Датчик света схема: Простой датчик света (схема, видео)

Содержание

Простой датчик света (схема, видео)

 Уж сколько в интернете всевозможных вариантов датчиков света, то есть когда надо включать или выключать свет от степени освещенности и все никак все не успокоятся и не найдут идеала. Видимо варианты так и будут перебираться день ото дня, от случая к случаю, также словно каждый день на улице дует ветер и этого не изменить и с этим не поспорить. А быть может и не надо, а значит, и мы не остановимся на счет очередного варианта о своей вариации схемы датчика света. Начнем…

Схема простого датчика света

Собственно сама схема перед вами. Осталось немного пробежаться по ее радиоэлементам и поведать о том, как же все они работают, а значит, наша схема функционирует. Схема примечательна тем, что в ней все просто как в автомате Калашникова или танке Т-34, то есть она будет работать до последнего и с минимальной наладкой после ее повторения. В базу транзистора включен фоторезистор, который за счет изменения внутреннего сопротивления регулирует ток и напряжение, в итоге управляет этим самым транзистором.

Также здесь в процессе управления участвует и переменное сопротивление R1. В итоге цепочка из фоторезистора 5516 и подстроечного сопротивления 4,7 кОм, как раз и является управляющей цепочкой. После открытия транзистора VT1 напряжение через коллектор и эмиттер идет на базу второго транзистора.  То есть второй каскад является каскадом усиления для сигнала с первого транзистора. В конечном итоге, ток протекающий через цепочку коллектор и эмиттер второго транзистора является управляющим для реле. А если у нас срабатывает реле, то считайте, мы теперь можем по-королевски распоряжаться высокими токами. Ну то есть не тем куда и как нам их тратить, а как нам их распределять. Ведь реле спокойно может коммутировать десятки ампер, а это вполне значимые значения для бытовой электрики.
 Ну и напоследок надо сказать о цепочке подключенной параллельно обмотке реле (светодиод и резистор). Это все ради того, чтобы погасить индукционные токи, а заодно можно будет визуально наблюдать за подачей напряжения на обмотку реле.

Итак, после того как мы вам рассказали о схеме, можно еще раз взглянуть на схему и посмотреть какие  радиодетали используются. Транзисторы подойдут любые npn маломощные низкочастотные. Реле в соответствии с напряжением питания. Если это 12 вольт, то берем реле 12 вольт. Если 5, то берем реле 5 вольт. Собственно здесь все тоже просто и логично. А теперь и еще небольшое видео о том же самом.

Видео о простом датчике света

Еще один вариант датчика света на микросхеме.

Схемы датчиков освещенности

В этой статье ЭлектроВести наведут вам три простые схемы датчиков освещенности.

Датчики освещенности или так называемые фотодатчики, по своей сути, устройства несложные. При желании простое изделие такого рода можно вполне собрать самостоятельно, имея элементарные навыки чтения электронных схем и умение держать в руках паяльник. Подобное устройство может управлять, например, включением или выключением какого-нибудь бытового прибора в зависимости от освещенности того места, где установлен датчик.

Так или иначе, схемы фотодатчиков весьма просты. Три из них, давно зарекомендовавшие себя и считающиеся классическими, мы и рассмотрим ниже. С их помощью можно будет легко автоматизировать то, что может нуждаться в такой автоматизации.

Сигнализация при затемнении с функцией ручного сброса

На данном рисунке представлена классическая и очень простая схема, могущая стать основой для системы охранной сигнализации, работающей по принципу детектора падающего светового потока:

В качестве индикатора срабатывания здесь используется светодиод (обозначенный как LED), который начинает светиться в момент, когда на фоторезистор PR не попадает достаточного количества света. Свет может быть естественным или искусственным, в зависимости от того места, где будет установлено данное устройство.

Если датчик установить в жилом помещении, то это будет, например, сигнализация контроля определенной зоны в доме. Если же установку произвести на улице, то к срабатыванию устройства побудит либо наступление сумерек, либо в светлое время суток — пересечение рабочей зоны датчика посторонним движущимся объектом.

Схема работает очень просто. Пока на датчик PR попадает достаточно света, его электрическое сопротивление постоянному току очень мало, следовательно в цепи постоянного тока данного устройства при указанном напряжении питания (от 10 до 18 вольт) вместе с резистором R1 образован такой делитель напряжения, что на элементе PR падение напряжения настолько мало, что этого напряжения не хватит чтобы тиристор VS перешел в проводящее состояние.

Конденсатор C1 практически шунтирован элементом PR. Но как только световой поток значительно уменьшится или прервется, сопротивление чувствительного элемента PR тут же вернется к значению в несколько мегаом! В этот момент параметры делителя напряжения радикально изменятся, напряжение повысится, и от источника питания U через резистор R1 начнет активно заряжаться конденсатор C1.

Как только напряжение на конденсаторе C1 достигнет напряжения отпирания тиристора VS (в районе 1 вольта), он тут же перейдет в проводящее состояние и светодиод LED получит питание через ограничительный резистор R2.

Чтобы переключить датчик в исходное состояние достаточно замкнуть кнопку S (здесь может быть установлена кнопка без фиксации или микропереключатель), а затем отпустить ее — ток через тиристор прекратится, он снова будет «ожидать», пока датчик освещенности PR не окажется затемнен.

Принципиально вместо светодиода LED с ограничительным резистором R2 в схему можно установить слаботочное электромагнитное реле с током срабатывания в районе 20 мА и с подходящим напряжением питания. Очевидно, если напряжение питания сделать больше или меньше, то и включающееся при отпирании тиристора устройство также должно быть соответствующим, то есть рассчитанным на установленное на входе схемы напряжение.

Тиристор в принципе может быть любым из тех, что применяют в устройствах плавного пуска коллекторных двигателей или в диммерах, главное чтобы параметры тиристора по току и нарпяжению обеспечивали запас относительно параметров нагрузки.

Фотодатчик PR при необходимости можно составить из нескольких соединенных параллельно элементов, с тем чтобы повысить его чувствительность. Конденсатор С1 лучше выбрать пленочный. Конденсатор фильтра по питанию C2 – чем больше — тем лучше, однако при небольшой мощности потребителя, такого как светодиод или реле, достаточно и 100 мкФ. Питание схемы осуществляется от блока питания или от набора аккумуляторов.

Датчик освещенности с регулировкой чувствительности на базе операционного усилителя

Данная схема, в отличие от предыдущей, чуть-чуть усложнена. Сюда добавлен компаратор, включенный по схеме операционного усилителя с петлей положительной обратной связи, получаемой при помощи внедренного в схему резистора R4. Операционный усилитель DA с резистором R4 защищен таким образом от паразитных колебаний и самовозбуждения.

Постоянное питание 12 вольт подается на слаботочное реле, срабатывание которого наступает в момент снижения освещенности чувствительного элемента PR, что приводит к коммутации цепи исполнительного устройства. Чувствительность фотодатчика, построенного по данной схеме, настраивается регулировкой подстроечного резистора R3.

Для защиты транзистора VT от индуктивных выбросов с обмотки реле К (в момент резкого размыкания цепи транзистором VT), в схему включен защитный диод VD. Операционный усилитель может быть использован любой подходящий. А за подавление высокочастотных помех по питающему напряжению отвечает конденсатор C, емкости которого в 47 нФ вполне достаточно.

Итак, пока на чувствительный элемент PR датчика освещенности падает достаточное количество света, его сопротивление мало. Соответственно делитель напряжения, образованный элементами PR и R1 дает на входе №2 операционного усилителя (на неинвертирующем его входе) потенциал больший, чем на входе №3 (на инвертирующем входе операционного усилителя).

В таком состоянии на выходе операционного усилителя будет минимальный уровень напряжения и транзистор VT не откроется, так как напряжение (определяемое делителем на резисторах R5 и R6) и ток его базы (ограничиваемый резистором R5) находятся на уровне нуля. В такой ситуации обмотка реле К не получает питания.

Как только освещенность элемента PR окажется настолько слабой, что его сопротивление повысится до такой степени, что потенциал на входе №2 операционного усилителя окажется ниже потенциала на его входе №1, в этот момент на выходе ОУ появится напряжение высокого уровня, которое приведет к отпиранию транзистора VT и к питанию через него обмотки реле К, коммутирующего исполнительное устройство. Исполнительным устройством может выступать лампа, сирена, электрический замок и т.д.

Фотореле на 555 таймере

Для включения ночного освещения на территории приусадебного участка или возле подъезда, отлично подойдет это несложное устройство на базе популярной микросхемы 555.

Когда на чувствительный фоторезистор PR падает достаточное количество света, его сопротивление сильно снижено, так что через делитель напряжения на резисторе R1 и сопротивлении элемента PR, на базу транзистора VT поступает очень слабый ток, недостаточный для отпирания данного транзистора.

Если освещенность уменьшается, сопротивление PR возрастает, и напряжение и ток базы транзистора VT увеличиваются, что приводит в свою очередь к тому, что транзистор VT переходит в проводящее состояние. Обмотка реле К1 активируется и коммутирует тиристор VS анодом к плюсовой шине питания.

Таймер 555 запускается, и на выводе №3 данной микросхемы появляется напряжение 10,5 В. Данное напряжение способно питать обмотку маломощного реле К2 (с током потребления обмотки до 250 мА).

Реле К2 коммутирует нагрузку, например лампу системы освещения во дворе и т.п. Главное условие — чтобы реле К2 допускало пропускание через себя номинального тока нагрузки и при этом не перегревалось. При восходе солнца лампа погаснет (по принципу, аналогичному схеме №2)

Характеристики пассивных и активных элементов, приведенных на данных принципиальных схемах, подбираются исходя из величины напряжения и возможностей источника питания, а также в соответствии с параметрами нагрузки, включение и выключение которой призвана автоматизировать та или иная собираемая схема.

Ранее ЭлектроВести писали, что в Луцке (Волынская область) планируют обустроить 9 новых «умных» остановок общественного транспорта на солнечных панелях и с контейнерами для раздельного сбора мусора.

По материалам: electrik.info.

Как выбрать и установить фотодатчики освещения

Датчики освещенности

В последнее время для наружного освещения все чаще применяют датчики включения освещения. Ведь они позволяют не только автоматизировать процесс включения освещения, но и позволяют неплохо сэкономить.

При этом стоимость таких датчиков находится на вполне приемлемом уровне, что по заявлению торговых компаний позволяет окупить их буквально в течении года. Поэтому и мы решили более детально рассмотреть данные приборы и дать вам рекомендации по их выбору, установке и подключению.

Устройство датчика освещенности и рекомендации по их выбору

Устройство датчика освещенности

Прежде, чем приступать непосредственно к выбору, давайте ознакомимся с устройством и принципом действия датчиков данного типа. Они могут быть выполнены на фоторезисторе или фотодиоде, но принцип действия от этого не меняется.

На фото представлена схема датчика освещенности на фоторезисторе

Итак:

  • Датчики света для уличного освещения для своей нормальной работы должны быть подключены к электрической сети. То есть, на выводы датчика должны быть подведены фаза и ноль. Кроме этого, там есть третий провод, который подает напряжение непосредственно на сеть освещения, но о нем мы поговорим, когда будем подключать наш датчик.
  • Сразу к выводам датчика подключен диодный мост, который преобразует переменное напряжение в постоянное. Кроме того, там установлен конденсатор, который сглаживает постоянное напряжение.
  • Параллельно схеме диодного моста подключается наш фоторезистор с добавочным сопротивлением. Именно на это добавочное сопротивление вы воздействуете, вращая ручку регулятора на корпусе датчика.
  • Сопротивление фоторезистора изменяется в зависимости от уровня освещенности. Чем темнее, тем выше сопротивление нашего фоторезистора. Соответственно выше напряжение на его контактах.
  • При определенном напряжении открывается транзистор, подключенный параллельно нашим сопротивлениям. Благодаря этому образуется цепь на катушку силового реле.
  • Реле срабатывает и замыкает цепь. А благодаря тому, что к контактам этого реле подключены наши провода питания сети освещения, включается свет.
  • При увеличении уровня освещенности датчик ночного освещения размыкает контакты нашего силового реле. Происходит это по причине снижения сопротивления нашего фоторезистора, которое влечет за собой соответственно снижение напряжения и закрытие транзистора. Следствием этого является размыкание цепи, которая питает катушку силового реле.

Выбор датчиков освещенности

Имея общее представление о работе датчика, можно приступать непосредственно к его выбору. Здесь мы советуем вам обратить внимание на некоторые аспекты.

  • Как и любое коммутационное устройство, перед установкой фотодатчик для уличного освещения стоит проверить на соответствие коммутируемой нагрузки. На данный момент на рынке представлены модели с номинальным током в 6 и 10А. Чуть реже встречаются модели на 16 и 25А. Но, честно говоря, я бы не стал доверять этим цифрам и как минимум на один шаг занизил их.

Обратите внимание! Согласно п.6.2.3 ПУЭ , каждая групповая линия должна содержать не более 20 ламп. Если принять мощность каждой лампы в 100Вт, то получается, что датчика в 10А нам будет вполне достаточно. Установка большего количества ламп в одной группе , согласно п.6.3.4 ПУЭ, потребует от вас установки дополнительных автоматических выключателей или предохранителей.

Регулировка уровня освещенности, при которой происходит срабатывание датчика

  • Следующим параметром, на который стоит обратить внимание, является возможность регулирования датчика. Обычно минимальным значением является 2лк. А вот максимальное значение может колебаться. Наиболее распространенными являются значения в 50 и 2000лк. Насколько вам нужна регулировка в широком спектре — решать вам, но я бы напомнил, что возможности регулировки также отражает цена датчика. Поэтому выбор минимального регулирования, по-моему, вполне оправдан.
  • Нельзя забывать и то, что датчик освещенности предназначен для наружной установки. Поэтому защита от влаги и пыли как минимум не будет лишней. Данный параметр указывают цифры после аббревиатуры «IP». Обычно это IP44, но могут быть и более высокие значения.

Обратите внимание! Первая цифра после аббревиатуры «IP» обозначает уровень пылезащищенности. Она может варьировать от 0 до 6. Вторая цифра обозначает влагозащищенность. Она может быть от 0 до 8. Чем выше цифра, тем выше защита.

  • Ну а параметр температуры эксплуатации должен заинтересовать только жителей наиболее северных районов нашей страны. Ведь большинство «буржуйских» приборов может начать «выделываться» при температуре ниже -25⁰С.

Установка и подключение датчиков освещённости

Установить и подключить датчик освещенности своими руками не так уж сложно. Для этого не требуется каких-то особых познаний. И просто следуя рекомендациям нашей инструкции, вы с легкостью выполните все операции.

Установка датчика освещенности

Большинство моделей, представленных на рынке, имеют специальное крепление, которое идет в комплекте с датчиком. Это крепление позволяет легко прикрепить датчик практически в любом месте. Инструкция по установке предъявляет всего несколько требований.

Место установки датчика освещенности

Итак:

  • Датчик освещенности должен устанавливаться на открытой местности. Где он не может быть затенен деревом, строением или другими объектами. Иначе это может привести к его ложной работе.
  • Не забывайте, что датчик освещения ночной прибор. Поэтому не установите его в зоне освещения одного из светильников. Это может привести к его неправильной работе, когда датчик будет давать импульс на включения освещения, а после его включения сразу отключать его.
  • Устанавливайте датчик в месте, доступном для обслуживания. Ведь в зависимости от загрязнения окружающей среды и наличия пыли вам придется периодически протирать его фотоэлемент. И лазить для этого на столб или крышу не очень удобно.

Подключение датчика освещения

Датчик света для уличного освещения и схема подключения его к электросети достаточно проста. Ведь это практически тот же привычный нам выключатель. Единственным отличием является наличие нулевого провода, который необходим для работоспособности прибора.

  • Как мы уже писали выше, обычно датчик имеет три вывода. Один вывод — это нулевой провод, который необходим для работы датчика. Согласно п.1.1.29 ПУЭ, она должна быть обозначена «N» или проводом голубого света. Второй провод — это фаза, приходящая от вводного автомата. Она может быть обозначена как «L». Так же достаточно часто ее обозначают черным проводом. Третий провод — это фазный вывод с датчика, который подключается непосредственно к нагрузке. Он может быть обозначен «L1» «LOAD»или красным цветом провода.

Схема подключения датчика освещенности

  • Используя двухжильный провод, подключаем датчик освещения к нашему автоматическому выключателю, питающему наружное освещение. Подключив датчик, советую сразу проверить его работоспособность и выполнить его регулировку. Срабатывание датчика вы легко определите по появлению напряжения на третьем проводе.
  • Если испытания и настройка прошли успешно, можно снять напряжение с датчика и продолжить подключение. Третий провод делаем питающим нашей сети освещения. После подключения можно подать напряжение и проверить работоспособность всей схемы. Более же подробную информацию по подключению датчиков вы можете посмотреть на видео, представленном на нашем сайте.

Обратите внимание! Сейчас на рынке появились силовые автоматы с возможностью подключения фотоэлемента или, как их называют, датчики освещенности с выносными фотоэлементами. Их подключение выполняется по той же схеме, только подключаете вы не к силовой цепи, а к силовой части датчика.

Вывод

Сейчас датчиками включения освещения по времени суток оборудуется все большее количество сетей наружного освещения. Такие приборы находят применение в сетях подъездного, аварийного освещения.

Теперь вы знаете, что подключить такой датчик не так уж и сложно, и возможно тоже станете «двигателем» прогресса в нашей стране.

схема. Датчик включения света. Как работает и подключается датчик света с фотореле для сумеречного выключателя Для изготовления понадобится всего два инструмента

Датчики света на сегодняшний день являются довольно распространенными. По своим конструктивным параметрам они сильно различаются. В первую очередь это связано с тем, что фотоэлементов имеется на рынке немало. При этом существует множество моделей с разными типами адаптеров. Однако чтобы более подробно разобраться в этом вопросе, следует изучить структуру данных устройств. Только после этого можно будет приступать непосредственно к сборке датчика для света.

Классическая схема устройства

Самая стандартная схема датчика для света включает в себя фотоэлемент. При этом адаптеры часто используются нелинейные. Однако линейные модификации также являются на сегодняшний день востребованными. Еще в схеме стандартного датчика света имеются конденсаторы различной емкости. Располагаться они могут в последовательном либо параллельном порядке. Непосредственно для ламп устанавливаются патроны разного диаметра. Системы платы чаще всего имеются многоканального типа.

Модель с магнитным фотоэлементом

С магнитным фотоэлементом датчик света (схема показана ниже) больше всего подходит для закрытых помещений. При этом на улице модель можно использовать только при плюсовой температуре. Для того чтобы собрать датчик света своими руками, лампу целесообразнее использовать на 5 В. При этом патрон можно отдельно для устройства приобрести в магазине. Следующим шагом необходимо заняться непосредственно установкой фотоэлемента.

Корпус для этих целей нужно использовать пластиковый. После установки фотоэлемента для передачи сигнала монтируется кардиодный проводник. Емкость данного элемента не должна превышать 3 пФ. В противном случае лампа накаливания может не выдержать большой нагрузки. Непосредственно подключение к сети 220 В осуществляется по первой фазе. Для этого необходимо замыкать только верхние контакты. Проводник в данном случае можно использовать с маркировкой РР20.

Применение широкополосных фотоэлементов

Собирается данного типа датчик света нелегко. В первую очередь необходимо найти хороший фотоэлемент. Для его установки потребуется прочный корпус. Дополнительно следует отметить, что он обязан быть герметичным, поскольку вышеуказанный фотоэлемент плохо переносит повышенную влажность. Использовать его при минусовых температурах также не рекомендуется. Однако в закрытых помещениях он способен сослужить хорошую службу. Конденсаторы для него чаще всего используются интегральные. По емкости они различаются. В данном случае многое зависит от выбранной лампы накаливания.

Если рассматривать вариант на 5 В, то конденсаторы в такой ситуации можно использовать на 15 пФ. При этом подключение датчика света к сети должно осуществляться через переходник. Для регулировки мощности устройства часто используются управленческие платы. На сегодняшний день большим спросом пользуются многоканальные модели. Для того чтобы подключить датчик включения света к сети 220 В, без вспомогательного адаптера не обойтись.

Датчик на дипольных резисторах

На дипольных резисторах датчик света для освещения является широко распространенным. Фотоэлементы у моделей устанавливаются в основном спектрального типа. Для улицы такой вариант подходит идеально. Использоваться он способен эффективно даже при температуре -20 градусов. При этом замыкание резисторов происходить не будет. В данном случае конденсатор потребуется для монтажа только один. Подбирать его необходимо открытого либо закрытого типа. Однако емкость конденсатора не должна превышать 5 пФ.

Усилители в таком устройстве применяются довольно редко. Гораздо лучше для управления устанавливать обычные контроллеры. Контактные системы для подключения подбираются однофазные. Однако в данной ситуации необходимо в первую очередь взглянуть на распределительный щит. Только после этого появится возможность определиться с переходником, чтобы лампочка не сгорела.

Датчик на волновых конденсаторах

Данного типа датчик света собрать можно, если приготовить магнитный фотоэлемент. Резисторы для модели больше всего подходят диодные, а емкость их обязана составлять не менее 30 пФ. По чувствительности датчики указанного типа существенно различаются. Усилители при этом устанавливаются средней мощности. Модуляторы для устройства подходят больше интегрального типа. В этом случае параметр чувствительности будет находиться на уровне 22 мк. Также следует отметить, что диффузор в данном случае можно подсоединить напрямую через блок питания.

Использование селективных конденсаторов

Данного типа датчик света отличается повышенной чувствительностью. Для улицы эти устройства не подходят. Однако многое зависит от типа фотоэлемента. Если рассматривать интегральные модификации, то они повышенной влажности не боятся. Также они являются нечувствительными к минусовой температуре, и в холод устройства использовать можно. Резисторы чаще всего устанавливаются открытого типа.

При этом управленческие платы подходят самые разнообразные. Для того чтобы самостоятельно собрать модель, переходники целесообразнее подбирать со вспомогательными адаптерами. Подключение датчика света осуществляется через первую фазу. При этом контакты необходимо крепить в первую очередь сверху. Для того чтобы проверить заземление, нужно воспользоваться тестером.

Сверхчувствительные датчики для света

Сверхчувствительный датчик включения света для закрытых помещений подходит хорошо. Чаще всего модели устанавливают в офисных зданиях. Таким образом, на электричестве можно сэкономить довольно много. Для того чтобы самостоятельно сложить сверхчувствительную модификацию, фотоэлемент лучше приобрести магнитного типа. Резисторы целесообразнее подбирать с высоким параметром проводимости.

В данном случае переходник можно использовать самый простой. При этом усилители, как правило, не применяются. Для подключения датчика потребуется вспомогательный адаптер. Как правило, он используется на два контакта. Чтобы сбои в системе происходили как можно реже, многие специалисты рекомендуют использовать модули сопротивления. Найти их в магазине, как правило, можно с пометкой 10 Ом.

Модификации с пониженной чувствительностью

Данного типа датчик света специально создан для использования в суровых погодных условиях. В среднем модели способны выдерживать температуру до -20 градусов. Фотоэлементы у них устанавливаются исключительно интегральные. Отличаются они тем, что повышенной влажности практически не боятся. При этом небольшие механические повреждения способны выдерживать.

Про магнитные аналоги такого не скажешь. Для того чтобы самостоятельно собрать датчик света (уличный), потребуется высокоемкостный конденсатор. Дополнительно для стабильной работы применяются маломощные резисторы. Контроллеры для датчика устанавливать можно самые разнообразные.

Модификации с мембранным усилителем

Собрать датчик с мембранным усилителем можно довольно просто. Если рассматривать самую простую модификацию, то лампу целесообразнее подбирать на 5 В. При этом патрон в диаметре должен составлять 4.5 см. После закрепления фотоэлемента необходимо зафиксировать резистор. Если рассматривать модель без управленческой платы, то усилитель должен устанавливаться возле выходного переключателя. При этом соединение обязано осуществляться через переходник с изоляцией.

Если рассматривать модель с управленческой платой, то в первую очередь важно припаять к фотоэлементу вспомогательный адаптер при помощи паяльной лампы. Только после этого к системе подсоединяется переключатель с контактами. Проводники в данном случае нужно вывести на сторону и изолировать, чтобы исключить случаи коротких замыканий.

Автоматические помощники в электронной начинке автомобиля сегодня охватывают практически все функции его управления. Это в большей мере относится к системам обеспечения безопасности, но с появлением сенсорных чувствительных элементов охват интеллектуальных ассистентов значительно расширился. Так, все популярнее становится датчик света в автомобиле. Что это за устройство? Это своего рода детектор, который фиксирует пороговые значения освещения, при которых оптика может автоматически включаться или отключаться. В более развитых системах датчик также способен отслеживать условия освещенности в промежуточных состояниях, точнее настраивая автомобильное оборудование.

Что представляет собой датчик света?

Устройство датчика можно разделить на две части — это типовая электротехническая инфраструктура, благодаря которой устройство подключается к реле управления оптикой, и чувствительный компонент. Подключение к реле дает возможность датчику оперативно взаимодействовать с автомобильными огнями, своевременно активизируя их функцию. Главный же элемент прибора — это непосредственно детектор в виде фотоэлемента, реагирующего на параметры освещения. Наиболее распространен автономный датчик света в машине. Как работает эта модификация? Ее особенность заключается в независимости от основной электросети. То есть сигнал на реле поступает даже в случае сбоев на магистральной проводке. Разумеется, о гарантии работоспособности данной схемы можно говорить только при условии стабильного функционирования самой оптики и управляющего контроллера.

Принцип работы устройства

В процессе движения автомобиля датчик постоянно контролирует вверенную ему зону, оценивая параметры освещенности. Обычно это элементарная яркость света, на которую и реагируют фотоэлементы. При достижении предельных значений датчик посылает сигнал на вышеупомянутое реле. В свою очередь, контроллер дает команду оптике включиться или, наоборот, отключиться. Важно подчеркнуть, что система действует не только на включение. Такие системы относятся к средствам активной безопасности, поэтому активизация света в темном переулке, к примеру, является ключевой задачей устройства. Но также при фиксации пороговых значений яркости прибор отключает оптику. Стоит отметить и особенности обработки сигнала, который посылает датчик света в автомобиле. Как работает в этой схеме управляющий блок? Изначально микросхема программируется на работу по нескольким каналам, связанным с определенной оптикой — огнями, фарами, «противотуманками» и т. д. Также и датчики отвечают за конкретные зоны, условно связанные с этими каналами. Таким образом, в каждом случае задействуется та или иная группа оптических приборов машины.

Зоны охвата

Базовое разделение предполагает обработку сигналов от двух зон охвата. В первую очередь, это глобальная зона. Она относится к пространству непосредственно у автомобиля. Вторая зона — передняя. Она распространяется на участок дороги перед машиной. Современные модели датчиков способны различать эти зоны, посылая на реле соответствующие сигналы. Казалось бы, если в текущих условиях наблюдается пониженный уровень освещения, то активизироваться должны оптические устройства, соответствующие условиям движения. Но разница как раз заключается в особенностях работы ближних и дальних фар, за которые отвечает датчик света в автомобиле. Что это разделение значит на практике? В условиях отсутствия видимости активизироваться должны дальние фары, а днем — ходовые огни с ближним светом. Однако пограничные состояния между этими условиями освещенности не всегда доступны для фиксации электроникой. Поэтому желательно, чтобы в датчике предусматривалась и возможность отслеживания промежуточных характеристик освещенности.

Настройки датчика

Отчасти задачу разделения пограничных показаний освещенности можно решить с помощью базовых настроек. Как правило, предусматривается два режима эксплуатации устройства:

  • В сумерках. Свет активизируется при наступлении сумерек, когда ночь еще не наступила, но уже наглядно темнеет.
  • Ночью. Датчик включает фары при наступлении полной темноты.

В некоторых конфигурациях предусматривается и конкретное назначение фар, которые при тех или иных условиях включает датчик света в автомобиле. Что это такое с точки зрения обработки сигнала электроникой? Это программные параметры, которые логически обрабатываются в тех или иных условиях. Например, в первом режиме все еще будет работать ближний свет, а во втором — происходит активизация дальних фар.

Специальные версии датчика

Существуют модели датчиков, которые также отвечают за регуляцию света в салоне. В частности, они не просто включают, но и управляют параметрами яркости приборной панели. Собственно, вторая функция и является первостепенной, так как во время движения панель в любом случае работает. Но в таких системах при сильной нагрузке сигналами на реле возможны проблемы. Так, по словам пользователей, датчик света в автомобиле «Киа Рио» грешит некорректным управлением подсветкой той же приборной панели. Например, ночью система вполне оправдано активизирует работу дальнего света, но в салоне подсветка может включаться с максимальной яркостью, что доставляет водителю дискомфорт. Чаще всего подобные проблемы возникают из-за нарушений соединения проводки или ее повреждения — падает сопротивление, в результате чего и сигналы поступают неточные.

Монтаж своими руками

В первую очередь определяются места установки. Их может быть два — или за зеркалом заднего вида в зоне лобового стекла, или же на передней панели — тоже возле лобового стекла. В обоих случаях важно организовать свободное не прикрытое пространство, в котором будет работать датчик света в автомобиле. Своими руками выполнить монтаж несложно — в работе участвуют комплектные крепежные приспособления. В некоторых случаях достаточно выполнить клеевое крепление, а в других — реализовать механическую фиксацию метизами.

Отдельного внимания заслуживает проводка. Кабель желательно как можно короче делать на видимом месте и по возможности сразу от датчика заводить за приборную панель. Селектор станет конечным пунктом, к которому напрямую подсоединяется датчик света в автомобиле. Что это такое в схеме соединения детектора с реле управления? Селектор — это переходное звено, которое выполняет своего рода предобработку сигнала. Он может корректировать его параметры, определять те же каналы групп оптики и устранять помехи.

Заключение

Присутствие автоматического регулятора света вовсе не стоит воспринимать как гарантию безопасности — хоть и в одном аспекте управления. Есть и опасности, которые может нести собой датчик света в автомобиле. Что это значит для автомобилиста? Электроника в виде автоматических ассистентов дает ощущение стороннего контроля, но это впечатление обманчиво. Действительно, в большинстве случаев такие датчики оказываются полезными, но есть также и риск выхода электроники из строя. И тогда несвоевременное включение фар может обернуться трагедией. Стоит ли из-за этого риска отказываться от датчика света? Пожалуй, нет, но полагаться только на его функцию в управлении оптикой уж точно не следует.

При вождении автомобиля в темное время суток возникает необходимость хорошего освещения дороги на достаточно длинную дистанцию. Но если по встречной полосе едет автомобиль с включенными фарами, то он ослепляет водителя встречного направления.

Этот эффект ослепления является одной из главных проблем езды в темное время. Для того чтобы избежать ослепления лампочки фар имеют две нити накала, причем вторая расположена так, чтобы свет распространялся вниз и в сторону от уровня глаз водителя встречного автомобиля. На практике, обычно водитель вручную переключает дальний и ближний свет механическим переключателем. Однако это очень неудобно для водителя, особенно в часы пик.

Наш проект “Адаптивная система освещения для автомобилей”(АСО) это умное решение для безопасного и удобного ночного вождения без интенсивного ослепляющего эффекта.

Адаптивная система не требует ручного переключения “ближний/дальний” при приближении встречного автомобиля. Система сама определяет есть ли свет от встречного автомобиля и переключает на ближний свет, а затем, после прохождения мимо, снова на дальний. Пользователь может настроить чувствительность системы.

Отличительные особенности системы

  • Питание от 12 В аккумуляторной батареи автомобиля, с пренебрежительно малым потреблением в ждущем режиме.
  • Надежный и защищенный от атмосферных явлений модуль оптического датчика (фотоэлемент CDS).
  • Независимый регулируемый контроль, для установки параметра“чувствительность определения света”, чтобы избежать ложных срабатываний, вызванных влиянием других источников света, таких как уличные фонари.
  • Дополнительный селекторный выключатель для “ режима автоматической сигнализации”(ASM). В этом режиме фары переходят в пульсирующий режим, т.е. ритмично переключают ближний свет на дальний и наоборот (аналогично тому как водители сигналят светом друг другу).
  • “Режим энергосбережения”- Если схема находится в активном режиме, по умолчанию, фары автоматически выключаются при въезде на хорошо освещенную территорию.

Эффект Трокслера

Исследования д-ра Алана Льюиса, который работает в колледже оптометрии при государственном университете в Биг Рапидс, штат Мичиган, обнаружил, что во время ночного вождения, свет от фар транспортных средств, может стать причиной ослепления.

Даже после окончания воздействия яркого света на сетчатке глаза остается его изображение, что создает слепое пятно. Это явление, известное как эффекта Трокслера, увеличивает время реакции водителя до 1,4 секунды.

Это означает, что, при скорости 60 миль в час (примерно 96.5км/час), водитель проедет 123 фута (37.5 м), прежде чем среагирует на опасность. В обычной ситуации время реакции на изменения в условиях вождения равно 0,5 сек, а расстояние, пройденное до торможения, составляет 41 фут (12.5 м), при той же скорости движения!

Функциональная блок-схема

Схема электрических соединений до переделки

Схема электрических соединений при подключении АСО

Принципиальная электрическая схема

Перечень компонентов

  • Микросхема: NE555 – 1
  • 8-ми контактная панелька для МС – 1
  • Транзистор: BC547 – 1
  • Диод: 1N4007 – 2
  • Резисторы: 100кОм подстроечный – 1; 47кОм 0.25 Вт – 1; 22кОм 0.25 Вт – 1; 10кОм 0.25Вт– 1; 1кОм 0.25 Вт – 2
  • Конденсаторы: 10мкФ/25В – 1; 100мкФ/25В – 1
  • Светодиоды: 5мм красный и зеленый – 2
  • LDR: фотоэлемент 20мм капсульного типа – 1
  • Реле: 12В постоянного тока – 1
  • Выключатель: переключатель со средней точкой (SPST)– 2

Работа схемы

Схема построена на популярной микросхеме NE555 (IC1). Здесь IC1 включена по схеме автоколебательного мультивибратора запускаемого по триггерному входу (вывод2). Мультивибратор работает на частоте примерно 1.5 Гц (рабочий цикл 75%), которая определяется величиной компонентов R1,R 3и C1. Схема питается от 12В аккумулятора автомобиля.

  • В положении ВКЛ. переключателя S1 напряжение 12В поступает на схему через диод защиты от переполюсовки 1N4007 (D1). Конденсатор C3 (100мкФ/25В) буферный, для повышения стабильности схемы. При отсутствии света, датчик освещенности, состоящий из фотоэлемента (LDR), подстроечного резистора (Р1) и транзистора (Т1) запрещает работу мультивибратора (вывод 4 “сброс”). При этом на выходе IC1 (вывод3) “низкий” уровень сигнала и 12В реле (RL1) не срабатывает. Это состояние идицируется первым светодиодом (LED1). Поскольку нить накала дальнего света фар подключена к “+” через нормально замкнутые контакты реле, то в этом режиме они включены на дальний свет.
  • Когда на датчик освещенности попадает яркий свет, мультивибратор запускается и “высокий” уровень сигнала втягивает реле. Контакты реле переключают фары на ближний свет, до тех пор пока не изменится состояние датчика освещенности. Это состояние идицируется вторым светодиодом (LED2). Переключателем S2 задается режим автоматической сигнализации (ASM). В положении ВКЛ выводы 2 и 6 IC1 соединяются с “землей” и, следовательно, автоколебательный режим мультивибратора отключен. При S2 в положении ВЫКЛ функция ASM включается и начинается быстрое переключение ближний/дальний, пока на датчик освещенности попадает яркий свет от встречного автомобиля.

Примечание

  • Контакты реле RL1 можно соединить параллельно штатным контактам селекторного переключателя ближний/дальний. Также возможна подача +12В на нити накала ближнего и дальнего света через контакты реле.
  • Рекомендуется использовать один 20мм датчик, закрепленный в соответствующей позиции в передней части автомобиля.

Описывалось создание датчика реагирующего на свет и приводились примеры схем управления маломощным электродвигателем и светодиодом. Более полезным было бы управление какой либо мощной нагрузкой например: лампой накаливания, мощным электродвигателем и т.д. Простая схема фотореле для мощной нагрузки приведена на рисунке 1:

Рисунок 1 — Фотореле срабатывающее при уменьшении освещённости

без регулировки чувствительности

В этой схеме используется электромагнитное контактное реле. Самым простым дешёвым и доступным способом управления мощной нагрузкой является использование электромагнитного контактного реле:

Реле показанное на фотографии выше извлечено из сломанного импортного холодильника, это реле может коммутировать (подключать и отключать в данном случае) нагрузку потребляющую ток не более 16А. 16А вполне достаточно для многих бытовых электроприборов. На корпусе этого реле написано что для катушки постоянного тока необходимо 12 В но на практике для срабатывания данного реле было достаточно 9В с блока питания для модема с выпрямителем:

Если 9В окажется недостаточно то можно запитать схему от 12В. Если заменить резистор R1 переменным или подстроечным то можно будет регулировать чувствительность к свету.

Обратный ток данного фотодиода усиливается транзистором VT1:

Данный транзистор образует делитель напряжения вместе с резистором R1:

Как было упомянуто выше данный резистор можно заменить переменным или подстроечным для того чтобы можно было регулировать чувствительность схемы.

Непосредственное управление катушкой реле осуществляет транзистор VT2:

КТ973 хорошо подходит для данной цели. Реле подключается к коллектору данного транзистора.

Для того чтобы транзистор VT2 не перегорел при резком его закрытии параллельно катушке реле ставится обратный диод:

Данный диод можно заменить каким либо другим подходящим диодом.

Резистор R2 не обязателен но его можно поставить для ограничения тока или уменьшения его потребления.

Для силовой части схемы нужны разъёмы и провода:

Реле может подключать нагрузку к сети 220В. Не стоит забывать о том что напряжение сети опасно и при работе с ним необходимо соблюдать меры предосторожности для того чтобы не получить поражение электрическим током.

После подготовки всех необходимых деталей можно приступать к сборке реле.

Обратный диод лучше подпаять сразу к реле.

К собранному реле можно подключать нагрузку с источником питания (не обязательно сеть 220В). Используя данное фотореле в паре с источником инфракрасного излучения можно сделать датчик присутствия:

Если направить инфракрасный свет на фотодиод фотореле то при перекрытии этого света реле будет срабатывать и замыкать источник питания на нагрузку, таким образом можно вызвать некоторое действие при пересечении кем либо (или чем либо) инфракрасного луча. Для того чтобы включение нагрузки происходило при увеличении освещения можно использовать реле с нормально замкнутыми контактами. Для того чтобы включать (или выключать) несколько нагрузок можно использовать реле с несколькими контактами. Также для того чтобы включение нагрузки происходило при увеличении освещения можно использовать схему на рисунке 3:

Рисунок 2 — Схема включающая нагрузку при увеличении освещения

Если фотореле включает лампу накаливания при уменьшении освещенности то необходимо как нибудь закрыть фотодиод от света лампы накаливания иначе при уменьшении освещенности реле начнёт часто включаться и выключаться что приведёт к быстрому его износу и выходу из строя. Если используется инфракрасный фотодиод то фотореле не будет реагировать на свет лампы дневного света (если не поднести её достаточно близко) или светодиодной лампу (если в ней нет инфракрасных светодиодов с соответствующей длинной волны излучаемого света). Пульт ик-управления лучше не испытывать на данном фотореле:


Все знакомы с садовыми светильниками, которые заряжаются от солнечной батарейки в течение дня, а вечером автоматически включаются. В них установлен специальный сенсор, который высчитывает освещение на улице и как только наступает вечер, он включает светодиод. В этом обзоре предлагаем инструкцию по изготовлению аналогичного сенсора своими руками .

Для изготовления сенсора, нам понадобится:
— 2 резистора на 470 Ом;
— 2 резистора на 10 кОм;
— фоторезистор;
— потенциометр на 470 Ом;
— светодиодная лампочка;
— операционный усилитель LM741;
— восьмиконтактная DIP панель;
— монтажная плата.


Начать следует с монтажной платы. Вырезаем небольшой кусок шириной 9 точек и длиной 13.


Далее берем резисторы на 470 Ом. Вставляем их на самую верхнюю полосу на деление 2 и 5.


Загибаем их друг к другу так, чтобы между ними осталось одно деление.


Теперь берем потенциометр и вставляем двумя контактами вплотную к резисторам, установленным ранее. Паяем контакты.


Далее берем DIP панель. На свободный контакт потенциометра подключаем третий пин панели.


Паяем панель на плату.


Далее берем резистор на 10 кОм и фоторезистор. Резистор нужно подключить на пин номер 2 и к минусу. Держа плату резисторами на 470 Ом вниз, минус будет располагаться в правой стороне.


На тот же пин номер 2 подключаем фоторезистор, который на этот раз должен также пойти к плюсу.


Теперь четвертый пин подключаем на минус. А седьмой, или второй сверху на плюс.


В конце остается подключить к плате то, что будет включаться. В нашем случае это светодиодная лампочка, которую нужно подключить на шестой пин.

Когда сборка закончена, можно вставить LM741, на котором, кстати, есть обозначающая точка, которой нужно вставить в сторону плюса.

Наш сенсор готов. Фоторезистор измеряет освещаемость. Как только оно падает ниже определенного уровня, загорается светодиодная лампочка. Уровень освещения можно регулировать при помощи потенциометра. Если же нужно включать что-то помощнее, то вместо светодиода можно поставить какой-нибудь транзистор.

виды, технические параметры, подключение и настройка

Для повышения привлекательности, безопасности передвижения и снижения криминогенной ситуации на улицах города должна быть установлена функционирующая и надежная система освещения. С другой стороны, уличные фонари используются и для освещения придомовых территорий.

Яркие источники света приводят к существенным затратам электрической энергии, поэтому с целью экономии могут использоваться различные дополнительные устройства. Одним из таковых является датчик света для уличного освещения.

Данное оборудование пользуется огромным спросом среди населения и муниципального управления. Датчики размещаются в системах освещения придомовых территорий, второстепенных городских улиц. Существуют приборы, предназначенные для эксплуатации внутри помещений, рядом с лестницами, проходными дверями. Ниже будут рассмотрены принципы действия, устройства, технические параметры, допустимые схемы установки датчиков света.

Назначение и сфера применения

Датчиком света или датчиком движения прибор называется в народе. Специалисты могут именовать его светоконтролирующим выключателем или светочувствительным автоматом. Существуют и другие наименования, включая фотодатчик, сумеречный датчик, датчик дня и ночи и т. д. Во всех случаях имеют в виду одно и то же устройство, при помощи которого происходит автоматическое включение и выключение света с наступлением сумерек и рассвета, соответственно.

Для создания фотореле, являющегося основным компонентом датчика, используются специальные фототранзисторы или фоторезисторы, параметры которых изменяются в зависимости от уровня освещенности. Пока на фотоэлемент падает достаточное количество света, цепь питания остается в разомкнутом состоянии. С наступлением темноты происходят изменения параметров, и при достижении заданного уровня цепь замыкается, что приводит к включению светильников. Чувствительность прибора задается индивидуально.

В утреннее время наблюдается обратный процесс: цепь питания разрывается после регистрации достаточного количества естественного света.

Основные технические характеристики

Существует несколько основных технико-эксплуатационных параметров, на которые следует обращать внимание при выборе датчика света. Первым является напряжение. Датчики могут подключаться к сети переменного тока 220 В или постоянного 12 В. Во втором случае устройства являются менее мощными, но безопасными, питание происходит за счет подключаемого аккумулятора или понижающего транзистора, преобразующего переменное электричество в постоянное.

Следующая важная характеристика – класс защиты от попадания пыли и влаги. Поскольку мы говорим об уличном освещении, то прибор должен иметь надежную защиту – не ниже IP44, что указывает на повышенную герметичность (исключается попадание частиц пыли более 1 мм и брызг воды). Можно выбирать датчики с большим классом защиты, но ниже – нельзя. В доме нужно устанавливать приборы классом защиты от IP23.

Рекомендуем ознакомиться с допустимыми нормами температуры при эксплуатации оборудования (режимом эксплуатации). Нужно делать ставку на такие модели, которые с легкостью перекроют средние показатели плюсовой и минусовой температуры в вашем регионе.

Нужно помнить о мощности фотореле – допустимом количестве подключаемых ламп в зависимости от суммарной мощности. Датчик движения может функционировать и при большей нагрузке, чем задано в технической документации, но все-таки лучшим вариантом станет приобретение устройства с определенным запасом мощности (приблизительно 20 %).

Помимо основных параметров, рекомендуется обращать внимание на ряд дополнительных. Многие устройства имеют свой порог чувствительности (срабатывания). Например, при вероятности выпадения осадков (особенно снега) лучше всего понизить чувствительность оборудования, поскольку отраженный от снежинок свет может восприниматься изделием как рассвет. Это приведет к нежелательным включениям и отключениям устройства в течение коротких временных промежутков. Такое световое шоу будет лишним как на улице города, так и на придомовой территории.

Говоря о чувствительности, нужно искать параметры, определяющие верхнюю и нижнюю границу. Например, для одного датчика диапазон может составлять 5-100, для другого – 10-100 лк.

Чтобы исключить возможные ложные включения или отключения света, нужно настроить задержку срабатывания. К примеру, ночью на фотореле может попасть свет от фар машин, проезжающих мимо. Если установлена минимальная задержка, то это, скорее всего, приведет к отключению света. Достаточно установить задержку на 7-10 секунд, чтобы избежать нежелательной ситуации.

Виды фотореле

Фотореле выпускаются нескольких типов: одни имеют встроенный датчик освещенности, другие оснащены выносным элементом.

Перечислим основные разновидности датчиков света для уличного освещения:

  1. Фотореле со встроенным датчиком движения. Данные устройства подойдут лишь в том случае, если светильники должны включаться только во время нахождения человека в освещаемой области. Например, в туалете, на заднем дворе, у входных ворот и т. д.
  2. Фотореле с таймером. Если нужно добиться того, чтобы свет горел лишь в течение определенного отрезка времени, используйте данную модель. Установите на ней таймер, после чего встроенный датчик автоматически отключит освещение в указанное время. Отличный вариант для декоративной подсветки сада, клумбы, двора.
  3. Астротаймер – усовершенствованное фотореле, в память которого закладываются продвинутые параметры, например, время заката и восхода в зависимости от климатической зоны. Выполняя преднастройку оборудования, вам нужно установить часовой пояс, после чего прибор будет автоматически включать и отключать освещение в нужное время. Стоимость устройства значительно выше обычных фотореле, но оно позволяет исключить возможные засветки и проблемы с выбором места установки.

Если вас интересует только одна из перечисленных функций, то можно пойти другим путем. Например, купить обычное фотореле и последовательно подключить к нему либо датчик движения, либо таймер. Устройство будет выполнять аналогичные функции, но зато можно будет снизить затраты на обустройство системы, ремонт или замену элементов. Дело в том, что при выходе из строя любого элемента, встроенного в фотореле, придется менять все устройство, но если, к примеру, датчик движения подключен отдельно, то достаточно будет заменить только его.

Требования к месту установки

При выборе места для установки фотореле, подключаемого к системе уличного освещения, нужно ориентироваться на следующие требования:

  1. На фотореле или выносной датчик регистрации света при любых условиях должен попадать дневной свет.
  2. Все остальные приборы искусственного освещения, включая фонари, билборды и домашние светильники (свет бьет через окно) должны быть установлены как можно дальше от светового реле, что позволит исключить ложные срабатывания устройства.
  3. Вероятность попадания света от автомобильных фар должна быть минимальной.
  4. Высота монтажа – 1,5-2 м, что позволит настраивать нужные параметры, находясь на земле. В противном случае придется использовать стремянку или обычную лестницу, чтобы добраться до датчика.

Отыскать такое место, которое удовлетворит всем перечисленным требованиям, довольно сложно. Тем не менее, можно воспользоваться маленькими хитростями, облегчающими задачу:

  1. Воспользуйтесь куском пластиковой трубы (желательно черного цвета) длиной 15-20 см с увеличенным диаметром, чтобы оградить фотореле или датчик от света, бьющего из окон или от фонарей. Нижней части нужно задать такой угол, под которым труба будет направлена вверх. То, каким будет данный угол, зависит от места установки и особенностей расположения датчика, но обычно он составляет 30-45 градусов от вертикальной конструкции (стены, столба).
  2. Если фотореле устанавливается на мощном светильнике, то в идеале нужно размещать его позади плафона, куда попадает меньшее количество света.

Рекомендуется устанавливать датчики освещения на западной или восточной стороне дома, что существенно упростит настройку рабочих параметров оборудования. Главное условие – отсутствие расположенных поблизости ярких источников света. Если таковые имеются, то монтировать фотореле нужно на той стороне, где вероятность засветки ниже.

Возможные схемы подключения фотореле для уличного освещения

Итак, определено предназначение и принцип действия фотореле, по сути выполняющего функции автоматического выключателя света. Отсюда следует простая схема подключения: на датчик подается фаза, которая уходит из двух выходов и поступает на светильник или другой осветительный прибор. Поскольку устройство нуждается в питании, то один из контактов является нулевым. Для повышения безопасности при эксплуатации изделия в идеале желательно подключить заземление.

Чтобы понять, какой выбрать датчик, учитывается мощность нагрузки (суммарная мощность источников света, ламп). С повышением мощности оборудования возрастает его стоимость. Чтобы сэкономить, питание в цепи можно подавать через магнитный пускатель. Для этого по-прежнему потребуется фотореле, но в данном случае можно будет использовать устройство малой мощности, поскольку при последовательном подключении учитывается мощность магнитного пускателя, а не самого датчика. На выводы изделия подается желаемая нагрузка.

Если в электрической цепи будут использоваться дополнительные датчики (движения, времени), то они подключаются последовательно после фотореле. Порядок, в котором будут расположены датчики движения и времени, не имеет значения. Если в какой-то момент нужно будет избавиться от этих датчиков, достаточно просто изъять их из схемы, она все равно будет функционировать.

Подключение и настройка

Для начала нужно воспользоваться простой схемой подключения фотореле с силовым блоком и уличного светильника. Размещать датчик желательно в непосредственной близости с осветительным устройством. Каждому изделию прилагается инструкция, описывающая пошаговую установку и подключение. В большинстве случаев реле крепится прямо к столбу с фонарем на высоту не более 3 м.

Наличие выносного датчика не меняет последовательность монтажа. Реле крепится в нужном месте таким образом, чтобы на него падали солнечные лучи, и никакие другие объекты не становились между солнцем и изделием. Блок подключается внутри помещения рядом с электросиловой. В идеале нужно использовать устройства, которые способны самостоятельно регулировать рабочие характеристики. Впрочем, большинство моделей оснащены обычными механическими тумблерами, настраивающими порог световой чувствительности.

На корпусе качественного изделия обязательно имеются указатели, упрощающие процесс подключения и регулировки прибора. При вращении тумблера в сторону возрастания фотореле будет срабатывать быстрее и с наступлением сумерек включит фонарь. Если тумблер повернуть в другом направлении, то порог чувствительности уменьшится, что может привести к включению света только с наступлением полной темноты.

Фотореле можно собрать самостоятельно, причем сделать это довольно просто. Чтобы изделие было компактным, нужно исключить применение габаритных элементов. Не стоит брать эмиттерный повторитель в сборе, лучше всего сконструировать его из двух транзисторов для повышения входного тока.

Подключите в схему реле малой мощности, используемое в качестве транзисторного каскада. Чтобы исключить воздействие обратного тока, нужно воспользоваться диодами, проводящими электричество исключительно в одном направлении. Согласно простой истине, если напряжение повышается, изделие становится более чувствительным.

Советы и рекомендации

Процесс выбора усложнен большим разнообразием датчиков движения, характеризующихся разным функционалом. Чтобы выбрать подходящее фотореле, следует учесть ряд факторов. Первый и самый важный – условия будущей эксплуатации. На придомовых территориях загородных домов желательно использовать изделия с возможностью изменения порога светочувствительности. Отличным вариантом станет дополнительный монтаж датчика времени.

Нужно помнить о соответствии мощности, на которую обращалось внимание в начале статьи. Наконец, не стоит забывать о ценовой политике: не следует покупать устройство с лишним функционалом, который даже не будет использоваться. Но это повлияет на стоимость изделия и приведет к ненужной переплате.

Таким образом, фотореле для уличного освещения предназначены для автоматического управления осветительными системами и существенного продления рабочего ресурса отдельных приборов. Свет будет работать лишь в то время, когда это нужно. Автоматический контроль позволит создать максимально экономичную систему, а для управления ею не потребуется оператор сети.

Следует помнить, что схема подключения датчика света имеется на корпусе изделия. Это упрощает процесс ввода прибора в эксплуатацию.

схемы сборки и полезные советы. Как сделать датчик движения для включения света? Фотогалерея «Место расположения контроллера»

Если вас интересуют общие вопросы — параметры, устройство, применение и схемы датчика освещенности, то в рамках статьи можно получить на них ответы.

Что такое датчик освещенности?

Это специальное устройство, которое может определять, когда уровень света падает ниже какой-то грани. Применяются они в таких случаях:

  1. При желании экономить электроэнергию.
  2. Как устройство автоматизации человеческого жилища.

Для полноценной автоматизации они часто применяются вместе с датчиками движения.

Как он работает?

Принцип работы прост и базируется на светочувствительном элементе. Обычно в его роли выступаю фоторезисторы, фототранзисторы и фотодиоды. Они все могут изменять своё сопротивление пропорционально уровню освещенности. Чтобы настроится на необходимый уровень освещенности, при котором свет будет включаться, проводят регулировку поступающего сигнала от светочувствительных элементов к ключевому транзистору. Он в своей нагрузочной цепи имеет реле, с помощью контактов которого коммутируется нагрузка пользователя — лампы, уличного прожектора и такое подобное. Как видите, принцип работы как у обычного и привычного всем выключателя, только в этой статье рассматривается автоматика.

Подключение

Подключение рассмотрено на примере обычной трехфазной сети. В целом, всё необходимое показано на рисунке, который понятен любому человеку, и если есть вопросы, необходимо учить, как совершать подключение к данным источникам энергии, что явно выходит за рамки статьи. Но помните, что датчик освещенности уличный или домашний будет подключен к трехфазной сети, а при работе с нею необходимо соблюдать осторожность.

Монтаж

Казалось бы — чего тут может быть сложного? Ведь требуется всего прикрутить, подключить, настроить — и можно использовать! Но в результате таких непродуманных действий часто оказывается, что место установки было выбрано неудачно. К примеру: вот монтировали где-то датчик, а он при наступлении темноты то включается, то выключается. И только когда наступает ночь, может более-менее нормально работать? Почему так, плохая схема или корявые руки? Не обязательно. Всё может оказаться значительно прозаичнее — сам датчик будет установлен в таком месте, что его будет освещать лампа, которую он сам включает. Получается такая схема: стало темно — сработал элемент — включилось освещения — теперь светло, и можно отключаться. И так по кругу.

Настройка

Подключение датчика освещенности имеет свои особенности. Для проверки работоспособности можно использовать тёмный пакет под мусор, с помощью которого будет имитироваться ночь. Вы можете создать датчики освещенности настолько простые, что им не нужна настройка и калибровка. Но нижерасположенные схемы все же требует определённой подготовки к использованию. Первоначально необходимо проверить качество пайки, примером могут служить представленные здесь фото. Чаще всего различные проблемы возникают с дорожками, а вместе с ними приходится менять и реле. Поэтому настройка — это инвестиции в будущее и уверенность, что не придётся переделывать. Также желательно в любом случае ограничить ток в рамках до 4 (16, 25) Ампер, чтобы датчик освещенности не вышел из строя.

Схемы

Чтобы не изобретать заново велосипед, предлагаю рассмотреть, как устроены промышленные датчики LXP-02 и LXP-03. Эти образцы зарекомендовали себя как качественные светочувствительные приборы, которые к тому же выгодны с точки зрения цена/функционал. Принцип работы такой: напряжение идёт через клеммы N(ноль) и L(фаза). Их можно перепутать. Также вы можете выключить ноль, а не фазу, как обычно. Но при этом пострадает здравый смысл и безопасность. Для выпрямления напряжения используется диодный мост. Сглаживается оно электролитическим конденсатором и к необходимым элементам поступает 22-24 Вольта. На выходе резистивного делителя на 68к формируется напряжение, которое обратно пропорционально освещенности. С помощью элемента, сопротивление которого 1 Мом, производится настройка порога срабатывания. Можно поэкспериментировать, и вместе фоторезистора поставить фотодиод, принцип работы не изменится. Для максимальной экономии электроэнергии необходимо по максимуму увеличить сопротивления. Но срабатывать датчик освещенности будет только в тех случаях, когда уж совсем темно. Для достижения противоположного результата необходимо делать всё наоборот. Конденсатор на 47 мкФ необходим для сглаживания процессов, на случай, если перед окном будет дерево и ветер качает ветки.

Заключение

Можно сделать и свой прожектор с датчиком движения и освещенности. Правда, над этим придётся хорошо подумать и поработать, но результат не разочарует. Датчик освещенности уличный может быть чрезвычайно ценным в случаях, когда необходимо где-то поддерживать освещение постоянно, как-то в инкубаторах для цыплят, чтобы в случае пропажи света и тепла сообщать про неполадки.


Иногда возникают такие ситуации, когда нужно каждый день с рассветом включать свет в помещении и выключать с закатом, т.е. имитировать световой день внутри какого-либо закрытого помещения. Потребоваться это может, например, при выращивании растений или содержании животных, где необходимо точное соблюдение режима день/ночь. В зависимости от времени года время заката и восхода постоянно меняется, а значит, применение суточных таймеров на включение освещения не справится с задачей должным образом. На помощь приходит датчик освещённости, или, проще говоря, фотореле. Это устройство регистрирует интенсивность попадающего на него солнечного света. Когда света будет много, т.е. взойдёт солнце, на выходе установится лог. 1. Когда день подойдёт к концу, солнце уйдёт за горизонт, на выходе будет лог. 0, лампы освещения выключатся до следующего утра. Вообще, область применения датчика освещённости весьма широка и ограничивается лишь фантазией собравшего его человека. Нередко такие датчики используются для подсветки шкафа при открытии дверцы.

Схема датчика освещённости

Ключевое звено схемы – фоторезистор (R4). Чем больше света на него попадает, тем сильнее уменьшается его сопротивление. Можно применить любой фоторезистор, какие получится найти, ведь это достаточно дефицитная деталь. Импортные фоторезисторы компактные, но стоят порой весьма существенно. Примеры импортных фоторезисторов — VT93N1, GL5516. Можно применить также отечественные, например, ФСД-1, СФ2-1. Они стоят куда меньше, но также будут неплохо работать в этой схеме.
Если достать фоторезистор не удалось, а сделать датчик освещённости очень хочется, то можно поступить следующим образом. Взять старый, желательно германиевый транзистор в круглом металлическом корпусе и спилить его верхушку, оголив тем самым кристалл транзистора. На фото ниже показан как раз такой транзистор со спиленной крышкой.


Очень важно при этом не повредить сам кристалл, отрывая крышку. Подойдут практически любые транзисторы в таком круглом корпусе, особенно хорошо будут работать советские германиевые, например, МП16, МП101, МП14, П29, П27. Т.к. теперь кристалл такого «модифицированного» транзистора открыт, сопротивление перехода К-Э будет зависеть от интенсивности света, попадающего на кристалл. Вместо фоторезистора впаиваются коллектор и эмиттер транзистора, вывод базы просто откусывается.
В схеме используется операционный усилитель, можно применить любой одинарный, подходящий по цоколёвке. Например, широкодоступные TL071, TL081. Транзистор в схеме – любой маломощный структуры NPN, подходят BC547, КТ3102, КТ503. Он коммутирует нагрузку, которой может служить как реле, так и небольшой отрезок светодиодной ленты, например. Мощную нагрузку желательно подключать с использованием реле, диод D1 стоит в схеме для гашения импульсов самоиндукции обмотки реле. Нагрузка подключается к выходу, обозначенному OUT. Напряжение питания схемы – 12 вольт.
Номинал подстроечного резистора в этой схеме зависит от выбора фоторезистора. Если фоторезистор имеет среднее сопротивление, например, 50 кОм – то подстроечный должен иметь в два-три раза большее сопротивление, т.е. 100-150 кОм. Мой фоторезистор СФД-1 имеет сопротивление более 2 МОм, поэтому и подстроечный я взял на 5 МОм. Существуют и более низкоомные фоторезисторы.

Сборка датчика освещённости

Итак, перейдём от слов к делу – в первую очередь нужно изготовить печатную плату. Для этого существует ЛУТ метод, которым я и пользуюсь.
Файл с печатной платой к статье прилагается, отзеркаливать перед печатью не нужно.
Скачать плату:

(cкачиваний: 247)


Плата рассчитана на установку отечественного фоторезистора ФСД-1 и подстроечного резистора типа CA14NV. Несколько фотографий процесса:


Теперь можно впаивать детали. Сначала устанавливаются резисторы, диод, затем всё остальное.


В последнюю очередь впаиваются самые крупные детали – фотодиод и подстроечный резистор, провода для удобства можно вывести через клеммники. После завершения пайки обязательно нужно удалить с платы флюс, проверить правильность монтажа, прозвонить соседние дорожки на замыкание. Только после этого можно подавать на плату питание.

Настройка датчика

При первом включении светодиод на плате либо будет светится, либо будет полностью погашен. Аккуратно вращаем подстроечный резистор – в каком-то его положении светодиод сменит своё состояние. Нужно установить подстроечный резистор на эту грань между двумя положениями, и закрывая или наоборот засвечивая фоторезистор добиться нужного порога срабатывания.

Наглядно работа датчика освещённости показана на видео. Над фоторезистором создаётся тень, интенсивность света уменьшается, светодиод погасает. Успешной сборки!

Отправим материал вам на e-mail

Д а будет свет, сказал когда-то один известный киноперсонаж и его слова стали пророчеством для нашего времени. Сейчас освещение есть везде, и основной заботой каждого владельца загородного дома является оптимизировать затраты на обеспечение удобства, которое дает освещение территории возле дома. Это возможно сделать используя датчик света для уличного освещения. Этот маленький прибор способен не только организовать автономию осветительной системы, но и хорошо сэкономить семейный бюджет. Его можно приобрести в готовом виде или сделать своими руками, в любом случае стоит узнать о нем побольше.

Оптимизировать затраты на освещение придомовой территории поможет датчик света

Что из себя представляет датчик света для уличного освещения, какие они бывают, где применяются?

Чаще всего такой датчик устанавливают для уличного освещения владельцы загородных домов. Этот шаг логичен, ведь нет потребности постоянно оставлять свет включеним. А если двор большой, то пока удастся добраться до включателя можно 10 раз упасть особенно зимой в гололед, в таком случае датчик станет настоящим волшебником и помощником. Коме того, этот прибор способен не просто экономить , а еще и продлевать срок службы ламп и другого осветительного оборудования.

Основными видами датчика света есть такие:

  • Те что реагируют на уровень освещенности. Как только наступают сумерки они включают освещение, с приходом рассвета выключаются.
  • Датчики движения. Его принцип действия заключается в особенностях излучения, которое выделяется человеческим телом. Так в дневное время оно не уловимо, а в сумерках и в темноте инфракрасные излучения подсказывают датчику что нужно включить освещения. То есть он улавливает инфракрасный диапазон, который каждый из нас излучает.
  • Комбинированные. Они имеют специальный таймер, который можно запрограммировать на включение и выключение. То есть после того как свет с помощью него включиться, через определенное установленное время он выключиться.

В частных домах чаще всего применяют второй или третий тип. Так как необходимости в постоянном освещении в темное время суток нет, а первый востребован для использования в подъездах в многоквартирных домах или других общественных местах. Например, для освещения улиц или автомагистралей.

Как подключить датчик света для уличного освещения?

В процессе строительства дома стоит предусмотреть вывод провода для подключения уличного освещения, если это не сделано, то для начала нужно осуществить подходящий вывод провода. Только после этого можно подключить датчик. Нужно организовать в распределительном щитке два свободных контакта, если на территории имеются места для парковки, ее стоит освещать с использованием отдельной линии. Схема подключения имеет такой вид:


В ней имеется разрыв фазного кабеля, что идет на светильник . Но стоит обратить внимание на одно отличие. Для того чтобы устройство сработало должен иметься нулевой провод. К простым ноль не проводится, концы проводов зачищаются и прячутся в распределительную коробку. Для избежания попадания на кабеля влаги и пыли их стоит заводить снизу. Для этого же используется резиновые уплотнители, они чаще всего идут в комплекте. Фотоэлемент датчика можно расположить или рядом, или в отдельном блоке.

Есть также пороговый элемент. Он осуществляет сравнение количества света и уровня освещенности, которые поступают на фотоэлемент. Имеющееся в нем , обеспечивает включение и выключение освещения. Монтируя датчик, стоит обратить внимание, чтобы на него не попадал свет фонаря, который вы к нему подключаете. А то получиться что как только наступит темнота, датчик свет включит, а он попадет на него же и снова выключится и так по кругу, пока кто-то из них не сдастся.

Важно определить правильное размещение устройства, а для этого учесть такие моменты:

  • Он должен быть замаскированным.
  • На датчик не должны воздействовать электромагнитные излучения, они могут повлиять на его корректную работу.
  • Не должна влиять температура, она может вывести прибор из строя.
  • Расположить его следует на высоте не меньше 1 метра от земли, это исключит реагирование его на домашних животных.

Датчик прослужит дольше если осуществлять его регулярное техническое обслуживание и бережно к нему относится.

Статья по теме:

Датчики света для уличного освещения своими руками сделать не сложно, особенно если есть хотя бы минимальные познания в электротехнике. Схема датчика состоит из простых и доступных элементов, которые собрать самостоятельно не составит труда.


Главным компонентом устройства является фототранзистор, он отвечает за преобразование светового потока в электрический ток. Он имеет более высокую чувствительность если сравнивать с фотодиодом или резистором. Если нет возможности найти такой, то можно применять один из распространенных транзисторов. Для этих целей подойдет серия МП, к примеру, МП37. Для превращения его в фототранзистор достаточно сточить верхнюю часть его с помощью наждака.

Кроме этого понадобится приобрести блок питания, реле и подстроечный резистор. Собирать все это нужно по схеме, которая указана выше. Но чаще всего такая сборка своими руками нецелесообразна по ряду причин:

  • Покупка и поиск элементов вытянет много денежный средств и заберет время.
  • Стоимость комплекта выше указанных компонентов будет наверняка дороже чем готовое устройство, так что подумайте стоит ли тратиться.

Выводы

Датчик света для загородного дома – это выгодное и удобное устройство. Его можно собрать самостоятельно или купить готовый, а потом подключить по подходящей схеме. При таком подключении важно учитывать моменты, которые могут повлиять на качественную его работу.

С наступлением осени начинает сокращаться световой день.

Людям приходиться раньше включать электрическое освещение, расходовать на него больше электроэнергии.

Сейчас любой домашний мастер может экономить денежные средства за оплату электричества, обеспечив его оптимальное потребление для осветительных приборов, расположенных в помещениях или на открытом воздухе.

Сделать это можно за счет их включения только с наступлением сумерек и отключения при рассвете. Причем работать они могут полностью в автоматическом режиме.

Для этих целей служит датчик света, который используется в фотореле, управляющим работой освещения.


Такую общую конструкцию, заключенную в единый корпус, принято называть сумеречным выключателем.

Для автоматического управления светильниками по величине освещенности рабочего места и фактору «День-ночь» используется специальный светочувствительный датчик. Он меняет свои электрические характеристики в зависимости от интенсивности падающего на него света.


Для корректировки уровня срабатывания имеется регулятор. После него сигнал от чувствительного элемента усиливается до необходимой величины и подается на обмотку реле электромеханической или статической конструкции.

Таким способом, в зависимости от дневного или ночного освещения, датчик света управляет подачей напряжения на обмотку реле. А последнее — подключает или отключает через свой контакт на светильник.

Как работает чувствительный элемент фотодатчика

Для контроля величины светового потока используются различные электронные компоненты, входящие в состав:

  • фоторезисторов;
  • фотодиодов;
  • фототранзисторов;
  • фототиристоов;
  • фотосимисторов.
Как работает датчик света на фоторезисторе

Полупроводниковый слой, облучаемый электромагнитными волнами оптического спектра, изменяет свое электрическое сопротивление.


К нему прикладывается источник стабилизированного напряжения, под действием которого в замкнутой цепи начинает протекать ток, вычисляемый по закону Ома. Его величина зависит от характера изменения сопротивления полупроводникового слоя датчика света.

При увеличении светового потока электрический ток возрастает, а при уменьшении — снижается. Остается только определить граничные состояния, при которых необходимо включать источник освещения в рабочее состояние или отключать его.

Как работает датчик света на фотодиоде

Светочувствительный элемент этого типа преобразует энергию электромагнитных колебаний видимого спектра в электрический ток.

Его величина тоже зависит от силы облучения, что позволяет устанавливать границы срабатывания фотореле.


Датчики света на фотодиодах могут подключаться для работы в схемах с:

  1. питанием от внешнего, дополнительного источника напряжения;
  2. или обходиться без его использования.
Как работает датчик света на фототранзисторе

Принципы работы, используемые для двух предыдущих случаев, здесь тоже соблюдаются. Фототранзисторы, работают так же, как и их биполярные или полевые аналоги. На их характеристики влияет интенсивность облучения световым потоком.


Определив эту закономерность, выставляют границы рабочих уставок для конечной схемы фотореле. Таким же образом создаются датчики света на фототиристорах и фотосимисторах.

Как работает электрическая схема датчика света на фотореле

В качестве примера рассмотрим самое простейшее устройство со светочувствительным элементом на основе фоторезистора PR1, обладающего сопротивлением в несколько мегаом при полной темноте.


Под действием потока света оно снизится до нескольких килоом. Этой величины достаточно для открытия первого транзистора VT1, когда через него станет протекать коллекторный ток, открывающий второй каскад на транзисторе VT2.

В это плечо включена обмотка обыкновенного электромагнитного реле К1. Она перекинет собственный якорь во второе положение и переключит свой контакт К1.1, который управляет работой светильника.

При отключении реле от схемы его обмотка формирует ЭДС самоиндукции. Для его ограничения установлен диод VD1. Подстрочный резистор R1 используется в качестве регулятора уставки срабатывания датчика света. В некоторых случаях от него вообще можно отказаться.

За счет использования двух последовательно работающих транзисторов чувствительность такой схемы достигается очень большой величины, когда слабый сигнал света, падающий на поверхность фоторезистора, осуществляет переключение выходного реле и управление светильником в автоматическом режиме.

Такая схема является довольно универсальной. Она позволяет применять различные марки транзисторов, электромагнитных реле и устанавливать для них различное напряжение. Чем его величина будет больше, тем высшей чувствительностью обладает датчик света.

Заводские модули фотореле для сумеречных выключателей имеют более сложную структуру схемы, более мощный выходной контакт, но в основе своей работы они повторяют эти же принципы.

В самодельных конструкциях для автоматического управления светом хорошо зарекомендовала себя схема, описанная в статье . Ее несложно повторить своими руками тем, кто умеет и любит работать с .

Как подключить датчик света с фотореле к светильнику и выполнить монтаж

Использование цветовой разметки проводов

Электрическая схема подключения сумеречного выключателя собирается на основе распределительной коробки, в которую приходят кабелем три провода от электрощитка:

  1. фазы;
  2. нуля;
  3. заземляющего проводника.


На самом фотореле выполнен вывод тоже трех проводов. Обычно они имеют расцветку:

  • коричневый, подключаемый на фазу питания сети;
  • красный, подающий через встроенный контакт фазный потенциал на светильник при его включении с наступлением сумерек;
  • синий, соединяемый с рабочим нулем схемы.


На фотографии сумеречного выключателя показаны эти провода и регулятор освещенности. При вращении его рукоятки устанавливается порог срабатывания датчика света.

Особенности монтажа

Обычная длина проводов, выступающих из корпуса фотореле, не превышает двадцати сантиметров. Поэтому его приято монтировать в непосредственной близости около распределительной коробки, а сам светильник:

  1. выносят на некоторое расстояние;
  2. или размещают рядом, как показано на фотографии.

При втором способе монтажа схемы необходимо учитывать, чтобы свет от включенной лампы источника не попадал на поле обзора датчика света. Иначе будет происходить ложное срабатывание. Для его исключения дополнительно применяют таймер и датчики движения.


Их контакты включают в последовательную цепочку между красным проводом, выходящим из фотореле и цоколем лампы светильника. Работа датчика движения и таймера подчиняется запрограммированным алгоритмам логической схемы сумеречного выключателя.

Подключение нескольких светильников к одному фотореле

Выходные контакты конечного датчика света обладают определенной коммутационной способностью. Их величина указывается в технической документации и на корпусе сумеречного выключателя в амперах. При необходимости управлять светом от нескольких источников необходимо внимательно посчитать нагрузку, создаваемую ими всеми в комплексе.

Если мощность контактов позволяет, то светильники подключает параллельной цепочкой, как показано на фотографии ниже.


Иногда может возникнуть ситуация, когда нагрузка схемы превышает допустимую мощность контактов сумеречного выключателя.

В этом случае допустимо использовать то же самое фотореле, но к его контактам подключить промежуточный элемент — обмотку магнитного пускателя, обладающей меньшей нагрузкой.

Мощные контакты этого коммутационного аппарата будут надежно переключать цепочку из многих светильников или один мощный прожектор, как показано на схеме ниже.


Подбирать магнитный пускатель придется по типу катушки управления и мощности контактной группы.

Важные технические характеристики датчика света

Фотореле выбирают по:

  • чувствительности фотодатчика;
  • типу и величине напряжения питания;
  • мощности коммутируемых контактов;
  • рабочей среде сумеречного выключателя.
Чувствительность фотодатчика

Под этим термином понимают отношение вырабатываемого внутри фотоэлемента тока в микроамперах к величине падающего на него потока света в люменах. Для более точного анализа приборов чувствительность классифицируют по:

  1. частоте, связанной с определенным видом колебаний — спектральный метод;
  2. диапазону падающих световых волн — интегральная чувствительность.
Напряжение питания сумеречного выключателя

На форму и величину сигнала обращают особое внимание при работе с моделями датчиков света, выпущенных за рубежом, где стандарты электроснабжения могут отличаться от тех, которые используются у нас.

Рабочая среда

Для управления светом уличных светильников создаются сумеречные выключатели с фотореле герметичной конструкции, способной противостоять действию атмосферных осадков и пыли. Их отличает повышенный .

Они же обладают увеличенным диапазоном рабочих температур. Когда наступает низкая морозная погода, то может возникнуть необходимость обогрева их контактов или временного отключения.

Для работы сумеречного выключателя внутри обогреваемых помещений этого делать не требуется.

Изложенный в статье материал позволяет лучше понять видеоролик владельца Инженерные сети «Подключение фотореле».

Датчик движения для включения света повышает комфортабельность жилища. Он позволяет снизить расход электроэнергии. Такие датчики применяются также для создания охранной зоны. В зависимости от принципа работа подобные конструкции делятся на несколько типов, каждый из которых имеет свои особенности.

Общая информация

Датчик движения – это специальное устройство, которое посредством чувствительных элементов фиксирует присутствует человека или животного и автоматически включает свет. Он устанавливается, в основном, в коридорах и на придомовых территориях. То есть, в местах с относительно высоким потоком людей.

Прежде чем отвечать на вопрос, как сделать датчик движения, необходимо определиться с существующими типами таких устройств. Это оборудование классифицируется по месту установки. Датчики бывают:

  • наружные;
  • внутренние.

Первый тип устройств предъявляется более высокие требования к качеству и виду материала, из которого изготавливается его корпус. Наружные датчики отличаются между собой максимальной зоной охвата. Под последним термином понимается определенный участок территории, движение по которому способен «засечь» сенсор.

Самодельный датчик движения не предъявляет требований к типу осветительного прибора. Однако некоторые специализированные модели необходимо подключать к строго определенным прожекторам.

По механизму работы датчик движения для включения света бывает:

  1. Инфракрасным. Такие устройства реагируют на температуру объекта, попадающего в зону действия сенсора. Инфракрасные датчики в основном используются внутри помещений, так как они отличаются повышенной чувствительностью к изменениям окружающей среды.
  2. Микроволновым. Сенсор регистрирует изменения радиочастот. Он настраивается на определенный диапазон сигналов. В случае появления объекта в зоне «видимости» сенсор регистрирует его присутствие и передает информацию на сигнализатор. Тот включает свет.
  3. Ультразвуковым. Считается наиболее простым устройством для освещения. Эти датчики отличаются надежной конструкцией.

В домашних условиях проще сделать датчик движения своими руками с ультразвуковым или инфракрасным сенсором. К недостатку такого устройства следует отнести то, что оно реагирует на животных.

Условия для установки

Прежде чем создавать собственный датчик движения, необходимо определиться с рядом важных условий. Последние влияют на параметры будущего устройства. К числу таких условий относится:

  1. Выбор места установки. От этого параметра зависит конструкция датчика. В частности, если он используется на улице, то необходимо сделать для него влагостойкий корпус. Место установки также определяет уровень мощности, которым должен обладать сенсор.
  2. Наличие преград. Люстры, деревья и другие объекты мешают прохождению сигнала.

Важно отметить, что инфракрасные сенсоры не срабатывают, если в зоне их «видимости» располагается стекло.

Изготавливаем датчик

Ниже мы рассмотрим схему простого датчика движения, который будет состоять из передатчика, приемника и блока питания для них.

Блок питания

И приёмник и передатчик питаются постоянным стабилизированным напряжением 12-16 В. При этом их суммарное потребление не превышает 50 мА.

Таким образом в качестве блока питания можно использовать любой БП на 12 В, например от старого роутера. Или же можно собрать свой источник по одной из множества схем в интернет. Потребление у нас мизерное, поэтому подойдёт любая.

Передатчик

Передатчик собран на микросхеме NE555. В качестве передающего элемента используется ИК-диод LD274, угол обзора которого составляет 10 градусов, что необходимо учесть при монтаже передатчика.

Приёмник

В качестве чувствительного элемента здесь используется фототранзистор BPW40, а в качестве исполнительного органа – реле BS-115C. Фототранзистор имеет угол обзора 20 градусов, что также следует учесть при монтаже приёмника. Принимая во внимание чувствительность фотоприёмного элемента, расстояние от передатчика до приёмника составит порядка 5 метров, что весьма неплохо.

Заключение

В собранном виде наши приёмник и передатчик будут выглядеть следующим образом:

Остаётся только сделать, чтобы реле приёмника осуществляло коммутацию лампочки, светодиодной ленты или звуковой сигнализации (на ваше усмотрение).

Делаем датчик освещенности для включения света: схемы, видео

Электронные самоделки /10-янв,2020,14;41 / 5869
Часто в нашей жизни бывают такие ситуации, когда вам нужно каждый день с наступлением рассвета включать свет в помещении, а затем с наступлением темноты выключать его. Чаще всего это делают в закрытых помещениях, где нужно имитировать световой день. Такие манипуляции нужны для того, чтобы выращивать растения или содержать некие виды животных, которые нуждаются в точном соблюдении режима дня и ночи.

Поскольку время закатов и рассветов зависит от времени года, значит применять суточные таймеры на включение освещения – это невыход из сложившейся ситуации. И тут на помощь всегда придет датчик освещенности или иными словами фотореле. Это устройство, регистрирующее интенсивность света, попадающего на него. То есть когда солнце взойдет и света будет много, на выходе автоматически установится лог.1, а когда солнце заходит за горизонт – лог.0 и происходит автоматическое выключение света до наступления следующего утра. Область, в которой можно применять такой датчик освещения, достаточно велика и ограничивается лишь вашей фантазией. Их часто используют для подсветки шкафов с целью освещать его при открытии дверей.

На рисунке ниже вы увидите схему датчика освещенности:


Ключевая деталь схемы – фоторезистор, на рисунке обозначен как R4. Его сопротивление зависит от света, который попадает на него. То есть чем его больше, тем сильнее уменьшается сопротивление. Поскольку фоторезистор – деталь весьма дефицитная, то можно применять любой, который найдете.

Можно использовать импортные фоторезисторы. Они компактные, но цена на них порой «кусается». Вот несколько примеров импортных фоторезисторов: GL5516 и VT93N1.

Есть и отечественные фоторезисторы, к примеру, СФ-21 или ФСД-1, которые тоже можно использовать. Такие фоторезисторы и работать будут не хуже, и стоят намного меньше.


Если вдруг сложилось так, что очень нужен датчик освещенности, но неоткуда взять фоторезистор – выход есть всегда. Возьмите старый германиевый транзистор в круглом металлическом корпусе и отпилите от него верхушку. Такая манипуляция позволит оголить кристалл транзистора. На фото ниже вы можете увидеть такой транзистор. Открывая крышку, старайтесь не повредить кристалл. Для этого подойдут любые доступные у вас резисторы в круглом корпусе, к примеру, советские германиевые МП14, МП101, МП16, П27, П29. После того, как кристалл «модифицированного» транзистора открыт, сопротивление перехода К-Э будет напрямую зависеть от интенсивности света, падающего на кристалл. Вместо фоторезистора нужно впаять эмиттер транзистора и коллектор, вывод базы нужно просто откусить и все.

В схеме использован операционный усилитель. Также вы можете подобрать любой другой одинарный усилитель, главное, чтобы он подходил по цоколю. К примеру, есть широко используемые и доступные усилители TL081 и TL071. Транзистор, представленный в схеме – любой маломощный, имеющий структуру NPN. В нашем случае прекрасно подойдут KT3102, BC547 или КТ503. Этот транзистор хорошо коммутирует нагрузку. Как нагрузку можно использовать реле или небольшой отрезок светодиодной ленты. Если нагрузка мощная – подключайте ее с помощью реле. В схеме вы также можете увидеть диод D1, он предназначен для гашения импульсов самоиндукции обмотки реле. К выходу OUT подключают нагрузку. Питание схемы равно напряжению в 12 вольт. От выбора фоторезистора и будет зависеть номинал подстроечного резистора. Если у фоторезистора среднее сопротивление в 50 кОм – подстроечный резистор должен иметь большее сопротивление раза в два-три так точно (100-150 кОм). У резистора с рисунка СФД-1 сопротивление равное более 2МОм, а подстроечный резистор в свою очередь рассчитан на 5 МОм. Бывают фоторезисторы с меньшим количеством «Мом».


Как собрать датчик освещенности

Для того, чтобы собрать наш датчик освещенности – переходим от слов к действиям. Первым делом нужно соорудить печатную плату. Для этого воспользуйтесь методом ЛУТ. К статье я добавил и файл с печатной платой. Запомните! Перед печатью отзеркаливать не нужно. Скачать плату: тут Вы не можете скачивать файлы с нашего сервера

Плата, которую вы увидите на рисунке ниже, рассчитывалась на установку фоторезистора ФСД-1 (отечественный) и подстроечного резистора СА14NV. Также я добавил вам несколько фотографий из самого процесса.


После того, как вы закончили с изготовлением печатной платы, можно приступать к впайке деталей. Все детали нужно устанавливать поочередно: резисторы, диод, а позже все другое.
В саму последнюю очередь делается впайка самых крупных деталей, таких как подстроечный резистор и фотодиод. Для удобства выведите провода через клемники. После окончания процесса впайки удалите с платы флюс, прозвоните все соседние дорожки замыкание и проверьте правильность проделанного монтажа. Только после того, как вы проведете все нужные манипуляции – подавайте питание на плату.

Как настроить датчик


Во время первого включения светодиод, расположенный на плате, либо будет полностью погашен, либо будет светится. Чтобы изменить состояние светодиода – аккуратно вращайте подстроечный резистор. Наглядно увидеть работу датчика вы можете, посмотрев видео ниже. Вдохновенья вам и успехов в начинаниях! Схема датчика освещенности

с использованием LDR и микросхемы таймера 555 с регулируемой чувствительностью

В этом руководстве мы узнаем, как создать схему датчика освещенности, используя LDR (светозависимый резистор), микросхему таймера 555 и несколько других электронных компонентов. Эта схема обнаруживает свет, падающий на LDR, и включает светодиод, когда интенсивность света превышает определенный уровень.

Светодиод можно заменить любым электронным устройством, например, зуммером, реле. Двигатели постоянного тока и т. Д. Подробнее об этом мы узнаем позже в этом руководстве.Мы также узнаем, как работает эта схема, и узнаем о других интересных вещах, которые можно сделать с помощью этой схемы. Итак, приступим.

Видеоурок также включен в начало этой статьи для облегчения понимания.

Необходимые компоненты

  • 555 Таймер IC
  • Светозависимый резистор (LDR)
  • Резисторы: 2 x 10 кОм, 330R
  • Потенциометр 100 кОм
  • Светоизлучающий диод (светодиод)
  • Макетная плата
  • Мало разъемов для макетных плат
  • 5-12) Источник питания В

Принципиальная схема

Инструкции по созданию этой схемы

Шаг 1. Поместите микросхему таймера 555 на макетную плату.Я разместил ИС таким образом, чтобы выемка оставалась слева. Таким образом, нумерация выводов начинается снизу слева (Ссылка: выводы таймера 555)

Шаг 2: Подключите контакт 8 ИС к положительной шине, а контакт 1 ИС к отрицательной шине. (Мы использовали отверстия в верхнем втором ряду как положительную направляющую, а отверстия в нижнем втором ряду как отрицательную направляющую)

Шаг 3: Соедините контакты 2 и 6 микросхемы IC

Шаг 4: Поместите контакты Резистор 10 кОм на макете так, чтобы один из его выводов был подключен к выводу 2 микросхемы таймера 555.Подключите другой вывод резистора к отрицательной шине

. Шаг 5: Поместите резистор 10 кОм на макетную плату так, чтобы один из его выводов был подключен к выводу 6 микросхемы таймера 555. Подключите другой вывод резистора к положительной шине

. Шаг 6. Теперь поместите LDR (светозависимый резистор) на макетную плату так, чтобы один из его выводов был подключен к выводу 4 микросхемы таймера 555. Подключите его другой вывод к положительной шине

. Шаг 7: Поместите резистор 4,7 кОм на макетную плату так, чтобы один из его выводов был подключен к выводу 4 микросхемы таймера 555

. его крайние клеммы подключены к другой клемме 4.Резистор 7 кОм

Шаг 9: Теперь подключите центральный вывод потенциометра 100 кОм к отрицательной шине

Шаг 10: Поместите светодиод на макетную плату и подключите его анод к выводу 3 микросхемы таймера 555. Подключите резистор 330R между катодом светодиода и отрицательной шиной. (Для источника питания 5/6 В используйте 220R; для 9 В используйте 330R; и для 12 В используйте 470R)

Шаг 11: Подключите источник питания, и схема готова!

Как работает эта схема

Перво-наперво: сопротивление LDR (светозависимого резистора) обратно пропорционально интенсивности падающего на него света.Это означает, что если интенсивность падающего света высока, сопротивление LDR будет меньше, и наоборот.

С другой стороны, микросхема таймера 555 активируется, когда на ее вывод сброса (вывод 4) поступает напряжение более 0,8 В. После активации ИС напряжение на контактах 2,6 должно быть между 1/3 и 2/3 напряжения питания, чтобы выход был включен. Например, если напряжение на выводе сброса выше 0,8 В, а напряжение на выводах 2,6 составляет половину напряжения питания, выход включается.

В схеме мы создали делитель напряжения, используя LDR и резистор + потенциометр. Затем он подключается к выводу 4 (сброс) микросхемы таймера 555. Поэтому в темноте сопротивление LDR увеличивается, и поэтому напряжение на делителе напряжения падает ниже 0,8 В, в результате чего микросхема таймера 555 выключается. Когда света достаточно, напряжение на выводе сброса превышает 0,8 В, и ИС включается.

Два резистора 10 кОм используются для деления напряжения питания пополам и подачи его на контакты 2,6.Это гарантирует, что выход IC будет включаться всякий раз, когда он активирован.

Дальнейшие улучшения

Мы использовали эту схему только для включения светодиода. Но в реальных сценариях вы можете захотеть, чтобы эта схема включала приборы переменного тока или двигатели большой мощности и т. Д. Для этого вы можете напрямую добавить реле на выходе и подключать нагрузки переменного тока к реле.

Вы также можете настроить таймер 555 на создание звуковой частоты и использовать это в качестве световой сигнализации, подключив к выходу динамик.

Приложения

  • Используется в автоматических схемах уличного освещения
  • Используется для автоматического включения освещения гардероба или шкафчиков при их открытии
  • В системах охранной сигнализации, работающих на видимом свете

Простая схема датчика освещенности с приложениями

Управление уличным и уличным освещением, бытовой техникой и т. Д. Обычно осуществляется вручную. Ручное управление не только рискованно, но и вызывает потери мощности из-за халатности обслуживающего персонала, а также необычных условий при наблюдении за этими электрическими приборами.Следовательно, используя схему светового датчика, мы можем легко управлять нагрузками, поскольку это облегчает автоматическое переключение нагрузок. В этой статье давайте вкратце обсудим, как сделать схему автоматического датчика освещенности.


Что такое датчик?

Типы датчиков

Прежде чем обсуждать датчик освещенности, давайте обсудим, что такое датчик. Устройство, используемое для обнаружения изменения количества или событий и соответствующего генерирования выходных сигналов, можно назвать датчиком.Существуют различные типы датчиков, такие как датчик огня, ультразвуковой датчик, датчик освещенности, датчик температуры, ИК-датчик, датчик касания, датчик влажности, датчик давления и т. Д.

Что такое датчик освещенности?

Датчик особого типа, который работает в зависимости от интенсивности дневного света (также искусственного света), называется датчиком освещенности. Существуют различные типы световых датчиков, такие как фотоэлемент, фототранзистор, фоторезистор, фотоэлемент, фотоумножитель, фотодиод, устройство с зарядовой связью и т. Д.,. Но светозависимый резистор (LDR) или фоторезистор — это особый тип светового датчика, который используется в этой автоматической схеме светового датчика. Эти светозависимые резисторы пассивны и не производят никакой электроэнергии.

LDR — Светозависимый резистор

Но сопротивление светозависимого резистора изменяется с изменением интенсивности дневного света (в зависимости от света, освещенного на LDR). LDR также может использоваться в грязных и суровых внешних условиях, поскольку он прочен по своей природе.Следовательно, для наружного освещения и автоматических схем уличного освещения предпочтительнее использовать LDR по сравнению с другими датчиками света.

LDR Сопротивление при изменении интенсивности света

LDR — это переменный резистор, сопротивление которого регулируется силой света. Полупроводниковый материал с высоким сопротивлением и сульфид кадмия (проявляющий фотопроводимость) используются для создания светозависимых резисторов.

Сопротивление LDR против интенсивности света

В ночное время, если свет, освещаемый датчиком LDR, уменьшается, тогда сопротивление LDR становится очень высоким (около нескольких Мегаомов).В дневное время, если на LDR горит свет, сопротивление LDR падает (около нескольких сотен Ом). Следовательно, сопротивление LDR и свет, освещаемый на LDR, обратно пропорциональны друг другу, а приведенный выше график представляет их обратную пропорциональность.

У LDR есть две клеммы, как и у обычного двухполюсного резистора, но LDR имеет волнообразную форму наверху. Основным недостатком LDR является то, что независимо от природы света светозависимый резистор чувствителен к освещенному на нем свету (будь то естественный или искусственный свет).

Что такое цепь датчика освещенности?

Схема автоматического светового датчика может использоваться для автоматического управления электрическими приборами, такими как свет, вентилятор, охладитель, кондиционер, уличный фонарь и т. Д. Людские ресурсы для управления или переключения нагрузок могут быть устранены за счет использования этой автоматической схемы светового датчика, работающей на основе интенсивности дневного света, падающего на световой датчик. Таким образом, мы можем назвать это схемой автоматического светового датчика.

Обычный метод управления уличным освещением на автомагистралях — рискованный процесс, который также вызывает потери электроэнергии.

Теперь давайте обсудим, как сделать схему датчика освещенности. Схема автоматического светового датчика может быть спроектирована с использованием различных электрических и электронных компонентов. Основными компонентами, используемыми в этой схеме, являются датчик освещенности (LDR), транзисторы пары Дарлингтона и реле. Прежде чем обсуждать работу схемы светового датчика, мы должны знать работу различных компонентов, используемых при проектировании автоматической схемы светового датчика.


Пара Дарлингтона
Парный транзистор Дарлингтона

Два транзистора, соединенные спина к спине, называются парой Дарлингтона.Этот транзистор с парой Дарлингтона можно рассматривать как одиночный транзистор с очень высоким коэффициентом усиления по току. Обычно, если напряжение базы больше 0,7 В, транзистор включается. Но, если мы рассмотрим пару Дарлингтона, поскольку для включения двух транзисторов необходимо, чтобы базовое напряжение было 1,4 В.

Реле
Реле

Реле играет важную роль в цепи автоматического датчика освещенности, чтобы активировать электрические приборы или подключить нагрузку к цепи автоматического датчика освещенности вместе с сетью переменного тока.Как правило, реле состоит из катушки, которая возбуждается при достаточном питании.

Практическая работа цепи датчика освещенности

Практическая работа схемы датчика освещенности

Если дневной свет падает на LDR (дневное время), тогда LDR будет иметь очень низкое сопротивление (несколько 100 Ом). Следовательно, источник питания проходит на землю через LDR и резистор. Это связано с принципом токовой цепи с низким сопротивлением. Таким образом, катушка реле не имеет достаточного источника питания, чтобы получить достаточно питания для подачи питания, что приводит к тому, что нагрузка остается в выключенном состоянии.

Точно так же, если темнота падает на LDR, тогда LDR будет иметь высокое сопротивление (несколько МОм). Следовательно, ток не протекает (или протекает очень мало) из-за очень высокого сопротивления LDR. Теперь протекание тока через цепь с низким сопротивлением вызывает увеличение базового напряжения пары Дарлингтона до более чем 1,4 В. Таким образом, катушка реле запитывается, и нагрузка включается в ночное время.

Схема датчика освещенности — Практическое применение

Схема автоматического светового датчика может использоваться для разработки множества практических проектов на основе встроенных систем.Несколько проектов, основанных на схемах датчиков света, могут быть перечислены как система солнечного освещения шоссе с автоматическим выключением в дневное время, система охранной сигнализации с помощью фотоэлектрического датчика, переключатель освещения от заката до восхода солнца, управляемая высокочувствительная энергосберегающая система на основе LDR для системы управления уличным освещением. , так далее,.

Автоматическое включение с вечера до утра выключение света
Автоматическое включение света накануне до утра выключение света

Автоматическое освещение от заката до рассвета работает на основе датчика освещенности LDR. Схема датчика освещенности от заката до рассвета автоматически отключает нагрузку в утреннее время (когда дневной свет падает на LDR).Точно так же в вечернее время (когда на LDR наступает темнота) нагрузка включается автоматически.

Вы заинтересованы в самостоятельной разработке проектов электроники? Не стесняйтесь обращаться к нам за любой технической помощью по проектам в области электротехники и электроники, размещая свои комментарии, предложения, идеи и запросы в разделе комментариев ниже.

Схема простого датчика освещенности

с использованием LDR

Схема светового датчика — одна из самых крутых схем в базовых проектах электроники .Он определяет количество света, присутствующего в окружающей среде, и результаты можно определить по яркости светодиода. Эта схема может быть полезна для понимания работы LDR (светозависимого резистора) или фоторезистора, работы NPN-транзистора, влияния чувствительности резистора на схему. Эти типы цепей полезны, когда нам нужно знать наличие и отсутствие света в помещении.

Схемы световых датчиков используются в промышленности, а также в коммерческой и некоммерческой сферах.Используя эту схему, мы можем сэкономить электроэнергию в помещении и за его пределами. Уличные фонари светятся днем ​​по неосторожности, поэтому мы можем соответствующим образом управлять этим светом. Датчики света также могут обнаруживать свет, который не виден человеческим глазом, например, рентгеновские лучи.

Компоненты оборудования

BC547 Распиновка

Рабочее объяснение

Мы делаем три условия для объяснения схем, которые следующие

  1. Полный свет
  2. Средний свет
  3. Нет света

Для первого условия, когда мы включаем схему, свет, падающий на LDR, минимизировал сопротивление из-за этого минимального падения напряжения на базе транзистора и очень тусклого света светиться.Для второго условия средний свет, падающий на LDR, из-за которого средняя яркость свечения светодиода и для третьего условия очень низкий свет, падающий на LDR, результатом этого является свечение светодиода с полной яркостью. Яркость светодиода можно регулировать, изменяя сопротивление, подключенное к базе транзистора.

[inaritcle_1]

Полезные шаги

Сначала подключите LDR на макетной плате, затем подключите основание BC547 к одному выводу LDR. На другом конце подключите светодиод к двум параллельным контактам макетной платы.Теперь резистор 470 Ом должен быть подключен к положительной клемме светодиода к положительной шине макета, а второй резистор 10 кОм необходимо подключить к базе транзистора к отрицательной шине макета. Теперь подключите перемычки между выводом -ve светодиода и коллекторным выводом транзистора, а также между эмиттером транзистора и выводом -ve на макетной плате, а также между оставшимся выводом LDR и положительным выводом платы BreadBoard. Наконец, подключите аккумулятор к макетной плате и проверьте схему.

Применение цепи датчика освещенности

Некоторые приложения указаны ниже

  • Цепи охранной сигнализации
  • Будильник
  • Измеритель силы света
Цепь датчика освещенности
Схема датчика освещенности

и детектора темноты с использованием LDR и транзистора

Учебное пособие по созданию схемы датчика освещенности / детектора темноты на макетной плате с использованием LDR и транзистора.Эта схема может использоваться для автоматического управления и включения-выключения света или любых нагрузок в зависимости от яркости окружающего освещения, путем добавления реле на выходе. Чувствительность, также известная как яркость, при которой цепь включает нагрузку, также можно контролировать с помощью потенциометра. Посмотрите видео выше, чтобы получить подробные пошаговые инструкции о том, как построить эту схему. Объяснение того, как работает схема, также включено в видео.

[Схемы цепи датчика освещенности и цепи датчика темноты находятся в конце этой статьи]

Требуется компонентов:

  1. 1 LDR (светозависимый резистор или фоторезистор)
  2. 1 транзистор npn (я использовал BC547)
  3. Резисторы: 470R, 1K (для датчика света), 47K (для датчика темноты)
  4. Потенциометр
  5. (только если вам нужна регулируемая чувствительность): 10K (для датчика освещенности), 100K (для датчика темноты)
  6. Макет
  7. Источник питания: (3-12) В
  8. Несколько разъемов для макетных плат

Описание работы схемы:

[Посмотрите видео в начале этого сообщения для лучшего визуального понимания]

Чувствительным компонентом в этой цепи является LDR (сокращенная форма от Light Dependent Resistor или Photo-Resistor).Сопротивление LDR зависит от интенсивности или яркости падающего на него света и обратно пропорционально. Это означает, что когда интенсивность света увеличивается, сопротивление LDR уменьшается, и наоборот.

Вы можете визуально наблюдать этот эффект, подключив LDR последовательно со светодиодом и включив питание схемы. Теперь, если вы уменьшите яркость окружающего света, сопротивление LDR возрастет, что приведет к меньшему току, протекающему по цепи (помните: больше сопротивление, меньше ток), и вы увидите, что яркость светодиода уменьшается.Совершенно противоположное происходит, когда вы увеличиваете яркость окружающего света.

Хотя этот последовательно включенный LDR и светодиод является самым простым в изготовлении, он имеет некоторые ограничения. Некоторые из них: вы не можете контролировать яркость, при которой светодиод точно включается или выключается. Кроме того, практически мы хотели бы, чтобы светодиод включался в темноте и выключался, когда света достаточно. Максимальная нагрузка, которую может выдержать схема, также ограничена. Поэтому по этим причинам мы переходим к более функциональной схеме с использованием транзистора.

[Взгляните на схему ниже]

Некоторые основы транзисторов: Для npn-транзисторов эмиттер, коллектор имеют n-переход, а база — p-переход. Чтобы транзистор включился или пропустил ток от коллектора к эмиттеру, напряжение на базе должно быть выше определенного порогового напряжения.

Мы использовали резистор, включенный последовательно с LDR (в основном делитель напряжения), чтобы преобразовать изменение сопротивления LDR в изменение напряжения.Это изменение напряжения в общей точке между LDR и резистором используется для запуска транзистора, подключая его к базе транзистора.

В цепи датчика освещенности (первая диаграмма), когда яркость света увеличивается, сопротивление LDR уменьшается, и поэтому напряжение на базе транзистора увеличивается (потому что, если сопротивление LDR уменьшается, падение напряжения (зазор) на LDR в сторону положительного сторона убывает). Как только это напряжение поднимется выше требуемого порогового напряжения на базе, загорится светодиод.Теперь вы можете визуализировать, что происходит, когда вы уменьшаете яркость окружающего света.

В цепи датчика темноты (вторая диаграмма), когда сопротивление LDR уменьшается при увеличении интенсивности света. Таким образом, напряжение на базе транзистора увеличивается, когда яркость света уменьшается, и как только оно превышает минимальное пороговое напряжение, требуемое на базе транзистора, он включает светодиод.

Схема:


[Инструкции по доработке схемы для регулировки чувствительности есть в видео]

Если у вас есть какие-либо вопросы, опубликуйте их на странице этого проекта на YouTube: https: // www.youtube.com/watch?v=rhySv8ePwyM

Световой извещатель

с использованием LDR

Световой извещатель или датчик освещенности — это устройство или схема, которые определяют интенсивность падающего на него света. Различные типы световых детекторов — это LDR (или светозависимые резисторы), фотодиоды, фототранзисторы и т. Д.

Все эти устройства называются фотоэлектрическими устройствами, поскольку они преобразуют световую энергию в электрическую. Эти световые детекторы или датчики могут обнаруживать различные типы света, такие как видимый свет, ультрафиолетовый свет, инфракрасный свет и т. Д.

В этом проекте мы разработали простой световой извещатель с использованием LDR. Когда свет падает на LDR, свет остается выключенным, а когда свет перестает падать на LDR, светодиод светится. Мы разработали два типа схем: одна с использованием OP-AMP (операционного усилителя), а другая с использованием только транзисторов.

Световой извещатель с использованием LDR и OP — Amp

Принципиальная схема
Необходимые компоненты
  • LM358 OP — Amp IC
  • Малый LDR
  • Резистор 10 кОм
  • Потенциометр 10 кОм
  • Белый светодиод
  • Резистор 220 Ом
  • Соединительные провода
  • Электропитание (батарея 9В)
Работа схемы

Основными компонентами проекта являются операционный усилитель LM358 и LDR.Сначала давайте посмотрим на LDR (светозависимый резистор). LDR, как следует из названия, представляет собой тип резистора, сопротивление которого изменяется в зависимости от интенсивности окружающего его света.

Обычно, когда свет падает прямо на LDR, его сопротивление будет очень низким, а когда нет света, то есть в более темных условиях, его сопротивление подскакивает до нескольких мегаом.

Мы будем использовать эту функцию LDR в нашем проекте для обнаружения света и включения светодиода. Для этого мы использовали операционный усилитель.Операционный усилитель сконфигурирован в режиме компаратора, т.е. он будет сравнивать напряжения на инвертирующих и неинвертирующих клеммах и, соответственно, генерировать ВЫСОКИЙ или НИЗКИЙ выход.

Мы подключили клемму стеклоочистителя потенциометра 10 кОм к инвертирующей клемме OP — Amp. К неинвертирующему выводу мы подключили соединение резистора 10 кОм и LDR. Эти два образуют потенциальный делитель, подающий свой выход на OP-Amp.

Когда свет падает на LDR, его сопротивление уменьшается.Следовательно, неинвертирующее напряжение ниже, чем инвертирующее напряжение, и в результате светодиод остается выключенным.

Когда на LDR не падает свет, сопротивление LDR становится очень высоким, и в результате напряжение на неинвертирующем выводе будет больше, чем напряжение на инвертирующем выводе. На выходе операционного усилителя будет высокий уровень, и светодиод будет включен.

Конструкция и выходное видео

Детектор света с использованием LDR и транзисторов

Принципиальная схема Необходимые компоненты
  • 2 транзистора BC547 NPN
  • Малый LDR
  • 1 кОм Резистор
  • 10 кОм Резистор
  • 10 кОм Светодиод
  • Резистор 330 Ом
  • Соединительные провода
  • Источник питания (батарея 9 В)
Работа схемы

В предыдущей схеме мы видели простой световой извещатель, использующий LDR и операционный усилитель.Если у вас нет операционного усилителя, вам может пригодиться приведенная выше схема. Он использует всего два транзистора для выполнения операции обнаружения света.

В этой схеме мы использовали два транзистора в виде пары Дарлингтона. Даже если одного транзистора будет достаточно, пара Дарлингтона гарантирует, что на выходе будет достаточный ток.

Конструкция схемы очень проста. Потенциометр 10 кОм и LDR образуют резисторы смещения первого транзистора. Когда на LDR падает свет, его сопротивление уменьшается.

Следовательно, на первый транзистор не будет напряжения смещения. В результате он не будет повернут. Поскольку нет выхода из первого транзистора, второй транзистор не будет включен и, следовательно, светодиод останется выключенным.

Когда свет, падающий на LDR, удаляется, то есть в более темных условиях, сопротивление LDR становится очень высоким. Следовательно, напряжение от POT будет иметь меньшее сопротивление, то есть он включает первый транзистор.

Это, в свою очередь, включает второй транзистор, поскольку его вход соединен с выходом первого транзистора.В результате загорится светодиод, подключенный к выходу второго транзистора.

Приложения
  • Простая схема светового извещателя может использоваться во многих приложениях, таких как автоматическое включение приборов при обнаружении света, системы безопасности и т.д. тревога.
  • Может также использоваться в шкафах или платяных шкафах. Когда дверь открывается, свет включается автоматически.

датчик освещенности littleBits i13 | Snap Circuits для детей

Sphero создает удивительно крутых программируемых роботов и образовательные инструменты на основе STEAM, которые меняют способ обучения, творчества и изобретения детей с помощью программирования, науки, музыки и искусства. Использование доступной информации в сочетании с приобретенными навыками может помочь в принятии правильных решений. Это основной процесс критического мышления. Критически мыслящие люди могут решать проблемы, сохраняя ясный ум и рациональные мысли, которые помогут вам проанализировать ситуацию и принять правильное решение.
Обучение STEM — это практическое исследование понятий науки, технологий, инженерии и математики, которое становится все более важной частью современного образования. Навыки STEM наделяют учащихся способностями 21-го века, необходимыми для выполнения широкого круга как основных, так и высококвалифицированных рабочих мест.
Риск, прыжок, повторная попытка и неудача — это часть нашего генетического материала. Без него люди не населяли бы каждый уголок этой планеты. Часто мы можем рассматривать неудачу, особенно на экзаменах, как отрицательную — это одно из худших вещей, которые мы можем позволить студентам испытать.Но что, если мы позволим студентам терпеть неудачу в безопасном месте и сделаем учебу личным делом? Используйте #BeyondCode и обогатите свой учебный опыт увлекательными занятиями STEAM, которые способствуют творчеству и сотрудничеству.
Sphero создает удивительно крутых программируемых роботов и образовательные инструменты на основе STEAM, которые меняют способ обучения, творчества и изобретения детей с помощью программирования, науки, музыки и искусства.
Использование доступной информации в сочетании с приобретенными навыками может помочь в принятии правильных решений.Это основной процесс критического мышления. Критически мыслящие люди могут решать проблемы, сохраняя ясный ум и рациональные мысли, которые помогут вам проанализировать ситуацию и принять правильное решение.
Обучение STEM — это практическое исследование понятий науки, технологий, инженерии и математики, которое становится все более важной частью современного образования. Навыки STEM наделяют учащихся способностями 21-го века, необходимыми для выполнения широкого круга как основных, так и высококвалифицированных рабочих мест.
Риск, прыжок, повторная попытка и неудача — это часть нашего генетического материала. Без него люди не населяли бы каждый уголок этой планеты. Часто мы можем рассматривать неудачу, особенно на экзаменах, как отрицательную — это одно из худших вещей, которые мы можем позволить студентам испытать. Но что, если мы позволим студентам терпеть неудачу в безопасном месте и сделаем учебу личным делом?
Используйте #BeyondCode и обогатите свой учебный опыт увлекательными занятиями STEAM, которые способствуют творчеству и сотрудничеству.
Sphero создает удивительно крутых программируемых роботов и образовательные инструменты на основе STEAM, которые меняют способ обучения, творчества и изобретения детей с помощью программирования, науки, музыки и искусства.
Использование доступной информации в сочетании с приобретенными навыками может помочь в принятии правильных решений. Это основной процесс критического мышления. Критически мыслящие люди могут решать проблемы, сохраняя ясный ум и рациональные мысли, которые помогут вам проанализировать ситуацию и принять правильное решение.
Обучение STEM — это практическое исследование понятий науки, технологий, инженерии и математики, которое становится все более важной частью современного образования.Навыки STEM наделяют учащихся способностями 21-го века, необходимыми для выполнения широкого круга как основных, так и высококвалифицированных рабочих мест.
Риск, прыжок, повторная попытка и неудача — это часть нашего генетического материала. Без него люди не населяли бы каждый уголок этой планеты. Часто мы можем рассматривать неудачу, особенно на экзаменах, как отрицательную — это одно из худших вещей, которые мы можем позволить студентам испытать. Но что, если мы позволим студентам терпеть неудачу в безопасном месте и сделаем учебу личным делом?
Используйте #BeyondCode и обогатите свой учебный опыт увлекательными занятиями STEAM, которые способствуют творчеству и сотрудничеству.

Sphero создает удивительно крутых программируемых роботов и образовательные инструменты на основе STEAM, которые меняют способ обучения, творчества и изобретения детей с помощью программирования, науки, музыки и искусства.

Использование доступной информации в сочетании с приобретенными навыками может помочь в принятии правильных решений. Это основной процесс критического мышления. Критически мыслящие люди могут решать проблемы, сохраняя ясный ум и рациональные мысли, которые помогут вам проанализировать ситуацию и принять правильное решение. Обучение STEM — это практическое исследование понятий науки, технологий, инженерии и математики, которое становится все более важной частью современного образования.Навыки STEM наделяют учащихся способностями 21-го века, необходимыми для выполнения широкого круга как основных, так и высококвалифицированных рабочих мест. Риск, прыжок, повторная попытка и неудача — это часть нашего генетического материала. Без него люди не населяли бы каждый уголок этой планеты. Часто мы можем рассматривать неудачу, особенно на экзаменах, как отрицательную — это одно из худших вещей, которые мы можем позволить студентам испытать. Но что, если мы позволим студентам терпеть неудачу в безопасном месте и сделаем учебу личным делом? Используйте #BeyondCode и обогатите свой учебный опыт увлекательными занятиями STEAM, которые способствуют творчеству и сотрудничеству.Sphero создает удивительно крутых программируемых роботов и образовательные инструменты на основе STEAM, которые меняют способ обучения, творчества и изобретения детей с помощью программирования, науки, музыки и искусства. Использование доступной информации в сочетании с приобретенными навыками может помочь в принятии правильных решений. Это основной процесс критического мышления. Критически мыслящие люди могут решать проблемы, сохраняя ясный ум и рациональные мысли, которые помогут вам проанализировать ситуацию и принять правильное решение. Обучение STEM — это практическое исследование понятий науки, технологий, инженерии и математики, которое становится все более важной частью современного образования.Навыки STEM наделяют учащихся способностями 21-го века, необходимыми для выполнения широкого круга как основных, так и высококвалифицированных рабочих мест. Риск, прыжок, повторная попытка и неудача — это часть нашего генетического материала. Без него люди не населяли бы каждый уголок этой планеты. Часто мы можем рассматривать неудачу, особенно на экзаменах, как отрицательную — это одно из худших вещей, которые мы можем позволить студентам испытать. Но что, если мы позволим студентам терпеть неудачу в безопасном месте и сделаем учебу личным делом? Используйте #BeyondCode и обогатите свой учебный опыт увлекательными занятиями STEAM, которые способствуют творчеству и сотрудничеству.Sphero создает удивительно крутых программируемых роботов и образовательные инструменты на основе STEAM, которые меняют способ обучения, творчества и изобретения детей с помощью программирования, науки, музыки и искусства. Использование доступной информации в сочетании с приобретенными навыками может помочь в принятии правильных решений. Это основной процесс критического мышления. Критически мыслящие люди могут решать проблемы, сохраняя ясный ум и рациональные мысли, которые помогут вам проанализировать ситуацию и принять правильное решение. Обучение STEM — это практическое исследование понятий науки, технологий, инженерии и математики, которое становится все более важной частью современного образования.Навыки STEM наделяют учащихся способностями 21-го века, необходимыми для выполнения широкого круга как основных, так и высококвалифицированных рабочих мест. Риск, прыжок, повторная попытка и неудача — это часть нашего генетического материала. Без него люди не населяли бы каждый уголок этой планеты. Часто мы можем рассматривать неудачу, особенно на экзаменах, как отрицательную — это одно из худших вещей, которые мы можем позволить студентам испытать. Но что, если мы позволим студентам терпеть неудачу в безопасном месте и сделаем учебу личным делом? Используйте #BeyondCode и обогатите свой учебный опыт увлекательными занятиями STEAM, которые способствуют творчеству и сотрудничеству.Sphero создает удивительно крутых программируемых роботов и образовательные инструменты на основе STEAM, которые меняют способ обучения, творчества и изобретения детей с помощью программирования, науки, музыки и искусства. Использование доступной информации в сочетании с приобретенными навыками может помочь в принятии правильных решений. Это основной процесс критического мышления. Критически мыслящие люди могут решать проблемы, сохраняя ясный ум и рациональные мысли, которые помогут вам проанализировать ситуацию и принять правильное решение. Обучение STEM — это практическое исследование понятий науки, технологий, инженерии и математики, которое становится все более важной частью современного образования.Навыки STEM наделяют учащихся способностями 21-го века, необходимыми для выполнения широкого круга как основных, так и высококвалифицированных рабочих мест. Риск, прыжок, повторная попытка и неудача — это часть нашего генетического материала. Без него люди не населяли бы каждый уголок этой планеты. Часто мы можем рассматривать неудачу, особенно на экзаменах, как отрицательную — это одно из худших вещей, которые мы можем позволить студентам испытать. Но что, если мы позволим студентам терпеть неудачу в безопасном месте и сделаем учебу личным делом? Используйте #BeyondCode и обогатите свой учебный опыт увлекательными занятиями STEAM, которые способствуют творчеству и сотрудничеству.Sphero создает удивительно крутых программируемых роботов и образовательные инструменты на основе STEAM, которые меняют способ обучения, творчества и изобретения детей с помощью программирования, науки, музыки и искусства. Использование доступной информации в сочетании с приобретенными навыками может помочь в принятии правильных решений. Это основной процесс критического мышления. Критически мыслящие люди могут решать проблемы, сохраняя ясный ум и рациональные мысли, которые помогут вам проанализировать ситуацию и принять правильное решение. Обучение STEM — это практическое исследование понятий науки, технологий, инженерии и математики, которое становится все более важной частью современного образования.Навыки STEM наделяют учащихся способностями 21-го века, необходимыми для выполнения широкого круга как основных, так и высококвалифицированных рабочих мест. Риск, прыжок, повторная попытка и неудача — это часть нашего генетического материала. Без него люди не населяли бы каждый уголок этой планеты. Часто мы можем рассматривать неудачу, особенно на экзаменах, как отрицательную — это одно из худших вещей, которые мы можем позволить студентам испытать. Но что, если мы позволим студентам терпеть неудачу в безопасном месте и сделаем учебу личным делом? Используйте #BeyondCode и обогатите свой учебный опыт увлекательными занятиями STEAM, которые способствуют творчеству и сотрудничеству.Sphero создает удивительно крутых программируемых роботов и образовательные инструменты на основе STEAM, которые меняют способ обучения, творчества и изобретения детей с помощью программирования, науки, музыки и искусства. Использование доступной информации в сочетании с приобретенными навыками может помочь в принятии правильных решений. Это основной процесс критического мышления. Критически мыслящие люди могут решать проблемы, сохраняя ясный ум и рациональные мысли, которые помогут вам проанализировать ситуацию и принять правильное решение. Обучение STEM — это практическое исследование понятий науки, технологий, инженерии и математики, которое становится все более важной частью современного образования.Навыки STEM наделяют учащихся способностями 21-го века, необходимыми для выполнения широкого круга как основных, так и высококвалифицированных рабочих мест.

Страница не найдена — Vernier

на 1 месяц
Chatra третья сторона 1 неделя Используется для виджета чата
CloudFlare (__cfduid) постоянный Используется сервисом CloudFlare
Согласие на файлы cookie: необходимо сеанс 12 часов Используется для сохранения ответа о согласии на файлы cookie для необходимых файлов cookie
Согласие на использование файлов cookie: не требуется постоянный 1 год Используется для сохранения ответа о согласии на файлы cookie для ненужных файлов cookie
Согласие на использование файлов cookie: просмотр политики в отношении файлов cookie постоянный 1 год Используется для запоминания, просматривал ли пользователь политику использования файлов cookie
Facebook Pixel третья сторона 3 месяца Используется для отслеживания кликов и материалов, поступающих через рекламу в Facebook и Facebook.
Google Analytics (_ga) постоянный 2 года Используется для различения пользователей в Google Analytics
Google Analytics (_gat) постоянный 1 минута Используется для ограничения скорости запросов Google Аналитика
Google Analytics (_gid) постоянный 24 часа Используется для различения пользователей в Google Analytics
HubSpot Analytics третья сторона Различная Используется для отслеживания настроек согласия и конфиденциальности HubSpot.
Сеанс PHP сеанс сеанс Используется для хранения результатов API для повышения производительности
WooCommerce: Cart временный сеанс Помогает WooCommerce определять, когда содержимое / данные в корзине изменяется.
WooCommerce: товары в корзине сеанс сеанс Помогает WooCommerce определять, когда содержимое / данные корзины изменяются.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2021 © Все права защищены.