Громкоговоритель схема: ГРОМКОГОВОРИТЕЛЬ

Содержание

ГРОМКОГОВОРИТЕЛЬ

   Здравствуйте. Опять эту статью решено посвятить автолюбителям. Сегодня подлежит к рассмотрению громкоговоритель для авто. Наверное все прекрасно знают, о чем пойдет речь. Милиция при нарушении кричит за машиной номера, чтобы водитель понял и остановился, но конечно кричит при помощи устройства под названием громкоговоритель. Именно его мы сегодня приготовим своими руками. 

   Устройство собрано из доступных деталей и имеет очень простую конструкцию, собственно как и все статьи на сайте радиосхемы. Итак, о самом устройстве. Усилитель мощности, динамическая головка и микрофон без предварительного усилителя, вот и вся конструкция самого громкоговорителя. Микрофон электретный, применен от китайского магнитофона, динамическая головка от колонок С-30 (25 ГД), усилитель мощности собран на интегральной микросxеме TDA2003 включенной по мостовому варианту. Таким образом удалось получить выxодную мощность порядка 20 ватт. Вот xарактеристики используемого УМЗЧ:


 Напряжение питания — 14 В
 Ток потребления при максимальной выходной мощности – 4 А
 Максимальная выходная мощность – 20 Вт
 Диапазон частот — 40–40000 Гц
 Сопротивление нагрузки – 4 Ом
 Входное напряжение – 50 мВ.  

   Почему был выбран именно этот вариант усилителя? Просто у него очень большая чувствительность и приличная мощность, плюс к этому ничтожная цена — всего 1 доллар за штуку. Усилители нужно ставить на теплоотвод во избежание от перегрева. У меня на плате собраны сразу два усилителя, поскольку требовалось наличие более громкого звука, соответственно использовал и две динамические головки. Итак, после сборки усилителя мощности берем электретный микрофон. Внимательно смотрим на его контакты — один из контактов линиями подключен к корпусу, этот контакт нужно подключить к минусу общего питания. К выxоду микрофона подключен конденсатор 0,1 микрофарад и резистор 10 килоом, второй конец резистора нужно подключить к плюсу общего питания, а конденсатор подключен к вxоду усилителя мощности. 



   Подробно смотрите сxему. Готовый микрофон нужно установить в маленьком пластмассовом корпусе и поставить вместе с усилителем мощности вблизи к водителю. Нужно на плюс микрофона поставить кнопку и общий выключатель по питанию. Усилитель желательно поставить в корпус от автомобильного магнитофона, но можно использовать практически любой подxодящий.


   Динамическая головка — громкоговоритель поставлена в цилиндрический корпус и закреплена в удобном месте под капотом. При нажатии кнопки можно говорить, а ваш голос будет издаваться из динамической головки и будет слышен всем. В моём варианте конструкция громкоговорителя собрана в пластмассовой трубе. В обе стороны трубы поставлены динамические головки. Можно дополнить устройство оригинальным сигналом и вашу машину не отличить от милицейской. Использование подобного устройства не законно, не забывайте об этом! Автор — АКА.  

   Форум по громкоговорителям

   Форум по обсуждению материала ГРОМКОГОВОРИТЕЛЬ

Электростатические громкоговорители ( продол._3) — Динамики — Усилители НЧ и все к ним

Изготовление электростатических громкоговорителей в любительских условиях

С. ЛАЧИНЯН, пос. ЭнергетикАлмаатинской обл., Казахстан

Подключение к усилителю

Громкоговоритель, схема которого представлена на рис. 17, можно подключать практически к любому УМЗЧ, рассчитанному на динамические громкоговорители. Как показала практика, при питании электростатических громкоговорителей от согласующих трансформаторов целесообразно применение отрицательной обратной связи непосредственно с трансформатора, как показано на рис. 21. В этом случае корректирующая цепь из резисторов R6—R8 и конденсаторов С1, С2 предназначена для устранения самовозбуждения усилителя в результате фазового сдвига на высоких частотах.

Один из практических вариантов совмещения электростатического громкоговорителя и транзисторного УМЗЧ показан на рис. 22, где использована популярная микросхема TDA7294 (или ее более надежный аналог TDA7293 с несколько иной схемой подключения). Общая ООС разделена в этом усилителе на две цепи: непосредственно с выхода усилителя и с обмотки согласующего трансформатора, в качестве которого используется описанный здесь вариант конструкции. Фа-зосдвигающая цепь R11R12C13 предназначена для сохранения устойчивости УМЗЧ при заданной глубине ООС (12 дБ).

Конденсатор С7 устанавливают в случае самовозбуждения усилителя микросхемы.

Входной фильтр R1R2C3C4 определяет частоту среза ФВЧ, ограничивающего полосу воспроизводимых частот, его подбирают при настройке системы с сабвуфером. Подбором резистора R4 при необходимости корректируют чувствительность усилителя, при этом движок подстроечно-го резистора R5 должен быть установлен в левом по схеме положении. Микросхему следует установить на тепло-отвод площадью не менее 1000 см’.

При глубине ООС около 12… 16 дБ удается заметно снизить нелинейные искажения системы трансформатор-громкоговоритель без существенной потери «прозрачности» звучания. Для электростатических излучателей также возможно введение акустической обратной связи наподобие ЭМОС. Возможность улучшить характеристики системы (в частности, качество звучания громкоговорителя) за счет ООС связана с тем, что в результате высокого КПД электростатического преобразователя его реакция на трансформаторе (т. е. работа громкоговорителя в режиме генератора сигнала), вызванная нелинейностью излучателя, создает достаточно большой сигнал рассогласования.

Кроме того, в отличие от динамических громкоговорителей, значительная часть этого сигнала связана непосредственно с процессом излучения звука.

Здесь следует отметить, что по причине специфики реакции обычных динамических громкоговорителей «неинформативный» сигнал для них в такой ООС составит, по мнению автора, 97…99 % и поэтому эффект непосредственной коррекции характеристик акустического преобразователя посредством ООС практически отсутствует.

Небольшая переделка согласующего трансформатора позволяет использовать его в качестве выходного для обычных ламповых усилителей мощности. Например, на трансформаторе ТС-180, удалив экраны и заменив бумажные прокладки скотчем, можно не сматывать сетевые обмотки и использовать их как первичные для анодных цепей ламп выходного каскада. При этом, как правило, упрощается введение ООС и удается получить более высокое качество звучания, чем в случае использования транзисторных усилителей или ламповых усилителей, работающих на низкоомную нагрузку.

Характеристики громкоговорителя

Частотный диапазон электростатического громкоговорителя без акустического оформления ограничен снизу геометрическими размерами излучателя и в гораздо меньшей степени его резонансными частотами, поэтому громкоговоритель с указанными размерами начинает эффективно воспроизводить звук выше 300 Гц. Однако установка громкоговорителей по углам комнаты или в акустической нише позволяет заметно расширить воспроизводимый диапазон, а в некоторых случаях даже обходиться без сабвуфера.

Поскольку масса пленки соизмерима с массой прилегающего к ее поверхности воздуха, верхняя воспроизводимая частота в основном зависит от диэлектрических потерь в изоляторе и ограничениями на ток, который способно выдержать токопроводящее покрытие мембраны. В принципе громкоговоритель может воспроизвести сигнал частотой 100 кГц, но при большой мощности ультразвукового сигнала происходит выгорание проводящего покрытия в местах контакта.

Практически же для электростатической АС верхняя воспроизводимая частота зависит в основном от параметров усилителей и согласующих трансформаторов, поэтому с согласующим трансформатором на магнитопроводе из обычной трансформаторной стали она редко превышает 14. .. 15 кГц. Бестрансформаторный усилитель, снабженный соответствующей коррекцией, позволяет воспроизводить сигналы частотой до 50…70 кГц. Однако при воспроизведении сигналов самых верхних звуковых и ультразвуковых частот вступают в силу ограничения по току, который способен отдать в нагрузку усилитель. В любом случае «настоящие» высокие частоты можно получать только от пленочных громкоговорителей, и предлагаемые громкоговорители в этом смысле не исключение.

Собственный электромеханический КПД электростатического громкоговорителя может достигать 80…90 %, поэтому такие характеристики, как чувствительность и излучаемая мощность, в значительной степени связаны с системой питания и акустическим оформлением. Вследствие высокого КПД потребляемая громкоговорителем мощность на средних частотах обычно весьма незначительна.
Имея навыки изготовления подобных громкоговорителей, можно значительно увеличить их чувствительность (и громкость звука), снижая зазор между мембраной и неподвижным электродом до 1,5.

..2 мм.

Кроме того, можно увеличивать поляризующее напряжение; так отдельные экземпляры превосходно работают при поляризующем напряжении, достигающем 12…14кВ. Увеличивать с этой же целью коэффициент трансформации часто нежелательно, поскольку с его ростом снижается верхняя граничная частота воспроизведения. Однако и здесь есть значительный простор для эксперимента: можно, например, уменьшать число витков первичной обмотки, одновременно поднимая частоту раздела во избежание насыщения магнитопровода трансформатора на низких частотах.

Стереоэффект и расположение громкоговорителей

К особенностям электростатических громкоговорителей относится излучение звука когерентно колеблющейся поверхностью, размеры которой могут значительно превышать длину волны. В результате на частотах, где длина волны соизмерима с линейными размерами излучателя, в точке прослушивания наблюдается сложная интерференционная картина, вызванная сложением и вычитанием колебаний, приходящих от разных частей излучающей поверхности (рис. 23). Как следствие, в диапазоне воспроизведения возникает интерференционная «гребенка», приводящая к значительной частотно-зависимой неравномерности звукового давления.

Этот недостаток приводит к повышенной утомляемости слушателя и «тяжелому», хотя и весьма эффектному звуку. Образно это явление может быть проиллюстрировано примером из оптики, попробуйте рассматривать объект или читать, освещая поле зрения когерентным излучением лазерной указки. К сожалению, этим недостатком страдают все известные автору фирменные электростатические системы. Кроме того, большая поверхность излучения у плоских громкоговорителей приводит к узкой диаграмме направленности, в результате зона нормального прослушивания и стереоэффекта значительно ограничена.

В предлагаемой конструкции приблизить параметры звучания к оптимуму удается, используя следующие решения.

Громкоговоритель изготовлен в виде узкой и длинной полосы, которая располагается вертикально, в результате в горизонтальной плоскости его параметры в области средних частот приближаются к «точечному» излучателю. Для дальнейшего улучшения качества звучания и расширения зоны стереоэффекта предлагается в каждом канале использовать по два громкоговорителя, расположенных под углом друг к другу (рис. 24,а).

В результате два когерентных источника плоских волн формируют вдоль биссектрисы угла раскрытия 25 виртуальный источник объемных волн. Еще лучшие результаты удается получить, используя изогнутые громкоговорители с определенным фокусным расстоянием (фото на рис. 2 в первой части статьи), поскольку слух, в отличие от зрения, в качестве источника звука воспримет точку фокуса. Поэтому комбинация из нескольких таких громкоговорителей позволяет формировать виртуальный источник сферических волн. Как показала практика, в этом случае удается одновременно с расширением зоны стереоэффекта получить значительное улучшение всех других характеристик.

Такое расположение ведет к значительному ослаблению интерференционной «гребенки» за счет заполнения экстремумов интенсивности излучением вторичных источников.

Это делает звук более естественным, гармоничным и «легким». В зависимости от условий прослушивания рекомендуемый угол раскрытия для предлагаемых в статье громкоговорителей изменяют в интервале 90…160°, как правило, наиболее оптимальном в пределах 110…140°. С той же целью рекомендуется ориентировать громкоговорители под небольшим углом у в вертикальной плоскости (рис. 24,6), как следствие, в этом случае заметно возрастает «воздушность» на высоких частотах.

Известно, что электростатические громкоговорители необходимо располагать на значительном расстоянии от отражающих поверхностей (1,5…2 м), что связано со значительным излучением звука тыльной стороной громкоговорителя и эффектом, когда отраженный сигнал интерферирует непосредственно на мембране излучателя (эффект волнового демпфирования). Кроме того, отраженный под малыми углами когерентный звук маскирует прямые звуки от акустической системы и заметно снижает пространственное разрешение в режиме стереофонии (также свойственный большинству известных электростатических систем недостаток).
Благодаря угловому расположению громкоговорителей удается ослабить отраженные под малыми углами волны и, как следствие, получить неплохое разрешение стереопанорамы. Для этой же цели рекомендуется поэкспериментировать с поглощающими материалами, располагаемыми на некотором расстоянии от тыльной стороны громкоговорителей.

У последних поколений разработанных автором громкоговорителей, имеющих заданное фокусное расстояние, перечисленные недостатки сведены к минимуму. Поскольку удается получить значительную величину прямого сигнала по сравнению с отраженным, а с тыльной стороны возникает рассеивание излучения, это позволяет работать на малых расстояниях от отражающих поверхностей.
В заключение хотелось бы добавить, что, преодолев технические трудности, естественные при изготовлении первых электростатических громкоговорителей, в дальнейшем вы будете сполна вознаграждены как высоким качеством звука, так и возможностью совершенствовать свою акустическую систему на основе приобретенного опыта.

От редакции.

Автор предоставил нам для испытаний комплект из двух электростатических громкоговорителей с блоком согласующих трансформаторов, изготовленных по описанной в статье технологии. Нижняя граничная частота выбрана около 300 Гц. Их проверка совместно с НЧ секцией высококачественной активной АС, работающей в полосе 20…300 Гц с электроакустической ОС, подтвердила высокое качество звуковоспроизведения музыки разных жанров в диапазоне частот до 16 кГц. Причем значение верхней границы частот обусловлено существенным влиянием емкости соединительных кабелей (сравнимой с емкостью электродов) и индуктивностью рассеяния трансформатора на магнитопроводе
от ТС-180.

Громкоговоритель, размещаемый в непосредственной близости от согласующего трансформатора, имеет полосу около 20 кГц при чувствительности 90 дБ, приведенной к 1 м. Импеданс громкоговорителя с описанным в статье фильтром-пробкой оказывается не менее 4 Ом. К особенности этих громкоговорителей можно отнести обостренную направленность в области высоких частот, что для дальней зоны прослушивания представляется достоинством. В электростатической АС, конструируемой для прослушивания в ближней зоне, автор рекомендует также разделение секций неподвижных электродов для возбуждения их от раздельных согласующих трансформаторов в полосах СЧ и ВЧ с соот-
ветствующим расширением полосы воспроизводимых частот.

Помимо упомянутых в статье вариантов усилителей, пригодных для работы с электростатическими громкоговорителями, читателям журнала можно порекомендовать использовать схемотехнику недавно опубликованных в «Радио»усилителей, например, описанных в статьях А. Чивильчи «Повышение мощности усилителя на микросхеме TDA7294′ (2005, № 11) и С. Комарова «Ламповые УМЗЧ с трансформаторами ТАН» (2005, № 5). Применив в ламповом УМЗЧ унифицированный трансформатор серии ТА в качестве выходного, можно получить на электродах электростатического громкоговорителя переменное напряжение до 1500 В эфф.

Окончание Начало см. в «Радио», 2006, № 1, 2, 3

Устройство динамика (громкоговорителя).

Устройство, обозначение и основные параметры электродинамического громкоговорителя

Для начала расставим все точки над «i» и разберёмся в терминологии.

Электродинамический громкоговоритель, динамический громкоговоритель, динамик, динамическая головка прямого излучения – это разнообразные названия одного и того же прибора служащего для преобразования электрических колебаний звуковой частоты в колебания воздуха, которые и воспринимаются нами как звук.

Звуковые динамики или по-другому динамические головки прямого излучения вы не раз видели. Они активно применяются в бытовой электронике. Именно громкоговоритель преобразует электрический сигнал на выходе усилителя звуковой частоты в слышимый звук.

Стоит отметить, что КПД (коэффициент полезного действия) звукового динамика очень низкий и составляет около 2 – 3%. Это, конечно, огромный минус, но до сих пор ничего лучше не придумали. Хотя стоит отметить, что кроме электродинамического громкоговорителя существуют и другие приборы для преобразования электрических колебаний звуковой частоты в акустические колебания. Это, например, громкоговорители электростатического, пьезоэлектрического, электромагнитного типа, но широкое распространение и применение в электронике получили громкоговорители электродинамического типа.

Как устроен динамик?

Чтобы понять, как работает электродинамический громкоговоритель, обратимся к рисунку.

Динамик состоит из магнитной системы – она расположена с тыльной стороны. В её состав входит кольцевой магнит. Он изготавливается из специальных магнитных сплавов или же магнитной керамики. Магнитная керамика – это особым образом спрессованные и «спечённые» порошки, в составе которых присутствуют ферромагнитные вещества – ферриты. Также в магнитную систему входят стальные фланцы и стальной цилиндр, который называют керном. Фланцы, керн и кольцевой магнит формируют магнитную цепь.

Между керном и стальным фланцем имеется зазор, в котором образуется магнитное поле. В зазор, который очень мал, помещается катушка. Катушка представляет собой жёсткий цилиндрический каркас, на который намотан тонкий медный провод. Эту катушку ещё называют звуковой катушкой. Каркас звуковой катушки соединяется с диффузором – он то и «толкает» воздух, создавая сжатия и разряжения окружающего воздуха – акустические волны.

Диффузор может выполняться из разных материалов, но чаще его делают из спрессованной или отлитой бумажной массы. Технологии не стоят на месте и в ходу можно встретить диффузоры из пластмассы, бумаги с металлизированным покрытием и других материалов.

Чтобы звуковая катушка не задевала за стенки керна и фланец постоянного магнита её устанавливают точно в середине магнитного зазора с помощью центрирующей шайбы. Центрирующая шайба гофрирована. Именно благодаря этому звуковая катушка может свободно двигаться в зазоре и при этом не касаться стенок керна.

Диффузор укреплён на металлическом корпусе – корзине. Края диффузора гофрированы, что позволяет ему свободно колебаться. Гофрированные края диффузора формируют так называемый верхний подвес, а нижний подвес – это центрирующая шайба.

Тонкие провода от звуковой катушки выводятся на внешнюю сторону диффузора и крепятся заклёпками. А с внутренней стороны диффузора к заклёпкам крепится многожильный медный провод. Далее эти многожильные проводники припаиваются к лепесткам, которые закреплены на изолированной от металлического корпуса пластинке. За счёт контактных лепестков, к которым припаяны многожильные выводы звуковой катушки, динамик подключается к схеме.

Как работает динамик?

Если пропустить через звуковую катушку динамика переменный электрический ток, то магнитное поле катушки будет взаимодействовать с постоянным магнитным полем магнитной системы динамика. Это заставит звуковую катушку либо втягиваться внутрь зазора при одном направлении тока в катушке, либо выталкиваться из него при другом. Механические колебания звуковой катушки передаются диффузору, который начинает колебаться в такт с частотой переменного тока, создавая при этом акустические волны.

Обозначение динамика на схеме.

Условное графическое обозначение динамика имеет следующий вид.

Рядом с обозначением пишутся буквы B или BA, а далее порядковый номер динамика в принципиальной схеме (1, 2, 3 и т. д.). Условное изображение динамика на схеме очень точно передаёт реальную конструкцию электродинамического громкоговорителя.

Основные параметры звукового динамика.

Основные параметры звукового динамика, на которые следует обращать внимание:

  • Номинальное электрическое сопротивление (Ом). Медный провод звуковой катушки обладает активным сопротивлением. Активное сопротивление – это сопротивление провода при постоянном токе. Его можно легко измерить с помощью цифрового мультиметра в режиме омметра. Читайте измерение сопротивления цифровым мультиметром.

    Но кроме активного сопротивления звуковая катушка обладает ещё и реактивным сопротивлением. Реактивное сопротивление образуется потому, что звуковая катушка, это, по сути, обычная катушка индуктивности и её индуктивность оказывает сопротивление переменному току. Реактивное сопротивление зависит от частоты переменного тока.

    Активное и реактивное сопротивление звуковой катушки образует полное сопротивление звуковой катушки. Оно обозначается буквой Z (так называемый, импеданс). Получается, что активное сопротивление катушки не меняется, а реактивное сопротивление меняется в зависимости от частоты тока. Чтобы внести порядок реактивное сопротивление звуковой катушки динамика измеряют на фиксированной частоте 1000 Гц и прибавляют к этой величине активное сопротивление катушки.

    В итоге получается параметр, который и называется номинальное (или полное) электрическое сопротивление звуковой катушки. Для большинства динамических головок эта величина составляет 2, 4, 6, 8 Ом. Также встречаются динамики с полным сопротивлением 16 Ом. На корпусе импортных динамиков, как правило, указывается эта величина, например, вот так – или 8 Ohm.

    Стоит отметить тот факт, что полное сопротивление катушки где-то на 10 – 20% больше активного. Поэтому определить его можно достаточно просто. Нужно всего лишь измерить активное сопротивление звуковой катушки омметром и увеличить полученную величину на 10 – 20%. В большинстве случаев можно вообще учитывать только чисто активное сопротивление.

    Номинальное электрическое сопротивление звуковой катушки является одним из важных параметров, так как его необходимо учитывать при согласовании усилителя и нагрузки (динамика).

  • Диапазон частот – это полоса звуковых частот, которые способен воспроизвести динамик. Измеряется в герцах (Гц). Напомним, что человеческое ухо воспринимает частоты в диапазоне 20 Гц – 20 кГц. И, это только очень хорошее ухо :).

    Никакой динамик не способен точно воспроизвести весь слышимый частотный диапазон. Качество звуковоспроизведения будет всё-равно отличаться от того, что требуется.

    Поэтому слышимый диапазон звуковых частот условно разделили на 3 части: низкочастотную (НЧ), среднечастотную (СЧ) и высокочастотную (ВЧ). Так, например, НЧ-динамики лучше всего воспроизводят низкие частоты – басы, а высокочастотные – «писк» и «звон» – их поэтому и называют пищалками. Также, есть и широкополосные динамики. Они воспроизводят практически весь звуковой диапазон, но качество воспроизведения у них среднее. Выигрываем в одном – перекрываем весь диапазон частот, проигрываем в другом – в качестве. Поэтому широкополосные динамики встраивают в радиоприёмники, телевизоры и прочие устройства, где порой не требуется получить высококачественный звук, а нужна лишь чёткая передача голоса и речи.

    Для качественного воспроизведения звука НЧ, СЧ и ВЧ-динамики объединяются в едином корпусе, снабжаются частотными фильтрами. Это акустические системы. Так как каждый из динамиков воспроизводит только свою часть звукового диапазона, то суммарная работа всех динамиков значительно увеличивает качество звука.

    Как правило, низкочастотные динамики рассчитаны на воспроизведение частот от 25 Гц до 5000 Гц. НЧ-динамики обычно имеют диффузор большого диаметра и массивную магнитную систему.

    Динамики СЧ рассчитаны на воспроизведение полосы частот от 200 Гц до 7000 Гц. Габариты их чуть меньше НЧ-динамиков (зависит от мощности).

    Высокочастотные динамики прекрасно воспроизводят частоты от 2000 Гц до 20000 Гц и выше, вплоть до 25 кГц. Диаметр диффузора у таких динамиков, как правило, небольшой, хотя магнитная система может быть достаточно габаритная.

  • Номинальная мощность (Вт) – это электрическая мощность тока звуковой частоты, которую можно подвести к динамику без угрозы его порчи или повреждения. Измеряется в ваттах (Вт) и милливаттах (мВт). Напомним, что 1 Вт = 1000 мВт. Подробнее о сокращённой записи числовых величин можно прочесть здесь.

    Величина мощности, на которую рассчитан конкретный динамик, может быть указана на его корпусе. Например, вот так – 1W (1 Вт).

    Это значит, что такой динамик можно легко использовать совместно с усилителем, выходная мощность которого не превышает 0,5 – 1 Вт. Конечно, лучше выбирать динамик с некоторым запасом по мощности. На фото также видно, что указано номинальное электрическое сопротивление – (4 Ом).

    Если подать на динамик мощность большую той, на которую он рассчитан, то он будет работать с перегрузкой, начнёт «хрипеть», искажать звук и вскоре выйдет из строя.

    Вспомним, что КПД динамика составляет около 2 – 3%. А это значит, что если к динамику подвести электрическую мощность в 10 Вт, то в звуковые волны он преобразует лишь 0,2 – 0,3 Вт. Довольно немного, правда? Но, человеческое ухо устроено весьма изощрённо, и способно услышать звук, если излучатель воспроизводит акустическую мощность около 1 – 3 мВт на расстоянии от него в несколько метров. При этом к излучателю – в данном случае динамику – нужно подвести электрическую мощность в 50 – 100 мВт. Поэтому, не всё так плохо и для комфортного озвучивания небольшой комнаты вполне достаточно подвести к динамику 1 – 3 Вт электрической мощности.

Это всего лишь три основных параметра динамика. Кроме них ещё есть такие, как уровень чувствительности, частота резонанса, амплитудно-частотная характеристика (АЧХ), добротность и др.

Порой на практике приходится соединять несколько динамиков или акустических систем. А что нужно знать при этом? Подробности в статье – Как соединять динамики?

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Уличные громкоговорители для систем оповещения: схема подключения громкоговорителей

Рупорные громкоговорители являются одними из наиболее востребованных среди направленных оповещателей.Основная их характеристика — высокое звуковое давление. Для распределения звука в конкретном направлении в этих громкоговорителях используется труба с переменным сечением — рупор. Он согласует нагрузку механической системы оповещателя и окружающей среды. Для озвучивания уличных мероприятий используется громкоговоритель рупорный всепогодный во влагонепроницаемой корпусе с защитой от пыли.

Рупорные громкоговорители отличаются высокой направленностью, хорошо работают на дальнее расстояние и идеальны для трансляции звука в местах с высоким уровнем шума, протяженных помещениях и на открытых площадках: стадионы, производственные цеха и территории, рынки, проходные.
Угол раскрытия диаграммы звуковой направленности рупорного громкоговорителя составляет около 30 градусов.

Рупорный громкоговоритель способен охватывать узкий диапазон частот, а некоторые модели могут работать в диапазоне до 20000 Гц и применяются для трансляции музыкального контента. Его выходная мощность может варьироваться от 1 до нескольких сотен Ватт. Для того, чтобы качественно озвучивать большие площади рупорные громкоговорители, установленные рядом, разворачиваются в противоположные стороны.

Для качественной передачи высоких частот лучше использовать рупор с площадью поперечного сечения, изменяющейся по экспоненциальному закону. От других видов оповещателей рупорный громкоговоритель отличается также высоким КПД — соотношение мощности и звукового давления.

В зависимости от особенностей конструкции различают:

  • громкоговорители с широким рупором и встроенным электродинамиком в форме конуса с площадью основания, равной площади входного отверстия рупора
  • стандартный громкоговоритель с встроенным электродинамиком с жесткой диафрагмой, которая превышает входное отверстие рупора в несколько раз

В каталоге Унибелус представлены широкополосные рупорные громкоговорители от ведущих производителей. Активные рупоры могут использоваться в системах видеонаблюдения для озвучивания локальных точек внутри и снаружи зданий. Купить громкоговоритель рупорный можно, оформив заявку онлайн или по телефону.

Apart CMR5 — двухполосный потолочный громкоговоритель, работающий в 100В трансляционных линиях и в низкоомных акустических цепях.

Внутри громкоговорителя установлен 5.25″ динамик с бумажным диффузором и отдельным 1″ ВЧ — драйвером и эта конструктивная особенность является оптимальным решением для передачи музыкальных программ или речевых сообщений.

С помощью переключателя на трансформаторе CMR5, можно установить необходимое значение мощности для различных помещений: коридоров, холлов, кабинетов, аудиторий и т.д.

Корпус CMR5 изготовлен из ABS-пластика, стальная защитная решетка.

С помощью 4 винтов, спрятанных за съемной решеткой, громкоговоритель CMR5 легко и быстро монтируется в потолок.

Дополнительно можно заказать блок настенного/потолочного крепления CMRBB и CMRBBI.

Схема подключения громкоговорителя CMR5 к 100В выходу усилителя.

При подключении к 100 В трансляционной линии, выберите отвод трансформатора на клеммной колодке громкоговорителя (подписаны), который соответствует мощности, на которую вы хотите подключить акустическую систему. Модель CMR20T может подключаться на 6, 3 и 1,5 Вт. Суммарная мощность всех акустических систем не должна превышать мощность самого усилителя или канала усилителя, если усилитель многоканальный. Например, к усилителю, мощностью 60 Вт можно подключить не более 10-ти 6 Вт громкоговорителей, т.е, суммарная мощность громкоговорителей должна быть меньше мощности усилителя.

Схема подключения громкоговорителя CMR5 к низкоомному выходу усилителя.

При подключении громкоговорителя импедансом 8 Ом, (используются усилители с низкоомными выходами), акустическая система подключается в обход трансформатора, фактически напрямую к динамической головке. К усилителю с выходом 4 Ом (минимально возможная нагрузка) на канал можно подключить по 2 громкоговорителя на каждый из каналов.

Методика расчета количества громкоговорителей при озвучивании различных помещений

Если необходимо качественное озвучивание помещения, (трансляция фоновой музыки в супермаркетах, тренажерных залах, ресторанах и т. д.) количество и мощность громкоговорителей необходимо выбирать исходя из геометрических размеров помещения, учитывая при этом только полезную площадь, т.е. ту, где находятся слушатели. Также следует помнить, что наилучшее качество озвучивания получается при использовании потолочных громкоговорителей, так как это позволяет добиться более равномерного звука

Рис. 1. Расчет количества и мощности громкоговорителей

Таким образом, для равномерного озвучивания помещения требуется рассчитать и установить громкоговорители так, чтобы «пятна» от них располагались с некоторым перекрытием. Для того чтобы упростить расчет необходимого количества громкоговорителей исходя из площади помещения и высоты потолков, ниже приводится таблица 1.


Таблица 1. Расчет количества громкоговорителей

Суммарную мощность громкоговорителей для помещения можно выбрать по номограмме (см. рис. 2).


Рис. 2. Номограмма расчета суммарной мощности громкоговорителей

Примечание. При расчете следует учитывать, что если в помещении имеются открытые окна, двери и т.п., то мощность громкоговорителей выбирается на 1 Вт больше на каждую дверь.

Приведем пример. Требуется рассчитать количество и мощность громкоговорителей для магазина площадью 150 м2 и высотой потолков 4,5 м.

Для определения количества громкоговорителей воспользуемся таблицей. Становится понятно, что требуется 5 громкоговорителей.

Для определения суммарной мощности громкоговорителей воспользуемся номограммой: при уровне звука порядка 95,5 Дб суммарная мощность составит 13,5 Вт. Поэтому выберем 5 громкоговорителей по 3 Вт (их суммарная мощность составит 15 Вт).

Необходимо заметить, что человеческое ухо ощущает именно звуковое давление, которое зависит как от мощности громкоговорителя, так и от его коэффициента полезного действия. Разница по звуковому давлению в 3 Дб означает разницу в 2 раза, а в 9 Дб — в 8 раз.

Для того чтобы понять примерную мощность громкоговорителей, приведем некоторые уровни звукового давления: крик на ухо — 90 — 95 Дб, шум пылесоса — 80 Дб, звук на концерте и при раскатах грома — 120 Дб, шум на заводе — 100 Дб, разговор — 70 Дб, общий шум в супермаркете — 65 Дб, а в больнице -30 Дб,

Чтобы Ваши сообщения было слышно на уровне шума, их громкость должна превышать его уровень необходимо на З-10 Дб

Если невозможно установить потолочные громкоговорители, можно установить настенные. Они устанавливаются следующим образом:

  • желательно устанавливать громкоговорители на высоте 1,5 м для сидящих и 2 — 2,2 м для стоящих слушателей;
  • если ширина помещения менее 5 м, то колонки устанавливаются по длине, с шагом 4 — 6 м, избегая углов;
  • если ширина помещения больше 5 м, то колонки располагаются на противоположных стенах в шахматном порядке, с шагом 8 — 12 м.

В коридорах, галереях и других протяженных помещениях лучше устанавливать направленные громкоговорители. При этом располагать их в середине коридора, направляя в противоположные стороны. Дальность оповещения такого громкоговорителя составляет порядка 20 -30 м.

В рупорных громкоговорителях звуковая энергия собирается в мощный поток, и в них усиливаются наиболее слышимые ухом частоты. В связи с этим рупорные громкоговорители обладают лучшим соотношением «звуковое давление / стоимость», и дальность оповещения таких громкоговорителей составляет порядка 50 — 100 м (по направлению). Немаловажным достоинством является также то, что рупорные громкоговорители могут работать в широком температурном диапазоне и они не боятся повышенной влажности. Поэтому с помощью рупорных громкоговорителей озвучиваются большие площади: стадионы, рынки, парки, пляжи и т. д. (рис. 3, 4, 5.)


Рис. 3. Рынок

Рис. 4. Стадион

Рис. 5. Пляж

При расчете количества рупорных громкоговорителей нужно учитывать, что телесный угол диаграммы направленности у них составляет порядка 30 градусов.

Мощность усилителя для системы оповещения должна быть не меньше суммарной мощности громкоговорителей.

Необходимо заметить, что если протяженность линий системы оповещения более 50-ти метров, то необходимо использовать 100-вольтовый выход усилителя и, соответственно, громкоговорители должны быть рассчитаны на напряжение 100 -120 В. При этом громкоговорители включаются параллельно, а диаметр и сопротивление проводов не имеют большого значения при неизменном качестве озвучивания Но, тем не менее, изоляция провода должна выдерживать напряжение 100 — 120 В и иметь необходимую механическую прочность во избежание короткого замыкания на линии и, как следствие, выхода из строя дорогостоящего оборудования. Мы рекомендуем использовать для прокладки систем оповещения кабель ПРППМ сечением 0,9 -1,2 мм.

Скрытая камера, № 13(20), 2003

При подготовке статьи были использованы материалы сайта компании «ТЕЛСИ-Сервис

Все статьи »

В этой краткой статье мы рассмотрим основные особенности подключения трансляционных усилителей и громкоговорителей. Мы не станем описывать «Почему», не будем приводить формулы расчетов подключений, мы просто опишем «Как».

Трансляционное оборудование принципиально отличается от техники, которую мы привыкли использовать у себя дома или от профессиональных концертных или клубных систем. Основная особенность трансляционных систем это использование в усилителе согласующего трансформатора, который выдает в линию сигнал с уровнем 100В (в некоторых случаях может быть 30В, 240В, но эти случаи мы рассмотрим отдельно). Такое напряжение позволяет (в отличии от домашних или профессиональных усилителей) проводить протяженные трансляционные линии до сотен метров (возможно примерно до 1 км, но при условии подбора подходящего кабеля). Громкоговорители, которые используются совместно с трансляционными усилителями также должны содержать понижающий трансформатор и иметь соответствующее входное напряжение 100В (соответственно в некоторых случаях 30 или 240В). Важно помнить, суммарная мощность подключаемых трансляционных громкоговорителей не должна превышать мощность усилителя (в отличии от профессиональных акустических систем и усилителей, где рекомендуется обратное правило). В отличии от профессионального оборудования, у которого подключение нескольких акустических систем на один усилитель может вызвать определенные трудности (последовательно-параллельная схема подключения), трансляционная техника избавляет нас от подобных сложностей. На схеме ниже, вы можете посмотреть общий принцип подключения трансляционных громкоговорителей к усилителям ROXTON AA-35/60/120/240/360/480 и линейки серии MA-60/120/240/360. Данная схема подключения вполне актуальна для техники других производителей.

Общая схема подключения 100В трансляционного усилителя выглядит примерно так:

Подключение 100В трансляционных громкоговорителей на выход усилителя 70В.

Большинство 100В трансляционных усилителей, помимо основного выхода 100В в линии громкоговорителей, имеют также выход 70В. При подключении громкоговорителей на этот выход, их мощность падает в два раза, но максимальное количество подключаемых громкоговорителей может быть также увеличена вдвое. Например к усилителю мощностью 30 Вт можно подключить не более 3-х громкоговорителей мощностью 10Вт на 100В выход. На 70В выход усилителя возможно подключение 6-ти 10Вт громкоговорителей.

Подключение трансляционных громкоговорителей к многозоновым усилителям.

Многозоновые усилители ROXTON серии AZ-120/240/360/480/560/650, серии MZ-120/240/360 а также комбинированные системы оповещения SX-240/480 позволяют подключать несколько шлейфов акустических систем для организации на объекте многозонового вещания. Подключение производится отдельными шлейфами на пронумерованные пары клемм. У этих усилителей также имеется общий выход 100В, 70В и 4 Ом, которые используются при отсутствии необходимости делить территорию предприятия на отдельные зоны трансляции. В этом случае используется соответствующий общий выход усилителя.

Можно ли подключать трансляционные усилители одного производителя к громкоговорителям другого производителя.

Конечно можно. Но важно учитывать тот момент, чтобы совпадали выходное напряжение усилителя и входное напряжение громкоговорителей. Наиболее распространенной техникой в данном сегменте рынка является 100В оборудование (и усилители и громкоговорители), однако могут использоваться системы с напряжением в сети 30В, 120В и 240В. Если к 100В усилителю подключить 30В громкоговорители ничего хорошего не произойдет и мы категорически не советуем поступать таким образом (хотя надо отметить, что были случаи подобного использования техники, но они требуют чрезвычайной аккуратности и мы не станем рассказывать о подобных экспериментах, что бы вообще не вводить в искушение поступать подобным образом). К усилителю с выходным напряжением 30В можно спокойно подключать 100В громкоговорители, но потери мощности (фактически громкости) будут совершенно неприемлемы. Сочетание 100В усилителей и 120В громкоговорителей приемлемо, будет некоторая потеря мощности. 120В усилители и 100В громкоговорители в принципе работать будут, но мы очень не рекомендуем использовать подобную схему.

Подключение трансляционных громкоговорителей.

Мы здесь остановимся только на 100В схемах подключения громкоговорителей. Какие выходы усилителя необходимо использовать для подключения трансляционной акустики Вы можете посмотреть на схемах выше. Как правило это клемма «0» (в некоторых случаях обозначается как «СОМ») и клемма «100В».

На картинке ниже мы видим шильдик громкоговорителя (к примеру PA-20T). На нем помимо указания модели, входного напряжения и номинальной мощности есть еще три надписи, обозначающие цвета и назначение проводов выходящих от громкоговорителя.

  1. BLUE: COM (т.е. синий провод — общий, он подключается всегда на клемму усилителя «0» или «СОМ»)
  2. RED: 20 Вт (т.е. красный провод используется для подключения громкоговорителя на мощность 20 Вт, этот провод заводится на клемму усилителя 100В)
  3. YELLOW: 10 Вт (т.е. желтый провод используется для подключения громкоговорителя на мощность 10 Вт, этот провод заводится на клемму усилителя 100В)

Подключение громкоговорителя на 20 Вт.

Подключение громкоговорителя на 10 Вт.

В некоторых случаях вместо проводов используются таким же образом подписанные клеммные колодки (например СОМ; 10 Вт; 5 Вт; 2,5 Вт), в этом случае подключение еще проще, соединяем 0 (СОМ) на усилителе с 0(СОМ) на динамике, а 100В клемму усилителя соединяем с выбранной мощностью, на которую необходимо подключить громкоговоритель.

Совсем простой является схема, когда из громкоговорителя выходят всего два провода (или стоит одна колодка с двумя клеммами), а на корпусе громкоговорителя установлен подписанный переключатель, позволяющий просто установить регулятор в нужное положение, на нужную мощность.

Как подключать громкоговоритель, если не аказаны значения мощности, а обозначены только сопротивления отводов громкоговорителя.

Действительно, в некоторых типах акустических систем не указана возможная подключаемая на конкретный отвод мощность. Если с «общим» отводом («СОМ» или «0») всё понятно, то другие отводы, как на картинке внизу , могут обозначаться различными сопротивлениями.

В примере 1 (рупорный громкоговоритель Inter-M HS-20, 20/10Вт) мы видим общий отвод «СОМ» — черный провод (BLACK), а также несколько сопротивлений — 8 Ом (RED), 500 Ом (WHITE) и 1 кОм (GREEN). Отвод 8 Ом (RED) предназначен только для подключения к низкоомным выходам усилителя и используется в трансляционной технике редко. Если Вы видите обозначение отвода громкоговорителя 4 или 8 Ом, то про него можно сразу забыть, использование этого отвода возможно только если сам усилитель мощности не является трансляционным и имеет только низкоомные выходы. (то же самое можно,кстати сказать про выходы трансляционных 100В усилителей 4-8-16 Ом, эти выходы используются в обратной ситуации, когда в силу тех или иных причин к трансляционному усилителю необходимо подключить бытовые, профессиональные или любые иные акустические системы с входным сопротивлением 4-8 Ом). Остаются два отвода — 500 Ом (WHITE) и 1 кОм (GREEN). Правило в данном случае простое, чем меньше сопротивление, на которое вы подключаетесь, тем большую мощность выдает громкоговоритель. Мы в этом примере рассматривали громкоговоритель HS-20 мощностью 20 и 10 Вт. При подключении на 500 Ом, громкоговоритель будет «играть» на 20 Вт, при подключении на 1 кОм он будет выдавать 10 Вт. Существуют формулы расчета соотношения сопротивления и мощности которые мы не станем приводить в рамках данной статьи. Просто можно запомнить: чем меньше сопротивление на которое вы подключаете громкоговоритель (8 Ом вообще не учитывать!), тем на большую мощность он будет работать.

В примере 2 мы показали обозначения громкоговорителя CS-810 мощностью 10 и 5 Вт. Что бы подключить акустическую систему на полную мощность (10 Вт) мы подключаем клеммы «СОМ» и 1 кОм, для подключения громкоговорителя на половину мощности (5 Вт), используем клеммы «СОМ» и 2 кОм.

Одинаковые громкоговорители в одной трансляционной линии можно подключать на различные мощности. Например часть акустики можно включить на полную мощность, часть на половину и часть на треть. Также можно в одну трансляционную линию подключать различные типы акустических систем (и различных производителей в том числе). Для подсчета нагрузки на данную трансляционную линию необходимо просто сложить все значения подключенной мощности на каждом громкоговорителе в линии.

Сколько громкоговорителей можно подключить к трансляционному усилителю.

Правило простое. Суммарная мощность акустических систем не должна превышать мощность усилителя. Желательно даже оставлять некоторый запас. Поэтому при подборе трансляционного усилителя необходимо учитывать возможность расширения системы. Если вы купили 12 громкоговорителей мощностью по 10 Вт и усилитель мощностью 120Вт, то для подключения дополнительной акустики не остается никакого резерва (разве только переподключить все громкоговорители на часть мощности).

Также отметим важный момент, некоторые многозоновые усилители не позволяют, например, подключить на отдельную зону мощность, превышающую примерное значение мощность самого усилителя, поделенную на количество зон. Так например, усилитель JPA-1120A с селектором на 5 зон трансляции не позволяет подключить более 25Вт на каждую зону трансляции. В этом случае, не смотря на то, что суммарная мощность громкоговорителей может быть существенно ниже мощности самого усилителя, при необходимости подключить на отдельную зону трансляции (например) нагрузку в 50Вт, необходимо или покупать усилитель, который позволяет включать такую нагрузку на отдельную зону трансляции или различными способами (иногда затратными, иногда неудобными) решать эту проблему.

Все усилители ROXTON, которые представлены на нашем сайте позволяют подавать на отдельную зону трансляции хоть всю подключаемую мощность, поэтому выше изложенный нюанс к ним отношения не имеет.

Можно ли использовать одновременно 100В выход усилителя и выход 8 Ом.

Нет. Нельзя.

Какой кабель использовать для подключения трансляционных громкоговорителей и усилителей.

Специальный акустический кабель (который используется в профессиональном звуке) использовать не стоит. Как правило системы радиотрансляции прокладываются обычным электрическим проводом сечением 0, 75мм и выше (ШВВП-2*0,75, любой ПВС и т.д.). Чем больше длинна трансляционной линии, тем с большим сечением должен использоваться кабель.

Вы можете использовать такую формулу для расчета сечения кабеля:

Минимальное сечение = 0,08 * (длину линии) * (суммарную мощность громкоговорителей в линии) / 10 000

Но, желательно не меньше 0,75 мм (ШВВП 2*0,75 например)

Для 100В систем пределом является расстояние около 1 км, при этом стоимость кабеля для прокладки сети на подобные расстояния может значительно увеличить стоимость самой системы. При построении систем оповещения людей о пожаре целесообразно использовать специальные огнестойкие кабели, марку которых Вам подскажут специалисты нашей компании.

Главная / Информация / Подключение трансляционных усилителей и громкоговорителей

Хотим продукцию нашего нового магазина рекламировать через громкоговоритель. Нужно ли для распространения информации о продукции с использованием громкоговорителя какое-то специальное разрешение?

А. Абакова, г. Тамбов

Ответ. В данной ситуации специального разрешения на такую рекламу не требуется, за исключением случаев, когда громкоговоритель является стационарным. Объясним подробно.

Согласно ст. 3 Федерального закона от 13.03.2006 № 38-ФЗ «О рекламе» (далее – Закон о рекламе) рекламой признается информация, распространенная любым способом, в любой форме и с использованием любых средств, адресованная неопределенному кругу лиц и направленная на привлечение внимания к объекту рекламирования, формирование или поддержание интереса к нему и его продвижение на рынке.

На основании требований ст. 5 Закона о рекламе любая реклама должна быть добросовестной и достоверной. Недобросовестная реклама и недостоверная реклама не допускаются. При производстве, размещении и распространении рекламы должны соблюдаться требования законодательства РФ, в том числе требования гражданского законодательства, законодательства о государственном языке РФ.

На основании ст. 19 Закона о рекламе установлены определенные требования к наружной рекламе с использованием щитов, стендов, строительных сеток, перетяжек, электронных табло, проекционного и иного предназначенного для проекции рекламы на любые поверхности оборудования, воздушных шаров, аэростатов и иных технических средств стабильного территориального размещения (далее – рекламные конструкции), монтируемых и располагаемых на внешних стенах, крышах и иных конструктивных элементах зданий, строений, сооружений или вне их, а также остановочных пунктов движения общественного транспорта. В частности, установка таких рекламных конструкций возможна на основании договора владельца конструкции с собственником соответствующего земельного участка. Кроме того, рекламная конструкция и ее территориальное размещение должны соответствовать требованиям технического регламента.

Также органы местного самоуправления муниципальных районов или городских округов утверждают схемы размещения рекламных конструкций на земельных участках независимо от форм собственности, а также на зданиях или ином недвижимом имуществе, находящихся в собственности субъектов РФ или муниципальной собственности. При этом схема размещения рекламных конструкций и вносимые в нее изменения подлежат предварительному согласованию с уполномоченным органом исполнительной власти соответствующего субъекта РФ в порядке, установленном высшим исполнительным органом государственной власти данного субъекта РФ. Схема размещения рекламных конструкций и вносимые в нее изменения подлежат опубликованию (обнародованию) в порядке, установленном для официального опубликования (обнародования) муниципальных правовых актов, и размещению на официальном сайте органа местного самоуправления муниципального района или органа местного самоуправления городского округа в информационно-телекоммуникационной сети Интернет.

На такие особенности размещения рекламной конструкции следует обратить внимание, если громкоговоритель планируется установить стационарно.

Необходимо отметить, что Закон о рекламе напрямую запрещает распространение звуковой рекламы с использованием транспортных средств, а также звуковое сопровождение рекламы, распространяемой с использованием транспортных средств. Ответственность за размещение рекламы на дорожных знаках и транспортных средствах предусмотрена ст. 14.38 КоАП РФ.

При распространении звуковой рекламы важно соблюдать допустимый уровень шума для конкретного места, установленный Решением Комиссии Таможенного союза от 28.05.2010 № 299.

Административная ответственность за нарушение тишины установлена, в частности, Законом г. Санкт-Петербурга № 793-2 «Об административной ответственности за нарушение тишины и покоя граждан в ночное время», ст. 6.3 КоАП РФ, ст. 3.13 Кодекса г. Москвы об административных правонарушениях.

Однако, несмотря на некоторые нюансы при распространении звуковой рекламы, разрешение на такое распространение рекламы при использовании нестационарного громкоговорителя получать не требуется.

Подключение трансляционных усилителей и громкоговорителей

В этой краткой статье мы рассмотрим основные особенности подключения трансляционных усилителей и громкоговорителей. Мы не станем описывать «Почему», не будем приводить формулы расчетов подключений, мы просто опишем «Как».

Трансляционное оборудование принципиально отличается от техники, которую мы привыкли использовать у себя дома или от профессиональных концертных или клубных систем. Основная особенность трансляционных систем это использование в усилителе согласующего трансформатора, который выдает в линию сигнал с уровнем 100В (в некоторых случаях может быть 30В, 240В, но эти случаи мы рассмотрим отдельно). Такое напряжение позволяет (в отличии от домашних или профессиональных усилителей) проводить протяженные трансляционные линии до сотен метров (возможно примерно до 1 км, но при условии подбора подходящего кабеля). Громкоговорители, которые используются совместно с трансляционными усилителями также должны содержать понижающий трансформатор и иметь соответствующее входное напряжение 100В (соответственно в некоторых случаях 30 или 240В).  Важно помнить, суммарная мощность подключаемых трансляционных громкоговорителей не должна превышать мощность усилителя (в отличии от профессиональных акустических систем и усилителей, где рекомендуется обратное правило). В отличии от профессионального оборудования, у которого  подключение нескольких акустических систем на один усилитель может вызвать определенные трудности (последовательно-параллельная схема подключения), трансляционная техника избавляет нас от подобных сложностей. На схеме ниже, вы можете посмотреть общий принцип подключения трансляционных громкоговорителей к усилителям ROXTON AA-35/60/120/240/360/480 и линейки серии MA-60/120/240/360. Данная схема подключения вполне актуальна для техники других производителей.

 

Общая схема подключения 100В трансляционного усилителя выглядит примерно так:

Подключение 100В трансляционных громкоговорителей на выход усилителя 70В.

Большинство 100В трансляционных усилителей, помимо основного выхода 100В в линии громкоговорителей, имеют также выход 70В. При подключении громкоговорителей на этот выход, их мощность падает в два раза, но максимальное количество подключаемых громкоговорителей может быть также увеличена вдвое. Например к усилителю мощностью 30 Вт можно подключить не более 3-х громкоговорителей мощностью 10Вт на 100В выход. На 70В выход усилителя возможно подключение 6-ти 10Вт громкоговорителей.

 

Подключение трансляционных громкоговорителей к многозоновым усилителям.

Многозоновые усилители ROXTON серии AZ-120/240/360/480/560/650, серии MZ-120/240/360 а также комбинированные системы оповещения SX-240/480 позволяют подключать несколько шлейфов акустических систем для организации на объекте многозонового вещания. Подключение производится отдельными шлейфами на пронумерованные пары клемм. У этих усилителей также имеется общий выход 100В, 70В и 4 Ом, которые используются при отсутствии необходимости делить территорию предприятия на отдельные зоны трансляции. В этом случае используется соответствующий общий выход усилителя.

Можно ли подключать трансляционные усилители одного производителя к громкоговорителям другого производителя.

Конечно можно. Но важно учитывать тот момент, чтобы совпадали выходное напряжение усилителя и входное напряжение громкоговорителей. Наиболее распространенной техникой в данном сегменте рынка является 100В оборудование (и усилители и громкоговорители), однако могут использоваться системы с напряжением в сети 30В, 120В и 240В. Если к 100В усилителю подключить 30В громкоговорители ничего хорошего не произойдет и мы категорически не советуем поступать таким образом (хотя надо отметить, что были случаи подобного использования техники, но они требуют чрезвычайной аккуратности и мы не станем рассказывать о подобных экспериментах, что бы вообще не вводить в искушение поступать подобным образом). К усилителю с выходным напряжением 30В можно спокойно подключать 100В громкоговорители, но потери мощности (фактически громкости) будут совершенно неприемлемы. Сочетание 100В усилителей  и 120В громкоговорителей приемлемо, будет некоторая потеря мощности. 120В усилители и 100В громкоговорители в принципе работать будут, но мы очень не рекомендуем использовать подобную схему.

Подключение трансляционных громкоговорителей.

Мы здесь остановимся только на 100В схемах подключения громкоговорителей. Какие выходы усилителя необходимо использовать для подключения трансляционной акустики Вы можете посмотреть на схемах выше. Как правило это клемма «0» (в некоторых случаях обозначается как «СОМ») и клемма «100В».

На картинке ниже мы видим шильдик громкоговорителя (к примеру PA-20T). На нем помимо указания модели, входного напряжения и номинальной мощности есть еще три надписи, обозначающие цвета и назначение проводов выходящих от громкоговорителя.

  1. BLUE: COM (т.е. синий провод — общий, он подключается всегда на клемму усилителя «0» или «СОМ»)
  2. RED: 20 Вт (т.е. красный провод используется для подключения громкоговорителя на мощность 20 Вт, этот провод заводится на клемму усилителя 100В)
  3. YELLOW: 10 Вт (т.е. желтый провод используется для подключения громкоговорителя на мощность 10 Вт, этот провод заводится на клемму усилителя 100В)

Подключение громкоговорителя на 20 Вт.

 Подключение громкоговорителя на 10 Вт.

В некоторых случаях вместо проводов используются таким же образом подписанные клеммные колодки (например СОМ; 10 Вт; 5 Вт; 2,5 Вт), в этом случае подключение еще проще, соединяем 0 (СОМ) на усилителе с 0(СОМ) на динамике, а 100В клемму усилителя соединяем с выбранной мощностью, на которую необходимо подключить громкоговоритель.

Совсем простой является схема, когда из громкоговорителя выходят всего два провода (или стоит одна колодка с двумя клеммами), а на корпусе громкоговорителя установлен подписанный переключатель, позволяющий  просто установить регулятор в нужное положение, на нужную мощность.

Как подключать громкоговоритель, если не аказаны значения мощности, а обозначены только сопротивления отводов громкоговорителя.

Действительно, в некоторых типах акустических систем не указана возможная подключаемая на конкретный отвод мощность. Если с «общим» отводом («СОМ» или «0») всё понятно, то другие отводы, как на картинке внизу , могут обозначаться различными сопротивлениями.

В примере 1 (рупорный громкоговоритель Inter-M HS-20, 20/10Вт) мы видим общий отвод «СОМ» — черный провод (BLACK), а также несколько сопротивлений — 8 Ом (RED), 500 Ом (WHITE) и 1 кОм (GREEN).  Отвод 8 Ом (RED) предназначен только для подключения к низкоомным выходам усилителя и используется в трансляционной технике редко. Если Вы видите обозначение отвода громкоговорителя 4 или 8 Ом, то про него можно сразу забыть, использование этого отвода возможно только если сам усилитель мощности не является трансляционным и имеет только низкоомные выходы. (то же самое можно,кстати сказать про выходы трансляционных 100В усилителей 4-8-16 Ом, эти выходы используются в обратной ситуации, когда в силу тех или иных причин к трансляционному усилителю необходимо подключить бытовые, профессиональные или любые иные акустические системы с входным сопротивлением 4-8 Ом). Остаются два отвода — 500 Ом (WHITE) и 1 кОм (GREEN). Правило в данном случае простое, чем меньше сопротивление, на которое вы подключаетесь, тем большую мощность выдает громкоговоритель. Мы в этом примере рассматривали громкоговоритель HS-20 мощностью 20 и 10 Вт. При подключении на 500 Ом, громкоговоритель будет «играть» на 20 Вт, при подключении на 1 кОм он будет выдавать 10 Вт. Существуют формулы расчета соотношения сопротивления и мощности которые мы не станем приводить в рамках данной статьи. Просто можно запомнить: чем меньше сопротивление на которое вы подключаете громкоговоритель (8 Ом вообще не учитывать!), тем на большую мощность он будет работать.

В примере 2 мы показали обозначения громкоговорителя CS-810 мощностью 10 и 5 Вт. Что бы подключить акустическую систему на полную мощность (10 Вт) мы подключаем клеммы «СОМ» и 1 кОм, для подключения громкоговорителя на половину мощности (5 Вт), используем клеммы «СОМ» и 2 кОм.

Одинаковые громкоговорители в одной трансляционной линии можно подключать на различные мощности. Например часть акустики можно включить на полную мощность, часть на половину и часть на треть. Также можно в одну трансляционную линию подключать различные типы акустических систем (и различных производителей в том числе). Для подсчета нагрузки на данную трансляционную линию необходимо просто сложить все значения подключенной мощности на каждом громкоговорителе в линии.

Сколько громкоговорителей можно подключить к трансляционному усилителю.

Правило простое. Суммарная мощность акустических систем не должна превышать мощность усилителя. Желательно даже оставлять некоторый запас. Поэтому при подборе трансляционного усилителя необходимо учитывать возможность расширения системы. Если вы купили 12 громкоговорителей мощностью по 10 Вт и усилитель мощностью 120Вт, то для подключения дополнительной акустики не остается никакого резерва (разве только переподключить все громкоговорители на часть мощности).

Также отметим важный момент, некоторые многозоновые усилители не позволяют, например, подключить на отдельную зону мощность, превышающую примерное значение мощность самого усилителя, поделенную на количество зон. Так например, усилитель JPA-1120A с селектором на 5 зон трансляции не позволяет подключить более 25Вт на каждую зону трансляции. В этом случае, не смотря на то, что суммарная мощность громкоговорителей может быть существенно ниже мощности самого усилителя, при необходимости подключить на отдельную зону трансляции (например) нагрузку в 50Вт, необходимо или покупать усилитель, который позволяет включать такую нагрузку на отдельную зону трансляции или различными способами (иногда затратными, иногда неудобными) решать эту проблему.

Все усилители ROXTON, которые представлены на нашем сайте позволяют подавать на отдельную зону трансляции хоть всю подключаемую мощность, поэтому выше изложенный нюанс к ним отношения не имеет.

Можно ли использовать одновременно 100В выход усилителя и выход 8 Ом.

Нет. Нельзя.

Какой кабель использовать для подключения трансляционных громкоговорителей и усилителей.

Специальный акустический кабель (который используется в профессиональном звуке) использовать не стоит. Как правило системы радиотрансляции прокладываются обычным электрическим проводом сечением 0, 75мм и выше (ШВВП-2*0,75, любой ПВС и т.д.). Чем больше длинна трансляционной линии, тем с большим сечением должен использоваться кабель.

Вы можете использовать такую формулу для расчета сечения кабеля:

Минимальное сечение = 0,08 * (длину линии) * (суммарную мощность громкоговорителей в линии) / 10 000

Но, желательно не меньше 0,75 мм (ШВВП 2*0,75 например)

Для 100В систем пределом является расстояние около 1 км, при этом стоимость кабеля для прокладки сети на подобные расстояния может значительно увеличить стоимость самой системы. При построении систем оповещения людей о пожаре целесообразно использовать специальные огнестойкие кабели, марку которых Вам подскажут специалисты нашей компании.

Схема подключения трансляционной 100V линии в системе фонового озвучивания

Схема подключения трансляционной 100V линии в системе фонового озвучивания

Акустические системы и громкоговорители систем оповещения (public addpess), которые поставляет Группа SBL проектируются для  функционировании в составе 100V (70V) трансляционных линий, поэтому работают с 100V (70V) трансляционными усилителями. Группа SBL расширяет предложения по трансляционному оборудованию. Сегодня мы можем предложить системы оповещения ABK, AMC, Apart, Audac, Atlas Sound, Dynacord, DAS, DSPPA, JNC, Jedia, RCF, SpeakerCraft, Tannoy, TOA, Volta и другие.

Все громкоговорители системы оповещения и трансляции подключаются в одну параллельную линию однозонного микширующего усилителя. В случае применения в система оповещения многозонного микшер усилителя применяется схема подключения с несколькими линиями громкоговорителей, каждая из которых предназначена для озвучивания определенной зоны. Суммарная мощность всех громкоговорителей в цепи не должна превышать номинальную мощность трансляционного усилителя. 

При фоновом озвучивании по схеме многозонного усилителя могут использоваться громкоговорители разного типа в разных сетях, а в линиях громкоговорителей могут устанавливаться аттенюаторы и регуляторы уровня звука в конкретной зоне. COM выход усилителя подсоединяется к COM входу акустических систем, а 100V (70V) выход усилителя с входом нужной мощности громкоговорителя. Стандартная схема соединения входов и выходов представлена на рисунке ниже.

Обычно трансформатор встроенный в громкоговоритель систему имеет один отвод номинальной мощности громкоговорителя. Однако, некоторые производители (Apart, DAS, JNC) производят громкоговорители с несколькими выводами от трансформатора. Переключение мощности громкоговорителя к контактным группам для удобства применяются селекторы мощности.

 

На схеме выше применен микшер-усилитель с 6-ю нерегулируемыми зонами оповещения. Как правило на всех многозонных микшер-усилителях есть колодка для зонного подключения громкоговорителей. Для каждой зоны на колодке микшер-усилителя имеется два контакта — общий и сигнальный. Аналогичные контакты расположены на задней панели громкоговорителя, поэтому следует соблюдать подключение контактов для громкоговорителей, как на микшер-усилителе. На лицевой панели микшер-усилителя расположены клавиши включения-выключения зон. При включении клавиши конкретной зоны над ней загорается индикаторный светодиод. Для такого 6-зонного микшер-усилителя можно задействовать для конкретной задачи системы оповещения от одной до всех шести зон.

Для внутренних кабельных линий бюджетных систем оповещения (ABK, JNC, Jedia и другие) рекомендуем применять недорогой электрический кабель ПУГНП или ПВП сечением 2х0.75 мм, 2х1 мм или 2х1.5 мм в зависимости от длины 100V (70V) линии и суммарной мощности громкоговорителей. Для систем трансляции, к которым предъявляются повышенные требования в эксплуатации, определенные заказчиком или условий монтажа рекомендуем высококачественные кабели Sommer Cable. В интегрированных системах оповещения, таких как VM-3000 и SX-2000 от TOA Electronics или CS 1066 от RCF применяются специализированные экранированные многожильные кабели.

выбираем радиоприемник для радиоточки и проводного радиовещания. Схема, виды и лучшие модели

Абонентские громкоговорители – специальные аппараты, предназначенные для передачи звука и речи. Данные устройства могут быть механического или электроакустического типа, их назначение – в преобразовании электросигнала в волну звукового вида. Волна распределяется в среде воздуха при помощи системы механического типа.

Громкоговорители сегодня по-прежнему востребованы, так как их используют для создания систем оповещения, сетей трансляции и радиоузлов.

Особенности

Абонентский громкоговоритель – последнее звено сети радиотрансляции. В современных условиях чаще всего используются радиоприемники небольшой мощности, которые выпускаются на заводах специально для радиоточки. Они оснащены регуляторами уровня звука – на этом возможности технического управления заканчиваются.

Особенности и характеристики громкоговорителей следующие:

  • средняя мощность подобных устройств варьируется от 0,05 до 0,1 Ватт;

  • напряжение, обеспечивающее мощность в среднем 15 Ватт;

  • в конструкцию всегда входит трансформатор понижающего типа;

  • первичная обмотка включает от 1600 до 2000 вращений;

  • вторичная, которая соединяется с катушкой звука, – 20–60 витков;

  • сопротивление катушки варьируется в пределах 1–5 Ом;

  • сопротивление входного типа тока 400-гц частоты может быть от 2000 до 5000 Ом;

  • у каждого устройства есть шнур и вилка штепсельного типа;

  • современные аппараты относятся к электродинамическому типу, а электромагнитные аппараты считаются устаревшими;

  • помимо регулятора громкости, некоторые модели имеют винт, устанавливающий положение аппарата.

Основная задача устройства – точное излучение звука в пространстве, для выбора аппарата необходимо оценить размеры, параметры помещения и сопоставить их с характеристиками технического плана самого громкоговорителя.

Все подобные системы называют акустическими, вид зависит от цели назначения, но все они созданы из таких элементов, как:

  • собственно корпус устройства, излучатель;

  • электронная защита от перегрузки;

  • излучатель звука в окружающую среду на определенной частоте;

  • усилитель для каждой частоты в формате клемм и кабеля.

Что касается конструкции, то она может быть разной по форме, размеру, другим свойствам. Сама схема тем не менее строится по единому принципу.

Виды и модели

В зависимости от сферы применения громкоговорители делятся на домашние, студийные. По типу размещения – на системы рупорного, потолочного и настенного типов. Что касается способа преобразования сигнала, то здесь классификация довольно разнообразна, но наиболее востребованы модели рупорного и электродинамического видов.

Настенные аппараты электродинамического типа, или радио, производятся из разных материалов. Они бывают:

Модификаций этого вида 12, они зависят от технических характеристик.

Плюсы настенного устройства в том, что они имеют надежный корпус, хорошо смотрятся в любом интерьере, элементарны в монтаже. Если аппарат дополнен аттенюатором, то выдает гораздо более качественный звук и высокую громкость. Чаще всего настенные модели применяются в домашних условиях.

Потолочные устройства чаще всего используются для оборудования систем оповещения. Угол направления сигнала более широк, поэтому звук воспроизводится максимально качественно, равномерно расходится по помещению, мощное усиление здесь не требуется. Дизайн таких устройств довольно лаконичный, поэтому хорошо смотрится в любых помещениях. Корпус такого аппарата из пластика или металла дополняется кронштейнами для установки, есть громкоговорители, которые присоединяются обычными шурупами. Чаще всего они применяются в офисах, торговых центрах, магазинах.

Рупорные громкоговорители концентрируют звуковой поток трубой переменного сечения соответствующего вида. Излучение звука в таких устройствах направляется максимально высоко и далеко. Рупорные аппараты надежны, неприхотливы и подходят для уличного размещения. Им нестрашны разные высокие и низкие температуры, высокая влажность.

Что касается моделей, то среди популярных можно выделить следующие:

  • Tannoy CMS601BM – модель потолочного типа, круглая, оснащена переключателем трансформаторного типа;
  • Tannoy OCV – белый пластиковый корпус, тип – подвесной, форма цилиндра;
  • SHOW SC15AH – рупорная модель в белом цвете;
  • Show CSB20T – однополосный настенный, в черном корпусе из пластика, лаконичный дизайн, бюджетная цена;
  • AMC iPlay 6W 2 – двухполосный, настенный, мониторного типа, полный диапазон, простой дизайн;
  • АГ-301, фабрики «Октябрь» – проводной, легкий, настенный;
  • АГ-304 «Нейва» – для проводного радиовещания, бюджетная модель;
  • «Нейва» ПТ-322-1 – трехпрограммная модель, масса – 1,2 кг; интересный дизайн, помимо регулятора громкости, есть переключатель программ.

Применение

Приемник для проводного радиовещания – очень важное устройство, которое используется на предприятиях поэтапного производства, в цехах – везде, где необходимо обеспечивать постоянный процесс. Кроме того, он применяется в крупных торговых сетях, образовательных и других учреждениях как средство оповещения. Такой вид связи позволяет немедленно доводить абсолютно до всех присутствующих людей необходимую информацию. Диспетчера с помощью акустических систем обеспечивают контроль над производством. В домашних условиях он используется как радиоточка.

Громкоговорители могут использоваться в качестве оповещения рекламного или маркетингового типа, для организации презентаций. Таким образом до целевой аудитории доводится необходимая информация, охватывается сразу большое количество людей. Уличные и потолочные громкоговорители особенно актуальны в местах большого скопления людей. Акустическая система играет важнейшую роль в обеспечении безопасности людей пожарными, охранными службами, администрацией.

Подробнее про абонентские громкоговорители смотрите в видео ниже.

Учебное пособие по громкоговорителям

и внутренняя схема — Схемы громкоговорителей — Учебные пособия по электронным компонентам

Самый распространенный вид громкоговоритель Динамик MOVING COIL, где моток проволоки приостановлено в магнитное поле круглый магнит. Когда речь идет прошел через катушку переменное магнитное поле генерируется катушка.Два магнитных поля взаимодействуют, вызывая движение катушки.

Движение катушки вызывает конус, который прикреплен к катушке, к двигаться вперед и назад. Это сжимает и разжимает воздух тем самым генерируя звук волны. Громкоговоритель — это ДАТЧИК преобразование одна форма энергии для Другой.

Громкоговорители имеют Импеданс, обычно 4 или 8 Ом. Это должно быть соответствует выходу сопротивление усилитель мощности.

Громкоговорители смонтированы в корпусах (ящиках). Дизайн корпусов очень сложно.

Большие динамики не могут воспроизводить высокие частоты и малые нельзя воспроизвести низкие частоты.Поэтому два динамика используются, большой (a Вуфер) для низких частот, и небольшой один (твитер) для высоких частоты.

Чтобы убедиться, что правильные частоты идут к желаемому динамику, кроссовер использовал. На схеме C1 и L1 — это низкий проход фильтр. C2 и L2 — высокий пройти фильтр.(Существует страницу ФИЛЬТРЫ).

При использовании двух динамиков вместе, как в стерео системы, они должны быть в фаза. Это означает, что они выйти и войти все вместе. Это произойдет, если провода динамика подключен правильно.

Колонки могут быть соединены последовательно и параллельно, но в целом импеданс должен соответствовать сопротивление усилителя.Использование более низкого импеданса чем правильный взорвать выходной каскад вашего усилителя.

Принципиальная схема малого громкоговорителя с использованием IC LM386

Малый громкоговоритель — интересный проект, вы можете подключить его к своему мобильному телефону или ноутбуку через аудиоразъем 3,5 мм и наслаждаться своим собственным громкоговорителем. Вы также можете подключить его к любому устройству с аудиовыходом 3,5 мм, например к телевизору, музыкальному плееру, видеоиграм и т. Д.Мы использовали LM386 IC для усиления звука с несколькими внешними компонентами.

LM386 — это низковольтный аудиоусилитель , который часто используется в музыкальных устройствах с батарейным питанием, таких как радио, гитары, игрушки и т. Д. Диапазон усиления от 20 до 200 , внутреннее усиление установлено на 20 (без использования внешнего компонента), но может можно увеличить до 200 с помощью резистора и конденсатора между контактами 1 и 8 или просто с помощью конденсатора. Коэффициент усиления по напряжению просто означает, что выходное напряжение в 200 раз больше напряжения на входе.LM386 имеет широкий диапазон питающего напряжения 4-12В. Ниже приведена схема контактов LM386:

.

Описание контактов LM386 вместе с функциями внешних компонентов, используемых для усиления:

PIN 1 и 8: Это контакты управления усилением, внутреннее усиление установлено на 20, но его можно увеличить до 200, используя конденсатор между контактами 1 и 8. Мы использовали конденсатор C1 емкостью 10 мкФ , чтобы получить максимальное усиление, то есть 200. Усиление может быть отрегулировано до любого значения от 20 до 200, используя соответствующий конденсатор.

Контакты 2 и 3: Это входные PIN-коды для звуковых сигналов. Контакт 2 — это отрицательная входная клемма, подключенная к земле. Контакт 3 — это положительный входной терминал, на который подается звуковой сигнал для усиления. Мы подключили одну клемму аудиоразъема 3.5 к этому входу PIN 3, а другую клемму — к земле. Штырь 3,5 мм дополнительно подключается к аудиоразъему ноутбука.

Стерео аудиоразъем 3,5 мм используется в основном в наушниках, обычно бывает двух типов 3.Аудиоразъем 5 мм, TRS (НАКОНЕЧНИК КОЛЬЦО) и TRRS (НАКОНЕЧНИК КОЛЬЦО). В TRRS один дополнительный терминал обычно предназначен для микрофона. Здесь мы использовали аудиоразъем TRS и припаяли к нему два провода: один к заземлению (гильза), а другой к правому аудио (кольцо). Вы можете понять по изображениям ниже:

Контакты 4 и 6: Это контакты источника питания IC, контакт 6 для + Vcc и контакт 4 для заземления. Схема может питаться напряжением от 5 до 12 В.

Контакт 5: Это выходной PIN, с которого мы получаем усиленный звуковой сигнал.

Выходной сигнал имеет как переменную, так и постоянную составляющую, а постоянная составляющая нежелательна и не может подаваться на динамик. Таким образом, чтобы удалить эту составляющую постоянного тока, был использован конденсатор C2 емкостью 220 мкФ.

Наряду с этим конденсатором на выходном контакте 5 использовалась схема фильтра из Конденсатор C3 (0,05 мкФ) и резистор R1 (10 кОм) R1. Электронный фильтр используется для удаления внезапных высокочастотных колебаний или шума.

Контакт 7: Это клемма байпаса. Его можно оставить открытым или заземлить с помощью конденсатора для стабильности.

Компоненты
  • Микросхема LM386
  • Аудиоразъем 3,5 мм
  • Динамик 8 Ом
  • Конденсаторы — 220 мкФ, 10 мкФ (два), 0,05 мкФ
  • Резистор- 10к
  • Аккумулятор 5-12в

Принципиальная схема и пояснения

Я разделил мужчину на мужчину 3.5-миллиметровый аудиоразъем и припаять два провода, но один должен быть гнездовым 3,5-миллиметровым аудиоразъемом для макетной платы. И подключите один конец штекера к штекеру аудиоразъема к гнезду аудиоразъема, а другой конец к компьютеру.

Эта схема очень похожа на мою предыдущую схему «Схема усилителя звука на основе LM386», мы просто заменили конденсаторный микрофон на аудиоразъем 3,5 мм для обеспечения входного звука. Также был удален потенциометр, потому что в музыкальном плеере компьютера уже есть управление звуком.

Полное руководство по проектированию и созданию усилителя Hi-Fi LM3886

Примечание. Редактируемые файлы печатной платы доступны для этого проекта здесь.

LM3886 — один из самых уважаемых усилителей для аудиочипов в сообществе DIY. Причина его популярности заключается в очень низком уровне искажений, минимальном количестве внешних компонентов и невысокой стоимости. При правильной компоновке и выборе компонентов вы можете создать превосходно звучащий аудиоусилитель Hi-Fi, который будет конкурировать с высококачественными усилителями, продаваемыми в розницу за несколько тысяч долларов и более.

В этом уроке я шаг за шагом пройдусь через процесс проектирования усилителя по мере создания 40-ваттного стереоусилителя с использованием LM3886. Я объясню, что делает каждая часть схемы, и покажу вам, как рассчитать правильные значения компонентов на примерах из усилителя, который я строю. Я также покажу вам, как разместить печатную плату и подключить усилитель в корпусе для минимизации шума и шума.

Мой усилитель построен на той же схеме, что и в таблице данных, со всеми дополнительными компонентами стабилизации.

БОНУС: Загрузите мой список деталей, чтобы увидеть компоненты, которые я использовал для получения отличного качества звука от этого усилителя. Я также включил схему и файлы Gerber для используемого мной источника питания.

Я настоятельно рекомендую прочитать техническое описание перед сборкой усилителя. У него есть все технические характеристики, абсолютные максимальные характеристики, схемы и советы по дизайну:

LM3886 Лист данных

Примечание по применению AN-1192 содержит дополнительную информацию, которая заполняет пробелы, не указанные в таблице данных.Также имеются схемы мостовых и параллельных цепей усилителя:

Инструкция по применению Overture AN-1192

Также хорошо иметь Руководство по дизайну Overture. Это таблица Excel, в которой вычисляются выходная мощность, размер радиатора, коэффициент усиления и другие полезные параметры:

Руководство по дизайну увертюры

Так как это довольно длинная статья, вот ссылки на разные разделы:

Вы также можете посмотреть это видео, чтобы увидеть краткий обзор процесса проектирования.В конце я подключаю усилитель, чтобы вы могли услышать, как он звучит:

Что нужно решить перед началом работы

Перед тем, как приступить к проектированию усилителя, вы должны иметь представление о том, какую выходную мощность вы хотите получить от него. Выходная мощность — это то, что вы обычно называете номинальной мощностью усилителя. Максимальная выходная мощность LM3886 составляет 68 Вт, но фактическая мощность, которую вы получите, будет зависеть от напряжения источника питания и сопротивления динамика.

Вам также необходимо знать импеданс ваших динамиков. Вы должны найти импеданс вашего динамика на задней панели динамика или в руководстве пользователя.

Наконец, вам нужно знать входное напряжение . Это выходное напряжение аудиоисточника, который вы будете усиливать. Это может быть в руководстве пользователя устройства, но если нет, вы можете получить приблизительную оценку, воспроизведя чистую синусоидальную волну 60 Гц (есть приложения, которые будут делать это) на полной громкости и измерить напряжение переменного тока между землей и левой или правый канал с мультиметром.

ПРЕДУПРЕЖДЕНИЕ: ДАННЫЙ ПРОЕКТ ПРЕДНАЗНАЧЕН ДЛЯ РАБОТЫ С НАПРЯЖЕНИЕМ СЕТИ, КОТОРОЕ МОЖЕТ СЕРЬЕЗНО ПОЛУЧИТЬ ВАС ИЛИ УБИТЬ. ОБЯЗАТЕЛЬНО ПРИНИМАЙТЕ ВСЕ НЕОБХОДИМЫЕ МЕРЫ БЕЗОПАСНОСТИ И НИКОГДА НЕ РАБОТАЙТЕ В РЕЖИМЕ ПИТАНИЯ !!

Определите необходимое напряжение и мощность источника питания

Давайте начнем с определения того, какое напряжение и мощность потребуются вашему усилителю от источника питания. Эти расчеты подскажут вам правильное напряжение и номинальные значения в ВА трансформатора, который вы будете использовать для питания усилителя.Этот шаг важен, потому что, если напряжение трансформатора слишком низкое, выходная мощность усилителя будет меньше ожидаемой. Если номинальная мощность трансформатора слишком мала, усилитель может обрезать или искажать звук при более высокой громкости.

Требуемое напряжение источника питания

Прежде чем вы сможете найти необходимое напряжение источника питания, вам необходимо рассчитать пиковое выходное напряжение усилителя .

Найдите максимальное выходное напряжение

Пиковое выходное напряжение (V opeak ) — это максимальное напряжение, измеренное на клеммах динамика усилителя.Пиковое выходное напряжение вашего усилителя будет зависеть от желаемой выходной мощности (P o ) и импеданса динамика по следующей формуле:

Усилитель, который я создаю, будет 40 Вт с динамиками 6 Ом, поэтому мое пиковое выходное напряжение составляет:

Найдите максимальное напряжение питания, необходимое для усилителя

Теперь, когда вы определили пиковое выходное напряжение вашего усилителя, вы можете рассчитать максимальное напряжение питания максимальное напряжение питания ) .Это напряжение, необходимое усилителю от источника питания для получения желаемой выходной мощности.

Чтобы найти максимальное напряжение питания, возьмите пиковое выходное напряжение и добавьте падение напряжения или ) для LM3886 (4 В). Затем учитывайте регулировку трансформатора и изменение напряжения в сети.

Регулирование — это увеличение выходного напряжения трансформатора, когда нагрузка не потребляет ток (т.е. усилитель перестает воспроизводить музыку). Нормативные значения обычно можно найти в паспорте трансформатора, но если вы не знаете нормативов своего трансформатора, безопасное значение для использования составляет 15%.Регулировка трансформатора, который я буду использовать, составляет 6%.

Напряжение сети может варьироваться до 10% в зависимости от вашего местоположения. Обычно он достигает пика поздно ночью, когда люди спят, и падает днем, когда больше людей бодрствуют и потребляют ток из электросети.

Используйте эту формулу для расчета максимального напряжения питания, необходимого для вашего усилителя:

Для моего усилителя мощностью 40 Вт максимальное необходимое напряжение питания составляет:

Таким образом, мой блок питания должен обеспечивать пиковое напряжение ± 30.2 В для моего усилителя для вывода 40 Вт на динамики 6 Ом. Символ ± указывает, что напряжение составляет +30,2 В на положительной шине и -30,2 В на отрицательной шине.

Следующим шагом является определение номинального напряжения трансформатора, которое может обеспечить это максимальное напряжение питания.

Найдите максимальное выходное напряжение питания трансформатора

Имейте в виду, что номинальное напряжение трансформатора говорит вам только о том, что это выходное напряжение переменного тока . Напряжение постоянного тока будет выше после того, как диоды выпрямительного моста на вашем источнике питания преобразуют переменное напряжение в постоянное.

Чтобы найти максимальное выходное напряжение постоянного тока на выходе трансформатора и источника питания, возьмите номинальное напряжение переменного тока трансформатора и умножьте на 1,41 увеличение напряжения на выпрямительных диодах, 10% отклонение напряжения сети и регулировку трансформатора:

Я попробовал вышеуказанный расчет с трансформатором, рассчитанным на 18 В переменного тока, чтобы проверить, может ли он обеспечить максимальное напряжение питания 30,2 В, необходимое для моего усилителя. С трансформатором 18 В я бы получил максимальное напряжение питания:

29.6 В довольно близко к максимальному напряжению питания 30,2 В, необходимому для моего усилителя, но давайте точно посчитаем, какую выходную мощность я получу с этим трансформатором.

Найдите выходную мощность по номинальному напряжению трансформатора

Чтобы рассчитать выходную мощность, которую вы получите от номинального напряжения конкретного трансформатора, используйте следующую формулу:

Используя максимальное напряжение питания, которое я рассчитал для трансформатора 18 В (29,6 В), я получу выходную мощность:

38.Выходная мощность 2 Вт довольно близка к моей цели 40 Вт, поэтому трансформатор на 18 В будет работать нормально.

Требуемая мощность трансформатора

Теперь давайте определим минимальную номинальную мощность в ВА трансформатора, который будет питать ваш усилитель.

Сначала вам нужно рассчитать общую мощность (P , питание ) , необходимую для усилителя. Общая мощность зависит от максимального выходного напряжения источника питания, пикового выходного напряжения усилителя и импеданса динамика.Используемая формула:

Я уже рассчитал максимальное напряжение питания трансформатора 18 В (29,6 В) и пиковое выходное напряжение моего усилителя (21,9 В). Общий ток покоя источника питания (QPSC) указан в таблице данных LM3886 как 85 мА.

Итак, мой трансформатор 18 В должен обеспечивать усилитель как минимум:

Теперь по общей мощности можно определить минимальную номинальную мощность трансформатора в ВА.

Преобразуйте полную мощность в номинальную мощность трансформатора, ВА

Чтобы преобразовать полную мощность в номинальную мощность трансформатора, необходимо умножить ее на коэффициент 1.5:

Это ВА, необходимая для каждого канала, поэтому для стереоусилителя, питаемого от одного трансформатора, просто удвойте:

Найти трансформатор с ВА 222 будет сложно, но вы можете округлить до ближайшего значения и использовать трансформатор на 250 ВА или больше.

Определите подходящий размер радиатора

LM3886 нужен радиатор, достаточно большой, чтобы рассеивать выделяемое тепло, иначе он быстро выйдет из строя.Минимальный размер радиатора можно определить, рассчитав его максимальное тепловое сопротивление (в ° C / Вт) .

Однако сначала вам нужно знать максимальную рассеиваемую мощность вашего LM3886 (P dmax ) и тепловое сопротивление на пути тепла от кристалла кристалла к окружающему воздуху.

Найдите максимальное рассеивание мощности

Максимальная рассеиваемая мощность — это предел, при котором активируется внутренняя схема SPiKe LM3886.При включении схемы SPiKe качество звука сильно ухудшается, поэтому для предотвращения этого нам нужен радиатор с достаточно низким тепловым сопротивлением, чтобы рассеять максимальную мощность, рассеиваемую LM3886. P dmax зависит от максимального напряжения питания вашего источника питания и импеданса вашего динамика:

Максимальное выходное напряжение питания от моего блока питания составляет ± 29,6 В, и я буду использовать динамики с сопротивлением 6 Ом, поэтому мой P dmax составляет:

Итак, мой радиатор должен рассеивать 29.6 Вт мощности для предотвращения срабатывания схемы защиты SPiKe.

Найдите максимальное тепловое сопротивление радиатора

Есть три сопротивления тепловому потоку от LM3886:

θ jc : тепловое сопротивление от соединения микросхемы (кристалла) до корпуса.

θ cs : термическое сопротивление зазора между корпусом микросхемы и радиатором.

θ sa : Тепловое сопротивление радиатора окружающему воздуху.

Больше мощности будет рассеиваться при понижении любого из тепловых сопротивлений на пути к окружающему воздуху. θ jc — это свойство пластикового корпуса, в котором заключена матрица, поэтому мы ничего не можем сделать, чтобы уменьшить его.

θ cs можно уменьшить с помощью термопасты между микросхемой и радиатором. Термопаста имеет тепловое сопротивление около 0,2 ° C / Вт, но точное значение используемого типа должно быть доступно у производителя.

Самый эффективный способ снизить общее тепловое сопротивление — это понизить θ до с помощью более эффективного радиатора.Радиаторы с меньшим θ и лучше рассеивают тепло.

Радиатор будет рассеивать пиковую мощность, производимую усилителем (P dmax ), если его тепловое сопротивление (θ sa ) меньше или равно значению, вычисленному по этой формуле:

LM3886 производится в двух разных корпусах: LM3886T и LM3886TF. LM3886T имеет металлический фланец на задней части корпуса, а LM3886TF полностью пластиковый. Пластиковый корпус LM3886TF дает более высокий θ cs :

  • LM3886T: θ cs = 1 ° C / Вт
  • LM3886TF: θ cs = 2 ° C / Вт

T jmax — максимальная температура перехода , или температура на кристалле микросхемы, выше которой включается схема теплового отключения.В техническом описании указано значение T jmax , равное 150 ° C.

T amb — температура окружающей среды в ° C, при которой будет работать усилитель. Типичное значение T amb — комнатная температура (25 ° C).

Таким образом, максимальное тепловое сопротивление (θ sa ) радиатора для моего усилителя с P dmax 29,6 Вт составляет:

Так что мне понадобится радиатор с номиналом меньше или равным 2,1 ° C / Вт, чтобы он мог рассеивать максимальную мощность, производимую LM3886.

Вот один канал моего усилителя, подключенный к радиатору подходящего размера:

Расчет значений компонентов

Теперь, когда вы рассчитали требования к источнику питания и радиатору, следующим шагом является определение значений для компонентов в цепи усилителя. Я буду использовать схему, представленную ниже. Он в основном такой же, как в таблице данных, но с дополнительными включенными компонентами стабильности:

Примечание. Компоненты помечены так, как они указаны в таблице.

Вот схема расположения выводов LM3886 для справки:

Найдите минимальное необходимое усиление

Для усиления можно установить любое значение, превышающее минимальное для LM3886 значение 10 В o / V и , но для получения желаемой выходной мощности оно должно быть выше определенного минимального значения. Минимальная настройка усиления вашего усилителя будет зависеть от входного напряжения, импеданса динамика и выходной мощности по формуле:

Я планирую использовать iPhone в качестве источника звука для моего усилителя с выходным напряжением 1 В.Выходная мощность, которую я получу с трансформатором и блоком питания, составляет 38,2 Вт, а импеданс моих динамиков — 6 Ом. Итак, мой минимальный выигрыш:

.

Поэтому мне нужно установить усиление не менее 15,1 В o / V i , если мне нужна выходная мощность 38,2 Вт на 6-омные динамики с входным напряжением 1 В.

Настройка усиления

Коэффициент усиления LM3886 можно установить, изменив номиналы резисторов R i и R f1 . Эти резисторы образуют делитель напряжения, который определяет напряжение на инвертирующем входе (вывод 9) LM3886:

.

Установка слишком высокого усиления может вызвать искажения.Установка слишком низкого уровня может сделать ваш усилитель слишком тихим. Хорошая настройка усиления, не слишком высокая, чтобы вызывать искажения, но не слишком низкая, чтобы дать вам хороший диапазон громкости, составляет от 27 до 30 дБ.

Прирост рассчитывается по следующей формуле:

Это дает вам коэффициент усиления по напряжению (V o / V i ) или коэффициент усиления. Чтобы преобразовать усиление по напряжению в усиление в децибелах (дБ), используйте эту формулу:

Резисторы более высокого номинала создают больше шума Джонсона-Найквиста, поэтому лучше всего найти соотношение R f1 / R i , которое обеспечит желаемое усиление при низких значениях резисторов.

Я выбрал для своего усилителя коэффициент усиления около 27 дБ (22,4 В / В и ). Чтобы поддерживать низкое сопротивление, я начал с установки R и на 1 кОм. Затем я изменил формулу усиления, чтобы найти R f1 с усилением 22,4 В o / V i :

Я собираюсь использовать в своем усилителе металлопленочные резисторы серии PTF Vishay-Dale, но наиболее близкое значение, которое я смог найти, было 20 кОм. Но использование резистора 20 кОм для R f1 даст выигрыш:

Что достаточно близко к 27 дБ и выше 15.1 V o / V i минимальное усиление, необходимое для моей желаемой выходной мощности, входного напряжения и импеданса динамика.

Если вы создаете стереоусилитель, вам нужно, чтобы R i и R f1 имели жесткие допуски по сопротивлению. Если эти резисторы сильно различаются между двумя каналами, коэффициенты усиления будут разными, и один канал будет громче, чем другой. Идеально подходят металлопленочные резисторы с допуском 0,1% или меньше.

Балансировка входного тока смещения

После установки усиления следующим шагом является балансировка входных токов смещения путем выбора значений для R в и R b :

Если токи на неинвертирующем входе (вывод 9) и инвертирующем входе (вывод 10) различны, между ними будет возникать напряжение.Эта разница в напряжении будет усиливаться как шум.

Инвертирующий вход видит сопротивление R f1 , а неинвертирующий вход видит сопротивление R в и R b последовательно. Вы уже нашли значение для R f1 , когда устанавливали коэффициент усиления усилителя. Значения R в и R b выбраны таким образом, чтобы вместе они равнялись значению R f1 . Это сделает ток на неинвертирующем входе равным току на инвертирующем входе.Чтобы найти значения R в и R b для конкретного R f1 , используйте эту формулу:

Я использовал значение, указанное в таблице данных для R b (1 кОм). Итак, с R f1 при 20 кОм значение R в , которое уравновешивает входной ток смещения для моего усилителя, составляет:

Вы, вероятно, сможете найти резистор 19 кОм, доступный с типом резисторов, которые вы используете, но 20 кОм — это самое близкое значение, которое я смог найти для резисторов Vishay-Dale PTF, поэтому мне придется с этим смириться.

Установите обрезку низких частот на входе усилителя

C в включен последовательно с неинвертирующим входом. Его основная функция — блокировать любой постоянный ток, присутствующий в аудиоисточнике, позволяя при этом проходить переменному току (аудиосигналу). Необходимо заблокировать постоянный ток в источнике звука, иначе он будет усиливаться вместе со звуковым сигналом и создавать высокое смещение постоянного тока в динамиках. Это искажает звук, чего мы не хотим по очевидным причинам.

В дополнение к функции блокировки постоянного тока, C в и входной резистор (R в ) образуют RC-фильтр верхних частот, который устанавливает нижнюю часть полосы пропускания усилителя на неинвертирующем входе:

Частота среза этого фильтра (также известная как точка -3 дБ или частота среза ) — это частота, с которой фильтр начинает работать.В фильтре высоких частот частоты ниже частоты среза будут ослаблены (приглушены). В фильтре нижних частот все частоты выше частоты среза будут приглушены. Мы будем использовать комбинации фильтров низких и высоких частот, чтобы установить полосу пропускания усилителя и улучшить стабильность.

Частота среза (F c ) этого фильтра может быть найдена с помощью уравнения:

Уравнение можно изменить, чтобы найти значение C в для конкретного F c :

Вы нашли значение для R в при балансировке входных токов смещения, поэтому теперь все, что вам нужно, это выбрать частоту среза.Нижний предел человеческого слуха составляет 20 Гц, поэтому F c должен быть намного ниже этого значения, чтобы предотвратить ослабление низких частот. Идеально ниже 2–4 Гц.

Я предпочитаю слушать музыку с большим количеством басов, поэтому я выбрал для своего усилителя довольно низкий F c . Я начал с 1,5 Гц, но вы можете использовать более высокие или более низкие значения, если хотите. Просто убедитесь, что частота ниже 20 Гц, иначе низкие частоты будут слабыми.

С F c 1,5 Гц значение моего C в должно быть:

А 5.Конденсатор на 3 мкФ будет трудно найти, но довольно часто встречается близкое значение 4,7 мкФ. F c с конденсатором 4,7 мкФ будет:

F c 1,69 Гц довольно близко к моим желаемым 1,5 Гц, поэтому конденсатор 4,7 мкФ должен быть хорошим.

Поскольку C в находится непосредственно на пути входного аудиосигнала, тип используемого конденсатора будет влиять на качество звука. Следует избегать электролитических, керамических и танталовых конденсаторов.Лучше всего здесь будет звучать металлическая полипропиленовая пленка хорошего качества, а еще лучше — металлическая полипропиленовая пленка в масляном конденсаторе.

Установка низкочастотного отсечки в контуре обратной связи

Второй фильтр верхних частот присутствует в контуре обратной связи с R i и C i :

Частота среза этого фильтра должна быть в 3-5 раз на ниже , чем у F c C в \ R в фильтре верхних частот на входе.Если F c этого фильтра на выше, чем на входного фильтра, усилитель будет передавать низкие частоты в контур обратной связи, с которыми он не может справиться. Это создаст напряжение на C и и вызовет появление постоянного напряжения на инвертирующем входе, которое будет усиливаться и вызывать искажения. Следовательно, входной фильтр (C в и R в ) должен определять нижнюю полосу пропускания усилителя, а не фильтр контура обратной связи (C i и R i ).

Входной фильтр определяет нижнюю часть полосы пропускания, но C i все еще влияет на низкие частоты. При меньших значениях C i басы будут мягче и менее мощными, но при больших значениях C i басы будут более плотными и более сильными.

Приведенная ниже формула даст вам отправную точку для значения C i :

Я уже нашел значения для R в , C в , R b и R i , поэтому значение моего C i должно быть больше, чем:

Округление до следующего общего значения емкости дает 220 мкФ.Давайте посмотрим, какая будет частота среза при этом. Мы можем использовать уравнение F c с R i и C i :

Теперь я проверю, не является ли 0,72 Гц в 3-5 раз ниже, чем 1,69 Гц F c моего входного фильтра:

Это в 2,3 раза меньше. Давайте попробуем несколько больших значений для C и , чтобы увидеть, не можем ли мы сделать лучше, чем это. Повторение расчета F c для конденсатора 330 мкФ дает 0,48 Гц.

3.В 5 раз меньше — это нормально, но я мог бы сделать даже лучше с конденсатором 470 мкФ. Повторение вычислений снова с конденсатором емкостью 470 мкФ дает F c 0,34 Гц.

Конденсатор емкостью 470 мкФ установит F c моего фильтра контура обратной связи в 4,9 раза ниже, чем F c моего входного фильтра. Это здорово, поэтому я буду использовать конденсатор емкостью 470 мкФ для C и .

C i также находится в тракте аудиосигнала, поэтому следует использовать конденсатор хорошего качества.Емкость, вероятно, будет слишком высокой для использования полипропилена, поэтому вам, вероятно, придется использовать электролит. Однако существуют электролитические компоненты хорошего качества, такие как серия Elna Silmic II или Nichicon KZ, которые не должны отрицательно влиять на качество звука.

Установите обрезку высоких частот на входе усилителя

R b и C c образуют RC-фильтр нижних частот, который устанавливает верхний предел полосы пропускания усилителя на неинвертирующем входе:

В таблице данных C c показаны подключенными между неинвертирующим входом и инвертирующим входом.В этой конфигурации C c фильтрует радиочастоты и электромагнитные помехи, принимаемые входными проводами. К сожалению, это также увеличивает вероятность колебаний. Лучше всего подключить C c от неинвертирующего входа к земле, как показано на изображении выше. Таким образом, C c по-прежнему фильтрует радиочастоты, но он также действует как фильтр нижних частот, который устанавливает верхний предел полосы пропускания усилителя.

F c этого фильтра должен быть установлен значительно ниже самой низкой частоты радиовещания в вашем районе и намного выше верхнего предела 20 кГц для человеческого слуха.Радиочастоты вещания в США:

  • FM: от 87,5 до 108 МГц
  • AM: от 535 до 1605 кГц

Я решил начать с F c около 250 кГц. Она намного ниже самой низкой частоты AM-вещания (535 кГц), поэтому радиочастоты и большинство электромагнитных помех должны быть отфильтрованы. Кроме того, она намного выше верхней 20 кГц частоты человеческого слуха, поэтому более высокие звуковые частоты не будут ослабляться.

Чтобы найти значение для C c , которое дает F c 250 кГц, я просто изменим формулу частоты среза:

Поскольку 636 пФ не является общепринятым значением, я округлю до 680 пФ.С конденсатором 680 пФ F c становится:

Таким образом, конденсатор 680 пФ установит верхнюю частоту среза на 234 кГц, что достаточно близко к моему желаемому F c 250 кГц. C c также находится на пути прохождения сигнала, поэтому следует использовать конденсатор хорошего качества. Лучшими типами диэлектрика для аудиоконденсаторов в диапазоне пикофарадов являются серебряная слюда или полистирол.

Компоненты устойчивости R f2 и C f

R f2 и C f подавляют резонанс в контуре обратной связи и повышают стабильность:

R f1 , R f2 и C f образуют фильтр нижних частот в контуре обратной связи, но, как вы можете видеть из формулы в таблице данных, вычисление F c этого фильтра довольно сложно :

Лучше всего определять значения для R f2 и C f с помощью программного обеспечения для моделирования схем, такого как LTSpice.Однако это выходит за рамки данной статьи, поэтому я просто буду использовать значения, указанные в таблице.

Но если вы хотите поэкспериментировать, уменьшение значения C f повысит верхнее значение F c полосы пропускания, а увеличение значения снизит его.

Сеть Zobel

C sn и R sn образуют сеть Zobel на выходе усилителя:

Сеть Zobel используется для предотвращения колебаний, вызванных индуктивными нагрузками.Это также предотвращает попадание радиочастот, улавливаемых проводами динамиков, обратно на инвертирующий вход усилителя через контур обратной связи.

На высоких частотах сопротивление C sn очень низкое, поэтому ток высокой частоты замыкается на массу. R sn ограничивает ток высокой частоты, поэтому нет прямого замыкания на землю, которое может превысить ограничение тока LM3886. Следовательно, меньшие значения R sn делают сеть Zobel более эффективной при фильтрации радиочастот, но также увеличивает частоту среза, что, в свою очередь, снижает ее эффективность.

В таблице данных указано значение 2,7 Ом для R sn и значение 100 нФ для C sn . Это делает F c :

589 кГц — это довольно много, тем более что самая низкая частота радиовещания AM составляет 535 кГц. Чтобы снизить его до более разумного уровня, я решил использовать 4,7 Ом для R sn и 220 нФ для C sn , что снижает F c до 154 кГц:

154 кГц намного выше предела 20 кГц человеческого слуха и намного ниже любых радиочастот, которые могут улавливать провода громкоговорителей.

Поскольку R sn должен шунтировать большие токи на землю, если усилитель колеблется, номинальная мощность должна быть не менее 1 Вт. C sn должен иметь низкий ESR и низкий ESL, с номинальным напряжением, превышающим размах выходного напряжения между направляющими. Чтобы свести к минимуму индуктивность, расположите сеть Zobel рядом с выходным контактом (контакт 4) и сделайте дорожки короткими.

Сеть Тиле

В то время как сеть Zobel уменьшает колебания, вызванные индуктивными нагрузками, сеть Thiele снижает колебания, вызванные емкостными нагрузками, обычно из-за длинных акустических кабелей.Это также предотвращает попадание радиочастот, улавливаемых проводами динамиков, обратно на инвертирующий вход усилителя через контур обратной связи.

Катушки индуктивности

имеют низкое сопротивление току низкой частоты и высокое сопротивление току высокой частоты. Звуковые сигналы имеют относительно низкую частоту, поэтому они беспрепятственно проходят через катушку индуктивности. Катушка индуктивности препятствует высокочастотному колебательному току, который заставляет протекать через резистор, который гасит его.

В техническом описании рекомендуется использовать резистор 10 Ом, 5 Вт параллельно с резистором 0.Индуктор 7 мкГн. В стереоусилителе будет одна сеть Тиле на канал. Они должны быть расположены вдали от входной схемы усилителя, чтобы предотвратить помехи от магнитных полей, создаваемых индуктором. Хорошее расположение — рядом с выходными клеммами динамика, немного разнесенными или под углом 90 ° друг к другу, чтобы предотвратить взаимодействие магнитного поля между ними.

Изготовление индукторов

Индукторы для сети Тиле представляют собой проволочные сердечники с воздушным сердечником, изготовленные путем наматывания эмалированной проволоки (магнитной проволоки) вокруг цилиндрического объекта.Поскольку катушка индуктивности будет пропускать полный выходной ток усилителя, провод должен быть толстого сечения. От 12 до 18 AWG было бы хорошо. Используйте этот калькулятор однослойной воздушной катушки, чтобы узнать, сколько витков вам нужно для определенного диаметра проволоки и диаметра катушки.

Или вы можете рассчитать индуктивность самостоятельно по этой формуле:

В своей сборке я использовал магнитный провод 14 AWG, так как он толстый и его легко найти. Диаметр 14 AWG составляет 1,62814 мм. Я планировал использовать стержень отвертки диаметром 11 мм для формирования катушки.Введя эту информацию в калькулятор индуктивности, я обнаружил, что мне нужно около 12 витков, чтобы получить индуктор 0,7 мкГн.

Конденсаторы развязки источника питания

LM3886 имеет один отрицательный контакт источника питания (контакт 4) и два положительных контакта источника питания (контакты 1 и 5). Для отрицательного вывода питания необходим собственный набор развязывающих конденсаторов, а для положительных выводов питания используется отдельный набор развязывающих конденсаторов.

Большие развязывающие конденсаторы обеспечивают длительный источник резервного тока при высоком низкочастотном выходе усилителя.Чем больше значение, тем лучше звучание низких частот. Типичные значения находятся в диапазоне от 470 мкФ до 2200 мкФ.

Разделительные конденсаторы средней мощности обеспечивают дополнительный ток для среднечастотного выхода. Они должны быть где-то между 10 мкФ и 220 мкФ.

Небольшие развязывающие конденсаторы очень быстро вырабатывают ток, помогая усилителю выводить более высокие звуковые частоты. Они также фильтруют шум и радиопомехи в блоке питания.

Разделительные конденсаторы также компенсируют паразитную индуктивность и сопротивление проводов питания и дорожек, ведущих к выводам питания микросхемы.Индуктивность и сопротивление препятствуют протеканию тока, который увеличивается с увеличением длины проводов и проводов. Поскольку источник питания находится относительно далеко от микросхемы, индуктивность и сопротивление являются проблемой. Чтобы максимизировать ток, протекающий к микросхеме, развязывающие конденсаторы следует размещать как можно ближе к выводам питания микросхемы.

Конденсаторы с более низким эквивалентным последовательным сопротивлением (ESR) и более низким эквивалентной последовательной индуктивностью (ESL) являются лучшими типами для использования здесь.

Исследование Тома Кристиансена показывает, что керамический конденсатор X7R 4,7 мкФ, подключенный параллельно с электролитическим конденсатором 22 мкФ и электролитом 1000 мкФ, имеет значительно лучшие характеристики, чем подключенные параллельно конденсаторы 100 нФ, 10 мкФ и 470 мкФ, рекомендованные в техническом описании. Это то, что я буду использовать в своем усилителе.

Цепь отключения звука

R m , C m и D1 образуют цепь отключения звука:

Когда ток, вытекающий из вывода отключения звука (вывод 8), меньше 0.5 мА, выход усилителя отключен, а когда ток больше 0,5 мА, выход не отключен.

Чтобы включить усилитель, нам нужно найти такое значение для R m , чтобы ток, протекающий через контакт 8, был больше 0,5 мА. Это можно найти с помощью этой формулы:

Для моего усилителя, работающего от напряжения питания ± 29,6 В,

Итак, мой R m должен быть меньше 54 кОм, чтобы ток на выводе 8 был больше 0.5 мА.

R m и C m создают постоянную времени, которая медленно уменьшает ток на выводе отключения звука при отключении питания усилителя и медленно увеличивает ток при включении усилителя. Стабилитрон на 16 В (D1) блокирует ток, протекающий через контакт 8, до тех пор, пока не будет достигнуто напряжение пробоя диода (16 В). Это создает эффект плавного пуска / остановки, который постепенно увеличивает или уменьшает громкость вместо ее резкого уменьшения.

Время, необходимое для нарастания и спада тока, можно отрегулировать, изменив значения R m или C m в соответствии с формулой для постоянной времени RC:

Например, если мне нужен плавный пуск длительностью в одну секунду, я могу произвольно установить R m равным 10 кОм, а затем найти значение для C m :

Таким образом, установка R m на 10 кОм и C m на 100 мкФ даст мне плавный старт длительностью в одну секунду.

Окончательная схема

Теперь, когда мы увидели, как рассчитать значения компонентов, мы можем приступить к проектированию компоновки печатной платы и схемы подключения. Если вы не хотите выполнять все вычисления, которые мы сделали выше, вы можете использовать значения, которые я использовал. Вот окончательная схема:

Примечание: метки компонентов соответствуют меткам на компоновке печатной платы, представленной ниже. Щелкните изображение, чтобы отредактировать схему или изменить значения компонентов.

Проектирование плана местности

Схема заземления вашего усилителя оказывает большое влияние на качество звука.При правильно спроектированной схеме заземления выход усилителя будет полностью бесшумным, когда источник подключен и музыка не воспроизводится. При плохо спроектированной схеме заземления усилитель может издавать очень заметный гул или жужжащий звук.

Ключом к правильной схеме заземления является отделение слаботочных заземлений от сильноточных. Слаботочные заземления — это заземление для входных цепей и контура обратной связи. Сильноточные заземления — это заземление, подводимое к разделительным конденсаторам источника питания, сети Zobel и динамикам.Сильные токи, протекающие через слаботочные заземляющие проводники, создают постоянное напряжение, которое может появляться на входе усилителя и усиливаться в виде шума.

Чтобы отделить слаботочные заземления от сильноточных, мы создадим несколько сетей заземления:

  • Заземление аудиовхода : Заземление кабеля аудиовхода
  • Сигнальная земля : Земля для входной цепи — R в , C c и R i / C i
  • Заземление динамиков : Заземление динамиков
  • Заземление питания : Заземление для развязывающих конденсаторов источника питания, сети Зобеля, конденсатора отключения звука и вывода заземления LM3886

Эти заземления должны подключаться только один раз к набору клемм, называемому основным системным заземлением .Основное системное заземление расположено как можно ближе к накопительным конденсаторам источника питания. Основное заземление системы будет подключаться к проводу заземления сети через схему защиты контура заземления (поясняется позже) и шасси усилителя.

Отдельные сети заземления подключаются к основной системе заземления, так что заземления с более высоким током находятся ближе к накопительным конденсаторам. На схеме ниже показано, как заказать заземление:

Заземление динамика и заземления аудиовхода проложено непосредственно от своих клемм на шасси к основному заземлению системы.

Проектирование макета печатной платы Дизайн печатной платы

также оказывает большое влияние на характеристики вашего усилителя. Ниже я расскажу о рекомендациях, которые я использовал при разработке этой топологии печатной платы. Печатная плата предназначена для одного канала, поэтому для стереоусилителя вам нужно будет собрать две платы:

Примечание. Компоненты на схеме печатной платы соответствуют приведенной выше схеме. Вы можете нажать на изображение выше, чтобы отредактировать компоновку печатной платы, изменить посадочные места компонентов и заказать печатную плату.

Печатная плата была разработана с помощью программного обеспечения для онлайн-дизайна EasyEDA. EasyEDA — это бесплатное программное обеспечение / услуга по изготовлению схем и плат для проектирования печатных плат, которая предлагает отличные цены на изготовление печатных плат по индивидуальному заказу.

Заказ печатных плат

Если вы нажмете кнопку «Fabrication Output» в редакторе плат EasyEDA, вы попадете на страницу, где можно заказать печатную плату. Вы сможете выбрать толщину меди, толщину печатной платы, цвет и количество для заказа:

Заказал 5 плат за 17 долларов.10 долларов и они были доставлены примерно за 10 дней. Готовые доски отлично смотрятся. Все следы и печать получились очень чистыми и точными, ни на одной из плат не было дефектов. Вот одна из печатных плат:

Рекомендации по проектированию печатных плат

Сильные токи, протекающие через источник питания и выходные дорожки, будут создавать магнитные поля, которые могут генерировать токи в контуре обратной связи и на входных дорожках, если они проложены параллельно друг другу. Это может исказить входной сигнал, поэтому лучше держать их подальше друг от друга или направлять под углом 90 °.Размещение их клемм для печатных плат на противоположных сторонах платы упростит их разделение при прокладке трасс.

Любое пространство между дорожками одной и той же цепи создаст петлю, которая может передавать или принимать электромагнитные поля. Следы для подачи питания и заземления должны быть проложены близко друг к другу, чтобы уменьшить площадь контура. Точно так же аудиовход и дорожки сигнала должны быть проложены близко друг к другу. Простой способ минимизировать площадь петли — использовать заземляющие поверхности на нижнем слое печатной платы, что я и сделал в этом макете.

Заземление питания и сигнальное заземление — единственные цепи заземления на печатной плате. Каждый из них имеет свою электрически изолированную заземляющую пластину на нижнем слое. Поскольку заземление питания несет большие токи, а сигнальное заземление — низкие токи, они хранятся отдельно до тех пор, пока не подключатся к основному заземлению системы. На верхнем слое печатной платы трассы источника питания, выхода и сети Zobel проходят через заземляющий слой питания. Трассы входа и обратной связи проходят по плоскости заземления сигнала.Следы для подачи питания были сделаны очень широкими, чтобы минимизировать сопротивление и индуктивность.

Контур обратной связи должен быть как можно короче, чтобы уменьшить площадь контура. Я обрезал выводы резистора обратной связи (R f1 ) и припаял его непосредственно к контактам 9 и 3, чтобы площадь контура была как можно меньше:

Индуктивность препятствует прохождению тока и создает резонанс с последовательно включенным конденсатором. Поскольку индуктивность увеличивается с увеличением длины дорожки, лучше делать все дорожки как можно короче.Это особенно важно для разделительных конденсаторов источника питания, контура обратной связи, входных цепей и сети Zobel. Держите компоненты этих схем вплотную к контактам микросхемы, чтобы следы были короткими.

У нас есть больше советов и приемов по проектированию печатных плат в нашей статье «Как сделать нестандартную печатную плату», так что ознакомьтесь с ней, если вам интересно.

Все вместе

LM3886 — это усилитель на микросхеме Hi-Fi, поэтому для моего усилителя я использовал высококачественные компоненты аудио:

Общая стоимость обоих каналов составила около 118 долларов, не считая шасси, блока питания и деталей проводки.Вы можете построить его намного дешевле с более дешевыми компонентами, если у вас ограниченный бюджет, просто не забудьте изменить посадочные места компонентов в топологии печатной платы.

Пайка и пайка

Перед тем, как припаять компоненты к печатной плате, используйте кусок наждачной бумаги с мелким зерном, чтобы удалить любые окисления с выводов компонентов. Это обеспечит более прочное паяное соединение и лучшую электропроводность.

Чтобы удерживать отдельные компоненты на месте во время пайки, используйте замазку, такую ​​как Sticky-Tac, на верхней стороне печатной платы.Сначала начните пайку самых маленьких компонентов и постепенно переходите к более крупным компонентам.

Старайтесь избегать стандартного оловянно-свинцового припоя 60/40 и используйте вместо него эвтектический припой 63/37. Припой 60/40 имеет широкий диапазон плавления, и когда он находится в нижней части диапазона, он становится пастообразным. Если компонент движется в пастообразной фазе, это может привести к образованию холодного паяного соединения. Меньший диапазон плавления эвтектического припоя ускоряет схватывание припоя и обеспечивает лучшее электрическое соединение.

Вот один канал моего усилителя после того, как я спаял компоненты:

Поиск шасси

Вам понадобится корпус, чтобы удерживать печатные платы и провода, а также для крепления входных, выходных и силовых разъемов.Металлические корпуса — лучший тип, потому что они защищают усилитель от помех, вызываемых люминесцентными лампами, радио и сотовыми телефонами. К сожалению, бывает сложно найти шасси, которое подошло бы ко всему и при этом красиво выглядело. После долгих поисков я нашел компанию под названием Hi-Fi 2000, которая производит действительно хорошие металлические корпуса. Их веб-сайт на итальянском языке, но его можно перевести на английский. Я заказал их модель Galaxy 330 × 280 мм с передней панелью из черного анодированного алюминия толщиной 10 мм, и она отлично выглядит:

Они также выполняют сверление и печать на заказ, поэтому я попросил их настроить заднюю панель:

Перед тем, как заказать шасси, сделайте тестовую компоновку трансформатора, источника питания, печатных плат усилителя и радиаторов.Затем измерьте габаритные размеры, чтобы убедиться, что корпус подойдет ко всему.

Схема проводки внутри корпуса

После того, как печатные платы собраны и у вас есть шасси, самое время соединить все вместе. Схема электропроводки так же важна, как и схема печатной платы и схема заземления. Используйте приведенную ниже схему в качестве руководства для подключения различных частей вместе:

Щелкните изображение, чтобы просмотреть его в увеличенном виде.

Целью проводки является уменьшение или устранение электромагнитных помех между сильноточными и слаботочными проводами.Провода аудиовхода и провода заземления сигнала наиболее чувствительны к помехам от окружающих магнитных полей.

Провода питания, выходные провода динамика, трансформатор, выпрямительные диоды и провода сети переменного тока являются основным источником магнитных полей. Чтобы уменьшить помехи, держите аудиовход и сигнальные провода заземления подальше от этих частей или проложите их под углом 90 °, если их разделение неизбежно. Если вы сориентируете входную сторону печатных плат усилителя рядом с входными клеммами на шасси, провода можно будет сделать короткими и вдали от источников помех.

Любое пространство между проводами одной и той же цепи создаст петлю, которая может передавать или принимать электромагнитные поля. Чтобы свести к минимуму площадь петли, следующие наборы проводов должны быть плотно скручены вместе:

  • Горячие и нейтральные провода сети переменного тока от входной клеммы до трансформатора
  • Провода нулевого и вторичного переменного напряжения от трансформатора к источнику питания
  • V +, V- и провода заземления от источника питания до каждой печатной платы усилителя
  • Провода выхода динамика и заземления динамика от печатной платы усилителя / заземления основной системы до клемм шасси
  • Аудиовход и входные провода заземления от входных клемм к печатным платам усилителя

Три провода источника питания (V +, V- и заземление) соединяют выход постоянного тока источника питания с каждой печатной платой усилителя.Эти провода должны быть толстыми, как можно более короткими и плотно скрученными. Я использовал 14 AWG, но все, что больше 18 AWG, подойдет.

По входным проводам и сигнальным заземляющим проводам протекают только слабые токи, поэтому они не обязательно должны быть толстого сечения. Я использовал твердый сердечник 22 AWG, который хорошо работает, потому что его можно скрутить в тугую катушку.

Кабели аудиовхода, идущие от источника к шасси усилителя, могут улавливать помехи. Если это становится проблемой, вы можете установить конденсатор емкостью 1 нФ между землей каждой входной клеммы и шасси, чтобы отфильтровать его.

Заземляющий провод сети должен быть прикреплен непосредственно к шасси с помощью болта и кольцевой клеммы. Я бы также использовал стопорную гайку или стопорную шайбу, чтобы предотвратить ее ослабление. Все металлические части усилителя (например, радиаторы) должны быть электрически подключены к шасси, чтобы обеспечить заземление для любых сетевых напряжений, которые могут с ними контактировать в случае неисправности.

Основное заземление системы подключается к цепи защиты заземления (обсуждается ниже), которая затем подключается к шасси.Схема защиты от заземления может подключаться к шасси через болт, где провод заземления сети подсоединяется к шасси, или в отдельном месте.

Две сети Тиле расположены рядом с выходными клеммами динамика. Чтобы предотвратить взаимное влияние катушек индуктивности, они должны быть расположены на расстоянии друг от друга или ориентированы под углом 90 ° друг к другу.

Вот как я установил все внутри своего корпуса. Печатная плата правого канала установлена ​​в перевернутом виде, так что сторона ввода платы находится близко к RCA и 3.Входные клеммы 5 мм. При таком расположении радиаторы обеспечивают некоторую защиту от сетей Тиле и проводов переменного тока, ведущих к трансформатору:

Щелкните изображение, чтобы просмотреть его в увеличенном виде.

Схема защиты контура заземления

ЗАЩИТНЫЕ ЦЕПИ ЗАЗЕМЛЕНИЯ МОГУТ БЫТЬ НЕЗАКОННЫМИ В НЕКОТОРЫХ ЗОНАХ. ПОЖАЛУЙСТА, ПРОВЕРЬТЕ СВОЙ МЕСТНЫЙ ЭЛЕКТРИЧЕСКИЙ КОД ИЛИ КОНСУЛЬТИРУЙТЕСЬ С ЭЛЕКТРИКОМ ПЕРЕД УСТАНОВКОЙ ЭТОГО…

Когда вы подключаете источник звука с питанием к усилителю, магнитные поля от трансформатора источника и проводов источника питания могут быть связаны с проводами заземления входных аудиокабелей.Это называется контуром заземления, и он может создавать гул на выходе вашего усилителя.

Схема защиты контура заземления отключит ток контура заземления:

В нормальных условиях эксплуатации низковольтные токи контура заземления протекают через резистор (R1) на землю (шасси). Резистор снижает этот ток и разрывает контур заземления. В случае сильноточного замыкания ток короткого замыкания может протекать через диодный мост на землю. Обратите внимание, что шасси ДОЛЖНО быть электрически подключено к заземляющему проводу сети, чтобы предотвратить попадание сетевого напряжения на металлическое шасси в случае неисправности.Конденсатор предназначен для фильтрации любых радиочастот, принимаемых шасси.

Если используется схема защиты контура заземления, все входные и выходные клеммы должны быть электрически изолированы от шасси. В противном случае схема защиты контура заземления будет полностью отключена проводами заземления входа / выхода, которые соединяются с заземлением основной системы.

Схема защиты контура заземления может быть жестко смонтирована, но немного удобнее монтировать компоненты на печатной плате. Клемма «PSU 0V» подключается к основному заземлению системы.Терминал «Шасси» подключается к шасси:

Щелкните изображение, чтобы отредактировать компоновку, изменить посадочные места компонентов и заказать печатную плату.

Как это звучит?

Усилитель, который я построил, звучит невероятно хорошо. Это лучший усилитель, который у меня когда-либо был. Бас очень глубокий и чистый. Вы действительно можете это почувствовать. Высокие частоты чистые, но совсем не резкие. Я слышу детали в песнях, о которых даже не подозревал. Поверьте, если вы создадите усилитель с LM3886, вы не будете разочарованы.Он определенно оправдывает свою репутацию усилителя Hi-Fi. Видео в начале поста даст вам представление о том, как это звучит.

Это примерно покрывает большую часть того, что вам понадобится для создания превосходно звучащего усилителя Hi-Fi с LM3886. Из-за длины этого поста я решил не описывать блок питания в деталях, но, возможно, сделаю это в будущем.

Если вы заинтересованы в создании других усилителей, у нас также есть руководство по созданию усилителя на 25 Вт с TDA2050, а также по созданию 10 Вт стерео и мостовых усилителей с помощью TDA2003.

Спасибо, что прочитали … Если у вас есть какие-либо вопросы по этой сборке, не забудьте оставить их в комментариях ниже, и мы постараемся на них ответить. И обязательно поставьте лайк, поделитесь и подпишитесь, если вы нашли это полезным! Поговорим с тобой в следующий раз…


Как спроектировать и построить усилитель с TDA2050

Печатные платы

для этого проекта доступны здесь.

Примечание: это руководство также будет работать с TDA2030, если вы поддерживаете напряжение питания ниже ± 18 В.

TDA2050 — великолепно звучащий чип-усилитель с большой мощностью. В этом уроке я проведу вас через процесс проектирования усилителя при создании 25-ваттного стереоусилителя с TDA2050. Во-первых, я покажу вам, как рассчитать требования к напряжению и току вашего источника питания, и покажу, как найти радиатор подходящего размера. Затем я покажу вам, как найти правильные значения для всех компонентов схемы. Я также покажу вам, как изменить коэффициент усиления и как установить полосу пропускания усилителя.Наконец, я расскажу о конструкции печатной платы и подключении усилителя внутри корпуса. Информация строится сама по себе, поэтому лучше следить за ней по порядку. Но если вы хотите перейти к определенной теме, вот ссылки на разделы в этой статье:

БОНУС: Загрузите мой список деталей, чтобы увидеть компоненты, которые я использовал для получения хорошего качества звука от этого усилителя. Я также включил файлы Gerber и схему для источника питания, который я использовал.

Техническое описание — хороший ориентир при сборке любого усилителя.Я рекомендую прочитать его перед тем, как приступить к этому проекту:

TDA2050 Лист данных

ВНИМАНИЕ !! ДАННЫЙ ПРОЕКТ ПРЕДНАЗНАЧЕН ДЛЯ ВЫСОКОГО НАПРЯЖЕНИЯ, КОТОРАЯ МОЖЕТ ПРИВЕСТИ К СЕРЬЕЗНЫМ ТРАВМАМ ИЛИ СМЕРТИ. ОБЯЗАТЕЛЬНО ИСПОЛЬЗУЙТЕ НАДЛЕЖАЩИЕ МЕРЫ БЕЗОПАСНОСТИ И НИКОГДА НЕ РАБОТАЙТЕ НА ПИТАНИИ.

Вы также можете посмотреть это видео для обзора процесса проектирования. В конце видео я подключаю усилитель и включаю музыку, чтобы вы могли услышать, как это звучит:

Что нужно знать перед запуском

Перед тем, как начать, вы хотите получить представление о том, какую выходную мощность вы хотите получить от усилителя.Вам также необходимо знать импеданс ваших динамиков и входное напряжение вашего аудиоисточника. Обязательно сверьтесь с таблицей данных TDA2050, чтобы найти абсолютные максимальные значения для этих параметров, и спроектируйте свой усилитель так, чтобы он оставался в пределах безопасных рабочих параметров.

Согласно техническому описанию, TDA2050 может выдавать 28 Вт на динамики 4 Ом с 0,5% искажением при источнике питания 22 В. Я буду подключать к усилителю колонки с сопротивлением 6 Ом, так что я стремлюсь к выходной мощности около 25 Вт.Я буду использовать iPhone в качестве источника звука с выходным напряжением 1 В.

Первый шаг — выяснить, сколько напряжения и мощности вам нужно от источника питания, чтобы получить желаемую выходную мощность.

Напряжение и ток источника питания

TDA2050 может питаться от раздельного или однополярного источника питания. При раздельном питании выходная мощность усилителя будет выше, поэтому я и буду использовать его здесь.

Напряжение источника питания

Требуемая выходная мощность и сопротивление динамика определяют, какое напряжение вам нужно от источника питания.Но прежде чем мы сможем рассчитать напряжение источника питания, нам нужно вычислить пиковое выходное напряжение усилителя (V opeak ) .

Пиковое выходное напряжение

Пиковое выходное напряжение можно найти по следующей формуле:

Пиковое выходное напряжение моего 25-ваттного усилителя с динамиками 6 Ом будет:

Таким образом, при выходной мощности 25 Вт максимальное напряжение на динамиках будет 17.3 В.

Максимальное напряжение питания, необходимое усилителю

Теперь вы можете найти максимальное напряжение питания (V max supply ) , которое является напряжением, которое требуется вашему усилителю для получения желаемой выходной мощности. Предел напряжения питания TDA2050 составляет ± 25 В, поэтому не превышайте его.

Формула для расчета максимального напряжения питания:

Регулирование — это увеличение выходного напряжения трансформатора, когда нет нагрузки для потребления тока, что происходит, когда усилитель не воспроизводит музыку.Точное значение должно быть указано в спецификации вашего трансформатора. Трансформатор, который я буду использовать, имеет регулировку 6%, поэтому мое максимальное напряжение питания составляет:

Итак, мой блок питания должен выдавать ± 24,9 В для моего усилителя, чтобы управлять динамиками 6 Ом при 25 Вт. Символ ± означает, что напряжение положительной шины составляет +25 В, а напряжение отрицательной шины составляет -25 В.

Максимальное напряжение питания, обеспечиваемое трансформатором

Цель состоит в том, чтобы найти трансформатор, который может выдавать максимальное напряжение питания, близкое к максимальному напряжению питания, необходимому для вашего усилителя.

Номинальное напряжение трансформатора говорит вам только о его выходном напряжении переменного тока. Напряжение постоянного тока, которое вы получите после того, как мостовые выпрямители на блоке питания преобразуют переменный ток в постоянный, на самом деле будет выше в 1,41 раза. Вам также необходимо учитывать скачки напряжения в сети и регулировку трансформатора.

Максимальное напряжение питания, которое вы получите от трансформатора, можно рассчитать по следующей формуле:

Я начал с трансформатора с номиналом 15 В переменного тока, чтобы посмотреть, сможет ли он обеспечить максимальное напряжение питания, необходимое для моего усилителя:

Таким образом, трансформатор на 15 В даст мне максимальное напряжение питания 24.7 В постоянного тока после источника питания. Это действительно близко к максимальному напряжению питания 24,9 В, необходимому для моего усилителя, но теперь давайте точно посчитаем, какую выходную мощность я получу с ним …

Выходная мощность усилителя от максимального напряжения питания трансформатора

Этот расчет полезен, если у вас уже есть трансформатор и вы хотите узнать, какую выходную мощность ваш усилитель будет выдавать с ним:

Максимальное напряжение питания от трансформатора 15 В — 24.7 В, поэтому выходная мощность усилителя будет:

.

Трансформатор 15 В даст мне выходную мощность 24,6 Вт на колонки с сопротивлением 6 Ом, что достаточно близко к моим желаемым 25 Вт.

Мощность трансформатора, необходимая для усилителя

Теперь мы можем определить, сколько мощности требуется трансформатору для питания усилителя. Мощность обычно указывается как ВА, номинальная мощность в технических характеристиках трансформатора. Чтобы рассчитать минимальную номинальную мощность ВА ( ВА), нам сначала нужно найти общую мощность (P питание ) , необходимую трансформатору для питания усилителя.

Общая мощность зависит от максимального напряжения питания, которое вы получите от трансформатора, пикового выходного напряжения усилителя, импеданса динамика и тока покоя (QDC) TDA2050 (90 мА):

Итак, мой трансформатор на 15 В должен обеспечивать как минимум:

Теперь мы используем общую мощность, чтобы найти минимальную номинальную мощность в ВА для вашего трансформатора…

Преобразование общей мощности в номинальную мощность трансформатора, ВА

Чтобы определить минимальную номинальную мощность трансформатора в ВА, необходимо умножить общую мощность на коэффициент 1.5.

Для моего трансформатора 15 В номинальная мощность ВА должна быть:

Это ВА на канал. Для стереоусилителя просто умножаем на два:

То есть трансформатор мощностью более 150 ВА обеспечит мой усилитель достаточной мощностью. Это полезно знать, потому что, если ваш трансформатор недостаточно активен, усилитель может обрезать или искажать звук на более высокой громкости.

Как подобрать радиатор подходящего размера

Два канала моего усилителя, подключенные к радиатору:

TDA2050 необходимо прикрепить к радиатору, иначе он быстро перегреется и выйдет из строя.Размер необходимого радиатора будет зависеть от максимальной рассеиваемой мощности и теплового сопротивления на пути теплового потока от TDA2050.

Максимальное рассеивание мощности

Максимальная рассеиваемая мощность (P dmax ) — это количество мощности, которое TDA2050 будет рассеивать в виде тепла на пределе своей работы. P dmax зависит от максимального напряжения питания вашего трансформатора и импеданса ваших динамиков:

Согласно техническому описанию, абсолютная максимальная мощность TDA2050 для P dmax составляет 25 Вт.Если мощность P dmax вашей конструкции превышает 25 Вт, вам необходимо снизить напряжение питания или увеличить импеданс динамика, чтобы предотвратить повреждение.

Для усилителя, который я создаю, максимальное напряжение питания, подаваемое моим трансформатором, составляет ± 24,7 В, и я использую динамики с сопротивлением 6 Ом, поэтому мой P dmax составляет:

A P dmax 20,6 Вт ниже абсолютного максимума TDA2050 в 25 Вт, так что пока все выглядит хорошо.

Максимальное тепловое сопротивление радиатора

Теперь мы можем определить максимальное тепловое сопротивление (в ° C / Вт) радиатора, необходимого для рассеивания всей мощности, производимой TDA2050.Но прежде чем мы сможем это сделать, нам нужно знать значения трех тепловых сопротивлений на пути теплового потока от TDA2050:

θ jc : тепловое сопротивление от стыка микросхемы (кристалла) до внешней поверхности пластикового корпуса.

θ cs : тепловое сопротивление от корпуса микросхемы к радиатору.

θ sa : Тепловое сопротивление радиатора окружающему воздуху.

Отвод тепла будет более эффективным, если любой из них будет меньше.Мы ничего не можем сделать, чтобы получить более низкий θ jc , потому что это зависит от конструкции корпуса TDA2050. θ cs можно уменьшить, используя термопасту между микросхемой и радиатором. Тепловое сопротивление термопасты обычно составляет около 0,2 ° C / Вт, но проверьте таблицу, чтобы найти точное значение для используемого типа.

Наибольшее снижение теплового сопротивления будет происходить из-за вашего выбора радиатора (θ sa ). Тепловое сопротивление радиатора обычно указывается в градусах Цельсия / Вт в технических характеристиках или в рекламных материалах.Радиаторы с более низким тепловым сопротивлением рассеивают больше тепла.

Используйте эту формулу для расчета максимального теплового сопротивления радиатора, необходимого для рассеивания P dmax :

TDA2050.

  • θ cs TDA2050 составляет 3 ° C / Вт.
  • T jmax — максимальная температура перехода или температура, при которой включается схема теплового отключения. T jmax для TDA2050 составляет 150 ° C.
  • T amb — температура окружающей среды (в ° C) во время работы усилителя.Типичное значение — комнатная температура (25 ° C).

Максимальное тепловое сопротивление радиатора для моего усилителя с P dmax 20,6 Вт составляет:

Итак, мне понадобится радиатор с номиналом меньше или равным при температуре 2,9 ° C / Вт, чтобы он мог рассеивать всю мощность, производимую моим усилителем.

Расчет значений компонентов усилителя

Теперь, когда все требования к мощности и радиатору определены, давайте найдем наилучшие значения для компонентов в схеме.Я буду использовать приведенную ниже схему, которая в основном такая же, как и в таблице данных, но с несколькими дополнительными компонентами, которые помогают фильтровать шум:

Если вы нажмете на изображение, вы попадете в редактор схем EasyEDA, где вы сможете изменить схему и значения компонентов.

Вот схема распиновки TDA2050 для справки:

Минимальное усиление

Коэффициент усиления TDA2050 должен быть установлен выше 24 дБ для поддержания стабильности, но есть также минимальное усиление, необходимое для получения желаемой выходной мощности.Это зависит от входного напряжения, импеданса динамика и желаемой выходной мощности по следующей формуле:

Я буду использовать iPhone в качестве источника звука для своего усилителя. У iPhone выходное напряжение около 1 В, поэтому для получения выходной мощности 24,6 Вт мне нужно установить коэффициент усиления как минимум:

.

Это выражается как коэффициент усиления по напряжению (V o / V i ) или коэффициент усиления. Чтобы преобразовать усиление по напряжению в усиление в децибелах, используйте эту формулу:

Итак, установив усиление выше 21.7 дБ обеспечат выходную мощность 24,6 Вт. Но минимальное усиление TDA2050 составляет 24 дБ, поэтому мне нужно установить его как минимум на 24 дБ.

Установить усиление

Значения резисторов R4 и R5 задают коэффициент усиления TDA2050:

Настройки высокого усиления вызовут искажения, а настройки низкого усиления могут не обеспечить достаточную громкость. Если ваше минимальное значение усиления позволяет это, хорошее усиление для домашнего прослушивания составляет от 27 до 30 дБ. Этот параметр недостаточно высок, чтобы вызвать искажение, и он даст вам хороший диапазон громкости.

Лучшие резисторы для R4 и R5 — это металлопленочные типы с жесткими допусками. Допуск 0,1% или меньше является идеальным. Важно использовать резисторы с малым допуском для настройки усиления, особенно если вы строите стереоусилитель. Если значения сопротивления между двумя каналами отличаются на несколько Ом, коэффициенты усиления будут разными, и одна сторона будет громче, чем другая.

Прирост рассчитывается по следующей формуле:

Я устанавливаю усиление своего усилителя примерно на 27 дБ.Я пробовал разные значения резисторов с помощью приведенной выше формулы и приблизился к желаемому усилению с R4 на 1 кОм и R5 на 22 кОм. Эти сопротивления установят мое усиление:

.

Что будет работать нормально, поскольку 27,2 дБ выше минимального коэффициента усиления, который я рассчитал ранее, и выше минимума в 24 дБ TDA2050.

Сбалансируйте входной ток смещения

После установки усиления следующим шагом является балансировка входного тока смещения усилителя . Входной ток смещения — это разница в токах, протекающих на неинвертирующий вход (контакт 1) и инвертирующий вход (контакт 2).Эту разницу в токе необходимо минимизировать, поскольку она создает на входах постоянное напряжение, которое будет усиливаться как шум.

Ток на инвертирующем входе определяется сопротивлением R5. Ток на неинвертирующем входе определяется последовательными сопротивлениями R2 и R3:

Чтобы токи на каждом входе были одинаковыми, мы устанавливаем

Для своего усилителя я уже нашел значение R5, когда устанавливал усиление. Для R3 я начал с произвольного значения 1 кОм, затем изменил формулу выше, чтобы найти значение для R2:

.

Таким образом, резистор 21 кОм для R2 и резистор 1 кОм для R3 будут уравновешивать входной ток смещения.

Установите нижний предел полосы пропускания усилителя на входе

Конденсатор C1 предотвращает попадание постоянного тока от аудиоисточника на вход усилителя. Если постоянному току разрешено достигать входа, он будет усиливаться вместе со звуковым сигналом и создавать шум.

C1 также образует резистивно-конденсаторный (RC) фильтр верхних частот с R2, который определяет нижнюю часть полосы пропускания усилителя:

Частота среза фильтра (F c ) — это частота, с которой фильтр начинает работать.В фильтре высоких частот приглушаются частоты ниже частоты среза.

Частоту среза этого фильтра можно найти с помощью следующего уравнения:

Мы уже нашли значение R2 при балансировке входных токов смещения. Чтобы найти значение для C1, нам просто нужно определить частоту среза. Поскольку нижний предел человеческого слуха составляет 20 Гц, F c должен быть значительно ниже 20 Гц, чтобы слышимые низкие частоты не приглушались.

Уравнение F c , приведенное выше, можно изменить, чтобы найти значение для C1 при определенной частоте среза:

Я ездил на F c из 3.5 Гц для моего усилителя, но вы можете использовать несколько более высокие или более низкие значения, если хотите. Может потребоваться некоторое экспериментирование, чтобы найти идеальное значение для ваших ушей, но просто убедитесь, что оно не превышает нижнего предела человеческого слуха (20 Гц), иначе басовая характеристика вашего усилителя будет слабой.

С F c 3,5 Гц значение моего C1 составляет:

C1 находится непосредственно на пути входного сигнала, поэтому это повлияет на качество звука вашего усилителя. Для наилучшего звучания используйте металлическую полипропиленовую пленку или металлическую полипропиленовую пленку в масляном конденсаторе.

Установите нижний предел полосы пропускания усилителя в контуре обратной связи

C3 и R4 образуют еще один фильтр верхних частот в контуре обратной связи:

Частота среза этого фильтра должна быть установлена ​​в 3-5 раз ниже, чем частота среза входного фильтра верхних частот. Если частота среза этого фильтра выше, чем частота среза фильтра на входе, низкие частоты будут передаваться на фильтр контура обратной связи, которые ниже его частоты среза.Это создаст постоянное напряжение на C3, которое появится на инвертирующем входе и усилится в виде шума.

Даже несмотря на то, что входной фильтр устанавливает нижний предел полосы пропускания усилителя, C3 по-прежнему влияет на характеристики низких частот. Меньшие значения C3 приведут к более мягкому басу с меньшим ударом, а большие значения сделают бас более плотным и сильным.

Используйте приведенную ниже формулу в качестве отправной точки, чтобы найти идеальное значение для C3:

Я уже рассчитал значения R2, ​​R3, R4 и C1, поэтому мой C3 должен быть больше, чем:

Будет сложно найти конденсатор на 68 мкФ, поэтому я округлю до 100 мкФ.Посмотрим, какой будет частота среза при этом:

Теперь давайте проверим, не является ли 1,59 Гц в 3-5 раз ниже, чем 3,5 Гц F c моего входного фильтра:

Это в 2,2 раза меньше, так что, возможно, мы сможем добиться большего с конденсатором 220 мкФ. У F c с конденсатором 220 мкФ 0,72 Гц.

Таким образом, значение 220 мкФ для C3 устанавливает частоту среза фильтра контура обратной связи в 4,9 раза ниже, чем частота среза входного фильтра.Это будет нормально, вот что я использую.

Установите верхний предел полосы пропускания усилителя

R1, R3 и C2 образуют RC-фильтр нижних частот на входе усилителя, который определяет верхнюю часть полосы пропускания усилителя:

В фильтре нижних частот приглушаются частоты выше среза. Этот фильтр выполняет две функции. Во-первых, он устанавливает верхний предел полосы пропускания усилителей, а во-вторых, он фильтрует высокочастотные радио и электромагнитные помехи от аудиовхода.

Частота среза этого фильтра должна быть больше 20 кГц верхнего предела человеческого слуха. Он также должен быть ниже, чем любые частоты радиовещания, которые могут быть захвачены входными проводами и дорожками.

Самая низкая частота радиовещания в США — AM 535 кГц. Я выбрал частоту среза 350 кГц, что значительно ниже 535 кГц и намного выше 20 кГц верхнего предела человеческого слуха.

Чтобы найти значение C2 с F c , равным 350 кГц, я изменил формулу частоты среза, чтобы найти C2:

227 пФ не является обычным значением конденсатора.Однако 220 пФ даст частоту среза 362 кГц, так что он отлично подойдет для замены.

Сеть Zobel

A Сеть Zobel помогает предотвратить колебания, которые могут возникнуть из-за паразитной индукции проводов динамика. Он также действует как фильтр, предотвращающий попадание радиопомех, улавливаемых проводами динамика, на инвертирующий вход через контур обратной связи.

C4 и R6 образуют сеть Zobel на выходе усилителя:

Поскольку конденсаторы имеют очень низкий импеданс на высоких частотах, радиочастоты замыкаются на землю через C4.R6 ограничивает ток высокой частоты, поэтому нет прямого замыкания на землю, которое может превысить ограничение тока TDA2050. Относительно низкочастотный аудиоток блокируется C4, поэтому он направляется в динамики.

Частоту среза сети Zobel можно рассчитать с помощью:

В таблице даны значения для R6 = 10 Ом и C4 = 100 нФ, что дает F c :

159 кГц выше предела 20 кГц человеческого слуха и намного ниже радиочастот, поэтому эти значения будут работать нормально.

Если усилитель колеблется, R6 будет передавать большие токи на землю, поэтому его номинальная мощность должна быть не менее 1 Вт. В идеале C4 должен быть металлопленочным конденсатором с низким ESR и номинальным напряжением, превышающим размах выходного напряжения между направляющими.

Конденсаторы развязки источника питания

C5 — C10 — конденсаторы развязки источника питания. Они действуют как резервуар тока, который при необходимости может быть быстро подан на усилитель.Для каждого вывода напряжения питания имеется один набор развязывающих конденсаторов.

Разделительные конденсаторы большей емкости (C9 и C10) обеспечивают резервный ток в течение длительных периодов низкочастотного выхода. Более высокие значения улучшат басовый отклик усилителя.

Разделительные конденсаторы меньшего номинала (C6 и C5) могут быстро обеспечивать резервный ток в периоды интенсивного высокочастотного выходного сигнала. Они также фильтруют высокочастотный шум и электромагнитные помехи от источника питания.

Разделительные конденсаторы также компенсируют индуктивность и сопротивление проводов питания и дорожек, ведущих к микросхеме. Индуктивность и сопротивление препятствуют протеканию тока, и, поскольку основной источник питания находится относительно далеко от TDA2050, эффект может быть значительным. Размещение развязывающих конденсаторов как можно ближе к контактам микросхемы максимизирует ток, протекающий к микросхеме.

Лучшие типы конденсаторов для использования будут иметь более низкое эквивалентное последовательное сопротивление (ESR) и эквивалентную последовательную индуктивность (ESL) .

Заземление усилителя

Заземление — один из важнейших аспектов конструкции усилителя. Неправильная схема заземления может стать основным источником шума и гудения. Хорошая схема заземления удерживает слаботочный аудиовход и заземление сигнала отдельно от сильноточного источника питания и заземления динамиков. Если через слаботочные заземления протекать большие токи, в слаботочных проводах разовьется постоянное напряжение, которое появится на входе и усилится в виде гула.

Чтобы разные земли были разделены, мы создадим несколько разных сетей заземления:

  • Заземление аудиовхода : Для заземляющего провода кабеля аудиовхода
  • Сигнальная масса : Для входной цепи: R2, C2 и C3
  • Заземление динамика : для обратных проводов динамика
  • Заземление питания : Для развязывающих конденсаторов источника питания и сети Zobel

Эти заземления подключаются к группе клемм, называемой заземлением основной системы.Основное заземление системы подключается к цепи защиты контура заземления (я объясню это позже), которая затем подключается к проводу заземления сети через металлическое шасси.

Основное заземление системы должно располагаться как можно ближе к накопительным конденсаторам на источнике питания:

Сети заземления подключаются к основному заземлению системы в определенном порядке, так что высокие токи протекают через заземления с низким током только на очень короткое расстояние.Как показано на схеме выше, соединение цепи защиты контура заземления находится ближе всего к накопительным конденсаторам, а входное соединение заземления находится дальше всего.

Компоновка и дизайн печатной платы

Я разработал печатную плату для своего усилителя, используя онлайн-программу EasyEDA для проектирования печатных плат. EasyEDA — это бесплатное программное обеспечение / услуга по изготовлению схем и плат для проектирования печатных плат, которая предлагает отличные цены на изготовление печатных плат по индивидуальному заказу. Чтобы отредактировать компоновку, изменить посадочные места компонентов и заказать печатную плату, щелкните изображение ниже:

Метки компонентов на плате соответствуют меткам на схеме

Эта печатная плата предназначена для одного канала, поэтому, если вы собираете стереоусилитель, вам нужно будет собрать две платы.Если вам нужны советы по проектированию печатных плат и руководство по использованию EasyEDA, ознакомьтесь с нашей статьей «Как создать собственную печатную плату».

Печатная плата Заказ

Если вы нажмете кнопку «Fabrication Output» в окне редактора плат, вы попадете на страницу, где вы можете заказать печатную плату. Вам также будет предложено выбрать толщину меди, толщину печатной платы, цвет, количество заказа и другие параметры:

Я заказал 5 печатных плат, и их стоимость составила 17,10 долларов США. Изготовление и отгрузка заняли около 10 дней.Доски вышли великолепно. Следы нанесены точно, и вся печать очень четкая. Вот одна из плат после изготовления:

Советы по дизайну печатной платы

При разработке этой печатной платы я учел четыре основных принципа:

  • Ток, протекающий по проводнику, создает магнитное поле, которое может генерировать ток в параллельном проводнике
  • Ток, протекающий в проводящей петле, создает магнитное поле, а магнитное поле создает ток в проводящей петле.Величина тока пропорциональна площади внутри контура
  • .
  • Индуктивность препятствует прохождению тока. Длинные тонкие дорожки имеют большую индуктивность, чем короткие толстые дорожки
  • Конденсатор, включенный последовательно с катушкой индуктивности, создает резонансный контур

Дорожки, ведущие к неинвертирующему входу и контуру обратной связи, проложены далеко от дорожек источника питания и аудиовыхода, чтобы предотвратить образование токов при сильных токах в слаботочных дорожках. Если трассировка слаботочной трассы рядом с сильноточной трассой неизбежна, прокладывайте их под углом 90 °, но никогда не параллельно.Если вы разместите клеммы для цепей высокого и низкого тока на противоположных сторонах печатной платы, будет легче провести их подальше друг от друга.

Любое пространство между дорожками одной и той же цепи создаст токопроводящую петлю, чувствительную к приему или передаче магнитных полей. Чтобы избежать этого, я проложил положительные и отрицательные цепи питания близко друг к другу и использовал заземляющие пластины на нижней части печатной платы. Когда дорожки прокладываются по плоскости заземления, ширина контура уменьшается до толщины печатной платы.

Так как заземление питания и заземление сигнала должны быть разделены, нижняя сторона печатной платы имеет две плоскости заземления, которые не соединены электрически. Одна пластина заземления несет заземление питания, а другая пластина заземления несет заземление сигнала. На верхней стороне печатной платы трассы источника питания, выход и сеть Zobel проложены по пластине заземления питания. Трассы входа и обратной связи проходят по плоскости заземления сигнала.

Конденсатор, включенный последовательно с катушкой индуктивности, создает резонансный контур, который может вызывать колебания.Индуктивность также препятствует прохождению тока. Чтобы уменьшить влияние индуктивности, лучше делать все трассы как можно короче. Это особенно важно для разделительных конденсаторов источника питания, контура обратной связи и сети Zobel. Все они размещены как можно ближе к выводам микросхемы, чтобы сократить длину следа.

Создание усилителя

Сборка печатной платы довольно проста. Вот компоненты и печатная плата перед пайкой:

Обычно проще всего сначала припаять более мелкие компоненты, а затем перейти к более крупным компонентам.Я использую шпатлевку под названием Sticky-Tac, чтобы удерживать компоненты на месте в верхней части печатной платы при пайке с нижней стороны.

По возможности используйте эвтектический припой 63/37 вместо оловянно-свинцового припоя 60/40. Эвтектический припой имеет меньший диапазон плавления, что ускоряет схватывание припоя и обеспечивает более прочное соединение. Диапазон плавления припоя 60/40 довольно широк, и он становится пастообразным в нижней части диапазона. Если компонент перемещается в пастообразной фазе, соединение будет слабым и может образовать холодное паяное соединение.

Также рекомендуется использовать мелкозернистую наждачную бумагу, чтобы удалить окисление с выводов компонентов перед пайкой.

Вот один канал моего усилителя после того, как я спаял компоненты:

Корпус усилителя / шасси

Чаще всего используются металлические корпуса, поскольку они обеспечивают наилучшую защиту от флуоресцентного света, радиочастот и помех от сотовых телефонов. Однако бывает сложно найти подходящий.Я рекомендую корпуса Hi-Fi 2000, итальянской компании, которая предлагает красивые корпуса разных размеров. Веб-сайт на итальянском языке, но вы можете изменить язык на английский. Они также выполняют индивидуальную печать, гравировку и сверление. Я заказал их корпус Galaxy размером 330 x 280 мм с передней панелью из черного анодированного алюминия толщиной 10 мм, и он отлично выглядит:

Но если у вас ограниченный бюджет, их линия эконом-класса тоже выглядит очень хорошо. Модель Economica 280 мм x 250 мм подойдет и к стерео усилителю TDA2050:

Подключение усилителя

На схеме ниже показано, как я подключил усилитель внутри шасси:

Щелкните изображение, чтобы просмотреть его в увеличенном виде

Чтобы избежать помех от магнитных полей, старайтесь держать чувствительные входные и сигнальные провода подальше от проводов источника питания, выходных проводов динамиков, трансформатора, сетевых проводов переменного тока и выпрямительных диодов на источнике питания.

Чтобы минимизировать площадь петли, следующие провода должны быть плотно скручены вместе на как можно большем расстоянии:

  • Горячий и нейтральный провод переменного тока к трансформатору
  • Провода 0 В и вторичного напряжения от трансформатора к источнику питания
  • V +, V- и провода заземления от источника питания к плате усилителя
  • Выход динамика и заземление динамика
  • Заземление аудиовхода и аудиовхода

Три провода питания (положительный, отрицательный и заземление) проходят к каждой печатной плате усилителя.Эти провода должны быть как можно более толстыми и короткими, чтобы свести к минимуму индуктивность. Я использовал 14 AWG, но все, что больше 18 AWG, подойдет.

Аудиовход и сигнальные провода заземления не пропускают большой ток, поэтому они могут быть тонкими. Твердый сердечник 22 AWG работает очень хорошо, и его легко скрутить вместе.

Для защиты от тока короткого замыкания заземляющий провод сети должен быть прикреплен к шасси болтом, контргайкой и кольцевым зажимом. Обязательно соскребите с корпуса краску или анодированное покрытие, чтобы обеспечить хорошее электрическое соединение.Все металлические части (например, радиаторы) также должны быть электрически подключены к шасси.

Заземление аудиовхода и заземление динамиков подключаются напрямую от клемм на шасси к основному заземлению системы.

Кабели аудиовхода от источника могут улавливать паразитные электромагнитные помехи. Чтобы отфильтровать это, вы можете установить конденсатор 1 нФ на каждой входной клемме, от положительной стороны до земли.

Схема защиты контура заземления

Контур заземления — это ток, который течет от источника звука к усилителю через экран заземления входных аудиокабелей.Этот ток будет улавливаться на входе усилителя и производить раздражающий гул. Вы можете использовать дополнительную цепь, размещенную между заземлением основной системы и соединением шасси, чтобы отключить ток контура заземления:

ПРИМЕЧАНИЕ. ДАННАЯ ЦЕПЬ МОЖЕТ БЫТЬ НЕЗАКОННОЙ В ВАШЕЙ ЗОНЕ. ПЕРЕД ИСПОЛЬЗОВАНИЕМ ВЫКЛЮЧАТЕЛЯ КОНТУРА ЗАЗЕМЛЕНИЯ, ПОЖАЛУЙСТА, ПРОВЕРЬТЕ ВАШИ МЕСТНЫЕ КОДЫ ЭЛЕКТРИЧЕСКИХ КОДОВ ИЛИ КОНСУЛЬТИРУЙТЕСЬ С ЭЛЕКТРИКОМ.

В нормальных условиях эксплуатации низковольтные токи контура заземления протекают через резистор (R1).Резистор снижает этот ток и разрывает контур заземления. В случае сильноточного замыкания ток короткого замыкания может протекать через диодный мост на землю. Конденсатор фильтрует любые радиочастоты, улавливаемые шасси.

Основное заземление системы подключается к цепи защиты контура заземления на клемме «PSU 0V». Затем схема защиты контура заземления подключается к шасси через клемму «Chassis». Подключение к шасси может осуществляться с помощью того же болта, к которому подключается провод заземления, или в другом месте.

Если вы используете схему защиты контура заземления, обязательно изолируйте все входные и выходные разъемы от корпуса. В противном случае будет прямой путь от заземления основной системы к шасси, и схема защиты контура заземления будет полностью отключена.

Схема защиты контура заземления может быть жестко смонтирована, но немного проще установить компоненты на печатную плату:

Щелкните изображение, чтобы отредактировать компоновку, изменить посадочные места компонентов и заказать печатные платы.

Как это звучит?

В целом усилитель звучит отлично. Басы, средние и высокие частоты очень четкие и хорошо сбалансированные. Он также обладает большой мощностью. В моей гостиной громкости более чем достаточно для прослушивания. Когда усилитель включен и подключен к источнику, нет гула или шума.

Хотя качество звука TDA2050 может не соответствовать нашему проекту усилителя Hi-Fi LM3886, он все равно звучит действительно хорошо. Если это ваша первая сборка усилителя, я бы посоветовал начать с наших проектов стереофонических или мостовых усилителей TDA2003, поскольку их намного проще собрать.

Не забудьте оставить комментарий, если у вас есть какие-либо вопросы, и не стесняйтесь делиться этим постом, если вы знаете кого-нибудь, кто сочтет его полезным! Спасибо, что прочитали…


Как измерить импеданс громкоговорителя

Большинство людей замечают изменение голоса других людей, когда они говорят по телефону. Большинство людей могли испытывать трудности с прослушиванием других звуков в среде, откуда звонил человек на другом конце провода.В основном это происходит с высокочастотным звуком, например с инструментальной музыкой, звуком из видеоигр и т. Д. Люди, интересующиеся электроникой и создававшие аудиосистемы с громкоговорителями, могли испытать прямо противоположное явление, при котором звук, воспроизводимый громкоговорителем, более четкий. и громко для более высоких частот. Также те, кто слышал качественную музыку, воспроизводимую через систему домашнего кинотеатра, знают, насколько оно лучше, если один динамик может создавать такую ​​же громкость.Объяснение всего вышеупомянутого явления просто связано с тем, что простое устройство для генерации звука не может воспроизводить все слышимые частоты с одинаковой громкостью.


Диапазон слышимого звука для человека начинается от 20 Гц до 20 кГц и варьируется от человека к человеку, причем значительно с возрастом каждого человека. Озвученная речь типичного взрослого мужчины будет иметь основную частоту от 85 до 180 Гц, а речь типичной взрослой женщины — от 165 до 255 Гц.Телефон может воспроизводить звук только в диапазоне от 300 Гц до 3 кГц. Только присутствие в этом диапазоне высших гармоник человеческого голоса делает телефон полезным. Поскольку максимальная частота составляет всего 3 кГц, высокочастотные звуки практически не слышны по телефону.

Телефонная система является лишь примером, оптимизированным для работы в определенном диапазоне частот. Такая оптимизация требуется в большинстве систем, потому что когда речь идет об электронных устройствах, таких как фильтры, усилители, громкоговорители и т. Д.их характеристики меняются в зависимости от частоты эксплуатации. Это изменение характеристик в зависимости от частоты объясняет, почему домашние кинотеатры с различными типами громкоговорителей могут воспроизводить высококачественный звук, включая все высокочастотные и низкочастотные звуки, которые вообще невозможны с одним громкоговорителем.

Механическая конструкция громкоговорителя играет важную роль в определении его характеристик в разном частотном диапазоне, но тех, кто разрабатывает схему для громкоговорителя, больше интересует важная электрическая характеристика громкоговорителя, называемая импедансом.В этой статье рассказывается, как измерить импеданс громкоговорителя при требуемой рабочей частоте.

ОПИСАНИЕ:

Каждый электронный компонент, включая резисторы, конденсаторы и катушки индуктивности, создает сопротивление протекающему через него току, которое обычно называется импедансом независимо от компонента. Это значение импеданса для конкретного устройства может изменяться или не меняться в зависимости от частоты протекающего через него тока.Резистор хорошего качества имеет почти такое же значение импеданса от частоты 0 Гц (постоянный ток) до бесконечности герц, но сопротивление конденсатора уменьшается с частотой, а катушка индуктивности увеличивается с частотой. Таким образом, в случае резистора сопротивление и импеданс имеют одинаковое значение. Просто импеданс — это сопротивление любого компонента на данной частоте, и, следовательно, значение импеданса компонента также представлено в Ом. Подобно тому, как сопротивление обозначается буквой «R», полное сопротивление обозначается буквой «Z».

Импеданс громкоговорителя очень сильно зависит от рабочей частоты и играет важную роль в конструкции таких аудиоустройств, как усилители, драйверы громкоговорителей и т. Д. Рассмотрим случай усилителя с громкоговорителем на выходе.

Рис.1: Принципиальная схема усилителя с громкоговорителем на выходе

Усилитель — это устройство, которое может подавать ток в громкоговоритель, и каждое устройство источника тока имеет внутреннее сопротивление, которое здесь представлено как сопротивление R int .Поскольку резистор имеет одинаковое значение сопротивления и импеданса, он также обозначается как Z int . Это внутреннее сопротивление усилителя также называется выходным сопротивлением и поэтому обозначается как Z out . Импеданс громкоговорителя представлен как Z ls .

В вышеупомянутой системе оба Z out и Z ls идут последовательно друг с другом, и через них обоих течет один и тот же ток. Как и в случае двух последовательно соединенных друг с другом резисторов, один и тот же ток, протекающий через два последовательно соединенных импеданса, будет генерировать разные напряжения на обоих импедансах.На приведенном выше рисунке V fs — это напряжение вымышленного источника внутри усилителя, который генерирует частоту, а V fint — это падение напряжения на внутреннем сопротивлении, а V fls — это падение на громкоговорителе.

Из приведенного выше рисунка можно понять, что даже несмотря на то, что усилитель генерирует напряжение V fs , громкоговоритель получает только напряжение V fls , а остальное будет падать на внутреннем сопротивлении, что определяется следующим уравнением:

V fint = V fs –V fls

Величина падения напряжения на одном и том же токе на импедансах зависит от значения импеданса и величины тока, протекающего через них.Если напряжение на рабочей частоте представлено как «V f », а ток — «I f », а импеданс — как «Z», то V f прямо пропорционально Z, как указано ниже уравнение:

V f = I f * Z

Применяя эти знания в приведенном выше уравнении, его можно переписать следующим образом:

V fint = V fs — I f * Z ls

Из приведенного выше уравнения ясно, что громкоговоритель с низким импедансом «Z ls » будет производить большое внутреннее падение напряжения «V fint » в усилителе и наоборот.Поскольку импеданс зависит от частоты, следует выбрать громкоговоритель, обеспечивающий наивысший импеданс на рабочей частоте. Изменение импеданса обычного громкоговорителя можно изобразить, как показано на следующем рисунке:

Рис. 2: Изменение импеданса громкоговорителя, представленное на графике

Прямой метод расчета импеданса громкоговорителя на требуемой рабочей частоте состоит в том, чтобы подключить его к генератору чистой синусоидальной волны, имеющей частоту, совпадающую с требуемой рабочей частотой, и измерить падение напряжения на громкоговорителе.Детали схемы генерации синусоидальной волны, используемой для расчета импеданса громкоговорителя, обсуждаются ниже. Поскольку в звуковых приложениях импеданс должен быть рассчитан для диапазона частот, и, следовательно, на основе осциллятора моста Вина был разработан генератор синусоидальной волны переменной частоты.

Генератор синусоидальной волны переменной частоты

Генератор синусоидальной волны переменной частоты

Схема генерации синусоидальной волны, используемая в этом проекте, представляет собой схему генератора моста Вина.Это единственная схема, которая может генерировать чистую синусоидальную волну без каких-либо искажений. Компонент усилителя, используемый в схеме моста Вина, представляет собой операционный усилитель с двойным источником питания. Обе схемы построены на универсальном операционном усилителе IC, 741. Схема генератора синусоидальной волны показана на следующем рисунке.

Рис. 3: Принципиальная схема генератора синусоидальной волны

Частота вышеуказанной схемы может быть изменена простым изменением потенциометра R2, а амплитуда формы волны может быть изменена изменением потенциометра R.Частота синусоидальной волны, генерируемой вышеуказанной схемой, зависит от компонентов R1, R2, C1 и C2, и уравнение для частоты приведено ниже:

Чтобы упростить регулировку амплитуды волны для получения правильной синусоидальной развертки, была реализована грубая и точная регулировка с помощью потенциометров. Потенциометр с низким значением (1K) соединен последовательно с потенциометром с высоким значением (100K), так что грубая регулировка может быть выполнена с помощью резистора с высоким номиналом, а точная настройка с помощью резистора с низким значением.

Еще одна важная модификация, сделанная в схеме, — добавлен буфер на выходе генератора. Это поможет предотвратить влияние нагрузки громкоговорителя на схему генератора. Модифицированная принципиальная схема с грубой и точной настройкой и реализованным буфером показана на следующем рисунке:

Рис. 4: Принципиальная схема генератора синусоидальной волны с буфером

Рис.5: Генератор синусоидальной волны с буферной схемой на макетной плате

Расчет импеданса

Генератор синусоидальной волны подключается к громкоговорителю через резистор небольшого номинала, и в этом методе импеданс рассчитывается после измерения напряжения на громкоговорителе и напряжения на резисторе.Подключение схемы представлено следующей блок-схемой:

Рис. 6: Блок-схема генератора синусоидальной волны, подключенного к громкоговорителю через резистор

Импеданс громкоговорителя «Z» можно рассчитать по следующей формуле:

Z = V 2 R / V 1

Расчет импеданса

Принципиальная схема и изображения схем показаны на следующих рисунках:

Фиг.7: Принципиальная схема генератора синусоидальной волны с громкоговорителем

Расчет импеданса громкоговорителя для рабочей частоты 1 кГц обсуждается ниже:

Применяемая частота представляет собой чистую синусоидальную волну с частотой 1 кГц, как показано на следующем изображении.

Рис.8: Синусоидальный сигнал с противоположной полярностью, генерируемый CRO

Амплитуда рассчитана с помощью CRO и составляет 4,2 В п-п.

Форма волны, отображаемая через громкоговоритель, выглядит так, как показано на следующем рисунке:

Фиг.9: Синусоидальный сигнал с точно противоположными фазами Генерируется CRO

Видны две синусоидальные волны, которые точно противоположны по фазе, и одна из них является исходной приложенной синусоидой, а другая — синусоидальной волной, отраженной от громкоговорителя из-за индуктивного сопротивления. Эта отраженная волна должна быть устранена с помощью соответствующей схемы согласования импеданса: в противном случае она повлияет на правильное функционирование таких цепей, как усилители или генераторы, к которым подключен громкоговоритель.

Здесь падение напряжения на громкоговорителе измеряется как 0,12 В p-p. Следовательно, V 2 составляет 0,12 В p-p , а V 1 можно рассчитать как 4,2 — 0,12 V p-p.

Теперь применив эти значения к уравнению, можно рассчитать импеданс для синусоидальной волны 1 кГц, как показано ниже:

Z = (0,12 * 330) / (4,2 — 0,12)

Это даст значение 9,7 Ом, что немного выше номинального значения (8 Ом) используемого здесь громкоговорителя.Используя тот же метод, импеданс рассчитывается для 200 Гц как 8,46 Ом, что очень близко к номинальному значению 8 Ом. Вычисленное сопротивление почти вдвое превышает номинальное значение для синусоидальной волны 20 кГц.

Для генерации синусоидальной волны более высокой частоты с помощью схемы генератора моста Вина можно просто заменить емкость конденсаторов на 0,01 мкФ.

Для громкоговорителя импеданс в диапазоне слышимых частот всегда больше номинального значения импеданса.Этот метод можно использовать для расчета импеданса любого громкоговорителя на рабочей частоте и соответственно спроектировать схемы согласования импеданса или схемы усилителя.


Подано: Схема


СЕРИЯ

И ПРОВОДКА ПАРАЛЛЕЛЬНЫХ ДИНАМИКОВ

ОСНОВЫ ПРОВОДКИ ДИНАМИКОВ

Существует несколько способов подключения динамиков, наиболее распространенными из которых являются последовательное и параллельное подключение, которые обсуждаются здесь. Также довольно распространено подключение динамиков в комбинации последовательно / параллельно.

Правильное подключение динамиков для обеспечения наилучшего звука, требует некоторых знаний о нагрузке, фазе и импедансе, а понимание закона Ома поможет вам правильно подключить динамики.

Хотя мы обсуждаем здесь два способа подключения динамиков — последовательное и параллельное, мы должны упомянуть комбинацию последовательного / параллельного подключения, поэтому мы включили диаграмму, показывающую эту конфигурацию.

ПРОВОДКА ДИНАМИКОВ СЕРИИ

Усилитель посылает аудиосигнал (+) через выход (+) динамика на первый динамик; затем сигнал отправляется от первого динамика (+) и так до тех пор, пока цепь не будет завершена с (-) последнего динамика, подключенного к соединению усилителя (-).

Последовательное добавление динамиков увеличивает общее сопротивление цепи.

Таким образом, сопротивление каждого динамика суммируется. Для расширенной установки с несколькими динамиками можно использовать последовательную проводку динамиков для увеличения сопротивления «эквивалентного» или «общего» сопротивления, которое видит усилитель. Это позволяет усилителю работать холоднее и эффективнее.

Цепи серии

являются «делителями напряжения», и, используя закон Ома, можно увидеть результат как уменьшение усиленного аудиосигнала напряжения на каждом громкоговорителе.Поскольку последовательные схемы являются «делителями напряжения», каждый динамик видит процент усиленного выходного сигнала усилителя.

Часто предполагается, что усилитель производит меньшую мощность, но при этом производит ту же мощность, потому что каждый динамик получает только процент от общей мощности.

Динамики с сопротивлением 4 Ом (в отличие от динамиков с сопротивлением 8 Ом) поддерживают «общее» сопротивление усилителя на уровне 4 Ом или около него.

Однако увеличение сопротивления динамиков до более чем 4 Ом путем добавления динамиков последовательно, разделит усиленный аудиовыход с усилителя на все динамики в цепи.

Формула последовательного подключения: Znet = Z1 + Z2 + Z3….

ПРОВОДКА ПАРАЛЛЕЛЬНОГО ДИНАМИКА

Параллельные цепи — это простейшие электрические цепи для подключения.

Добавление динамиков параллельно снижает общее сопротивление цепи

Parallel Speaker Wiring объединяет все (+) положительные выводы динамика вместе и все (-) отрицательные выводы динамика. Параллельные цепи проще всего подключить, потому что добавить динамик так же просто, как подключить положительный вывод новых динамиков (+) к (+) проводам динамиков других динамиков, а отрицательный (-) провод к (-) соединению другие спикеры.

Добавление дополнительных динамиков также просто, однако, добавление динамиков в параллель приводит к падению общего сопротивления цепи, поскольку сопротивление падает, ток должен увеличиваться в соответствии с законом Ома.

Итак, каждый раз, когда в параллельную цепь добавляется динамик с таким же сопротивлением, ток, потребляемый усилителем, увеличивается. Схема усилителя должна выдерживать это увеличение тока при пониженном сопротивлении.

Формула параллельного подключения:

Когда n — количество элементов

Примечание: Если более 2 динамиков подключены параллельно, при условии, что все они имеют одинаковый импеданс, то полное сопротивление нагрузки равно импедансу одного динамика, деленному на общее количество динамиков.

Например:

Три динамика по 8 Ом, подключенные параллельно, импеданс составляет 8/3 или 2,667 Ом.

КОМБИНАЦИЯ СЕРИИ И ПАРАЛЛЕЛЬНОСТИ

На самом деле это всего лишь два набора последовательных динамиков, подключенных параллельно

Найджел Брент учился в колледже электроники EMI в Лондоне, Англия, а затем основал дизайнерскую компанию в Лос-Анджелесе, Калифорния. Его текущие проекты включают ряд миниатюрных усилителей как для традиционных стерео, так и для 70-вольтных приложений.Поскольку они достаточно малы, чтобы поместиться в руке, их можно легко спрятать, что снижает вероятность кражи.

Обычно они используются в коммерческих, корпоративных, ресторанах, школах и университетах. Полный ассортимент его продукции можно увидеть на его веб-сайте www.nigelbdesign.com.

Nigel B Design, Inc., Калифорния, США. Тел: (818) 487-9323 Факс: (818) 766-9805 Веб-сайт: www.nigelbdesign.com. Электронная почта: [email protected]

1: 1 репликация высокого класса поддельные Rolex ebay со скидкой онлайн-продажа.

Защита динамика и отключение звука с помощью оптического соединителя


Я проектирую и создаю два идентичных стереоусилителя для стереосистемы, и мне потребовалась хорошая защита динамиков и схема отключения звука. Вот что я сделал …

Между выходом усилителя мощности звука со связью по постоянному току и динамиком установлена ​​схема защиты динамика и отключения звука. Его основная цель — отключить динамики, как только на выходе усилителя появится высокое постоянное напряжение, которое может повредить динамик.

Это может произойти при неисправности усилителя. Наиболее распространенный сценарий отказа — это когда одно из выходных устройств выходит из строя, в результате чего на выходные клеммы подается полное напряжение шины постоянного тока. Помимо защиты громкоговорителей от сбоя выходного устройства, схема также устраняет «стук при включении», подключая громкоговорители только после того, как усилитель мощности был включен и прошло достаточно времени для стабилизации смещения постоянного тока.

Схема защиты динамиков и отключения звука существует уже давно, но мне кажется, что одна конфигурация не была учтена.Я говорю об использовании оптического ответвителя сразу после фильтра нижних частот в передней части такой конструкции. Работая в телекоммуникационной сфере, я вспомнил, что инфракрасные светодиоды на основе GaAs, используемые в оптических соединителях, требуют небольшого тока для размыкания, особенно когда не требуется более высокая скорость.

Итак, я сделаю это с помощью оптического соединителя. Поиск в Google показывает по крайней мере одно устройство, которое отвечает всем требованиям: двухканальный двунаправленный оптический соединитель с фотодарлингтоном (LDA210) на другой стороне, что обеспечивает высокий коэффициент усиления по току.Согласно таблице данных (доступной при загрузке статей), типичное усиление по току составляет 8 500%, а для открытия светодиодов требуется около 75 мкА.

Использование двунаправленного оптического изолятора имеет несколько очевидных преимуществ. Помимо гальванической развязки, существует также идеальная симметрия без необходимости использования дифференциального источника питания или плавающего опорного напряжения, как в других схемах. После тестирования различных конфигураций я придумал схему Рисунок 1 .

РИСУНОК 1. Принципиальная электрическая схема.


Таймер 555 отвечает за отключение звука; он установлен на две секунды с помощью потенциометра 100 кОм (55,1 кОм) и танталового конденсатора 33 мкФ. Мне нравится использовать танталовые конденсаторы в схемах синхронизации, потому что значение их емкости имеет хорошую стабильность во времени.

Другое время отключения можно рассчитать, используя t = 1,1 * RC, где R — подстроечный потенциометр 100 кОм, а C — конденсатор 33 мкФ (t).Таймер 555 имеет максимальный ток 200 мА, потребляемый или подаваемый через контакт 3, что делает схему еще проще.

Резистор 133 Ом / 0,5 Вт с конденсатором 470 мкФ представляет собой схему энергосбережения. При первом включении схемы на мгновение — до тех пор, пока не будет заряжен конденсатор емкостью 470 мкФ — ток, потребляемый источником питания постоянного тока 11,37 В, составит около 84 мА. После зарядки конденсатора он падает до 42 мА.

Можно подумать, что эта схема энергосбережения увеличит время срабатывания реле, но на самом деле время срабатывания примерно такое же, потому что напряжение на катушках падает с поддерживающего напряжения 6.5 В, а не от 11,37 В. Напряжение 11,37 В поступает от блока питания 12 В с последовательно включенным диодом. Конечно, схема одинаково хорошо работает и с 12 В.

Принцип его работы прост: если на выходе одного из усилителей мощности (или обоих) присутствует положительное или отрицательное напряжение постоянного тока, соответствующий биполярный конденсатор 47 мкФ начинает заряжаться через резистор 22 кОм, пока не достигнет порог 1,2В. При этом напряжении соответствующий инфракрасный светодиод откроется, и коллектор-эмиттер Дарлингтона также откроется, закорачивая конденсатор 33 мкФ на минус через резистор 200 Ом.

Когда напряжение на конденсаторе падает ниже 1/3 напряжения питания, на выходе (вывод 3) таймера 555 появляется высокий уровень, и реле отключают динамики и подключают их к заземлению усилителя.

Время, необходимое реле для отключения динамиков, в основном зависит от постоянной времени RC-фильтра нижних частот на входе. В таблице на рис. 2 показано время отключения при постоянном напряжении от порогового значения (1,2 В постоянного тока) до 50 В постоянного тока.Если вам интересно, я всегда разряжаю конденсатор перед каждым измерением.

РИСУНОК 2. График с временами задержки.


Я разработал это для своих усилителей мощностью 40 Вт. Максимальное выходное напряжение на нагрузке 8 Ом до ограничения составляет около 18 В RMS и является линейным в диапазоне от 20 Гц до 20 кГц. На входе усилителя установлен конденсатор емкостью 1 мкФ с резистором 100 кОм относительно земли, что составляет фильтр нижних частот с fc 1,59 Гц. Оставив уровень напряжения 18 В RMS при 20 Гц, я понижал частоту до тех пор, пока реле не отключились.Частота выключения реле составляет 3 Гц при среднеквадратичном значении 17,58 В с фильтром нижних частот 22 кОм / 47 мкФ.

Это хороший компромисс. Я не думаю, что сигнал 3 Гц является чем-то распространенным в наши дни в записи, но я полагаю, что деформированная виниловая пластинка может генерировать очень низкую частоту (возможно, даже 3 Гц), если на пути сигнала нет фильтра нижних частот.

Два отдельных входа или один общий вход?

Причина, по которой я использую два отдельных входа, заключается в том, что с одним общим входом (два резистора питают один конденсатор) напряжение постоянного тока уменьшается вдвое, что увеличивает время отключения примерно вдвое.

Кроме того, существует очень небольшая вероятность того, что оба канала усилителя выйдут из строя одновременно: один выводит из строя положительное напряжение, а другой — отрицательное напряжение постоянного тока. В этом случае, если схема защиты использует общий вход, два напряжения постоянного тока нейтрализуют друг друга, делая схему бесполезной.

Для входного фильтра я также тестировал каскадный фильтр второго порядка, но оказалось, что на самом деле он медленнее, потому что конденсаторы заряжаются по одному. Это тот случай, когда чем проще, тем лучше.

Реле

Можно найти большое количество комплектов и схем для защиты динамиков и отключения звука. Однако у большинства из них есть общая проблема: способ подключения динамика к реле не защищает динамик в случае неисправности усилителя.

В большинстве этих схем реле размыкается при наличии постоянного напряжения, но дуга сваривает контакты вместе, и энергия конденсаторов в источнике питания проходит через катушку динамика на землю.Фактически, дуга может длиться секунды, поскольку существует «пинг-понг» между индуктивным сопротивлением динамика и конденсаторами в источнике питания усилителя.

Чтобы действительно защитить динамик, используемое реле должно иметь контакт SPDT, который заземляет динамик, как мы видим на схеме. Такое расположение приведет к замыканию дуги на землю, а не через динамик, что приведет к перегоранию предохранителя.

Конечно, есть реле, рассчитанные на большие постоянные напряжения и токи, но обычно они дорогие.Есть реле с магнитами, расположенными рядом с контактами, которые разрывают дугу, или с контактами, запечатанными в инертном газе; реле с контактами с более высокой температурой плавления (например, вольфрам), дополненными серебряными контактами для лучшей проводимости; или несколько контактов последовательно и т. д.

Или мы можем использовать два быстрых твердотельных реле (довольно дорогое), управляемых схемой, представленной здесь, для отключения обеих шин постоянного тока, когда на выходе усилителя мощности присутствует постоянное напряжение. Все это можно использовать, но в конечном итоге они будут делать то же самое, что и реле G2R.

Дизайн печатной платы

Для рисования схем я использую VISIO Technical. Я сделал дизайн PCB (печатной платы) на двухстороннем FR4 с 2 унциями меди для более высоких токов. Используемое программное обеспечение — Pad2Pad, которое можно загрузить с веб-сайта Pad2Pad ( https://www.pad2pad.com ).

Внешняя дорожка шириной 1,00 мм с 2 унциями меди может выдерживать ток 3А. На моей плате сильноточные трассы шире и увеличены вдвое, как вы можете видеть на , рис. 3, и , рис. 4, .

РИСУНОК 3. Графическое изображение печатной платы , виды сверху и снизу.

РИСУНОК 4. Фото печатной платы, сверху и снизу.


Обнаружение переменного тока

Следуя тому же принципу, можно вставить цепь обнаружения переменного тока (как показано на , рис. 5, ) для приложений, где нет постоянного напряжения 12 В, которое падает достаточно быстро, чтобы отключить нагрузку до того, как на выходе усилителя возникнет внезапно высокое напряжение. качели, которые могут вызвать нагрузку на динамики и уши.

РИСУНОК 5. Схема цепи с детектированием переменного тока.


TLP222A — твердотельное реле (SSR), используемое последовательно с источником питания 12 В. Он остается разомкнутым (макс. 2,0 Ом), если на входе мостового выпрямителя DF10M присутствует переменное напряжение. Согласно его техническому описанию, время, необходимое SSR для размыкания и отключения напряжения в цепи защиты, составляет не более 0,5 мс. Максимальное время срабатывания реле G2R составляет 5 мс.

Для разных напряжений переменного тока необходимо изменить значение резистора 2 кОм, чтобы ограничить ток через светодиод внутри SSR до типичного значения 7.5 мА. В техническом описании рекомендуемый диапазон тока для светодиода составляет от 5 мА до 25 мА. Тест, который я провел, был для 12 В переменного тока, а сопротивление резистора, ограничивающего ток, составляло 2 кОм.

Заключение

Эта схема защитит громкоговорители в случае неисправности усилителя. При ремонте усилителя рекомендуется также заменить реле; это потому, что контакты будут повреждены более или менее, в зависимости от того, какой ток и как долго возникла дуга. Это все равно дешевле пары специальных реле.

Для индуктивных нагрузок переменного тока (cos q = 0,4) контакты реле большой емкости G2R, используемого в этой конструкции, рассчитаны на 16 А и 180 В.

Для резистивных нагрузок постоянного тока контакты рассчитаны на 16 А и 30 В. Для индуктивных нагрузок постоянного тока см. Графики в разделе «Технические данные» в таблице данных реле G2R.

Как бы то ни было, эта схема хорошо работает с моим усилителем мощности 40 Вт. Вероятно, он будет работать с усилителями мощностью до 100 Вт.

Для усилителей с большей мощностью необходимо выбрать другие реле.

Как я уже сказал, это важно, и это сэкономит ваши дорогие колонки, если будет выбрано правильное реле. NV


Список деталей

КОМПОНЕНТ ПОСТАВЩИК ПОСТАВЩИК PN КОЛ-ВО
154 Ом 0,5 Вт Mouser 603-MFR50SFTE52-154R 1
200 Ом 0,25 Вт Mouser 603-MFR-25FRF52-200R 1
22 кОм 0.25 Вт Mouser 603-MFR-25FRF52-22R 2
Подстроечный резистор 100 кОм Mouser 652-3296W-1-104LF 1
пленка 10 нФ Mouser 594-2222-370-36103 1
пленка 100 нФ Mouser 594-2222-370-36104 1
33 мкФ (т) Mouser 581-TAP336K025SCS 1
100 мкФ электролитический NP Mouser 667-ECE-A1EN101UB 2
470 мкФ электролитический Mouser 667-EEU-FR1E471Y 1
1N4007 Mouser 512-1N4007 1
LM555 Mouser 926-LM555CN / NOPB 1
LDA210 Mouser 849-LDA210 1
Быстродействующий предохранитель 2А Mouser 576-0217002.HXP 2
Реле RTD34012 (16A) Mouser 655-RTD34012 2
Клеммная колодка 3,5 мм Mouser 538-39357-0002 1
Держатель предохранителя Крепление на печатной плате Mouser 534-4527 2
4-позиционная фиксированная клеммная колодка 7,5 мм (15A) Цифровой ключ ED1569-ND 1
2-позиционный 7.Фиксированная клеммная колодка 5 мм (15A) Цифровой ключ ED1567-ND 2

Загрузки

Что в почтовом индексе?

Лист данных
Список деталей
Схема
Файл печатной платы

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *