Зарядное устройство своими руками 6 12 вольт: Зарядное устройство для сборки аккумуляторов своими руками 12.6 Вольт 1 Ампер – 403 — Доступ запрещён

Зарядное устройство для сборки аккумуляторов своими руками 12.6 Вольт 1 Ампер

Еще один обзор еще одного небольшого зарядного устройства для 3S (12.6 Вольт) сборки аккумуляторов. Не так давно я публиковал обзор версии на 3 Ампера, сегодня версия попроще, 1 Ампер.
К сожалению все пошло не так, как хотелось, но не буду забегать вперед, подробности письмом в обзоре.

Началось все с того, что заказал я для товарища пять небольших зарядных устройств. Хотя нет, заказал я их раза в три больше, но другие относятся к более мощной серии и о них я расскажу в другой раз, а пока покажу «малышей».

Вопросов как к доставке, так и к упаковке не возникло, продавец отнесся к своей задаче вполне ответственно. Все было плотно уложено в картонную коробку, а сверху лежал листик вспененного полиэтилена.

Помимо этого каждый блок был упакован в небольшой пакетик. Конечно картонные коробочки смотрелись бы лучше, но в принципе и так неплохо.

На выбор было два варианта вилки, естественно я выбрал Евро. Каждое зарядное устройство имеет кабель подключения нагрузки, длина кабеля около метра, на конце находится привычный многим разъем 5.5/2.1
Заявленные характеристики — 12.6 Вольта, ток 1 Ампер, как и было заявлено на странице товара. Кроме того указано, что это именно зарядное устройство.

Корпус не склеен, потому выкручиваем единственный саморез и лезем внутрь.

Плата, на твердую тройку. Даже при беглом взгляде видно, что нет как минимум входного фильтра, а трансформатор несколько маловат для заявленной мощности в 12.6 Ватта, хотя с учетом потерь на диоде и шунте скорее в 13 Ватт, но не суть важно, проверим позже в деле.
Отмечу что присутствует предохранитель, при общем качестве сборки я бы не удивился если бы его не было.

1. Использован ШИМ контроллер KTG207C со встроенным высоковольтным транзистором. Судя по даташиту мощность составляет 12 Ватт для адаптера и 18 для открытого корпуса. В нашем случае мы имеем дело с адаптером (БП в маленьком закрытом корпусе), потому работать он будет с перегревом.

2. Входной конденсатор емкостью 15мкФ, измеренная 13.8, ESR- 1 Ом. Без запаса, но для зарядного нормально.
3. Присутствует нормальный помехоподавляющий конденсатор Y типа, я о них как-то рассказывал в своем видео.
4. На выходе диод Шоттки на ток 3 Ампера, конденсатор 16 Вольт 470мкФ и двухцветный светодиод. К конденсатору есть замечания. Емкость 470 мкФ (500 реальная) в данном случае нормально, это не БП и пульсации вредны только конденсатору, а не нагрузке, но напряжение 16 Вольт, это мало.

Качество пайки примерно на те же три балла, что и вид сверху. Имеются большие «сопли» припоя на некоторых контактах. Выходные провода припаяны снизу, хотя для них в плате есть соответствующие отверстия, да и сечение проводов не очень высокое, хотя опять же, для зарядного это не критично.

Первичная сторона меня интересует меньше всего, а вот вторичная куда важнее.
Уже видно, что зарядное устройство «без мозгов», а в качестве ОУ применена привычная LM358. Кроме того видно, что поверх одного из резисторов напаян еще один, видимо подбирали выходной ток.

Так как по печатной плате не очень удобно разбираться, что и как сделано, то я перечертил схему в более привычный вид.

Как и предполагалось, перед нами простое зарядное устройство. Хотел сначала назвать его примитивным, но нет, есть варианты куда проще.
На схеме я выделил основные узлы.
1. Синий — узел стабилизации напряжения. Фактически он определяет напряжение окончания заряда.
2. Красный — узел стабилизации тока. Определяет ток заряда.
3. Зеленый — источник опорного напряжения. Отвечает за стабильность измерения тока заряда и индикации.

4. Оранжевый — узел индикации. Так как под окончанием заряда (для литиевых аккумуляторов) принято понимать падение зарядного тока ниже чем 1/10 от исходного тока заряда, то здесь схема похожа на узел стабилизации тока, но с другими порогами срабатывания.
Отмечу то, что схема индикации не имеет гистерезиса и полное переключение красный/зеленый может занимать 10-40 секунд в зависимости от емкости аккумуляторов.

Стандартный первичный тест.
1. Напряжение окончания заряда 12.67 Вольта, т.е. каждый аккумулятор будет заряжен не до 4.20, а до 4.22 Вольта, что несколько выше нормы, хотя и терпимо.

2. При подключенной батарее и отключенном питании потребление 14мА, многовато, кроме того при этом светит светодиод.
3. Ток заряда 1.05 Ампера, немного выше заявленного. Причем что интересно, выше я показывал печатную плату и там был добавлен дополнительный резистор. Так вот если его выпаять то ток упадет с 1.05 до 1.00 (согласно расчетам). Зачем его припаяли — загадка.
4. Ток, при котором происходит переключение индикации, составляет 70мА, что ниже нормы (100мА).
5, 6. Ради интереса посмотрел ток через 5 и 10 минут после переключения индикации. Через 5 минут ток упал до 35мА, а еще через 5 минут до 20мА. Такой режим заряда не приветствуется, но допускается. Рекомендация проста — не оставлять на длительное время (несколько дней).

Вот теперь можно перейти к тестам под нагрузкой.
Так как моя электронная нагрузка не умеет работать в режиме CV, то я подключился до шунта зарядного устройства и нагрузил его током 1.05 Ампера, эмулируя реальную ситуацию. Зарядное было подключено отдельным проводом к сети, а сверху накрыто родной крышкой. Впрочем это видно на фото. Конечно есть отличия от реальных условий эксплуатации, но они незначительны.

Первый тест — измерение ухода напряжения окончания заряда от прогрева. Уход есть, хотя и не очень большой, кроме того к концу заряда температура падает и напряжение приходит в норму. Но я провожу этот тест для общей оценки качества устройства.

Но в процессе теста меня ждал неприятный сюрприз. Примерно через 20-25 минут электронная нагрузка «притихла», т.е. выключила вентилятор. Обычно это говорит о том, что произошло автоотключение.
В тесте я настроил порог отключения в 12 Вольт, так как у меня была цель проверить, а не спалить устройство.
Я немного остудил устройство и запустил тест еще раз, через 17 минут опять произошло отключение по падению напряжения.

Причина стала понятна сразу, как я открыл крышку. Банальный перегрев. Причем сначала я волновался по поводу перегрева трансформатора, но перегрев микросхемы произошел раньше, в процессе работы она нагрелась как минимум до 115 градусов, реально выше, так как измерил я через секунд 5 после отключения.

Так как зарядные устройства все таки были нужны, а в таком виде эксплуатировать их нельзя, то было принято решение снизить выходной ток.
Ниже я выделил элементы, которые влияют на выходные параметры.
1. Зеленым — шунт, влияет как на выходной ток, так и на индикацию. Влияет пропорционально, т.е. снижение выходного тока в 2 раза во столько же снизит порог переключения индикации.

2. Красным — делитель опорного напряжения. Влияет на выходной ток.
3. Синим — Второй делитель опорного напряжения. Влияет на порог переключения индикации.

Вариантов у меня было два, изменить номинал шунта или номинал делителя опорного напряжения (красный). Так как удобнее уменьшать сопротивление резисторов путем параллельного подключения еще одного, то я выбрал второй вариант, менять номиналы делителя.

Можно было конечно посчитать все при помощи калькулятора, но мне было куда проще сделать это в старом, но проверенном симуляторе электронных схем.

Сначала я сделал родную схему и узнал напряжение на выходе делителя (оно будет немного отличаться от реального). Вышло 116мВ.
Затем посчитал, какое напряжение мне надо выставить, чтобы на выходе был нужный мне ток (я решил сделать 700-750мА, среднее 725).
Так как исходный ток известен, то считаем 116/1.05х0.725=0.79.
Затем путем подбора добавочного резистора (правый нижний на схеме) я добился напряжения в 80мВ. В моем случае вышло что надо припаять параллельно резистор номиналом 10 кОм.

Затем находим нужный делитель на плате, нумерация в схеме и на плате соответствует. Попутно поправил косо установленный резистор. После этого припаиваем параллельно новый резистор. Я использовал резистор размера 0805.

Проверяем. Примерно соответствует расчетам, можно оставлять как есть.

Погонял еще примерно с пол часа, температура контроллера упала со 115 до 85. Как по мне, то довольно неплохо, для улучшения ситуации можно снизить ток до 700мА, ниже смысла снижать нет.
Кроме того, теперь ток переключения индикации составляет почти требуемые 1/10 от тока заряда 🙂

После обзора было снято видео, где я вкратце объясняю что к чему, просто как дополнение.

Теперь попробую кратко описать мое мнение об этом устройстве.
Общее качество изготовления не очень высокое, схема простая. Если снизить выходной ток до 700-750мА, то будет работать.
Без доработки использовать крайне не рекомендую, контроллер будет работать в режиме постоянного перегрева периодически выключаясь для остывания и может выйти из строя.

На этом все, надеюсь что обзор был полезен, а также скажу, что у меня лежит еще одно зарядное устройство 12.6 Вольта 3 Ампера, но уже «фирменное».

ЗАРЯДНОЕ УСТРОЙСТВО НА 6 ВОЛЬТ

   Недавно повторил одну неплохую схему зарядного для АКБ 6V. В продаже таких аккумуляторов появилось большое количество, а зарядники к ним если и есть, то простейшие — диодный мост, резистор, конденсатор и для индикации светодиод. Так как в основном требуются 12-ти вольтовые автомобильные. Из всех схем которые есть в интернете, остановился именно на этой. Работает стабильно и ни чем не хуже других промышленных схем. Напряжение на выходе стабильное — 6.8В, ток 0.45 А, окончание зарядки видно по светодиоду — красный светодиод гаснет при полной зарядке АКБ. Реле не стал ставить, в нем нет необходимости, зарадник при исправных деталях и так работает как часы.

Зарядное устройство для аккумуляторных батарей 6В — схема

   Для уменьшения степени нагрева в ЗУ применены два резистора по 15 Ом мощностью 2 Вт, включенных параллельно.

Монтажная плата зарядки

   В этом устройстве применены импортные оксидные конденсаторы Реле берите с напряжением срабатывания 12 В. Диоды 1N4007 (VD1 — VD5) заменимы любыми, выдерживающими ток, минимум вдвое больший зарядного. Вместо микросхемы КР142ЕН12А можно использовать LM317. Ее надобно разместить на теплоотводе, площадь которого зависит от зарядного тока.

ЗАРЯДНОЕ УСТРОЙСТВО НА 6 ВОЛЬТ - схема и детали

Делаем ЗАРЯДНОЕ УСТРОЙСТВО 6 В

   Сетевой трансформатор должен обеспечивать на вторичной обмотке переменное напряжение 15-18 В при токе нагрузки от 0,5 А. Все детали, за исключением сетевого трансформатора, микросхемы и светодиодов, смонтированы на печатной плате из одностороннего фольгированного стеклотекстолита размерами 55×60 мм. 

ЗАРЯДНОЕ УСТРОЙСТВО НА 6 ВОЛЬТ самодельное

   Правильно собранное устройство требует минимального налаживания. При отключенной аккумуляторной батареи подают питание и, подбирая резистор R6, устанавливают на выходе напряжение 6,75 В. Чтобы проверить работу узла ограничения тока, вместо аккумуляторных батарей кратковременно подключают резистор мощностью 2 Вт сопротивлением приблизительно 10 0м и измеряют протекающий через него ток. Он не должен превышать 0,45 А. На этом настройку можно считать выполненой.

ЗАРЯДНОЕ УСТРОЙСТВО НА 6 В

   Всю начинку зарядного разместил в пластиковом корпусе подходящих размеров, на переднюю панель вывел светодиоды, кнопку питания, предохранитель и клеммы подключения АКБ 6 вольт. Сборка и испытание — Николай К.

Выпрямитель для заряда аккумуляторных батарей 6/12 В

Вот самодельный выпрямитель для небольших кислотных или гелевых необслуживаемых батарей. Устройство имеет возможность изменять выходное напряжение под АКБ 6 и 12 В. Многие из аккумуляторов, используемых в скутерах или мотоциклах, все еще работают на 6 В.

Схема принципиальная ЗУ 6-12 В

Модуль управления основан на простой схеме регулируемого электрического питания со стабилизатором LM317, на чтоб повысить ток ставьте лучше LM-ку мощнее. В данном случае использовались две такие схемы, каждая из которых выдает отдельное напряжение. Не использованы большие электролитические конденсаторы, потому что в процессе зарядки они не требуются.

Трансформатор от старого источника питания. Он имеет два вторичных выхода: 12 и 18 В, что идеально в нашем случае. Подходящие напряжения не заставляют стабилизаторы нагреваться слишком сильно. Кроме того, использовалось ограничение тока в виде двух лампочек 12 В / 10 Вт и 12 В / 15 Вт, что позволяет получить максимум 0,8 А и 1,2 А.

Зарядное поместилось в корпус от какого-то набора. На задней панели расположены 2 предохранителя: сеть: 250 мА и вторичная 2 A. На передней панели есть переключатель, амперметр, переключатель напряжения и плавный ограничитель тока.

Устройство можно использовать для безопасной зарядки гелевых и необслуживаемых аккумуляторов, поскольку зарядное напряжение не будет превышать 14,4 В. Каждое из напряжений 6 и 12 В ведет себя как стабилизированный источник питания.

При необходимости можно убрать переключатель и они будут работать одновременно — заряжая сразу 2 аккумулятора.

ЗУ калибруется путем подключения конденсатора емкостью 10000 мкФ к зажимам типа «крокодил» и регулировки на нем напряжения: 5,1 В и 10,2 В соответственно. После подключения аккумуляторных батарей напряжение увеличится до пика, то есть 7,2 В или 14,4 В. Это позволяет заряжать их, не опасаясь выделения газа электролита.

Зарядное устройство уже было протестировано на многих АКБ 6 и 12 В (в том числе автомобильных) и никогда не было проблем. Схема проста и даже примитивна, но она работает. Конечно, есть современные цифровые зарядные устройства, но хотелось сделать что-то простое и дешевое своими руками.

Предельный выходной ток для LM317 составляет 1,5 А — это нужно учитывать при расчётах. Если нужен ток выше, например для зарядки авто АКБ, ставьте микросхему LM350 (3 А) или LM338 (5 А).

Фото готовой зарядки

Недорогое зарядное устройство 12.6 Вольта 3 Ампера. Обзор зарядного устройства для зарядки li-ion аккумуляторов, схемы, тест

Буквально совсем недавно я выкладывал пару обзоров зарядных устройств, но так получилось, что случайно ко мне попало еще одно. К сожалению оно также на 12.6 Вольт (3S сборка литиевых аккумуляторов), но я решил, что обзор может быть полезен из-за низкой цены. Увы, не все так, как хотелось бы, но об этом уже в обзоре.

Было заказано 10 штук зарядных устройств, на момент заказа цена была $8.13, то ли акция была, то ли продавец цену сейчас поднял, не знаю. Чтобы не было проблем с таможней, заказал двумя заказами.
Любопытно что упаковки были разные, видно коробки были те, что попались под руку, но упаковано было плотно.

В любом случае пришло все, каждое зарядное упаковано в отдельную картонную коробку, кабели лежали отдельно.

В комплект входит собственно зарядное устройство и кабель питания.

Из десяти кабелей один попался с вилкой у которой плоские штыри, хотя в заказе было указано — EU. Не критично, но неприятно.
А вот второй нюанс куда интереснее. В описании лота указано — Liitokala 12.6 В 3A зарядное устройство. Если насчет 12.6 и 3 все понятно, то вот насчет Литокала возникли некоторые вопросы. В принципе, насколько мне известно, Литокала не производит подобных зарядных устройств. Но на зарядных устройствах присутствует наклейка Liitokala, причем оригинально, в одной коробке были, в другой нет. Хотя если смотреть на фото, то можно понять, что разницы между ними никакой нет, вернее разница только в наклейке.

Корпус — привычный "брусок" черного цвета, на одной стороне расположен разъем подключения кабеля питания, на другой кабель для подключения к потребителю. Разъем 5.5/2.1мм.
Со стороны кабеля находится светодиод индикации режима работы.

Но меня интересовало это зарядное не только само по себе, а и в сравнении с тем, что я обозревал ранее.
Напомню, зарядное устройство с теми же заявленными характеристиками, 12.6 Вольта 3 Ампера, на вид также почти такое же, корпус чуть больше. Ссылка на обзор, чтобы понимать о чем идет речь.

Справа обозреваемое, слева то, что я разбирал ранее. Даже здесь видны некоторые отличия.

Зарядные устройства я покупал не себе, потому перед разборкой пришлось спросить товарища, не против ли он, если я его разберу для обзора, так как половинки корпуса склеены. Возражений не последовало, потому разобрал.

Внутри отличий гораздо больше. Как минимум у предыдущего трансформатор имеет магнитопровод большего размера, на фото это не так заметно, мешает скотч. Хуже изоляция радиаторов, вернее она есть в небольшом количестве только на радиаторе транзистора.

Ну а входной фильтр. Справа обозреваемый экземпляр, диодный мост попроще, дросселя нет, предохранитель обычный.

На выходе ситуация немного лучше. Хотя нет, точнее сказать — не сильно отличается от предыдущего, также два конденсатора и также нет дросселя по выходу. И кстати, как и у предыдущего есть место под вторую диодную сборку.

Вынимаем плату из корпуса для более тщательного осмотра, так как еще при первом взгляде мне показалось, что отличий больше.

1. Входные диоды 1N4007, фильтр отсутствует, зато конденсатор емкостью 82мкФ. Даже с учетом что реальная емкость китайских конденсаторов обычно занижена, все равно нормально для зарядного мощностью 35-40 Ватт.
2. Транзистор 8N65, вполне нормально для такой мощности.
3. Помехоподавляющий конденсатор правильный, потому безопасность в основном упирается упирается в отсутствие изоляции радиаторов и защитных прорезей в плате.
4. Выходная диодная сборка 10 Ампер 100 Вольт, нормально как по напряжению, так и по току. Конденсаторы 1000мкФ 25 Вольт, также вопросов особо нет, за исключением их "безродности".

На удивление плата спаяна даже аккуратно, конечно ей далеко до фирменных устройств, но в целом нормально.
Защитных прорезей нет, но расстояние между "горячей" и "холодной" сторонами довольно неплохое.

Первичная сторона блока питания. На всякий случай, если кому-то придется ремонтировать подобное зарядное.

А вот и первый косяк. Хотя по большому счету я даже не знаю как корректно назвать то, что я увидел.
Сверху на плате виден желтый помехоподавляющий конденсатор Х класса, так вот он не участвует в процессе. Не, ну бывает что паяют перемычки вместо дросселя, я уже к этому давно привык, но впаять конденсатор и не использовать его.
На фото я обозначил как запаян термистор и предохранитель, видно что конденсатор (справа) ни с чем не соединен. Странное решение 🙂

Как и в прошлый раз меня куда больше интересует вторичная сторона, так как первичная обычно имеет настолько маленькие отличия от других, что ее уже можно по памяти рисовать.
Как и предыдущие зарядные устройства, схема основана на операционном усилителе LM358, никаких "умных" контроллеров и в помине нет.

Вся электроника это ШИМ контроллер 6853K09, его подключение идентично контроллерам — 63D39, 63D12, и все они очень похожи на FAN6862. А также ОУ LM358, классика дешевых зарядных устройств.

Перечертил схему, хотя в данном случае по сути это компиляция из схемы блока питания, и предыдущего зарядного устройства 12.6 Вольта 1 Ампер, которые я описывал ранее, но с некоторыми отличиями.
Позиционные номера компонентов совпадают со схемой, по крайней мере в большинстве случаев 🙂

Сходство выходной части ну очень большое со схемой этого зарядного, а в какой то мере схема даже проще. Но в любом случае обе схемы гораздо проще, чем у предыдущего варианта 3 Ампера зарядного. Там было двойное питание и при желании можно было получить почти нулевое потребление когда зарядное не подключено к сети.

Схемотехника выходной части также примитивна, синий — стабилизация напряжения, красный — тока, синий — индикация, зеленый — опорное напряжение.
Это один из самых простых вариантов зарядных устройств, проще только на базе LM317 или резистора, но второй вариант не используется с литиевыми батареями (по крайней мере попадается крайне редко).

Первые тесты по моей методике тестирования зарядных устройств.
1. Выходное напряжение на холостом ходу заметно завышено, примерно по 40мВ на элемент. Это означает, что каждый элемент будет заряжаться до 4.24, а не до 4.20 Вольта. В таком варианте больше шансов получить срабатывание платы защиты аккумуляторной сборки. У предыдущего варианта было 20мВ превышение.
2. Собственный ток потребления без сети составляет 11мА, у предыдущего 7мА, а у 1А версии 14мА. Но у предыдущей версии 3 Ампера можно этот ток заметно снизить, у обозреваемого это сделать заметно сложнее, хотя и реально.
3. Ток заряда 3.23 Ампера, что почти на 10% больше заявленного. По большому счету ничего страшного в этом нет, просто аккумуляторы зарядятся чуть быстрее, но в моем случае повышенный ток "вылез боком".
4. Переключение индикации с красного на зеленый происходит при 359мА, что немного больше чем стандартная 1/10 от исходного тока. Не критично.
5, 6. Ток заряда через 5 и через 10 минут после срабатывания индикации. Как и следовало из схемы, данное зарядное не умет отключать аккумуляторы по завершении процесса, продолжая оставлять их под током. Для типичного сценария зарядил/отключил это неважно, но на неделю я бы не стал оставлять.

Следующий тест под нагрузкой, как всегда проверяем две вещи:
1. Нагрев.
2. Уход напряжения после прогрева.

Электронная нагрузка в таком тесте подключается до шунта чтобы зарядное не переходило в режим стабилизации тока (хотя в итоге все равно светил красный индикатор), и ток нагрузки выбирается таким, какой был измерен в предыдущем тесте.

Напряжение после получасового прогрева заметно убежало от исходного. Конечно по завершении заряда падает и нагрев, но сначала зарядное доведет напряжение батареи до 12.7 Вольта, а после остывания снизит до 12.68. Хотя стоп, почему снизит, без нагрузки на выходе было 12.72, потому даже скорее повысит. Жаль нет подстроечного резистора для коррекции.

На графике виден уход напряжения при нагреве. У предыдущего 3 Ампера зарядного уход был 0.005 Вольта! Как говорится — почувствуйте разницу.

С нагревом также картина не очень веселая. Сначала температура корпуса и компонентов после получасового прогрева.

А теперь через 1 час 14 минут. Самая высокая температура зарегистрирована в районе обмотки трансформатора, более 100 градусов.
Я бы не сказал что все так уж плохо, так как зарядное работает обычно час-два, максимум три, дальше обычно аккумулятор заряжается и нагрев падает. Кроме того, на начальном этапе нагрев будет немного меньше, так как выходная мощность зарядного меньше. Например на каждом аккумуляторе 3.8 Вольта, в сумме выходит 3.8х3х3.2=36,5 Ватта, а почти в самом конце заряда (в этом режиме я проводил тест) — 4,2х3х3,2=40,3, на 10 процентов больше.

Температура отдельных компонентов в конце теста —
Входной диодный мост — 74.5
Высоковольтный транзистор — 86.3
Трансформатор — 94.8
Обмотка трансформатора — 102.8
Выходная диодная сборка — 99.9
Выходные конденсаторы — 82.4

Термограмма с двух ракурсов.

На мой взгляд проблема перегрева кроется в нескольких вещах и первая — малый запас по мощности трансформатора. Вторая — завышенный выходной ток, почти 10% это немало. Я считаю, что стоит снизить его хотя бы до заявленного значения, а в идеале опустить до 2.8 Ампера. В таком варианте работать должно нормально.
Как и в прошлый раз (в обзоре 1 А зарядного) я советую изменить номиналы делителя. В данном случае либо увеличить R20, либо уменьшить R22. Так как уменьшить проще чем увеличить, то лучше сделать именно так, например припаяв параллельно резистор номиналом 8.2-10кОм. Чем меньше сопротивление резистора, тем меньше будет выходной ток.

Выводы просты. Главное преимущество данного зарядного — цена, дешевле мне пока не попадалось. Как вы понимаете, цена определяется обычно качеством сборки и работы. А в данном случае производитель явно экономил почти на всем. Но даже в таком варианте зарядное работает, но я бы советовал его немного доработать. Сама по себе доработка проста, самая большая сложность это аккуратное вскрытие.
Но в любом случае к Литокале данные изделия имеют примерно такое же отношение как я к балету 🙂

Вот и все. Надеюсь что обзор был полезен, как всегда жду комментариев и вопросов.

СХЕМА ПРОСТОГО ЗАРЯДНОГО НА 12 ВОЛЬТ

   Чтоб зарядить свинцовый аккумулятор небольшой ёмкости (до 10 А/ч), потребуется зарядное устройство, схема которого предлагается для самостоятельного изготовления. Вы не сможете испортить АКБ с помощью этого зарядного, потому что в нём ток около 300 мА не способный повредить батарею. ЗУ может полностью зарядить любой 12 вольтовый аккумулятор и держать его заряженным (периодически подзаряжая) в течение нескольких месяцев, и даже лет.

Схема простого зарядного на 12 вольт

Схема простого зарядного на 12 вольт

Принцип действия схемы

Схема простого зарядного на 12 вольт - принцип работы

   Чтоб было понятнее, условно разделим всю принципиальную схему на отдельные модули. Устройство не включается, пока аккумулятор не подключен через клеммы, как показано на схеме. Кнопка Push нужна для запуска схемы при абсолютно разряженной батарее. Это действие включает транзистор. Сопротивление между коллектором и эмиттером уменьшается и загорается светодиодный индикатор. Электрический потенциал к нижней части схемы идет через диод, Уэ-катод тиристора и через два резистора по 1R8 включенных в параллель. Поэтому светодиод горит.

Плата печатная ПРОСТОГО ЗАРЯДНОГО НА 12 ВОЛЬТ

   Прежде чем пойдем дальше заметим, что вся схема работает от адаптера ПЕРЕМЕННОГО тока. Постоянное питание не позволит тиристору открываться и закрываться, когда ток идущий через него падает до нуля.Тиристор SCR включается в течение каждого полупериода напряжения, и ток течет в батарею. Напряжение также падает на двух 1R8 резисторах и подается на электролитический конденсатор 47 мкФ. Он заряжается и включает транзистор BC547. Транзистор лишает тиристор напряжения управляющего электрода и он выключается. Энергия конденсатора поступает в транзистор, но через короткое время она уже не сможет удержать транзистор включенным.

   Транзистор выключается, тиристор включается и подает еще один импульс тока от заряжаемую батарею. В процессе заряда батареи, ее напряжение увеличивается, это контролирует блок «монитор напряжения». Данный узел состоит из транзистора и стабилитрона, а также резисторов 8k2, переменный 1k, 1k5, 150 Ом и светодиода. 

   Так как напряжение на батарее увеличивается до 13,4 вольт, каждый резистор будет иметь некоторое падение напряжения на нем, соответствующее сопротивлению резистора. Диод будет иметь постоянное падение 0,7 вольта. Напряжение через стабилитрон будет 10 В. Это оставляет 0,6 В между базой и эмиттером транзистора. Такого напряжения достаточно, чтобы открыть транзистор. А значит зарядка отключается. 

   Схема предназначена для тока заряда около 300-400 мА. Максимальное значение определяется резисторами 1R8. Они не позволяют превысить более 900 мА в течение половины цикла. Когда аккумулятор полностью заряжен, индикатор LED начнет мигать. Мигание создаёт резистор 2k2 и конденсатор 47 мкФ, подключенный к блоку монитору напряжения. При этом происходит небольшая подача тока в батарею, чтобы держать её заряженной. Это называется импульсный режим подзаряда.

Настройка зарядного

   Зарядите полностью аккумулятор и когда напряжение достигает 13.4 В, подстройте регулятор 1к так, чтобы светодиод мигал. Схема не включится, если напряжение аккумулятора менее 4-х вольт. Если аккумулятор хороший, но был полностью разряжен, вы можете вручную запустить процесс зарядки при подключении аккумулятора и нажатия кнопки.

Сборка ПРОСТОГО ЗАРЯДНОГО НА 12 В АКБ

   Если аккумулятор не заряжается даже после того, как вы нажали кнопку, не тратьте на него время — скорее всего он уже вообще не будет заряжаться. Таким образом это зарядное устройство идеально подходит для определения того, может ли вообще батарея быть заряжена. Для этого просто подключите АКБ к зарядному устройству и контролируйте напряжение на батарее. Если оно остается на уровне менее 8 В после 1 часа, то батарею можно выкинуть. Если нужно зарядное на большой ток, для автомобильных АКБ — тогда вам пойдёт другая схема.

   Схемы зарядных устройств

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *