

Литиевая батарея

обеспечивает выходное напряжение от 3,2 В до 4,2 В в режиме полного и полного заряда. Обычно напряжение АКБ остается 3.7V-4.1V при оптимальных условиях заряда. Таким образом, нам нужен какой-то импульсный стабилизатор, который мог бы обеспечить на выходе 5,0 В. В то же время нам необходимо выбрать импульсный стабилизатор с требуемым диапазоном тока, который также составляет 3А. Здесь мы выбрали импульсный стабилизатор MIC2253, который представляет собой импульсный стабилизатор на 3,5 А, который использует ШИМ 1 МГц для генерации выходного напряжения. Поскольку частота переключения составляет 1 МГц, это открывает возможности для использования катушки индуктивности меньшего размера, которая могла бы обеспечивать высокую мощность при крошечных размерах.Чтобы компенсировать напряжение аккумулятора, он имеет диапазон входного напряжения от 2,5 В до 10 В, что идеально в соответствии с нашими требованиями к конструкции.

Описание контактов MIC2253:

Прежде чем приступить к использованию какой-либо ИС, мы должны узнать об описании ее контактов, чтобы лучше понять ИС и ее функции.

→ Убедитесь, что у этого чипа есть AGND и PGND. Обе схемы одинаковы, так как оба контакта заземлены. Но это очень важная вещь, и она полностью отличается от каждой, когда дело касается проектирования печатной платы и этапа прототипирования.Мы обсудим это позже в разделе о печатных платах.

Дизайн печатной платы для нашего ИБП Raspberry Pi

А вот и сложная часть этого проекта. Почему? Давайте посмотрим на это:

  1. Температурная компенсация — выход 3 А при 5 В, что эквивалентно 15 Вт при нарушении трассировки
  2. Очень высокая частота — 1 МГц
  3. Внутренняя конструкция MIC2253

Давайте посмотрим, как с этим справиться. Но прежде чем продолжить, если вы не будете достаточно осторожны, схема выйдет из строя.Таким образом, я советую вам использовать печатную плату, представленную в дайджесте схем на нашем веб-сайте.

Неправильная конструкция печатной платы в этом чипе может привести к следующим проблемам:

  1. Непреднамеренное отключение из-за срабатывания тепловой защиты
  2. Высокие выбросы на выходе
  3. Очень высокая пульсация из-за неопределенного шума от земли
  4. Отскок от земли может повлиять на RPI.

1. Температурная компенсация — выход 3 А при 5 В, что эквивалентно 15 Вт при нарушении трассировки:

Во-первых, всегда делайте платы высокой мощности в двухслойном исполнении, где требуются радиаторы для печатных плат.

Используемая пластина заземления — это общая рассеиваемая площадь, на которой будет происходить теплопроводность от микросхемы.

Рассчитаем площадь поверхности —

Размер платы согласно проектным данным: 87мм x 38мм = 3306 кв. Мм .

Теперь площадь поверхности меди при 100% заполнении будет эквивалентна 3306 x 2 = 6612 кв. Мм .

Мой проект показывает, что общая засыпка грунта на полигоническом слое эквивалентна 69,73% .Допустим, 70%.

Таким образом, мое поколение радиаторов на 2-х мерном изображении будет: 6612 x 70% = 4628 кв. Мм

Теперь, поскольку это медь, она имеет физическую толщину. Доступны два типа толщины меди: 30 мкм и 70 мкм. 70um дороже. Таким образом, в трехмерной форме моя медная поверхность будет 4628 + (4628 x 0,035) = 4789 для 35 мкм, а для 70 мкм это будет примерно 5000 кв. Мм.

Это очень плохой и грубый расчет, поскольку теплопроводность не будет равномерной во всех местах, в зависимости от рабочей и окружающей температуры, атмосферного давления и всего остального.Но не будем углубляться в эту часть. Если приблизительно предположить, что 50% из 5000 кв. Мм выполняет свою работу, то 2500 кв. Мм. будет нашим радиатором для устройства MIC2253, чего вполне достаточно.

Теперь следы сделаны толще в соответствии с минимальным стандартом IPC, чтобы компенсировать это:

2. Очень высокая частота — 1 МГц:

Диапазон

МГц — довольно первый этап проектирования ВЧ. На этом этапе стало трудно изолировать дорожки от паразитной емкости и создать мини-версию схемы RLC, поскольку дорожки сделаны из меди, они имеют сопротивление и индуктивность, а стеклянные платы между двумя дорожками являются емкостными.

Избегайте следа FB для прохождения близко через индуктор или ниже от индуктора.

Предусмотрено заземление контакта FB на вводе для MIC2253.

3. Внутренняя конструкция MIC2253:

В конструкции MIC2253 используются зашумленные и сложные аналоговые схемы, а также мощные транзисторы. Теперь, когда ток составляет 3,5 А, во время запуска большая нагрузка вызовет небольшое падение напряжения, и это приведет к проблеме в чувствительном компараторе.

См. Внутреннюю конструкцию, где показаны два отдельных заземления, но они являются общими:

Синий — это аналоговое заземление, которое используется полностью аналоговыми схемами, тогда как красный — это заземление питания, используемое всеми цепями нагрузки, и ток нагрузки L i будет проходить через проходной транзистор. Разделение этих двух необходимо.

Красный — это заземление питания, а синий — аналоговое заземление, которое полностью отделено от фактического заземления.Он даже не подключен на нижней стороне:

R4 и C1 подключаются только через отдельный путь заземления на верхней стороне, а не даже в полигонической плоскости заземления внизу.

Изготовление ИБП Raspberry Pi с использованием PCBWay.

Теперь, когда мы понимаем, как работают схемы, мы можем приступить к созданию печатной платы для нашего проекта. Щелкните ссылку, чтобы просмотреть все проекты печатных плат, которые мы создали ранее, вы также можете найти файл дизайна платы NodeMCU GPS Tracker и файл GERBER по ссылке ниже.

Дизайн и файлы Gerber

Теперь, когда наш дизайн готов, пришло время изготовить их с помощью файла Gerber. Изготовить печатную плату из PCBWay очень просто; просто следуйте инструкциям, приведенным ниже.

Шаг 1: Перейдите на https://www.pcbway.com/, зарегистрируйтесь, если это ваш первый раз. Затем на вкладке прототипа печатной платы введите размеры вашей печатной платы, количество слоев и количество требуемых печатных плат.

Шаг 2 : Продолжите, нажав кнопку «Цитировать сейчас».Вы попадете на страницу, где при необходимости установите несколько дополнительных параметров, например, используемый материал, расстояние между дорожками и т. Д., Но обычно значения по умолчанию работают нормально.

Шаг 3: Последний шаг — загрузить файл Gerber и продолжить оплату. Чтобы убедиться, что процесс проходит гладко, PCBWAY проверяет, действителен ли ваш файл Gerber, прежде чем продолжить оплату. Таким образом, вы можете быть уверены, что ваша печатная плата удобна для изготовления и будет доставлена ​​вам, как только вы сделаете это.

Сборка нашей платы ИБП Raspberry Pi

Через несколько дней мы получили нашу печатную плату от PCBWay в аккуратной упаковке, и, как вы можете видеть ниже, качество печатной платы было как всегда хорошим. Верхний и нижний слои были выполнены безупречно с правильным интервалом между визами и дорожками.

Убедившись, что дорожки и следы правильные, я приступил к сборке печатной платы. Полностью спаянная плата выглядела так, как показано на изображении ниже.

Плата ИБП Raspberry Pi — тестирование и работа

Как только плата была готова, я начал ее тестировать. Я включил его с помощью адаптера micro-USB и использовал мультиметр, чтобы проверить выход на стороне повышающего преобразователя.

Как мы можем наблюдать с помощью мультиметра, выходное повышенное напряжение от литий-ионного элемента 3,7 В составляет 5 В, чего достаточно для питания нашего модуля Raspberry Pi. Поскольку у нас есть выход 5 В, пришло время подключить наш модуль Rpi.

Как ясно видно, модуль Rpi получает питание с повышенным напряжением 5 В от литий-ионного элемента 3,7 В. Красный светодиод также может светиться, поскольку элемент в настоящее время заряжается и одновременно обеспечивает питание Rpi. Как только элемент будет полностью заряжен, мы увидим синий светодиод, и тогда мы будем готовы отсоединить наш адаптер постоянного тока от TP4056.

Для получения более подробной информации о конструкции, пожалуйста, посмотрите видео по ссылке внизу этой страницы.Надеюсь, вы узнали что-то новое сегодня. Для получения дополнительной информации и вопросов, пожалуйста, оставьте сообщение в разделе форума, чтобы получить ответ. Спасибо.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *